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Security of Streaming Media Communications 

with Logistic Map and Self-Adaptive 

Detection-Based Steganography 

 

Jinghui Peng, Yijing Jiang, Shanyu Tang, and Farid Meziane, Fellow, BCS 

Abstract—Voice over IP (VoIP) is finding its way into several applications, but its security concerns still remain. This paper 

shows how a new self-adaptive steganographic method can ensure the security of covert VoIP communications over the 

Internet. In this study an Active Voice Period Detection algorithm is devised for PCM codec to detect whether a VoIP packet 

carries active or inactive voice data, and the data embedding location in a VoIP stream is chosen randomly according to random 

sequences generated from a logistic chaotic map. The initial parameters of the chaotic map and the selection of where to 

embed the message are negotiated between the communicating parties. Steganography experiments on active and inactive 

voice periods were carried out using a VoIP communications system. Performance evaluation and security analysis indicates 

that the proposed VoIP steganographic scheme can withstand statistical detection, and achieve secure real-time covert 

communications with high speech quality and negligible signal distortion. 

Index Terms— Security, VoIP, streaming communications, steganography  

——————————   !   —————————— 

1   INTRODUCTION

ITH the development of the Internet, text messaging alone is hard to meet people’s demands for multimedia 

communications. Internet users need more direct and vivid modern ways of communication, such as audio or 

video communications. Voice over Internet Protocol (VoIP) is one of the most popular audio communications services 

on the Internet. VoIP is finding its way into several 

applications, and it is expected to become a service like 
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electricity or water. 

The Internet enables VoIP to provide reliable, global, low-cost and/or even free services, so many users communicate 

with each other daily using VoIP products, leading to increasing traffic of VoIP streams transmitted over the Internet. Due to 

the highly redundant representation in VoIP streams, VoIP is considered to be a dynamic cover object for steganography 

compared with static cover objects such as text, image and audio files [1-2]. As an interesting subject in the field of 

information security, steganography or covert communication (channel) works by hiding messages in inconspicuous cover 

objects (e.g. VoIP streams) that are then sent to the intended recipient [1]. Steganography can provide an additional layer of 

security in addition to encryption by embedding the encrypted message into steganographic carriers, which helps individuals 

or organisations protect sensitive information. For example, a message can be steganographically embedded into the least 

significant bits of frames on a CD. Covert steganographic channels can be used to bypass the censorship in a hostile 

environment. The covert channel can also be used by the adversary as a possible means of information exchange. A message 

can be concealed before distribution by splicing it to the end of a copy of a normal audio or video. A disgruntled employee 

may use steganography to ship out the most commercially sensitive information. 

VoIP provides real-time audio communication services over the Internet, and VoIP packets are discarded 

immediately on arrival. That means that attackers do not normally have sufficient time to detect whether VoIP 

dynamic streams contain the hidden message or not. The real-time character of VoIP is useful in protecting the 

message hidden in their streams; however, the real-time requirements make it hard to perform necessary operations to 

embed the message into the streams without causing signal distortion. 

VoIP communications consist of two phases: signalling phase and conversation phase. The signalling phase sets up 

and negotiates VoIP session parameters between the communicating parties. The most popular signalling protocol is 

called Session Initiation Protocol (SIP). As mutual authentication is a cryptographic scheme used to convince parties of 

each other’s identity and to exchange session keys, it is typically used only when an extra level of security is needed, 

especially in VoIP communications [3]. Some key agreement protocols and authentication schemes [4-8] were proposed 

to improve the VoIP security in the signalling phase, but research on the protection of the VoIP conversation phase 

falls behind. 

Security measures like the Triple Data Encryption Algorithm (3DES) provide protection for radio-frequency-

identification communications [9], but their complexity, time consuming and increasing computational power make 

them unable to provide security for real-time VoIP communications. Thus, an alternative measure like steganography 

is sought for VoIP communications.  Traditional Least Significant Bit (LSB)-based algorithms used in image 

steganography are prone to statistical analysis. Directly applying LSB to VoIP steganography certainly inherits its 

vulnerability, but the highly redundant representation in VoIP packets allows subtle modifications that preserve the 

perceptual content of the underlying packets. The use of a chaotic map in the modification process could strengthen 
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VoIP steganography due to its added complexity, which is a motivation of this study. 

Pulse Code Modulation (PCM) codec is the most basic speech codec that exists in a large majority of speech codecs. 

So VoIP steganography with PCM was investigated in this study. And a new self-adaptive steganographic method 

based on a logistic chaotic map, taking into account the voice character of VoIP, was devised to realise real-time covert 

VoIP communications. The technical merits of this study are summarised as follows: 

a) Active voice period detection-based secure, self-adaptive and real-time covert VoIP communications over 

networks using a logistic chaotic map; 

b) Performance evaluation with state-of-the-art network equipment Digital Speech Level Analyser, unlike previous 

works with performance evaluation being conducted using in-house software with low precision; 

c) Security tests carried out using the Mann-Whitney-Wilcoxon method, instead of conventional statistical tests. 

The remaining of the paper is organized as follows. In Section 2, the related work is briefly introduced. Section 3 

describes in detail our proposed real-time covert VoIP communications scheme based on self-adaptive audio 

steganography. The experimental setup is given in Section 4. Experimental results, security analysis and performance 

comparisons are discussed in Section 5. The final section concludes the paper. 

2 RELATED WORK 

Embedding a message into the payload of VoIP streams is one of the most widely researched steganographic methods. 

Some related works are introduced below. 

Attempts have been made to improve the security of VoIP communications. As the LSB method is one of the most 

popular data embedding methods due to its low complexity and high capacity, LSB-based embedding techniques have 

been applied to VoIP communications. Kratzer et al. [10] reported a design of VoIP steganography, which substituted 

the bitstream of a secret message for the least significant bits of cover audio. Wang et al. [11] proposed a method of 

using the LSBs of voice samples to carry secret communications, and described a design of real-time speech hiding 

with G.711 codec, which was implemented in Linphone. They compressed the secret speech with Speex, before 

embedding it into the LSBs of voice samples. In these studies, the bitstream of the secret message to be hidden was 

uniformly distributed in cover objects using LSB substitution, which is most likely to be detected by statistical analysis. 

Besides, their works mainly focused on the designs of steganographic algorithms, neglecting the effects of the 

characteristic of VoIP conversation on VoIP steganography. 

Huang et al. [12] suggested an algorithm for embedding data in some parameters of inactive speech frames encoded 

by G.723.1 codec, which was a high-capacity steganographic method. In addition, Huang et al. [13] proposed an 

algorithm for steganography in low bit-rate VoIP audio streams by integrating data hiding into the process of speech 

encoding. 

Tian et al. [14] designed an M-sequence-based LSB steganographic algorithm for embedding information in VoIP 
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streams encoded by G.729a codec. Tian et al. [15] also proposed an adaptive partial-matching steganographic method 

with triple M sequences, which used a partial similarity value to evaluate the partial matching between the cover 

object and the secret data. They introduced three sequences: the first was used to eliminate the correlation between the 

secret data and the cover object; the second was utilised to guide an adaptive embedding process; the last was used for 

encrypting synchronization signalling patterns. 

Aoki [16] proposed a lossless steganographic approach for u-law of G.711 codec, which embedded a secret message 

into ‘0’ speech samples by exploiting the characteristic that a ‘0’ speech sample could be represented by two codes ‘+0’ 

and ‘-0’. If ‘0’ was required to be embedded into a ‘0’ speech sample, the sign of the speech sample was modified to ‘-’. 

Its steganographic capacity depended on the number of ‘0’ speech samples, so its applicability is limited. 

In 2017, Tian et al. put forward a bitrate modulating based steganographic algorithm with Hamming matrix 

encoding [17], but its practicality needs further study. 

Balasubramaniyan et al. developed a PinDr0p mechanism to detect and measure single-ended VoIP audio features 

to identify all the applied voice codecs, and calculate packet loss and noise profiles with over 90% accuracy [18]. 

Peeters et al. [19] presented a Sonar system that detected the presence of SS7 redirection attacks by securely 

measuring audio round-trip times between telephony devices, capable of detecting 70.9% of redirected calls between 

call endpoints of varying attacker proximity (300 - 7100 miles) with low false positive rates (0.3%). 

More recently, Jiang et al. designed a reversible data hiding in encrypted domain scheme with low computational 

complexity for three-dimensional meshes [20]. Zhang et al. suggested a coverless steganographic algorithm based on 

discrete cosine transform and latent dirichlet allocation topic classification, having robustness against common image 

processing and better ability to resist steganalysis [21]. 

Some researchers have engaged in VoIP steganalysis. Steganalysis is the science of detecting the message hidden 

using steganography, which is to distinguish the stego data from the cover object. Huang et al. [22] proposed a 

steganalysis method to detect covert VoIP communications, which used a sliding window mechanism and an 

improved regular singular (RS) algorithm. Huang et al. [23] suggested a steganalysis method that employed the second 

detection and regression analysis, which not only detected the hidden message in the compressed VoIP speech, but 

also accurately estimated the data embedding length. However, the successfulness of VoIP steganalysis depends 

heavily on the steganographic algorithm used in covert VoIP communications. 

In summary, a great deal of research has been conducted on the basic techniques of VoIP steganography and 

steganalysis, but few studies have been carried out to discover the most appropriate data embedding locations in VoIP 

streams affected by the voice character during active and inactive speech periods. To bridge the knowledge gap, this 

study presents a new self-adaptive steganographic method using a specially designed Active Voice Period Detection 

algorithm and a logistic chaotic map, which can achieve real-time self-adaptive covert VoIP communications with 

negligible signal distortion. 
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3 PROPOSED REAL-TIME COVERT VOIP COMMUNICATIONS SCHEME 

The proposed self-adaptive covert VoIP communications scheme is based on the connectionless User Datagram 

Protocol (UDP), which focuses on low-overhead operation and reduced latency to meet the real-time requirements of 

VoIP communications. The covert VoIP communications are realised by embedding secret data into audio signals 

encoded by PCM codec. The audio signals are chosen by an Active Voice Period Detection (AVPD) algorithm, which 

decides whether a VoIP packet carries active voice data (Active speech period) or inactive voice data (Inactive speech 

period). The bitstream of secret data is not uniformly embedded into the audio signals, but is distributed randomly 

using random sequences generated from a logistic chaotic map. 

The initial parameters of the chaotic map can be exchanged between the communicating parties in three ways. 

Firstly, a device (e.g. smartcard) is used to hold the cryptographic parameters. Having a smart card on the top of VoIP 

is acceptable for a local VoIP network with few users, but is unlikely to implement in practice due to a massive number 

of VoIP users in real VoIP communication. Secondly, the parameters can be embedded into VoIP protocols such as the 

SIP signalling protocol. However, this method would affect and disrupt the functioning of the SIP signalling protocol 

that establishes connections between the users in the VoIP signalling phase. Thirdly, a key-distribution scheme is 

utilised to exchange the parameters, which is adopted in this scheme to distribute the initial parameters in the VoIP 

conversation phase after a connection is established via SIP. 

In this study, the use of a key-distribution scheme to exchange the initial parameters of the chaotic map between the 

VoIP users is to avoid affecting and disrupting the functioning of the SIP signalling protocol that is used to establish 

connections between the communicating parties in the signalling phase in real-time VoIP communication. So the 

proposed steganographic channel is integrated with VoIP communication without causing perceptible signal 

distortion. 

Before data embedding, the initial parameters of the chaotic map are exchanged between the communicating parties 

using the Diffie–Hellman key exchange scheme [24], which is indeed widely used, in the VoIP conversation phase. As 

Diffie–Hellman provides no authentication of the two communicating partners, this vulnerability needs to be 

overcome with the use of digital signatures and public-key certificates. Thus, the communicating parties in the 

proposed covert VoIP system are authenticated by means of elliptic curve digital signatures. The elliptic curve digital 

signatures are executed in a short space of time (~190 ms) [7], which is shorter than the acceptable latency of 400 ms for 

one-way VoIP communication, so they do not affect the real-time performance of the VoIP communication system. The 

extraction of the secret data hidden in the audio signals is carried out on the receiver side, which is a reverse process of 

data embedding. 
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Fig. 1. Sketch of the proposed covert VoIP communications. 

Figure 1 shows one way communication of the proposed covert VoIP communications. A speech stream is first 

detected by the AVPD function to decide whether it is in the active speech period or in the inactive speech period. A 

logistic chaotic map is used to generate random sequences that choose the embedding locations in the speech stream 

for the bitstream of secret data to be hidden. The chaotic map-based data embedding algorithm has great complexity, 

compared to simple LSB replacement with low complexity in literature. The speech stream with the hidden secret data 

is then encapsulated into packets and sent to the receiver. Otherwise, the speech stream is directly packed into packets 

and sent to the receiver. On the receiver side, after the arriving packets are unpacked, the speech stream is detected by 

AVPD until the secret data is extracted. Finally, the speech stream goes through the extraction process or is played 

back for listening. 

The meanings of the symbols, used in the self-adaptive covert VoIP communications scheme, are provided in Table 

1. 

Table 1 Table of notations 

Symbol Meaning 

a 

C 

c 

E 

H 

j 

M 

m 

N 

P-value 

Pc 

Parameter of Tent map 

Set of cover objects 

Cover object 

Mean of variance 

Hypothesis value 

Current sample 

Secret data set 

Secret data 

Number of samples in the speech stream 

Probability 

Probability distribution 
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p 

Q 

R 

r 

S 

s 

S2 

W 

x 

x0 

 

xn 

z* 

µ 

σ 

Largest interval 

Space of possible measurements 

Embedding location set 

Embedding location 

Least significant bit set 

Least significant bit 

Sampling distribution 

Space of possible measurements 

Random number 

Initial ratio of the population to the maximum 

population 

Value of x0 after n iterations 

Test statistic 

Positive number 

Square root of variance 

 

 

3.1 Active Voice Period Detection 

There is no fixed voice activity detection module in PCM codec, so an AVPD algorithm is devised to minimise the 

impact of data embedding on speech quality. The AVPD algorithm uses a threshold to decide whether the speech in an 

audio packet has fallen into an active or inactive speech period. Although sometimes active and inactive speech 

periods are not distinguishable accurately, the AVPD can distinguish the majority of active and inactive speech periods 

in an audio packet. 

 The threshold for an active voice is determined after analysing audio data in the first few packets, in which only 

environmental noises exist in normal circumstances at the beginning of the conversation phase. Hence, the AVPD 

algorithm is effective in a real environment where users speak in a background noise. 

Analogue to a delta-sigma modulator as a two-level dynamic quantizer to encode and decode signals [25], PCM 

codec uses a perception model-based compression method to code audio, which can yield high speech quality. To 

digitise an audio signal, the first step is sampling, and the nominal value recommended for the sampling rate is 8 kHz. 

The second step is quantization, i.e. transforming the sampling signal amplitude into a numeric value with binary 

digits. The sample signal values in inactive speech periods are smaller than those in active speech periods.  

To decide whether the speech in an audio packet has fallen into active or inactive speech periods, a threshold value 

for the energy level of the signal is set to distinguish between active and inactive sample signal values. Normally, at 

the beginning of the conversation phase, there are few milliseconds of insignificant voice between the communicating 

parties. The first few packets are then analysed to obtain the threshold signal value which is defined as: 

€ 

Threshold = Max +OffsetValue         (1) 
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where Max is the maximum value among all the sample signal values of the first few packets, and OffsetValue is an off-

set value which is less than Max. A large number of tests showed that the best range of OffsetValue is [0, threshold*2/3) 

with excellent AVPD results. 
 

 

Fig. 2. Pseudo code of the AVPD function for PCM codec. 

If more than half of the sample signal values of an audio packet are larger than the Threshold, the speech in the audio 

packet is considered to be in an active speech period. Otherwise, it is in an inactive speech period. Figure 2 shows the 

pseudo code of the AVPD function in our covert VoIP communications system. If the AVPD function returns a true 

value, it means that the speech stream is active. 

Figure 3 shows an example of a speech waveform where inactive and active speech periods are determined by 

AVPD. Clearly there are three active speech periods (marked with rectangles) in the figure. A sample signal value of 

an audio packet might be vulnerable to being modified through the network, but the active or inactive character of the 

packet is unlikely to be changed. Thus, it is more conducive to distinguish active and inactive speech periods before 

data embedding. 

 

Fig. 3. Example of a speech waveform with active periods determined by AVPD. 

 

3.2 Logistic Chaotic Map to Choose Embedding Locations 

Chaos is a stochastic phenomenon of nonlinear deterministic system in the nature. The uncertainty of random 

sequence is resulted from the internal factor of a chaotic dynamical system. A chaotic map is extremely sensitive to the 

initial conditions and the parameters of the chaotic map. So a mass of noise-like but determinate random sequences can 

be obtained from a chaotic map. The random sequence can be reproduced from the same chaotic map with the 
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constant initial condition. In comparison with other pseudo random sequence generation algorithms such as Mersenne 

Twister method, using a logistic map to generate a random sequence is straightforward and convenient to implement. 

In the proposed scheme, a series of random sequences generated from a logistic chaotic map are used to choose data 

embedding locations in VoIP streams. The utilization of chaotic map makes data embedding in VoIP streams ran-

domly, and it is unlikely to predict the initial conditions of random sequences. So the properties of the chaotic map can 

increase the security of covert communications. To meet the real-time requirement, it needs to minimize the time to 

generate random sequences. Meanwhile, it is necessary to know the initial parameters with infinite precision for sensi-

tivity of the chaotic map, so that the initial parameters can be transmitted securely between the communicating parties 

in the conversation phase. 

A logistic map is one of the most popular models for discrete nonlinear dynamical systems. The map is popularized 

in a seminal paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic 

equation first created by Pierre Francois Verhulst [26]. A logistic map is given by 

€ 

xn+1 = µxn (1− xn )                 (2) 

where x0 is the initial ratio of the population to the maximum population at year 0, xn denotes the value of x0 after n 

iterations, a number between 0 and 1, and the ratio of existing population to the maximum possible population after n 

years, and µ is a positive number which stands for a combined rate for reproduction and starvation. 

 

Fig. 4. Bifurcation diagram of a logistic map when x0 = 0.52. 

Figure 4 depicts a bifurcation diagram of a logistic map when x0 = 0.52. As Fig. 4 shows, when , the value of 

x is equal or close to 0. When , x quickly approaches the value of µ-1/µ. It shows chaotic characteristics when 

µ varies in the range (3.57, 4]. When µ = 4, x becomes increasingly chaotic. Figure 5 shows the ergodic property of 

chaos, when x0 = 0.52 and µ = 4 in the equation of a logistic map. As can be seen from Fig. 5, the value of xn randomly 

falls in the range (0, 1] as n increases between (0,10000]. 

Tent map is also a discrete-time dynamical system model. The original formula for the Tent map can be written as: 

   

        

                       (3) 
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Fig. 5. Values of xn with n increasing when x0 = 0.52 and µ = 4.

  

 

To extend the mapping range, the improved Tent map is obtained: 

                         (4) 

In equation (4), , , and . For the Tent map, the parameters are a = 16, µ = 1.99, and x0 = 0.552. 

The parameter values of the logistic map are x0 = 0.52 and µ = 4. As Figs. 6 and 7 show, after 30000 iterations, the statis-

tical distribution of the numbers generated from the logistic map is ‘U’ shape distributed. And the statistical distribu-

tion of the numbers from the improved Tent map is almost uniformly distributed. 

 

 

Fig. 6. Statistical distribution of numbers (Y axis) generated from the logistic map (X axis: xn). 

 

 

Fig. 7. Statistical distribution of numbers (Y axis) generated from the improved Tent map (X axis: xn). 

Since x is between 0 and 1, some adjustments need to be made to obtain a random sequence of integers from the 
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logistic map. Suppose x0 and µ are given as certain values in Equation (2), a sequence of x can then be yielded and 

denoted by X as 

                   (5) 

and    (6) 

where R is the embedding location set, r is the embedding location, and p is the largest interval. To get x = 16, the 

adjustment for the Tent map is xn = floor(xn) + 1. 

As Fig. 8 shows, after adjustment the statistical distribution of numbers from the improved tent map is still uni-

formly distributed. As can been seen from Fig. 9, when x is in [1, 16] the numbers generated are around 2000, and the 

numbers from the logistic map are almost evenly distributed too. 

 

 

Fig. 8. Statistical distribution of numbers  (Y axis) generated from the improved tent map after adjustment (X axis: xn). 

The sequence of R is utilized in the proposed covert VoIP communications. p is an integer, which represents the 

largest interval, and the value of p is in the range of 2 to 35 [27]. The PESQ scores and SNR values are stable before the 

embedding interval reaches 35. ri is used to determine the data embedding locations in VoIP streams to embed the 

bitstream of secret data. 

 

 

Fig. 9. Statistical distribution of numbers (Y axis) generated from the improved logistic map after adjustment (X axis: xn). 
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3.3 Data Embedding Algorithm 

A new data embedding algorithm is used to embed secret data in VoIP cover-speech streams. It is based on bit 

substitution with payloads using a random sequence to determine the data embedding location, i.e. where to embed 

the bitstream of secret data. At the beginning, there are two choices: either embedding secret data into an active or 

inactive speech period of VoIP streams. If data embedding in an active speech period is chosen, the embedding 

algorithm waits until the active speech period starts. An important parameter ActiveChoice is set to represent the 

choice. If the value of ActiveChoice is ‘false’, secret data is embedded in inactive speech periods, and the algorithm 

continues with inactive speech periods. If the value of ActiveChoice is set to ‘true’, the bitstream of secret data is 

embedded in active speech periods. 

Assuming user A wants to send L bits of secret data M to user B, the secret data is described as M = {mi| i = 

0,1,2,...,L-1}. If the number of samples in the piece of speech of each packet is N, the least significant bit set of samples 

can be denoted by S = {si| i = 0,1,2,..., N-1}. The data embedding algorithm is designed as follows: 

Step 1: Execute the function of AVPD to detect whether a VoIP packet carries active or inactive voice data, if the re-

turned value of AVPD is equal to ActivChoice, go to Step 2; otherwise, go to Step 4. The initial value of j is 0, and s0 is 

the least significant bit of the first sample in the chosen piece of speech. 

Step 2: Obtain a random xi from a logistic chaotic map, calculate ri = xi ×1000 (mod p) + 1 as the data embedding in-

terval to decide the data embedding location in VoIP streams. 

Step 3: Suppose the least significant bit of the current sample is sj, if j+ri < N, replace 

€ 

s j+ri with mi, then perform j = 

j+ri, i = i+1, repeat Steps 2 and 3 until the end of the current piece of speech S, i.e., j+ri >= N. 

Step 4: Encapsulate the piece of speech in a packet to be sent; go to the next piece of speech, and repeat Step 1 until 

the secret data is embedded completely. 

 

3.4 Data Extraction Algorithm 

In the conversation phase, the receiver obtains the initial parameters of a logistic map, which is used to generate 

random sequences that randomly choose data embedding locations, and the value of ActiveChoice which determines 

where to extract the secret data hidden in VoIP streams. The same initial parameters and the value of ActiveChoice 

enable the receiver to successfully retrieve the secret data. The extraction process is a reverse phase of the data 

embedding process. After receiving an audio packet, the least significant bit set of samples can be denoted by S’ ={s’i | 

i = 0, 1, 2, ..., N-1}. The logistic chaotic map generates a corresponding random number xi that decides the extraction 

location. The following steps are performed to extract the original secret data on the receiver side. 

Step 1: Execute the AVPD function to detect whether a VoIP packet carries active or inactive voice data; if the re-

turned value of AVPD is equal to ActiveChoice, go to Step 2; otherwise, go to Step 4. The initial value of j is 0, and s’0 is 
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the least significant bit of the first sample in the chosen piece of speech. 

Step 2: Generate a random number xi from a logistic chaotic map, and calculate ri to decide the extraction location. 

Step 3: Suppose the least significant bit of the current sample is 

€ 

s j
' , if j+ri < N, get 

€ 

s j+ri
' as mi, then perform j = j+ri, i 

= i+1, repeat Step 2 and Step 3 until the end of the current piece of speech S’’, i.e., j+ri >= N. 

Step 4: Play audio, receive the next audio packet, and repeat Step 1 until the completion of extracting the secret data 

M. 

 

4 EXPERIMENTAL SETUP 

4.1 Covert VoIP Communications System 

To evaluate the performance of the proposed steganographic algorithm, speech samples coded by PCM were 

employed as the cover-speech. The steganographic algorithm was used in our VoIP communications system called 

StegPhone. In the StegPhone system, end-user terminals (the communicating parties) are connected to a VoIP proxy 

server through an IP local network. Its end-user interface is shown in Fig. 10. 

 

 

Fig.10. End-user interface. 

StegPhone was developed in-house using C++ and MFC. The implement of speech signal acquisition and playback 

is based on winmm.lib which is a multimedia API, and the real-time transmission of audio packets is carried out by 

means of jrtplib 3.9.1 library. The transport protocol is UDP. 

As Fig. 11 shows, the StegPhone VoIP system used the SIP signalling protocol to establish connections between two 

communicating parties, the media protocol to handle the real-time audio communication, and the IP protocol for VoIP 

voice transmission. These protocols were implemented on a VoIP server. 
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Fig. 11. StegPhone VoIP system. 

The communicating party’s IP address was needed to initialize VoIP communications, and the parameters used for 

sampling and quantizing the cover-speech were then selected. It was convenient to choose between data embedding in 

an active speech period and that in an inactive speech period. 

The VoIP audio samples were obtained by using single-channel and sampling at 8 kHz. Each sample was 

represented with 16 bits. There were 2048 samples in each audio packet. The initial values of the logistic chaotic map 

were given as follows: , , ......, 

. 

The value of xi was used for determining the embedding location R in VoIP streams for data embedding. The value 

of p in equation (6) was determined to be 16 as the largest interval, and ri was used for determining the embedding 

location in VoIP streams for data embedding.  

In general, a key distribution occurs with short time-consuming and small communications traffic. The exchange of 

the chaotic initial condition is a kind of key distribution, and 8 bytes are sufficient for the value of x0 and u to be trans-

mitted. As the length of secret data in covert communications is time-dependent and there are more than 700 bytes 

secret message in our experiment, it is impracticable to envoy secret data using a key distribution method. 

The experiments for testing the speech quality of the cover-speech and stego-speech samples were conducted using 

Digital Speech Level Analyser (DSLA). In the experiments, a player was used to playback records of English audio as 

the cover-speech to microphone. The audio samples were standard English records obtained from DSLA. The covert 

VoIP communications were achieved through a VoIP proxy server (a component of StegPhone) over our laboratory’s 

local area network. Comparisons between cover-speech and stego-speech samples were carried out at the end of the 

VoIP call. On the receiver side, Perceptual Evaluation of Speech Quality (PESQ) scores and Signal-to-Noise Ratio (SNR) 

values of the speech samples were measured using DSLA II, which is a high-accuracy equipment made by Malden 

Electronics Ltd. in the United Kingdom. 

 

4.2 Perceptual Evaluation of Speech Quality 

According to ITU-T Recommendation, PESQ is an objective method for end-to-end speech quality assessment of 
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narrow-band telephone networks and speech codecs [28]. PESQ requires two inputs, the original unprocessed test 

signal and the degraded version that has been passed through the distorting system. Figure 12 illustrates the 

processing carried out by PESQ. To compare the signals, the reference speech signal and the degraded signal should be 

at the same, constant power level. The model begins by aligning the original and degraded signals to a standard 

listening level. They are then filtered with an input filter to model the standard telephone handset. The system under 

test may include a delay, which may be variable. To compare the original and degraded signals, they need to be lined 

up with each other. The signals are aligned in time and then processed through an auditory transform that mimics 

certain key properties of human hearing  and the auditory transform gives a representation in time and frequency of 

the perceived loudness of the signal, known as the sensation surface. The difference between the sensation surfaces for 

the signals is known as the error surface. Two error parameters are extracted from the disturbance, are aggregated in 

frequency and time, and are mapped to a prediction of subjective mean opinion score (MOS). 

 

Fig. 12. Signal processing in PESQ. 

The aim of the amended recommendation ITU-T P.862.1 is to provide a single mapping from the raw P.862 score to 

the Listening Quality Objective Mean Opinion Score (MOS-LQO). The mapping from PESQ score to PESQ P.862.1 is 

given by: 

         (7) 

 

4.3 Signal-to-Noise Ratio 

SNR is a measure that compares the level of a desired signal to the level of a background noise. It is defined as the 

power ratio between the signal and the background noise, often expressed in decibels. As many signals have a very 

wide dynamic range, SNRs are often expressed using the logarithmic decibel scale. In decibels, SNR is defined as:         

                                              (8) 

where Psignal and Pnoise are the levels of the signal and the noise in decibels, respectively. SNR is usually taken to indicate 

an average signal-to-noise ratio, as it is possible that instantaneous signal-to-noise ratios are considerably different. 
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5 RESULTS AND DISCUSSION 

To compare data embedding in active and inactive speech periods, two sets of tests upon data embedding in active and 

inactive speech samples were carried out, respectively. Eighty female and male speech samples were used as cover 

objects in the experiments. Each experiment was repeated 12 times. About 8.7 seconds of audio in a stego-speech 

sample were taken for each test. To evaluate the performance of the proposed steganographic algorithm, the 

corresponding 8.7 seconds of the cover-speech were used as the reference. The 8.7 seconds of speech contain 69632 

sampling points with 16 bits, i.e. 34 audio packets. The size of the hidden message in the speech stream is 745 bytes, 

equivalent to about 130 English words in a text file. 

The sample signal values of normal VoIP speech are much larger than the threshold according to the definition of 

AVPD. The sample values after data embedding in VoIP packets vary in a range of -1 to 1, which means that it does 

not affect the active or inactive character of the VoIP packets. In addition, under the same initial parameters of the 

chaotic map, the same random sequences are generated and then used to determine the extraction locations for 

successfully retrieving the secret message on the receiver side. Thus, the rate of successfully extracting the secret 

message can reach 100% in a network without packet-loss. And all the experiments are on the basis of successfully 

extracting the hidden message from the received pieces of speech. 

 

5.1 Active Speech Periods Using Logistic Maps 

Figures 13(a), 13(b), 14(a) and 14(b) show the waveforms in the time-domain and the spectrums in the frequency-

domain of female and male cover-speech and stego-speech samples with data embedding in active speech periods, 

respectively, and the AVPD detection results for the cover-speech samples. Close analysis of the figures reveals that 

there are almost no differences in the waveforms and spectrums between the cover-speech and stego-speech samples. 

That means that the proposed steganographic algorithm has no or little impact on the original cover-speech in the time 

and frequency domains. 

 

   

Female cover-speech    Female speech AVPD     Female stego-speech 

Fig. 13(a). Comparisons in time-domain of female cover-speech and stego-speech with data embedding in active speech periods. 
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 Female cover-speech         Female stego-speech 

Fig. 13(b). Comparisons in frequency-domain of female cover-speech and stego-speech with data embedding in active speech periods. 

 

    

    Male cover-speech           Male speech AVPD        Male stego-speech 

Fig. 14(a). Comparisons in time-domain of male cover-speech and stego-speech with data embedding in active speech periods. 

 

       

Male cover-speech               Male stego-speech 

Fig. 14(b). Comparisons in frequency-domain of male cover-speech and stego-speech with data embedding in active speech periods. 

In PESQ measurements, the audio signal captured on the sender side was served as the reference signal for DSLA 

input, and two speech categories were measured as the degraded signals. One category is the stego-speech with the 

hidden message received on the receiver side, marked as ‘stego’. The other category is the cover-speech without the 

hidden message received on the receiver side, denoted as ‘original’. 

Table 2 lists the PESQ P.862.1 scores of female and male cover-speech (original) and stego-speech (stego) samples 

with data embedding in active speech periods, respectively. The variances shown in the table are the differences in 

PESQ P.862.1 scores between the ‘original’ and ‘stego’ speech samples. As can be seen from Table 2, the impact that the 

local network alone made on the cover-speech was negligible. The small variances indicated that the proposed 

steganographic algorithm caused little degradation in speech quality, indicative of effective covert VoIP 
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communications. 

 

Table 2 PESQ P.862.1 scores for female and male speech samples 

PESQ P.862.1 
Degraded signal 

Max Min Mean Variance 

Original 4.55 4.54 4.545 --- 
Female 

Stego 4.21 4.19 4.200 0.345 

Original 4.55 4.54 4.545 --- 
Male 

Stego 4.39 4.39 4.390 0.155 

 

Table 3 SNR values (dB) for female and male speech samples 

Female Male 
Degraded signal 

Original Stego Original Stego 

Max 36.60 35.40 34.70 32.40 

Min 36.00 35.00 33.30 32.40 
Cover 

speech 
Mean 36.30 35.20 34.00 32.40 

Max 34.50 33.10 32.40 30.70 

Min 33.30 32.00 31.20 30.10 
Stego 

speech 
Mean 33.90 32.55 31.80 30.4 

Variance 2.40 2.65 2.20 2.00 

 

Table 3 shows the SNR values and their variances of speech samples for active speech tests.  The SNR values of the 

stego-speech samples were close to those of the cover-speech samples for female and male speech samples, 

respectively, which signified that the proposed steganographic algorithm had no or little impact on the quality of the 

cover-speech samples. 

 

5.2 Inactive Speech Periods Using Logistic Maps 

Table 4 lists the PESQ P.862.1 scores and their variances of female and male speech samples for inactive speech tests. 

Analysis of the PESQ variances shows that the proposed steganographic algorithm caused little degradation in speech 

quality, indicative of effective covert VoIP communications. 

 

Table 4 Results for data embedding in inactive speech periods 

PESQ P.862.1 
Degraded signal 

Max Min Mean Variance 

Original 4.55 4.54 4.545 --- Female 

Stego 4.02 4.02 4.020 0.525 

Male Original 4.55 4.54 4.545 --- 



PENG ET AL.: SECURITY OF STREAMING MEDIA COMMUNICATIONS WITH LOGISTIC MAP AND SELF-ADAPTIVE DETECTION-BASED STEGANOGRA-
PHY 19 

 Stego 3.93 3.93 3.930 0.615 

 

As Table 5 shows, for female or male speech samples, the SNR values of the stego-speech samples are slightly lower 

than those of the cover-speech samples, which meant that some distortions between the waveforms of ‘stego’ and 

‘original’ speech samples existed. These results are evidenced by the amplitude increases in the waveforms in the time-

domain. 

 

Table 5 SNR results (dB) for data embedding in inactive speech periods 

Female Male 
Degraded signal 

Original Stego Original Stego 

Max 36.60 33.50 34.70 33.80 

Min 36.00 33.50 33.30 33.30 
Cover 

speech 
Mean 36.30 33.50 34.00 33.55 

Max 34.50 25.20 32.40 25.20 

Min 33.30 24.90 31.20 24.90 
Stego 

speech 
Mean 33.90 25.05 31.80 25.05 

Variance 2.40 8.45 2.20 8.50 

 

 

5.3 Comparisons of Different Tests 

Figure 15 shows the variances in the mean PESQ score and the variances in the SNR value between the cover-speech 

and stego-speech samples. The ‘Active female’ and ‘Inactive female’ represent the female speech tests with data 

embedding in active and inactive speech periods, respectively. The ‘Active male’ and ‘Inactive male’ stand for the 

experimental results for the male speech samples with data embedding in active and inactive speech periods, 

respectively. 

As Fig. 15 shows, for both SNR scores illustrated in histogram and PESQ values plotted as the blue curve, the 

variances for data embedding in active speech periods are smaller than those for data embedding in inactive speech 

periods. Since the sample signal values of inactive speech are much smaller and close to 0 resulting in small 

amplitudes, data embedding in inactive speech periods leads to significant changes to the amplitudes. That means that 

inactive speech periods are more sensitive to changes in sample values than active speech periods. These results 

indicated that data embedding in active speech periods has much less impact on the speech quality of VoIP 

communications for both female and male speech samples. 
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Fig. 15. Comparisons of variances for data embedding in active and inactive speech periods. 

To compare the steganographic algorithm with Logistic map and the one with Tent map, the experiments with simi-

lar noise backgrounds were carried out. And the results are shown in Fig. 16. It is clear that, for both female and male 

speech samples, if data embedding in VoIP packets with inactive speech periods occurs, the variance of PESQ P.862.1 

scores is estimated to be around 0.5; if data are embedded into VoIP packets with active speech periods, the variance of 

PESQ P.862.1 is about 0.1. 

In addition, the changes in PESQ P.862.1 score between the steganographic algorithms with Logistic map and Tent 

map in the same tests were about 0.03, which means there is no impact on PESQ, indicating that the steganographic 

algorithms with Logistic map and Tent map work similarly. 

 

Fig. 16. Average PESQ P.862.1 scores for female and male speech samples. 

 

5.4 Security Analysis 

For covert communications, the essential security is that it would not cause any suspicion from attackers. Once secret 

communications are suspicious, or attackers have noticed that there is an underlying communications channel, the 

whole covert communications system is not safe, because attackers can intercept and even destroy the communica-

tions. 

 

A. Adversarial model 



PENG ET AL.: SECURITY OF STREAMING MEDIA COMMUNICATIONS WITH LOGISTIC MAP AND SELF-ADAPTIVE DETECTION-BASED STEGANOGRA-
PHY 21 

Cachin’s definition of steganographic security with a passive adversary is widely accepted in the literature [1, 30]. It 

assumes that the warden will permit Alice to send any cover object, c, to Bob, provided it is drawn from a probability 

distribution, PC, and PC(c) is the probability of drawing a cover object from this distribution, where C is the set of all 

cover objects [29]. 

A measure of security for steganographic systems is the statistical distance (ε) between the cover and stego objects, 

€ 

ε =
Q0 ⊆C
min PC (c)

c∈Q0

∑ − PC (c)
c∉Q0

∑
 and 

€ 

Q0 ⊂Q, where Q0 is a plausible space and Q is the space of possible measurements. 

If a stochastic process U is used to simulate the sending of the secret message in the ith packet, the total probability 

distribution of the message over Q can be expressed as 

€ 

PU (c) =ηPM (c) + (1−η)PC (c)   (9) 

where PM is the probability distribution of the secret message, and η is the probability that ‘1’ appears in a period. As 

€ 

PM (c) =

PC (c)
1+ε

, c ∈Q0

PC (c)
1−ε

, c ∈Q1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

    (10) 

where Q1 is the other plausible space of possible measurements, the relative entropy between the cover and stego ob-

jects of a steganographic system is given by 

    (11) 

For two N-level random sequences in covert VoIP communications, η = 2n-1 2n-1/(2n - 1)(2n - 1), it has 

      (12) 

Equation (12) shows that the proposed covert VoIP communications scheme is ε-secure against passive adversaries. 

 

B. Adversary attacks 

The steganographic security follows the same path as security in cryptography [1]. The security of covert 

steganographic communication lies in the fact that nobody has so far been able to produce an attack substantially faster 

than brute-force search for the key. 

In the proposed steganographic algorithm, the Diffie–Hellman key exchange scheme [24] is used to securely 

exchange the initial parameters of the chaotic map between the communicating parties that are authenticated using 

elliptic curve digital signatures [7]. The use of authentication with the digital signatures can prevent man-in-the-

middle attacks, which are particularly possible on wireless networks. 

However, there are limitations on resisting tampering attacks. Mutual authentication could be used to prevent 

tampering attacks, and it is a good solution to resist tampering attacks by sending an authentication message of secret 

data to the receiver. If the verification fails on the receiver side, the secret data would be retransmitted. Although the 

utilization of Message Authentication Code (MAC) could resist the tampering attack, but the computation of MAC is 
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costing, which would add latency and lead to speech distortion. Besides, MAC is a kind of redundant message which 

would reduce the available embedding capacity. Thus, it is difficult to achieve security and efficiency simultaneously 

in real-time VoIP communications with steganography. 

 

C. Statistical significance test 

The Mann-Whitney-Wilcoxon (M-W-W) test was adopted to evaluate the security of the proposed steganographic 

algorithm. As a non-parametric significance test, the M-W_W can assess whether two independent samples of 

observations come from the same distribution [30]. Comparisons in probability distributions between the cover-speech 

and the stego-speech show whether the differences are almost indistinguishable.  

When the sample sizes are sufficiently large, the M-W-W test is based on the standardized test statistic z*: 

                              (13) 

where E{S2} and σ{S2} are the mean and square root of variance of the sampling distribution S2 that is the combination 

of the two samples of observations to be assessed. If |z*| ≤ 1.960, the null hypothesis is true (H = 0); If |z*| > 1.960, the 

null hypothesis is false (H = 1). 

In statistical significance testing, the P-value is the probability of obtaining a test statistic at least as extreme as the 

one that is actually observed, assuming that the null hypothesis is true. The null hypothesis is rejected when the P-

value turns out to be less than a certain observed significance level, often 0.05 or 0.01. In the test, the significance level 

was set to be 0.05, and the number of samples in cover-speech and stego-speech were 69632. 

 

Table 6 M-W-W test results for the Logistic map 

Test Rank sum z* P-value H 

Active female 4.8493e+9 0.0883 0.9297 0 Active female 4.8493e+9 0.0883 0.9297 0 

Active male 4.8490e+9 0.0532 0.9575 0 

Inactive female 4.8506e+9 0.2626 0.7929 0 

Inactive male 4.8525e+9 0.5131 0.6079 0 

 

Table 6 contains the M-W-W test results and the parameters used for comparing the probability distribution drawn 

from the original VoIP streams (cover-speech) to that drawn from the stego VoIP streams with the hidden message 

(stego-speech). For the proposed steganographic algorithm, the maximum value for the test statistic (z*) was 0.5131 for 

the ‘Inactive male’ test, given the two sample sizes being 69632 and 69632, respectively. Since Max{|z*|} = 0.5131, i.e. 

|z*| < 1.960, it concludes H = 0, which means that the probability distributions for the original VoIP streams and the 

stego VoIP streams did not differ, indicating that the proposed steganographic algorithm is undetectable in terms of 

statistical analysis. 

As Table 6 shows, the P-values are considerably larger than the significance level 0.05 for data embedding in active 
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and inactive speech periods. Table 7 shows the values of H are 0 for all the tests with Tent map. There is almost no dif-

ference in the results between the steganographic algorithms with Logistic map and Tent map. 

Table 7 M-W-W test results for the Tent map 

Test Rank sum z* P-value H 

Active female 4.849e+9 -0.0226 0.9819 0 

Active male 4.849e+9 0.0035 0.9972 0 

Inactive female 4.849e+9 -0.2666 0.7898 0 

Inactive male 4.849e+9 -0.3155 0.7524 0 

 

Moreover, the values of H are 0 for all the tests, which indicates that the null hypothesis is true, i.e., the cover-

speech and the stego-speech does not differ. That means that the proposed steganographic algorithm can withstand 

steganalysis based on statistical analysis. 

 

5.5 Performance Comparisons between Algorithms 

The proposed steganographic algorithm has an adaptive feature, and the embedding location is chosen randomly 

according to a random sequence. So the exact steganographic bandwidth could not be precisely calculated, but it can 

be determined in a range which is correlated with the value of p in equation (6). In our experiments, the value of p was 

16, and the steganographic bandwidth was between 0.5 - 8 kbits/s in the selected audio signals.  

To demonstrate the effectiveness of the proposed algorithm, performance comparison was conducted by comparing 

steganographic bandwidth, undetectability, and robustness, as shown in Table 8, thereby examining and noting the 

similarities or differences between the proposed algorithm and other related algorithms. 

 

Table 8 Comparison of VoIP steganographic algorithms 

 

Steganographic band-

width 

(kbits/s) 

Undetect-

ability 
Robustness 

Proposed algorithm 0.5 - 8 Yes Yes 

Wu [31]  20 Yes n/a 

Takahashi [32] 8 n/a n/a 

Liu [33] 0.2 Yes n/a 

Tian [34] 0.8 - 2.6 Yes n/a 

Xu [35] 0.1333 n/a n/a 

Miao [36] 7.5 Yes n/a 

 

As Table 8 shows, the proposed algorithm achieved a relatively larger steganographic bandwidth with a non-

detectable characteristic. 
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6 CONCLUSION 

A self-adaptive audio steganographic scheme for realising real-time covert VoIP communications over the Internet has 

been devised in this study. The new scheme was succesfully implemented in our StegPhone communications system. 

Two sets of tests (data embedding in active and inactive speech periods) were conducted for female and male VoIP 

speech samples, respectively. Although the PESQ and SNR variances of stego-speech samples for inactive speech 

periods are slightly larger than those for active speech periods, the M-W-W security analysis shows that the probability 

distributions drawn from the cover-speech and the stego-speech do not differ for both sets of tests, indicating that the 

proposed steganographic scheme is statistically undetectable with negligible signal distortion. Further studies are 

necessary to determine the effectiveness of the proposed scheme for other low bit-rate VoIP codecs. 
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