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ABSTRACT A Robustness-Driven Hybrid Descriptor (RDHD) for Noise-deterrent Texture classification
is presented in this paper. This work offers the ability to categorize a variety of textures under challenging
image acquisition conditions. An image is initially resolved into its low-frequency components by applying
wavelet decomposition. The resulting low-frequency components are further processed for feature extraction
using completed joint-scale local binary patterns (CJLBP). Moreover, a second feature set is obtained by
computing the low order derivatives of the original sample. The evaluated feature sets are integrated to
get a final feature vector representation. The texture-discriminating performance of the hybrid descriptor
is analyzed using renowned datasets: Outex original, Outex extended and KTH-TIPS. Experimental results
demonstrate a stable and robust performance of the descriptor under a variety of noisy conditions. An
accuracy of 95.86%, 32.52% and 88.74% at noise variance of 0.025 is achieved for the given datasets, re-
spectively. A comparison between performance parameters of the proposed work with its parent descriptors
and recently published work is also presented.

INDEX TERMS Feature descriptor, Texture classification, Gaussian derivatives, Wavelet decomposition,
Local binary pattern, Noise robust

I. INTRODUCTION

In image processing, the texture is a measure of the visual
appearance of an object such as smoothness, roughness, and
grainy nature, etc., It is a fundamental feature of natural
images and represents the complexity of the spatial arrange-
ment of local pixels. A plethora of texture categories exist in
nature. Texture classification is the process of categorization
based on its unique characteristics [1] [2]. Applications of
texture classification include: detection of surface defects [3]
[4], identification of tissues in tomography images [5] [6]
[7], robotic vision [8] [9] [10] [11] [12], analysis of sonar
imagery [13], recognition of facial expressions [14] [15],
detection of a moving object [16] [17]. The performance of
texture classification depends on two main factors: 1) image
feature representation and (2) feature classification. A feature

vector must uniquely be able to distinguish an image. If the
features are not unique to the texture, accurate classification
performance cannot be achieved [1]. The properties for a
desirable feature vector are as follows: The features should
be (1) discriminating [18] [19] [20] [21], (2) noise robust [8]
[9], (3) invariant to image orientation and lighting changes
[2] [22] [23], (4) smaller in dimension [24] [25], and (5)
efficient in implementation [26] [39]. The proposed work
mainly focuses on the performance of texture classification
in the presence of noise. Noise is the random change in the
image pixel intensities that can occur either during image
acquisition or in the transmission link [27]. This random
variation affects the feature representation of the image and
thus results in inaccurate classification [28] [29]. In recent
literature, numerous methods for noise-robust categorization
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of texture have been proposed.
This work proposes a method for robust classification of

texture by transforming an image into a noiseless represen-
tation. This is accomplished by using a wavelet transform
that effectively represents an image into its low-frequency
components. The presented framework is divided into the
following steps: Initially, an image is resolved into its low
noise coefficients using a wavelet transform and LBP based
textural features are extracted. Afterward, the first and sec-
ond order differential responses of the original sample are
calculated and transformed into a feature representation.
The two feature sets are integrated to form a final feature
representation. Experimental results prove the continuous
high discriminating and robust performance in the presence
of Additive White Gaussian Noise. The proposed RDHD
provide more deterrence against additive white Gaussian
noise, as well as invariance to orientation, scale, and illu-
mination changes when evaluated on Outex, Outex extended
[53], and KTH-TIPS [54] dataset on several recently reported
descriptors.

Remaining contents of the paper are organized as follows.
Sect. II reviews methodology of important related texture
descriptors, Sect. III discusses proposed hybrid descriptor,
Sect. IV details the experimental setup (noise conditions,
datasets and classification algorithm), Sect. V covers the
analysis of noise robustness and discusses the results of the
proposed descriptor while Sect. VI concludes the paper.

II. RELATED WORK
We start our discussion from a popular feature descriptor,
Local Binary Pattern (LBP), proposed by Ojala et al. [30].
The texture operator fulfills the characteristics necessary for
an ideal feature descriptor, except that it is noise intolerant
[46]. LBP considers a small circular area of pixels in an
image and computes pixel differences against the center
pixel value. The differences are then converted to binary
representation using a threshold function. The problem arises
when noise corrupts the center pixel value in the smooth gray
intensity region; thus the texture pattern is changed [35] [49].
The issue of noise intolerance associated with LBP is solved
by another operator LTP (Local Ternary Pattern) [31]. The
authors propose to introduce a user-defined threshold that
changes the central pixel value. This, in turn, allows preserv-
ing the original textural pattern in the smooth gray intensity
region. Some other methods that add noise robustness to
the LBP texture representation are as follows. Soft LBP
(SLBP) has been proposed by Ahonen et al. [32]. The
operator achieves noise robustness by replacing the threshold
dependent function in LBP with a fuzzy logic function.
Another method, Noise Resistant LBP (NRLBP) is proposed
in [33], which recovers the noise-free LBP pattern from a
noisy pattern by assigning a random state to the minute pixel
differences in the smooth region and then sets a value such
that a noise-free coded pattern is formed. If no noise free

pattern can be formed, then a noisy non-uniform pattern is
maintained. Chen et al. have proposed Robust LBP (RLBP)
[34]. It translates the noisy codes to noise-free uniform codes
by changing the specified bit of LBP. The results show that
RLBP is more noise robust than LBP.

In [41] Haar wavelet, Ridgelet, and Fourier transform applied
to the input image before the feature extraction process. This
approach provides rotation invariance for the noisy texture,
but in the presence of scale, and illumination variations its
performance degrades. In [42], the rotation and scale invari-
ant texture representation is obtained through Local Gabor
Wavelets Binary Patterns (LGWBPs). However, LGWBPs
contain redundant features, which increases the time com-
plexity as well as degrade the efficiency. In [43] Extended
Mapping Local Binary Pattern (EMLBP) is proposed, which
provides the rotation invariant version of the local binary
pattern. However, the descriptor is very sensitive to the noise
in the input images. The Overlapped Multi-oriented Tri-
scale Local Binary Pattern (OMTLBP) [44] is robust against
AWGN noise even in the presence of variations in orienta-
tion, scale, and illumination. However, the feature vector of
OMTLBP is large.
A completed representation of LBP (CLBP) is proposed by
Guo et al. [45]. In contrast to LBP, which considers only
the signs of differences for the feature representation, CLBP
considers the sign along with the magnitude of differences
as well as the center gray value of the local circular region.
The features corresponding to the sign, magnitude, and center
components are integrated to obtain an improved texture
characterization. The magnitude and center components are
based on global mean thresholding operation, which provides
noise robustness. Song et al. [36] have computed local
contrast patterns (LCPs) from their own designed set of
difference kernels. After application of kernels, the LCPs
are obtained by converting the resulting responses into
their coded versions. A final texture feature representation
is obtained by combining LCPs from each kernel. LCP
outperforms LBP, LTP, and CLBP in the presence of noise.
In MRELBP [39], Liu et al employ local image medians of
pixels rather than local pixel brightness to achieve a noise
robust feature representation.
BRINT (Binary Rotation Invariant and Noise Tolerant) tex-
ture operator is proposed by Liu et al. [35]. BRINT is
established on the rotation invariant version of LBP. In
contrast to LBP, BRINT can represent a circular pixel area
of any size. It produces permanent dimensionality feature
histogram irrespective of the scale chosen. BRINT takes an
average of the pixels along a circular arc for a given scale
of the region. The approach keeps the number of pixels in
the local patch fixed at eight. Pan et al. proposed a highly
robust and low dimensional descriptor, DLABP (Diamond
Local Adaptive Binary Pattern) [40]. It employs a diamond-
shaped local neighbor structure. A fixed number of eight
neighbor pixels in the diamond-shaped local patch provides
a discriminative and low dimensional feature vector. In con-
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trast to BRINT, averaging is done in the radial direction along
multiple scales. DALBP shows performance close to BRINT
while it surpasses LBP, LTP, CLBP and MRELBP. Averaging
operation on pixels results in a low frequency extraction of
texture information and thus making the pattern more robust
to noise. Joint of scales Local Binary Pattern, JLBP [46] goes
one step ahead of the approaches devised in BRINT and
DALBP. JLBP performs pixel averaging first on the same
scale and then on multiple scales, starting from the largest
scale. Therefore, JLBP achieves better noise robustness. In
[48], a noise robust texture descriptor LETRIST (Locally
Encoded Transform Feature Histogram) is presented. In
LETRIST noise robustness is achieved using low order filters
and global mean for preparation of texture codes.

III. PROPOSED HYBRID DESCRIPTOR
This section outlines the steps to formulate a discriminat-
ing and noise-deterrent representation of image texture. The
proposed framework is a combination of two feature sets.
The first feature set is extracted from wavelet approximated
sub-image, while the second feature set is obtained through
the Gaussian derivative filter response. The DWT provides
shift invariance and noise robustness to the first feature set of
our proposed method [50]. The CJLBP descriptor contains a
multi-scale fusion stage, which offers scale invariance to the
proposed framework. The multi-scale fusion stage of CJLBP
is modified to enhance the scale invariance of the descriptor
as shown in Fig. 1. Equal weight is assigned to each element
of the fused patch in the modified CJLBP. Using a feature set
based on Gaussian derivative filters enhances the discrimina-
tive power of the proposed hybrid texture descriptor. Fig. 1
provides a road-map for the proposed scheme composed of
three sequential stages detailed as follows.

A. MULTI-RESOLUTION DECOMPOSITION
Conversion of the input image data into low-frequency com-
ponents serve as the first step towards setting up a discrim-
inant and noise-robust texture representation. The proposed
descriptor requires to transform the input image into a noise-
free representation while retaining spatial information. The
above is achieved using multi-resolution analysis wherein
efficient representation of the input image in the spatial-
frequency joint domain allows for spectral components to
be analyzed locally. 2D discrete wavelet transform is used to
decompose the input image into its constituent low-frequency
components via discrete approximation of Meyer (commonly
referred to as demey waveform) [51] [52]. The wavelet
transformation of the input image results in four sub-bands:
one approximate and three detailed images. The proposed
descriptor focuses on low-frequency, noise-free components
present in the approximated sub-image, and largely ignores
the information content in the detailed sub-images. The ap-
proximate sub-image contains the low-frequency (noiseless)
information from the whole image. The decomposition of a

noisy image into its sub-images is represented in Fig. 2 (a).
LetN(px, py) represent a noisy image of size Px×Py , where
px and py are the positions of pixel intensities in horizontal
and vertical directions, respectively. Now, let W (wx) rep-
resent a 1-D low pass filter of size wx applied horizontally
along the imageN(px, py). The resulting imageNL(px1, py)
is represented in (1).

NL(px1, py) = S
(
N(px, py) ∗W (wx)

)
. (1)

where S(.) is a desampling operator applied along x-
direction and px1 = px/2. Similarly, we apply W (wy)
vertically on NL. The image NLL(px1, py1) is represented
in (2) and is one fourth of size of N(px, py).

NLL(px1, py1) = S
(
NL ∗W (wy)

)
. (2)

where, ∗ denotes convolution operation and py1 = py/2.
NLL(px1, py1) represents the approximated sub-image and
is utilized for feature extraction as discussed in the next step.

B. FEATURE COMPUTATION
Feature computation plays a very critical role in the proposed
framework as: 1) the choice of feature descriptors affects the
discrimination power of the proposed hybrid descriptor. 2)
feature extraction from low-frequency data does not apply
to all kinds of feature descriptors. Therefore, we aim to
compute features that are noise potent and discriminative at
the same time. We start our discussion from the computation
of robust noise features. The first set of features is based
on LBP descriptor. The LBP operator does not involve the
calculation of higher order statistics (such as 2nd order pixel-
differences); therefore the extraction of features from the low
noise data improves the performance of the hybrid descriptor.
Among the LBP based descriptors, we use CJLBP operator
for feature portrayal. We choose CJLBP_SMC operator of
the CJLBP descriptor. We have modified the multi-scale
fusion stage of CJLBP to improve the scale invariance of the
descriptor as shown in Fig. 2(b). Equal weight is assigned
to each element of the fused patch in the modified CJLBP.
The low-frequency sub-band NLL as shown in (2) is used
for feature extraction. Since the features are obtained from
the wavelet approximation of the image, the obtained fea-
ture vector is notated as WCJ_SMC since the features are
obtained from the wavelet approximation of the image.

WCJ_SMC =

= X(WCJ_S,WCJ_M,WCJ_C).
(3)

where X(.) presents the combination of the three individual
operators WCJ_S, WCJ_M, and WCJ_C into a final operator
WCJ_SMC shown in Fig. 1 (c). WCJ_S is extracted from
the approximated image in a similar way as described in
CJLBP_S [46]. The magnitude and center operators for two
scales Y = (y1, y2) and sample points T are presented as
follows.
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FIGURE1: The flow diagram of our proposed Robustness-Driven Hybrid Descriptor (RDHD) for texture representation.

FIGURE2: Wavelet decomposition using subband coding.

WCJ_MT,y1,y2 =

=
T−1∑
t=0

s(mt,y1 +mt,y2 − cy1 − cy2)2t.
(4)

where mt,yn is the absolute difference of the tth neighbor-
hood of center pixel in the local segment at scale yn. The

cyn is the average value of mt,yn of whole image. The center
component is represented as:

WCJ_CT,Y = s(2gc,y1,y2 − c). (5)

s (x) =

{
1 x ≥ 0

0 x < 0.
(6)

where gc is the central pixel of the local segment, c rep-
resents mean gray intensity of the whole image and s is
binary threshold operator and is defined in (6). The choice
of parameters is discussed as follows. The operator uses a
fixed number of local neighbors, T = 8 and a joint of scales
Y = (3, 2) is used to compute classification performance.
After the computation of robust noise features, we now cal-
culate a second feature set that improves the discrimination
power of the hybrid descriptor. We choose the quantized
max/min filter response to calculate the second feature set.
This computes texture based on first and second order Gaus-
sian derivative filters as shown in Fig. 1 (d). The choice
of the second feature set contributes diverse features to our
proposed feature vector. The initial feature vector consists
of variables that are based on first order pixel differences.
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This implies that the addition of second-order derivative
features will add discrimination to our proposed feature
representation. The second feature set is directly extracted
from the noisy image N , as it requires to compute both low
and high-frequency image statistics, for example, first and
second order derivative responses, respectively. Therefore, it
is best to use the initial image (without wavelet dissection).
The feature vector is computed as followed by LETRIST
operator. Firstly, the low order Gaussian derivative filters are
applied to the noisy image N , and the extrema responses are
calculated. This is represented mathematically as follows.

Nθ
1max =

√
Nx2

1 +Ny2

2 . (7)

Nθ
2max =

1

2

(
Nx

2 +Ny
2 +

√
(Nx

2 −N
y
2 )

2 + 4Nxy2

2

)
. (8)

Nθ
2min =

1

2

(
Nx

2 +Ny
2 −

√
(Nx

2 −N
y
2 )

2 + 4Nxy2

2

)
. (9)

Hθ
1 = cos(θ)Hx

1 + sin(θ)Hy
1 . (10)

and

Hθ
2 = cos2(θ)Hx

2 + sin2(θ)Hy
2 − sin(2θ)Hxy

2 . (11)

where Nθ
1 = N1 ∗ Hθ

1 and Nθ
2 = N2 ∗ Hθ

1 , the first and
second order filtersHθ

1 andHθ
2 are described mathematically

in (10) and (11) and ∗ denotes the convolution operation.
The Hn is the Gaussian nth order derivative filter at the
rotation angle θ and Hx

1 , Hy
1 , Hx

2 , Hy
2 are the x and y first

and second order derivatives respectively, and cosθ, sinθ
are the interpolation parameters for the basis functions [48].
The extrema responses are computed at three scales e.g.,
Nσ2 = 3. Now the transformed features T = {G,D, S,R}
are computed using the extrema responses as follows.

G = Nθ
1max =

√
Nx2

1 +Ny2

1 . (12)

D = Nθ
2max −Nθ

2min =

√
(Nx

2 +Ny
2 )

2 + 4Nxy2

2 . (13)

and

S =
1

2
− 1

π
tan−1 −Nθ

2max −Nθ
2min

(Nθ
2max −Nθ

2min)
.

=
1

2
− 1

π
tan−1 −Nx

2 −N
y
2√

(Nx
2 −Nx

2 )
2 + 4Nxy

2

.

(14)

R =
2

π
tan−1 N

θ
2max −Nθ

2min

(Nθ
1max

.

=
2

π
tan−1

(
sc× D

G

)
.

(15)

where sc is a parameter to control the value of R. Now the
transformed features {G,D} and {S,R} are converted to

binary codes by using the quantizers B1(x) and B2(x) as
shown in (16) and (17), respectively.

B1(x) =

{
0 X

mX
> p

1 otherwise
(16)

B2(x) =


0 X ∈ [0, δ]

1 X ∈ [δ, 2δ]

· · ·
A− 1 X ∈ [(A− 1)δ, 1]

(17)

where, X ∈ {G,D}, mX and is the average of the
transmute feature map of x and p is a scalar of control.
The X ∈ {S,R} and A is the calibration level so the
calibration step is δ = 1

L . For a discerning feature vector
calibration level is set to LS = 3 and LR = 5 for si and r
transmute features, respectively. The quantization levels are
set to LS = 3, LR = 5 and LG = LD = 2. The Quantization
stage is shown in Fig. 1 (e). The three histograms namely
LET1,LET2 andLET3 are built using the combinations of
{G,D, S} across adjacent scales (σ2

1 , σ
2
2) and (σ2

2 , σ
2
3) and

{R} across the three scales, (σ2
1 , σ

2
2 , σ

2
3) respectively. The

three histograms are concatenated to form Robust Locally
Encoded Transformed (RLET) feature vector shown in Fig.
1 (f).

RLET = LET1‖LET2‖LET3. (18)

where, ‖ denotes the concatenation operation. RLET features
contribute necessary discrimination power to the hybrid de-
scriptor which is required at the high noise level.

C. FEATURE INTEGRATION
After feature computation, we now join the two histogram
based feature sets into a joint representation as shown in
Fig. 1 (g). Let f1(.) and f2(.) represent the computation
of two feature sets on the wavelet resolved image NLL
and noisy image N, respectively. Then, the image statistics
RDHD (Robustness-Driven Hybrid Descriptor) presents a
discriminating and noise robust texture representation. This
is expressed as follows.

RDHD = f1(NLL(px1, py1))‖f2(N(px, py)). (19)

where, ‖ denotes the concatenation operation on the two sets
of features.

The hybrid descriptor RDHD has a feature dimension that
is the sum of the number of variables in individual feature
vectors. The first feature set consists of a 200-bin histogram
while the second feature set represents a 413-bin histogram.
Thus, the final feature set represents a 613-bin histogram.

The proposed hybrid descriptor has the following prop-
erties. It is highly discriminative, invariant to image trans-
formations, e.g., rotation, illumination, scale and pose varia-
tions, robust to noise, and efficient in implementation. In the
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(a) (b) (c)

FIGURE3: Sample images from three datasets: (a) Outex Original, (b) Outex Extended and (c) KTH-TIPS. Four classes from
each dataset are displayed along rows. Three samples from each class are displayed along columns.

results section, we validate the above arguments through the
evaluation of classification performance on relevant datasets.
The discrimination is provided by the computation of two
contrasting feature sets. Robustness against the rotation of
texture is provided from the encoding of an individualize
texture pattern at multiple angles using the LBP’s rotation
invariance methodology and steerable Gaussian derivative fil-
ters. Robustness against gray scaling and shifting is provided
through the use of difference operator while computing the
two feature sets, which effectively cancels out the gray shift.
The Gray scaling is avoided from the use of global gray-mean
value in the quantization step.

IV. EXPERIMENTAL SETUP
To demonstrate the discriminating and noise resistant prop-
erty of our feature descriptor, we perform experimentation
on three texture datasets, Outex Org. (original), Outex Ext.
(extended) and KTH-TIPS. The example images of each
dataset are displayed in Fig. 3. The datasets are modified in
relevance to our work and images are deprived of additive
white Gaussian noise (AWGN), with zero mean. For a com-
prehensive study, we divide the experimental setup into two
parts. The first experiment is carried on three datasets, and
the images are corrupted by AWGN with noise variance level
determined by {σ2} [40]. Noise is added in the image using
the following equation.

In(x, y) = Iorg(x, y) + (
1√
2πσ

)(e
−(Iorg(x,y)−µ)2

2σ2 ). (20)

where Iorg is the original image and In is the noisy image.
Figure 4 shows the original versus noisy images (σ2 = {0.01,

(a)

FIGURE4: Comparison of original images (leftmost) vs their
noisy versions with noise variance σ2 = {0.01, 0.02, 0.03}
(from left to right).

0.02, 0.03}) for the three datasets. The second experiment is
performed only on the Outex Org. dataset which is corrupted
with AWGN noise determined by a self defined noise level
discussed in [49].

For a fair comparison, classification accuracy is measured
over a fixed number of train and test samples and under a
similar classification environment. The datasets and classifi-
cation environment is discussed in relevant subsections.
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FIGURE5: Classification performance vs noise variance plots
of various techniques for Outex Dataset:(a) TC10, (b) TC12h,
and (c) TC12t.

A. OUTEX AND OUTEX EXTENDED

Outex dataset [53] contains images for a variety of image
orientations and lightening intensities. The original dataset
comprises of twenty-four different texture categories while
the extended version contains sixty-eight texture categories
and thus provides a more challenging environment compared
to the original version. Each category has twenty images
of resolution 128 × 128. An image is generated for three
brightness conditions (“Inca", “TL84" and “Horizon") and
for nine different angles of orientation. The following two
sub-sets and their extended versions are used:
Outex TC10: There are 4320 (24× 20× 9) sample images
of inca condition. From these images, 480 (24× 20) samples
are at an angle of 0° and are used as a training set. While the
left 3840 image samples taken under remaining eight angles
are used for testing of classification accuracy.
Outex TC12: It is a bigger collection having 9120 (24 ×
20 × 9) images. The images have 2 sub-categories, TC12t
and TC12h. The 4320 images for TC12t are captured for
illuminate “T184” and 4320 for TC12h are captured under
“horizon”and“TL84”. Training samples are 480 (24× 20)
images at an angle of 0° under illuminate “inca”.
Outex TC20: It is an extended version of the TC10 test
suite. There are 12, 240 (68× 20× 9) sampled images. 1360
(68 × 20) samples are used as a training set. While the left
10880 image samples are used for testing.
Outex TC24: It is an extension of TC12 having 4080
(68 × 20 × 9) images. There are two sub-categories, TC24t
and TC24h. Training samples are 1360 (68 × 20) images
while 2720 (68× 20× 2) are used for testing.

B. KTH-TIPS

The KTH-TIPS (textures under varying illumination, pose
and scale) is a challenging material database for texture cate-
gorization [54]. It is designed to test the texture operator for
varying conditions of lightning, pose, and scale (the distance
of material from the camera), unlike CURet dataset, which
doesn’t provide scale variations [48]. There are ten material
categories in total; each class contains eighty-one images.
Each material is captured under variable illumination, for
nine scale variations and nine poses. We split images of each
folder in train and test sets in ratio (49.4/50.6), hence the
train set contains 40/81 random samples and rest are taken
for test set [48]. The classification performance is measured
as an average of numerical results from a hundred random
classification turns.

C. CLASSIFICATION ENVIRONMENT

A nearest neighbor classifier (NN Classifier) is used to
classify the extracted feature vectors. Initially, the discrim-
inator is trained with the train feature vectors, for a given
dataset and a test feature vector is used to measure the
classification performance. The NN classifier classifies the
test feature vector based on the Chi-Square statistic. The
Chi-Square statistic evaluates dissimilarity between the test
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TABLE1: Classification performance of proposed method vs traditional methods on Outex Org. dataset at σ2 = 0.025

Ref Method TC10 TC12t TC12h Average

[30] LBP {T = 8, Y = 1} 38.32 34.41 35.11 35.93

CLBP {T = 8, Y = 1} 35.33 31.30 33.30 33.31

[45] CLBP {T = 16, Y = 2} 47.71 46.04 47.10 46.41

CLBP {T = 24, Y = 3} 50.39 45.90 45.06 47.11

[39] MRELBP {T = 8} 48.20 69.90 69.80 62.63

[40] DALBP{T = 8} 72.00 67.60 66.30 68.63

[35] BRINT {T = 8, Y = 3} 73.22 68.50 67.90 69.80

CJLBP_SMC {T = 8, Y = (1, 2)} 64.60 58.9 60.43 61.31

[46] CJLBP_S/M/C {T = 8, Y = (1, 2, 3)} 77.7 72.03 73.47 74.4

CJLBP_SMC {T = 8, Y = (2, 3)} 81.60 75.60 75.57 77.59

LV QP_SMC {T = 8, Y = 1} 49.30 49.50 50.00 49.6

[47] LV QP_SMC {T = 16, Y = 2} 83.00 86.00 86.80 85.20

LV QP_S/M/C {T = 24, Y = 3} 91.50 87.80 87.00 88.76

[41] RINR 80.70 - - -

[43] EMCLBP eriu246 (P, R) = (8, 1) 91.33 85.93 88.77 88.67

[48] LETRIST {LS = 3, LR = 5} 96.25 92.84 94.86 94.65

This work RDHD 97.76 94.39 95.42 95.86

feature vector and all the trained feature vectors. Chi-square
statistic is expressed in (21).

C(K,L) =
B∑
b=1

(Kb − Lb)2

(Kb − Lb)
. (21)

where B is the total number of bins, Kb, Lb are re-
spectively the values of trained and test image at the bth

bin. A small value of C(K,L) shows a close similarity
between the test vectorK and trained vector L. The classifier
assigns to the test feature vector, the class of train feature
vector for which, the Chi-square statistic is small, e.g., the
majority of similar class train feature vectors in the nearest
neighborhood.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents the analysis of the noise-robust perfor-
mance of the proposed hybrid descriptor under a variety of
noisy conditions and presents comparisons with closely re-
lated descriptors. A variety of parameter settings allows for a
comprehensive comparison of the classification performance.
The classification accuracy is taken as a measure of feature
descriptor's noise sensitivity. When the classification accu-
racy is high, for a certain variance of the noise, the feature
descriptor is said to be noise tolerant. All implementations of
the algorithm have been carried out using Matlab 2018a, with
core i5, Core 2 Duo 2.6 GHz, 8GB RAM. The comparison
of feature dimensionality and computation complexity is
presented in Table 2. The results of the two experimental
phases are discussed as follows.

TABLE2: Feature dimension and computational complexity
compared with other methods using an image of size 128 ×
128.

Ref Descriptor Feature Feature extraction

Name dimension time (ms)

[37] VZ-MR8 2440 262

[38] BIF 1296 282

[39] MRELBP 800 293

[35] BRINT_CSM 2592 246

[45] CLBP_SMC 2200 119

This Work RDHD 613 224

A. PERFORMANCE ANALYSIS WITH AWGN (σ2)

Firstly, we evaluate the performance of the proposed operator
for Outex Org. dataset. Fig. 5 presents the performance com-
parison of proposed descriptor at two parametric conditions
(T, Y) e.g., (8, [2, 3]) and (8, [1, 2, 3]) with the techniques
CLBP (24, 3), CJLBP (8, [1, 2, 3]), CJLBP (8, [2, 3]) and
LETRIST (LS = 3, LR = 5). From Fig. 5, it is noticeable
that the proposed hybrid operator shows close performance
at the given scale-resolution settings. Similar is the case with
CJLBP_SMC. Therefore, there is no need to refer to the
parameters while discussing the two operators.
We perform analysis by assuming three variance regions:
1) noiseless region where σ2 = 0, 2) low noise region,
σ2 ∈ [0.005 0.02], and 3) high noise region, σ2 ∈ [0.025
0.04]. The following observations can be made:

1) In noiseless region, the hybrid descriptor is comparable
to LETRIST achieving an accuracy of 99.9%. LETRIST
on the other hand performs better than CJLBP_SMC
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TABLE3: Classification performance on outex extended (TC20 and TC24) and KTH-TIPS

Noise Var. {σ2}
(a) Outex Ext. Method 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

CJLBP_SMC {T = 8, Y = (2, 3)} 90.87 37.65 34.63 33.71 32.80 32.26 31.22 30.42 11.75
TC20 LETRIST {LS = 3, LR = 5} 95.43 52.05 40.33 34.98 31.44 28.52 26.10 24.80 15.78

RDHD 95.77 58.03 46.66 40.46 35.33 32.54 30.14 28.36 17.86
CJLBP_SMC {T = 8, Y = (2, 3)} 82.43 37.65 34.63 33.71 32.80 32.26 31.22 30.42 11.75

TC24h LETRIST {LS = 3, LR = 5} 96.43 52.05 40.33 34.98 31.44 28.52 26.10 24.80 15.78
RDHD 96.03 58.03 46.66 40.46 35.33 32.54 30.14 28.36 17.86

CJLBP_SMC {T = 8, Y = (2, 3)} 82.72 37.65 34.63 33.71 32.80 32.26 31.22 30.42 11.75
TC24t LETRIST {LS = 3, LR = 5} 96.47 52.05 40.33 34.98 31.44 28.52 26.10 24.80 15.78

RDHD 96.40 58.03 46.66 40.46 35.33 32.54 30.14 28.36 17.86
(b) KTH TIPS

CJLBP_SMC {T = 8, Y = (3, 2)} 94.63 90.75 89.00 85.73 83.08 81.66 79.49 78.34 77.59
LETRIST {LS = 3, LR = 5} 98.31 96.40 94.45 92.40 91.04 87.94 85.37 83.63 81.41

RDHD 98.26 96.14 94.14 92.87 91.22 88.74 86.52 85.90 84.13

TABLE4: Classification performance of proposed method vs traditional methods on Outex Org. dataset at noise level k.

TC10 TC12h TC12t

Ref NoiseParameter (k) 10 20 30 40 10 20 30 40 10 20 30 40

CLBP {T = 8, Y = 1} 96.87 94.97 93.69 91.58 88.56 85.71 85.13 83.72 92.01 89.12 88.35 86.48

[45] CLBP {T = 16, Y = 2} 98.33 97.63 96.38 93.69 94.12 91.64 90.46 87.40 95.60 93.77 91.32 89.53

CLBP {T = 24, Y = 3} 98.80 98.12 95.62 93.33 98.80 98.12 95.62 93.33 98.80 98.12 95.62 93.33

AHP {T = 8, Y = 1} 96.40 91.50 82.10 72.1 90.00 87.50 83 80 89.13 85.06 82.24 79.00

[49] AHP {T = 16, Y = 2} 99.00 98.57 96.20 90.79 95.70 94.50 92.70 87.80 94.12 92.00 90.00 87.00

AHP {T = 24, Y = 3} 99.00 98.88 96.89 89.92 96.19 94.70 92.92 89.00 97.00 95.13 90.80 89.92

CJLBP_SMC {T = 8, Y = (1, 2)} 97.78 97.57 96.30 95.72 93.05 90.60 87.15 85.92 94.69 92.47 90.48 87.98

[46] CJLBP_SMC {T = 8, Y = (1, 2, 3)} 98.41 98.33 97.57 96.77 94.93 93.26 91.71 89.07 96.34 94.07 92.77 91.48

CJLBP_SMC {T = 8, Y = (2, 3)} 98.43 98.09 97.68 97.50 95.48 94.09 93.40 92.52 95.99 95.88 94.97 92.38

RDHD 100 99.95 99.79 99.71 99.72 99.35 99.26 98.13 99.93 99.75 99.54 99.21

showing high discrimination power. This indicates that
LETRIST contributes discriminating features to the pro-
posed operator.

2) In low noise region, the hybrid descriptor shows greater
performance than LETRIST with a classification accu-
racy difference of approximately 1.1% at σ2 = 0.02.
This indicates that the proposed operator is noise robust
than LETRIST and CJLBP_SMC.

3) In high noise region, the hybrid descriptor continues
to show high performance. A classification accuracy of
94% at σ2 = 0.04 is achieved. This indicates that the
proposed operator is able to discriminate texture under
high noisy conditions with better accuracy.

To further evaluate the robustness of the proposed op-
erator on Outex dataset, Table 1 presents the comparison
with six related techniques over a variety of scale-resolution
parameter setting, at noise variance σ2 = 0.025. The indi-
vidual and average classification performance is computed
for TC10, TC12h, and TC12t testing suits. The hybrid de-
scriptor is compared to LBP, CLBP, CJLBP, LVQP, BRINT,
MRELBP, DALBP, and LETRIST. The operators LVQP
and CLBP_SMC are evaluated for the following paramet-

ric conditions: (T, Y) ε {(8, 1), (16, 2) and (24, 3)}, while
CJLBP_SMC is evaluated for (8, [1 2]), (8, [1 2 3]), and
(8, [2 3]). The best performance of CLBP_SMC is achieved
at (24, 3) since the above parameter setting allows to com-
pute both the micro as well as macro-texture. Therefore,
the discriminating power of CLBP_SMC is improved. A
similar trend in performance is observed for LVQP and
CJLBP_SMC. While discussing the results, we will compare
the best results of CLBP_SMC, CJLBP_SMC, and LVQP
and will avoid mentioning the parameter setting. Noticeably,
our method achieves the highest average classification ac-
curacy of 95.86%, indicating that high noise robustness is
provided. The operators LBP, CLBP, and MRELBP show
degraded performance because the descriptors are not effec-
tive in the presence of noise. In comparison to BRINT and
DALBP, which show close performance among each other,
our descriptor performs with a high margin of approximately
27.23%. The operators LETRIST and LVQP on the other
hand, appear as the second and third best performers, respec-
tively.
Table 3 lists the numerical results for Outex Ext. and KTH-
TIPS datasets. The performance is evaluated over noise vari-
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ance of σ2 = {0.005, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035 and 0.4}. The hybrid descriptor is put in comparison
with the following two descriptors, CJLBP_SMC [46], and
LETRIST [48], with the following parameter setting {T =
8, Y = (2, 3)}, and {LS = 3, LR = 5}, respectively.
For the Outex Ext. dataset following observations can be
made. Firstly, the classification accuracy is not close to 90%,
indicating the challenging conditions provided by the dataset.
Secondly, the trend of performance among the descriptors re-
mains same as in Outex Org. dataset. For example, LETRIST
performs better than CJLBP_SMC and the hybrid descriptor
outperforms both. This indicates that for the given dataset,
the hybrid descriptor also outperforms BRINT, MRELBP
and DLABP. In Table 3 (b), a similar trend in performance
occurs for KTH-TIPS dataset e.g., proposed > LETRIST
> LVQP > CJLBP_SMC. In the light of results of Table
1 and 3 we conclude that the proposed descriptor success-
fully categorizes the texture in the presence of noise and
outperforms the noise robust descriptors e.g., CJLBP_SMC,
BRINT, MRELBP, DALBP, LVQP, and LETRIST.

B. PERFORMANCE ANALYSIS WITH AWGN (K)
Experiment 2 is performed to compare the noise robustness
of our proposed descriptor against Adaptive Hybrid Descrip-
tor (AHP) [49] over the range of k = {10, 20, 30, 40}. Table
4 lists the robustness measure of the proposed descriptor
in comparison with CLBP, CJLBP and AHP. The operators
AHP and CLBP_SMC are evaluated for the following scale-
resolution conditions: (T ,Y) ε {(8, 1), (16, 2) and (24, 3)},
while CJLBP_SMC is evaluated for (8, [1 2]), (8, [1 2 3])
and (8, [2 3]). From Table 4, it is observed that when k
increases for a certain test suit, the classification performance
of the texture descriptors decreases. Therefore, the results are
discussed only for the worst case of k=40.

From the numerical results, it is observed that AHP
achieves the lowest performance. This shows that the
methodology adopted by AHP, when compared to the men-
tioned descriptors, is not effective against noise. CLBP_SMC
performs better than AHP, since it involves the usage of
global mean magnitude and central gray level. CJLBP_SMC
outperforms CLBP_SMC since it involves the operation of
multi-scale fusion, which makes it robust against noise. On
the other hand, the proposed descriptor outperforms the
above descriptors by achieving the highest classification ac-
curacy of 99.71, 98.13, and 99.21 for the respective TC10,
TC12h and TC12t test suits at k=40.
From the results of experiment 1 and 2, the performance
of the hybrid descriptor on Outex and KTH-TIPS datasets
demonstrates that the use of wavelet transform and the pro-
posed feature computation and integration technique offers a
robust texture representation.

VI. CONCLUSION
In this paper, a method of noise robust classification of
texture is presented and validated. The proposed method
is based on calculating features from low-frequency image

information, which forms the basis of our noise robust image
model. Three stages are involved in the proposed system.
Firstly, multiresolution decomposition of a noisy image is
performed, and the low noise components are achieved us-
ing 2DDWT. Then, the evaluated components are subjected
to LBP based feature extraction. To achieve discrimination
power a second feature set is considered, which is based on
first and second order differential responses from Gaussian
derivative filters. The two feature sets are integrated to obtain
a final feature representation that is robust and discriminative
in the presence of noise. The hybrid descriptor is examined
under a variety of image acquisition conditions provided by
following three renowned datasets: Outex original, Outex
extended and KTH-TIPS. It is found that the presented
descriptor performs robust classification of texture for ad-
ditive Gaussian noise with varying variance levels of up to
σ2 = 0.04. The descriptor surpasses other leading techniques
such as CJLBP_SMC, BRINT, MRELBP, DALBP, LVQP,
AHP, and LETRIST. In future studies, the aim is to reduce
the length of the feature vector by considering techniques
of feature dimensionality reduction. Moreover, some other
methods of noise reduction in an image can be considered to
improve the classification performance further.
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