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Abstract:

Structural health monitoring plays a significant role in providing 
information regarding the performance of structures throughout their life 
spans. However, information that is directly extracted from monitored 
data is usually susceptible to uncertainties and not reliable enough to be 
used for structural investigations. Finite element model updating (FEMU) 
is an accredited framework that reliably identifies structural behavior. 
Recently, the modular Bayesian approach (MBA) has emerged as a 
probabilistic technique in calibrating the finite element model (FEM) of 
structures and comprehensively addressing uncertainties. However, few 
studies have investigated its performance on real structures. In this 
paper, MBA is applied to calibrate the FEM of a lab-scaled concrete box 
girder bridge. This study is the first to use the MBA to update the initial 
FEM of a real structure for two states—undamaged and damaged 
conditions—in which the damaged state represents changes in structural 
parameters as a result of aging or overloading. The application of the 
MBA in the two states provides an opportunity to examine the 
performance of the approach with observed evidence. A discrepancy 
function is used to identify the deviation between the outputs of the 
experimental and numerical models. To alleviate computational burden, 
the numerical model and the model discrepancy function are replaced by 
Gaussian processes. Results indicate a significant reduction in the 
stiffness of concrete in the damaged state, which is identical to cracks 
observed on the body of the structure. The discrepancy function reaches 
satisfying ranges in both states, which implies that the properties of the 
structure are predicted accurately. Consequently, the proposed 
methodology contributes to a more reliable judgment about structural 
safety.  
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4
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7

8 Abstract

9 Structural health monitoring plays a significant role in providing information 

10 regarding the performance of structures throughout their life spans. 

11 However, information that is directly extracted from monitored data is 

12 usually susceptible to uncertainties and not reliable enough to be used for 

13 structural investigations. Finite element model updating (FEMU) is an 

14 accredited framework that reliably identifies structural behavior. Recently, 

15 the modular Bayesian approach (MBA) has emerged as a probabilistic 

16 technique in calibrating the finite element model (FEM) of structures and 

17 comprehensively addressing uncertainties. However, few studies have 

18 investigated its performance on real structures. In this paper, MBA is 

19 applied to calibrate the FEM of a lab-scaled concrete box girder bridge. This 
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1 study is the first to use the MBA to update the initial FEM of a real structure 

2 for two states—undamaged and damaged conditions—in which the 

3 damaged state represents changes in structural parameters as a result of 

4 aging or overloading. The application of the MBA in the two states provides 

5 an opportunity to examine the performance of the approach with observed 

6 evidence. A discrepancy function is used to identify the deviation between 

7 the outputs of the experimental and numerical models. To alleviate 

8 computational burden, the numerical model and the model discrepancy 

9 function are replaced by Gaussian processes. Results indicate a significant 

10 reduction in the stiffness of concrete in the damaged state, which is identical 

11 to cracks observed on the body of the structure. The discrepancy function 

12 reaches satisfying ranges in both states, which implies that the properties 

13 of the structure are predicted accurately. Consequently, the proposed 

14 methodology contributes to a more reliable judgment about structural 

15 safety.  

16

17 Keywords

18 Finite Element Model Updating, Bayesian framework, Gaussian process,
19 Structural Health Monitoring, Box girder bridge, Vibration analysis

20
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1 Introduction

2 Civil infrastructure plays a significant role in keeping urban systems operational, but 

3 any malfunctions in routine performance can result in major hazards and even threaten 

4 lives. Therefore, it is important to regularly investigate the safety of infrastructure. 

5 Many researchers such as Frangopol (2011) and Li et al. (2016) have acknowledged 

6 the importance of monitoring the behaviors of structures using information provided 

7 by structural health monitoring (SHM). An accredited approach to addressing the 

8 aforementioned objective is finite element model updating (FEMU), which aims to 

9 improve the accuracy of the finite element models (FEMs) of real structures and 

10 reduce the discrepancy between the output of FEMs and experimental measurements. 

11 The availability of reliable FEMs of structures is beneficial in terms of evaluation of 

12 structural performance, reliability analysis, load-carrying capacity assessment, and 

13 damage detection.

14 However, FEMU faces significant barriers that prevent it from reaching its peak 

15 efficiency. For example, computational burden, especially in the case of complex 

16 structures, makes this technique cumbersome, and in some cases, the process of 

17 updating may lead to ill-conditioned optimization problems with limited practical 

18 applicability. Although some approaches have recently been introduced to improve 

19 computational efficiency, such as the response surface method (Shahidi and Pakzad, 
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1 2013) and the substructure technique (Weng et al., 2012), this challenge still needs to 

2 be addressed.

3 Another challenge when updating a model relates to addressing different sources 

4 of uncertainties. To overcome this problem, probabilistic approaches that are more 

5 reliable than their deterministic counterparts have been introduced in the field of 

6 FEMU (Jesus et al., 2014; Jesus et al., 2018). Deterministic techniques, which 

7 consider fixed values regarding input parameters and response outputs, rarely 

8 provide a satisfactory correlation between the numerical model and real data 

9 because of inherent structural uncertainties (Friswell and Mottershead, 2013). In 

10 contrast, probabilistic approaches do not regard input parameters as fixed numbers 

11 to lock the updating process in those values; instead, they consider a realistic 

12 statistical distribution for each parameter. This consideration is more logical 

13 because it is impossible to confidently assert a certain value for one parameter using 

14 an updating process because of the existence of uncertainties. Therefore, in most 

15 cases, probabilistic approaches are more reliable. According to Kennedy and 

16 O’Hagan (2001a, 2001b), the main sources of uncertainty in model prediction are 

17 uncertainty in model parameters, modeling errors, and uncertainty resulting from 

18 observation errors. Uncertainty in model parameters relates to inputs to the 

19 computer model that are unknown and cannot be identified directly from physical 

20 experiments, such as the material properties of a damaged structure. Another source 
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1 of uncertainty—modeling error or model inadequacy—refers to any assumptions 

2 or simplifications made while developing FEMs, such as considering a material 

3 linear, isotropic, and homogenous. This source of uncertainty occurs even when all 

4 parameters are accurately identified. The observation error (i.e., experimental 

5 uncertainty) is usually present in physical experiments. This type of uncertainty 

6 denotes variations that may occur in the experimental measurement even when the 

7 test is repeated with the same settings.

8 Despite the significant effects of the abovementioned uncertainties, few studies 

9 have addressed all of these aspects. A number of probabilistic approaches have 

10 been developed in FEMU, including the fuzzy number-based method, Kalman 

11 Filter-based technique, model falsification diagnosis method, Markov process-

12 based method and sampling method. Among all probabilistic FEMU techniques, 

13 Bayesian updating has been found to be one of the most applicable approaches for 

14 updating FEMs. Several attempts have been made to apply Bayesian updating, and 

15 Beck’s method is eminent among them because it proposes a robust predictive 

16 approach (Beck and Katafygiotis, 1998; Beck and Au, 2002). The major weakness 

17 in the presentation of Bayesian methods in SHM practices is that uncertainty 

18 resulting from modeling errors is not properly considered. Only a few researchers 

19 have performed the Bayesian approach with consideration of this aspect (Higdon 

20 et al., 2008; Simoen et al., 2013). Higdon used a comprehensive modular Bayesian 
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1 approach (MBA) that was formerly established by Kennedy and O’Hagan (2001a), 

2 but it was not generally successful in addressing identifiability. Identifiability 

3 represents the ability to achieve the true value of model parameters based on 

4 available data to illustrate a physical property such as Young’s modulus (Arendt et 

5 al., 2012a). Arendt et al. (2012b) proposed an improvement to Kennedy and 

6 O’Hagan’s original formulation using the MBA to overcome the identifiability 

7 problem by applying measured data with various responses. This method replaces 

8 an FEM with a Gaussian process (GP) model as a metamodel (Kennedy and 

9 O’Hagan, 2001a). It has been found that the method significantly reduces 

10 computational effort—especially in cases of complex structures (Lophaven et al., 

11 2002; Jesus et al., 2017; Conde et  al.,  2019;  Jesus  et  al.,  2019). The GP model 

12 for interpolation that considers uncertainties is found to be effective, even if data 

13 are limited. This formulation is preferable to former studies in model updating 

14 because it comprises the main sources of uncertainties and consequently reaches 

15 more realistic outcomes.

16 Based on the thriving interest in the MBA, this study validates its practical 

17 performance in FEMU by means of measured vibration data. The study investigates 

18 the applicability of the algorithm to a lab-scaled reinforced concrete box girder 

19 bridge (BGB), which represents a typical hollow core bridge deck in Australia. The 

20 MBA is applied in two states—undamaged and damaged—to calibrate multiple 
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1 parameters of the FEM. The performance of the approach is examined according 

2 to the observed evidence of the undamaged condition with initial minor cracks and 

3 the damaged condition with imposed cracks. The damaged state represents changes 

4 in structural parameters as a result of aging or overloading. Accordingly, this study 

5 aims to identify changes in the structural parameters and provide a reliable updated 

6 model for each state. The structural identification provided through the applied 

7 framework will not only provide a better understanding of structural performance, 

8 but will also contribute to providing suitable guidelines for decision-making 

9 regarding maintenance actions.

10

11 Model Updating Methodology

12 This section describes the model updating approach used in this study. The first 

13 subsection explains the connecting equation between the observations and the outputs 

14 of the numerical model. The second subsection briefly presents the GP, and the last 

15 subsection outlines the framework.

16

17

18
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1 Observation and numerical model relationship

2 We assume that a real and unobservable process ƒ has n observations of q responses 

3 Ye from the measured data, where the superscript “e” is the experimental model. 

4 The relationship between ƒ and Ye can be denoted as equation (1):

5

6     Ye= ƒ + ε                                                                                                        (1)         

7                                                                            

8 where ε = [ε1, …, εn]T is the observation error, which is supposed to work as a 

9 Gaussian distribution with a mean of 0 and variance of Ʌ . Alternatively, the  ∈ ℝ

10 real process ƒ can be interpreted as equation (2) to comprise the numerical model:  

11

12    ƒ = Ym(θ*) +δ                                                                                                    (2)           

13                                                                                              

14 where δ is a discrepancy function that represents the difference between the 

15 numerical model and the real process. Ym (θ*) is the numerical model’s output and 

16 θ* is an r-dimensional vector of the true structural parameters. This equation is an 

17 idealized form of the final model (i.e., the model after successful calibration), while 

18 the model parameters θ take the values θ*. Significantly, the discrepancy function 
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1 does not depend on the model’s output and is an unknown in addition to the 

2 structural parameters. Equation (2) is then substituted into equation (1) to obtain 

3 equation (3):

4

5    Ye = Ym(θ *)+δ+ ε                                                                                                    (3)

6

7 Equation (3) is a comprehensive equation of the model updating process. It denotes 

8 the output of the processes within the domain of a calibrated status θ =θ *, which 

9 implies the best fit compared with the observed data.

10 In the next step, the numerical model and the discrepancy function are substituted 

11 with two multiple-response Gaussian processes (MRGPs) whose hyperparameters 

12 must be found. These hyperparameters describe the MRGPs and illustrate the 

13 approximation of their associated uncertainties such as variability of the numerical 

14 model, modeling discrepancies, and observation errors.

15

16 Gaussian Process 

17 Gaussian processes (GP) modeling is an interpolation approach that considers 

18 uncertainty highly efficient even when data are limited (Kennedy and O’Hagan, 

19 2001a; Rasmussen et al., 2006). By applying interpolations and extrapolations, this 
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1 approach offers a predicted GP that is fitted on all observation points. In this study, 

2 an MRGP is applied by assuming that the metamodel of model Y is a single 

3 realization of a spatial random process with a prior mean function and covariance 

4 function (O’Hagan, 2006; Rasmussen et al., 2006). Regarding approximation of the 

5 metamodel, it is assumed that a dataset of Y with a size of g and N observations 

6 should be available as input. Dimension g represents the number of responses (Y1, 

7 Y2,…, Yg). To generate the MRGP, the mean function is required to be obtained, 

8 which exists at every design input point without uncertainty. In the spaces located 

9 between or outside the design input points, the MRGP will produce either a possible 

10 interpolation or extrapolation from the existing data points.

11 In the MRGP, the prior mean function is supposed to be a member of a hierarchical 

12 structure of linear functions. It can be generalized as the form M=H. Herein, 

13 matrix H comprises N polynomial constant regression functions and the matrix of 

14 regression coefficient  for each term included in matrix H and each fitted response 

15 in Y. That is, H is a row vector of regression functions and  is a column vector of 

16 regression functions.

17 The prior covariance function of the MRGP for the model and discrepancy function 

18 can be formulated as equation (4):

19
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1                                                                                                          (4)𝐕 = ∑2 ⊗  𝐑

2

3 where V is covariance function,   is a non-temporal variance matrix, and  ∑𝟐 ∈ ℝ𝑔 × 𝑔

4  is a temporal correlation matrix, and ⊗ is the Kronecker product 𝐑 ∈ ℝ𝑁 × 𝑁

5 operation on the two matrices. This equation can be interpreted as the separation of 

6 a variance between the g responses (which are being approximated) and a correlation 

7 between the N times histories. Each entry of Matrix R contains a correlation function 

8 that needs to be approximated. This assumption is applicable to the correlation 

9 function of the numerical model. In addition, because the FEM is linear, a linear 

10 correlation function is assumed for the correlation function in this study, as shown in 

11 equation (5). This model fits properly to the data and is numerically stable (Lophaven 

12 et al., 2002).

13

14                                                    (5) 𝐑(𝜔, 𝜃, 𝜃′) = ∏𝑟
𝑗 = 1max {0, 1 ― 𝜔𝑗|𝜃𝑗 ― 𝜃′𝑗|}

15

16 In equation (5),  (j=1,...,r) is the roughness parameter and represents how 𝜔𝑗

17 roughly the responses change from point θ to point θ' for each of the structural 

18 parameters of interest.
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1 In contrast, the correlation matrix for the discrepancy function is simply assumed 

2 as an identity matrix as R=I. This assumption implies that the final predicted 

3 responses have no temporal correlation. This is reasonable for natural frequencies 

4 obtained from a laboratory model because they vary randomly without any definite 

5 relations. The final hyperparameter that needs to be estimated to conclude the 

6 description of the MRGP is Ʌ as the N×1 variance vector of the observation error 

7 ε, which can simply be added to equation (4) to reach equation (6).

8

9    + Ʌ                                                                                          (6)   𝐕 = ∑2 ⊗  𝐑

10

11  
12 After providing a certain amount of data Y, the MRGP is provided (supposing a non-

13 informative prior for  and given ω and ∑). The posterior distribution of the response 

14 is given by equation (7):

15

16      y l ∑, ω, Ʌ, Y ~ N (m*, ∑ ⊗ ɣ*)                                                                      (7)

17 with 

18    m* = h + ɣT  Г-1  (Y - H )                                                                                (8)    
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1

2    ɣ*= ɣ - ɣT  Г-1  ɣ + [hT - HT Г-1 ɣ]T [HT Г-1 H]-1 [hT - HT Г-1 ɣ]                             (9) 

3 where y represents the MRGP, h is the hierarchical structure of regression 

4 functions. ɣ is defined as a relational correlation matrix, which maps the correlation 

5 between the indices of points of available dataset and the indices of points supposed 

6 to be predicted (Conti et al., 2009). The used correlation function is the same as 

7 equation (5).  stands for the estimated matrix of  and is given by calculating 

8 equation (10):

9

10    HT R-1 H = HT R-1 Y                                                                                  (10)  

11

12 which refers to the linear regression solution of the best linear unbiased predictor. 

13 Г is an N×N correlation matrix that contains the linear functions. The MRGP in  

14 equation (7) can be defined by estimating the hyperparameters ω, , ∑, and Ʌ. 

15 Characterization of the hyperparameters can be conducted using a Bayesian 

16 approach, which would address all of the mentioned uncertainties and identify all 

17 of the hyperparameters at the same time. However, this approach is not efficient 

18 because it comprises a huge computational process (Liu et al., 2009). Therefore, 

19 for better computational efficiency, the hyperparameters are calculated with the 
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1 maximum likelihood estimations (MLEs). A more comprehensive description of 

2 the GP method can be found in Arendt et al. (2012a).

3 Modular Bayesian approach (MBA)

4 The MBA separates the updating process into four steps. The hyperparameters of 

5 the MRGP are approximated separately and consecutively, as shown in Figure 5 in 

6 the study by Arendt et al. (2012a). In the MBA, the hyperparameters continue to be 

7 estimated until the first order of uncertainties is found, and then they are fixed. It is 

8 worth noting that setting up the hyperparameters at fixed estimations decreases the 

9 degree of approximation of the uncertainties. In addition, the “second-order” 

10 resolution of the uncertainties is ignored to alleviate the computational burden and 

11 make it faster than fully considering the uncertainties in the Bayesian framework. 

12 This act of estimating and fixing the hyperparameters is performed sequentially 

13 when progressing from module 1 to module 2 and from module 2 to module 3.

14 The first module basically substitutes the computer model to an MRGP model and 

15 estimates its hyperparameters based on only the simulation data. In this module, 

16 the simulation is run in finite element modeling software (e.g., Abaqus) to obtain 

17 the simulated responses by randomly changing the input parameters using Latin 

18 hypercube sampling (LHS). For the experimental validation in this study, 120 and 

19 80 runs were conducted in the undamaged and damaged states, respectively, to 
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1 provide a dataset. The estimation can be carried out using numerical optimization 

2 methods by fitting a likelihood between the MRGP and the available simulation 

3 data. In this study, a genetic algorithm (GA) routine was applied in MATLAB. For 

4 the GA setup, an initial population of size 40 is generated in the [0; 1] range, a 

5 Gaussian mutation function with a scale of 1 (i.e., initial standard deviation of 1) 

6 and a standard deviation shrink of 1 is chosen, and a scattered crossover function 

7 applied to a portion of 0.8 of the population at each generation is defined. 

8 Convergence criteria are set as either a maximum number of 100 generations or 

9 until an average change in the fitness value of 1×10-6 is reached.

10 In module 2, the discrepancy function is estimated by fitting another MRGP model 

11 according to the measured data from the experiment, the simulation data, and the 

12 prior distribution of the calibration parameters. The GA is used to approximate the 

13 discrepancy function by estimating the hyperparameters of the GP. This task is 

14 carried out by an MLE, which indicates that the fitness function of the GA is a 

15 likelihood function. It should be mentioned that either the MBA or the full Bayesian 

16 approach can estimate the hyperparameters of the abovementioned MRGP models 

17 through MLE and Bayesian posterior distributions, respectively. As discussed in 

18 the previous section, the MBA is used in this study because Bayesian posterior 

19 distributions can be computationally inefficient. In addition, according to Bayarri 
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1 et al. (2007), both approaches have similar results in predicting the discrepancy 

2 function and calibration parameters.

3 In module 3, Bayes’ theorem is applied to approximate the posterior distribution of 

4 the updated parameters and its likelihood function containing the two MRGP 

5 models approximated in modules 1 and 2. Since multiple parameters are calibrated 

6 in this study, a Markov chain Monte Carlo method can be used to estimate the 

7 MBA. This choice implies that a target distribution must be used, and in this study, 

8 a multivariate normal distribution is chosen (Arendt et al., 2012b).

9 In module 4, the experimental responses are calculated by applying the measured 

10 data and the estimated hyperparameters obtained from modules 1 and 2. After the 

11 simulated and measured data are collected in modules 1 and 2 and the calibrated 

12 parameters are estimated in module 3, the posterior distribution response of the 

13 updated model together with the updated discrepancy function can be obtained. For 

14 the prediction of the responses, 40 measured data points for the undamaged state 

15 and 60 data points for the damaged state are randomly distributed along the 

16 simulated data points. It is worth noting that simulated data have been provided by 

17 applying the LHS approach as described in the first module. In addition, it is 

18 assumed that the measured responses are independent of time, temperature 

19 variation, and other operational effects.
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1

2

3

4  Finite element model updating for a box girder bridge

5 The first subsection presents details of the BGB and two different states (i.e., 

6 undamaged and damaged) of the structure. Details of an FEM and experimental 

7 modal analysis as two counterparts in model updating are provided in the second 

8 and third subsections, respectively. The fourth subsection highlights sensitivity 

9 analysis as a tool to select appropriate parameters and responses in FEMU.

10

11 Two states of box girder bridge

12 A downscaled reinforced concrete BGB, which was constructed in the civil 

13 engineering laboratory at the Queensland University of Technology, is investigated 

14 in this study. This structure represents a typical in-service hollow core bridge deck 

15 in Australia. The length of the BGB is 6 m, and it was cast in three separate parts 

16 as the bottom slab, the webs, and the top slab. Detailed dimensions of the structure 

17 are shown in Figure 1 (a). Further information about the casting steps can be found 

18 in Pathirage (2017). The BGB was placed on two simple supports as a pin at one 

19 end and a roller at the other end, as shown in Figure 1 (b). This platform refers to 
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1 the undamaged state (first state), despite the existence of some minor cracks 

2 beneath the soffit slab.

3

4   

5         (a)

6   

7     (b)

8 Figure 1. The BGB details: (a) BGB’s dimensions and (b) Boundary conditions in BGB as Roller (left) and 

9 Pin (right).

10

11 In the second state (damaged state), a point load and then a cyclic load were applied 

12 at the midspan of the BGB. These impacts resulted in some significant cracks on 
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1 the soffit slab and the webs of the BGB. Eight significant cracks were observed, 

2 each of which ran through the whole width of the bottom slab and propagated to 

3 the webs. Figure 2 shows some observed cracks on the body of the structure.

4

5

6

7                    Figure 2. Detected cracks on body of the BGB in damaged state.

8

9  Numerical model 

10 Given the lack of available information about the structural parameters of the BGB, 

11 such as material properties and boundary conditions, nominal values of the 

12 parameters were assumed from the designing details and were used to create a 

13 numerical model of the BGB. The initial BGB’s FEM was built in the Abaqus 

14 software package, as shown in Figure 3 (Abaqus, 2017).
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1                                

2                                            Figure 3. FEM of BGB built in ABAQUS 2017.

3 From the Abaqus element library, a C3D8R solid element and a T3D2 truss element 

4 were assigned to the concrete and reinforcement elements, respectively. Regarding 

5 material properties, according to the design details, Young’s modulus (E) is assumed 

6 as 200 (GPa) for reinforcement and 32 (GPa) for concrete. Further, mass density (ρ) is 

7 assumed as 7,850 kg/m3 for reinforcement and 2,400 kg/m3 for concrete. In addition, 

8 the boundary conditions were considered fixed in vertical displacement for both 

9 supports. In this study, a convergence assessment for mesh size selection was 

10 performed by applying a load-displacement control. Herein, load against midspan 

11 deflection was examined for different mesh sizes. A mesh size of 50 mm was 

12 determined to be fit enough by considering the experimental displacement at the mid-

13 zone in failure mode. More details of the analysis can be found in Jamali et al. (2018). 

14 In this study, four natural frequencies of the FEM—first vertical bending, second 

15 vertical bending, first lateral bending, and third vertical bending modes—were selected 
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1 and used to update the FEM because similar mode shapes and natural frequencies were 

2 extracted from the measured data.

3

4 Modal data analysis

5 During the casting process of the BGB, several small steel plates were attached to 

6 the BGB’s surface to facilitate sensor installation. The sensory system used in this 

7 study is shown in Figure 4 (a). Regarding the selection of the right sensor layout, 

8 different aspects were noticed in relation to the number and type of available 

9 sensors, the excitation source, and the maximum number of channels in the data 

10 acquisition system. More details regarding the preparation of the experiment can 

11 be found in Jamali et al. (2016). The BGB was excited by applying multipoint 

12 random excitation with an impact hammer for each vibration test. Vibration 

13 responses were recorded using a data acquisition system. In this study, the vibration 

14 responses of the structure in both the undamaged and damaged states were 

15 measured and used in the FEMU process. Figure 4 (b) shows three examples of 

16 sensor layout arrangements that were applied in the modal analysis in this research. 

17 Each arrow in the figure represents a single sensor in the corresponding direction.

18

19
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1   

2  

3    

4

5  Figure 4. Structural response measurement: (a) Sensory system on the BGB and (b) Sensor layouts.

6

7 The measured acceleration responses were post-processed in the modal analysis 

8 step. In this regard, the stochastic subspace identification (SSI) method, which is 

9 embedded in the ARTeMIS Modal software package, was applied (ARTeMIS, 

10 2011). An example of modal analysis for a dataset is illustrated in Figure 5.

layout 1 layout 2 layout 3

Channels

DAQ

Accelerometer

Steel plate

Cables

     (a)

(b)
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1

2

3                 Figure 5. Modal Analysis to capture experimental frequency in ARTeMIS.

4

5 Modal parameters for 40 datasets in the undamaged state and 60 datasets in the 

6 damaged state were analyzed. The test was conducted in a controlled environment 

7 in the laboratory, where ambient effects had little effect on the measured responses; 

8 therefore, the number of modal analyses in both states was sufficient. The detected 

9 natural frequencies were the first vertical bending, second vertical bending, first 
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1 lateral bending, and third vertical bending modes, similar to the FEM’s results. 

2 These modes were selected for the FEMU process because they could be detected 

3 in both the undamaged and damaged states. The four measured mode shapes were 

4 transferred into the FEMtools software package (Dynamic Design Solutions, 

5 2012). The number of degrees of freedom (DOF) of an experimental model is often 

6 smaller than that of the corresponding FEM as a result of a lack of available sensors 

7 (Moravej et al., 2017). In this study, a coordinate expansion technique was applied 

8 to increase the number of DOFs of the experimental model to the same number in 

9 the FEM (Moravej et al., 2017). The values of the natural frequencies in both states 

10 are shown in Table 1. In this table, the mode order refers to the ordering number of 

11 the modes. The experimental and numerical mode shapes are illustrated in Figure 

12 6.

13

14 Table 1. Frequency in the initial designed model and measured frequency in two states

 Measured Freq (Undamaged)   Measured Freq (Damaged)Mode 
order

Freq as Designed 
(Hz)

Mean value (Hz) STD

Error (%)

Mean value (Hz) STD

Error 
(%)

1 24.339 21.65 0.106 -12.42 18.78 0.082 -29.60

2 81.29 67.06 0.21 -21.22 63.06 0.174 -28.9

3 92.108 84.32 0.124 -9.24 80.73 0.14 -14.09

4 109.75 98.21 0.18 -11.75 95.74 1.023 -14.63

15
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1                     

2                         

3

4  

5  

6  

7 Figure 6. Four mode shapes: (a) Numerical model and (b) Measured model.

8

9

10

1st vertical bending 2nd vertical bending

1st lateral bending 3rd vertical bending

2nd vertical bending   

3rd vertical bending 1st lateral bending   

1st vertical bending    

(a)

(b)
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1 Sensitivity analysis

2 A key step in most model updating approaches is the selection of appropriate 

3 parameters and responses in advance to initiate the updating process. Sensitivity 

4 analysis is a technique used to select the most sensitive parameters to the responses 

5 of a numerical model. This technique tends to analyse the effect of a very small 

6 perturbation of a parameter’s value on a response by sketching the tangents on the 

7 response-parameter curve (Mottershead and Friswell, 2011). In this study, 

8 differential sensitivity analysis was applied to choose the most sensitive parameters 

9 to the selected responses using FEMtools (Dynamic Design Solutions, 2012). A 

10 differential sensitivity coefficient was calculated as the slope of the response Ti in 

11 relation to parameter Bj at a known state of the parameter. Once these differentials 

12 were calculated for all selected responses in relation to all selected parameters, 

13 sensitivity matrix S was generated by equation (11).

14

15    S = Sij =                                                                                                        (11)
𝛿𝑇𝑖

𝛿𝐵𝑗

16  where:    

17   i: 1,…,n    T: Responses

18   j: 1,…,n   B: Parameters

19
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1 Each column of the sensitivity matrix corresponds with a parameter Bj and each 

2 row corresponds with a response Ti. Regarding the responses in this experiment, 

3 the four modal frequencies identified in the previous subsections were selected as 

4 sensitive responses. Details of the selected responses are shown in Table 1.

5 In the initial FEM, the simple supports were modelled as fixed in the vertical 

6 direction. However, by applying a correlation analysis between the mode shapes 

7 from the FEM and those from the experiment, it was observed that the roller in the 

8 experimental model was not fixed, as a bouncing was observed in the second 

9 vertical mode shape, as shown in Figure 7. Further, similar results were obtained 

10 for the third vertical bending mode shape. Therefore, a more accurate simulation of 

11 the boundary condition was used in this study to better represent the behavior of 

12 the structure.

13  

14 Figure 7. Correlation between FEM (Blue) and experimental (Red) in 2nd vertical mode shape.

15
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1 For the updating process, the parameters related to concrete in three different parts 

2 (i.e., bottom slab, webs, and top slab) were selected separately because the BGB 

3 was cast in the three corresponding steps. Further, observed changes in the health 

4 condition of the three parts were different after the damage was induced. Hence, 

5 the parameter selection resulted in 10 parameters: (1) Young’s modulus of concrete 

6 (top), (2) Young’s modulus of concrete (web), (3) Young’s modulus of concrete 

7 (bottom), (4) Young’s modulus of reinforcement, (5) vertical spring stiffness 

8 (roller), (6) vertical spring stiffness (pinned), (7) mass density of reinforcement, (8) 

9 mass density of concrete (top), (9) mass density of concrete (web), and (10) mass 

10 density of concrete (bottom). Results of the sensitivity analysis, as shown in Figure 

11 8, provide a clearer picture of which parameters were sensitive to the selected 

12 responses. The vertical axis in this figure refers to sensitivity magnitude. Based on 

13 the sensitivity analysis, the selection resulted in the five most sensitive parameters: 

14 Young’s moduli of the bottom slab, the webs, and the top slab (EcBot, EcWeb, and 

15 Ectop); and vertical spring stiffness coefficients of the two supports (Kroller and Kpin). 

16 Reducing the number of parameters of interest is essential to decrease the 

17 computational cost.

18

19

20
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1

2

3

4  

5

6

7

8

9 Result and discussion

10 The FEM of the BGB was updated for the two states—undamaged and damaged—

11 by applying the MBA and using the four natural frequencies, mentioned in the 

12 previous section, as the responses. This section highlights the outcomes regarding 

13 the calibrated parameters and predicted responses in both states.

14

15  FEMU for undamaged state

16 There was a lack of testing results from the casting stage, such as core sampling 

17 and tensile strength, to provide insights into prior distribution. Therefore, normal 

18 distributions were selected to represent all parameters’ prior probability distribution 

Se
ns

iti
vi

ty

Res
po

ns
e

Parameter

Figure 8. Sensitivity Analysis between selected parameters and responses.
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1 functions. This was in line with Mirza et al. (1980), Darmawan and Stewart (2007) 

2 and recommendations from the code of practice AS-5104, as shown in Table 2.

3

4  Table 2. Parameter Prior Probability Distribution in Undamaged state

Parameter Mean Coefficient of Variation

(EcTop) Young’s modulus - Concrete - Top slab 32 GPa 7.13

(EcWeb) Young’s modulus - Concrete - Web 32 GPa 7.13

(EcBot) Young’s modulus - Concrete - Bottom slab 32 GPa 7.13

(KRoller) Spring Stiffness Roller support 5×107 N/m 9×1013

(KPin) Spring Stiffness Pinned support 5×107 N/m 9×1013

5

6 In this study, the computational process was carried out using a computer equipped 

7 with an Intel i7 quad-core processor with 3.4 GHz speed, 16 GB of RAM, and a 

8 fast-access solid-state drive (SSD). For modules 1 and 2, hyperparameters were 

9 obtained that characterize the estimation of the calibrated parameters and the 

10 discrepancy function, and consequently represent the GPs. These hyperparameters 

11 included a variance matrix ∑, a matrix of regression coefficient , roughness 

12 parameters ω, and a noise variance matrix Ʌ, as explained in the methodology. 

13 Results of the calibrated parameters after applying the MBA in the undamaged state 

14 are illustrated in Figure 9 and Table 3. The posterior may require more data before 

15 it faithfully represents the calibrated parameters; as a result, it did not present any 
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1 changes compared with the prior. It is worth noting that the likelihood identified 

2 the calibrated parameters according to the measured data. As shown in Figure 9, in 

3 the undamaged state, there were no considerable changes in Young’s moduli of the 

4 webs and the top slab in the likelihood against their priors. A significant change 

5 was observed in the reduction in the bottom slab’s Young’s modulus (EcBot), which 

6 was identical to the observed minor cracks beneath the BGB. Another noticeable 

7 change was a reduction in vertical spring stiffness at the roller support, which infers 

8 that the vertical fixity at the roller support was overestimated. This outcome is well 

9 matched with the observed bouncing in the roller previously noticed in Figure 7.

10

11

12

Page 32 of 96

https://mc.manuscriptcentral.com/aise

Advances in Structural Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

32

1

2 Figure 9. Prior, Max Likelihood and Posterior PDF for calibrated parameters in undamaged state.

3

4

5 Table 3. The Likelihood and Posterior distribution for calibrated parameters in undamaged state

                 Posterior                Likelihood

Part Mean Coefficient of 
Variation

Mean Coefficient of 
Variation

EcBot 31.81 (GPa) 4.1 30.84 (GPa) 8.3

EcWeb 31.83 (GPa) 4.5 32.69  (GPa) 2.9

EcTop 32.34 (GPa) 3.4 33.67  (GPa) 5.2

KRoller 5.10×107 (N/m) 3.32×1014 1.68×107 (N/m) 2.02×1014

KPin 5.15×107 (N/m) 1.66×1014 9.53×107 (N/m) 3.82×1014

6

7 The discrepancy functions for all four modes in the undamaged state are depicted 

8 in Figure 10 (a). In this figure, the horizontal axis represents the sample ordering 

9 numbers of the simulated data. The black line represents the predicted mean, and 
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1 the shaded region denotes a 95% prediction interval. As shown, the MBA predicted 

2 the measured responses accurately for all modes, with deviations of less than 6%.

3 Figure 10 (b) depicts the measured responses together with the prediction intervals 

4 for all four modal frequencies. The measured data points obtained from the 

5 experimental tests, as shown by red spots in Figure 10 (b), are randomly distributed 

6 among the simulated data points. As shown, the measured data points are located 

7 in the 95% prediction interval and are very close to the mean values of the predicted 

8 responses. The predicted mean values almost coincide with those of the measured 

9 data points for all modes (see Table 1). However, it can be inferred from the 

10 predictions that the higher the mode order that is examined, the larger the scatter 

11 interval that is obtained.
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(a) Discrepancy functions for frequency responses.
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1

2 Figure 10. The results of Discrepancy function and predicted response for numerical model in undamaged 

3 state for all four modal frequencies as: (1) 1st vertical bending frequency, (2) 2nd vertical bending 

4 frequency, (3) 1st lateral bending frequency & (4) 3rd vertical bending frequency.

5

6 FEMU for damaged state

7 The next step of model updating refers to the damaged state, where some significant 

8 cracks were observed on the bottom slab and the webs of the BGB. It is worth 

9 mentioning that the number of calibrated parameters was reduced to three (Young’s 

10 moduli) because it was assumed that the applying impacts in the damaged state did 

11 not affect the boundary conditions. Results of the prior, likelihood, and posterior 

12 distributions of the calibrated parameters are illustrated in Figure 11 and Table 4.

13

(b) Predicted interval 95% confidence for numerical model and experimental data points.
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1                        

2

3  Figure 11. Prior, Max Likelihood and Posterior PDF for calibrated parameters in damaged state.

4

5 Table 4. The Likelihood and Posterior distribution for calibrated parameters in damaged state

                  Posterior                Likelihood

Part mean Coefficient of 
Variation

 mean Coefficient of         
Variation

EcBot 30.45 (GPa) 6.45 20.63 (GPa) 25.59

EcWeb 30.82 (GPa) 3.58 27.82 (GPa) 5.99

EcTop 32.54 (GPa) 2.26 30.54 (GPa) 35.45
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1 As shown in Figure 11, a significant change was targeted at the likelihood in 

2 Young’s modulus of the bottom slab, indicating a reduction of about 35.5% to a 

3 new mean value of 20.63 GPa. Further, the decrease in Young’s modulus of the 

4 web section was noticeable, showing a likelihood mean of 27 GPa. The impact 

5 forces had little effect on the top slab, and its updated Young’s modulus was almost 

6 the same as its initial value. The reduction in the Young’s moduli of the bottom 

7 slab and the webs is well matched with the cracks observed in the damaged state, 

8 as mentioned in the section Two states of box girder bridge. The discrepancy 

9 functions for all four modes in the damaged state are depicted in Figure 12 (a). As 

10 shown in the figure, the discrepancy increases in the damaged state, especially for 

11 the second and third vertical bending modes. In addition, the discrepancy functions 

12 in the damaged state are distributed more sparsely than those in the undamaged 

13 state. This may be because the cracks cause nonlinearities in the properties of 

14 structural materials and the mechanism of the experimental response.

15 Results of the measured responses together with predicted intervals for all four 

16 modes are shown in Figure 12 (b). As shown, the measured data points are observed 

17 in the corresponding predicted intervals and are very close to the mean values for 

18 all modes except the last one (third vertical bending mode). Results for the third 

19 vertical bending mode are very scattered. It is worth noting that the discrepancy of 

20 this mode is larger than that of the other modes, as shown in Figure 12 (b). This can 
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1 be explained because nonlinearity effects resulting from cracks become more 

2 significant when the vibration mode contains a higher-order curve.

3

4        

5

6
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(a) Discrepancy functions for frequency responses.
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1      

2   

3

4

5 Figure 12. The results of discrepancy function and predicted response for numerical model in damaged 

6 state, for all four modal frequencies as: (1) 1st vertical bending frequency, (2) 2nd vertical bending 

7 frequency, (3) 1st lateral bending frequency & (4) 3rd vertical bending frequency.

8

9 Conclusions 

10 In this study, the performance of an MBA was investigated in a large lab-scaled 

11 BGB using vibration data. Sensitivity analysis was conducted to select the most 

12 sensitive parameters and responses. Further, a metamodel was used instead of a 
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1 whole numerical model. Therefore, the computational task and processing time was 

2 reduced in comparison with other probabilistic updating techniques. This benefit 

3 distinguishes this approach, especially in applications to complex structures.

4 This study is the first to apply the MBA for two different states: damaged and 

5 undamaged. These two states represent the health conditions of the structure during 

6 its life span, and the outcomes can be used for further structural investigations. 

7 Although a case study is rather simple compared with full-scale real structures, such 

8 a scale provides a possibility to investigate the performance of the proposed 

9 approach in two different states according to the observed evidence on the structure. 

10 Further, this study highlighted the advantages of FEMU because it illustrated that 

11 even an FEM of a downscaled structure requires accurate calibration to be reliably 

12 used in further structural assessments.

13 Moreover, in contrast to many previous studies, which applied the MBA to a single 

14 parameter, this study investigated model updating on multiple parameters, such as 

15 material properties and boundary conditions, at the same time. In this study, the 

16 changes to these parameters were well matched with the observed evidence in both 

17 states. Natural frequencies of the first four modes, used as the measured data points, 

18 were predicted correctly. The updated model was sufficiently matched with the 

19 physical observation of the damaged structure. In turn, the results generated from 
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1 this study might be attributed to the proposed uncertainty quantification 

2 methodology. Further, as the results showed in the damaged state, the discrepancy 

3 functions increased, and experimental responses were not predicted as accurately 

4 as in the undamaged state. Such increases in the discrepancy functions are inferred 

5 as a guide for designers, implying that the FEM needs to be refined by considering 

6 additional aspects such as crack modeling. Further, response prediction can be 

7 improved and discrepancy can be reduced by adding other experimental data points 

8 (e.g., strain and mode shape) and information about environmental conditions (e.g., 

9 temperature and humidity). Although natural frequency was selected as the 

10 response for the updating process in this study, the MBA is capable of considering 

11 other types of responses. Thus, the performance of the approach when applied to 

12 other responses, such as mode shape, should be investigated in future studies. 

13 Consequently, the proposed methodology contributes to more reliable judgments 

14 about structural safety and more informed maintenance decision-making.

15

16

17

18

19

20
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Vibration-based Bayesian model updating of civil 1 

engineering structures applying Gaussian process 2 

metamodel 3 

 4 

Hossein Moravej, Tommy Chan, Khac-Duy Nguyen and     5 

Andre Jesus 6 

 7 

Abstract 8 

Structural health monitoring plays a significant role in providing information 9 

regarding the performance of structures throughout their life spans. 10 

However, information that is directly extracted from monitored data is 11 

usually susceptible to uncertainties and not reliable enough to be used for 12 

structural investigations. Finite element model updating (FEMU) is an 13 

accredited framework that reliably identifies structural behavior. Recently, 14 

the modular Bayesian approach (MBA) has emerged as a probabilistic 15 

technique in calibrating the finite element model (FEM) of structures and 16 

comprehensively addressing uncertainties. However, few studies have 17 

investigated its performance on real structures. In this paper, MBA is 18 

applied to calibrate the FEM of a lab-scaled concrete box girder bridge. This 19 
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study is the first to use the MBA to update the initial FEM of a real structure 1 

for two states—undamaged and damaged conditions—in which the 2 

damaged state represents changes in structural parameters as a result of 3 

aging or overloading. The application of the MBA in the two states provides 4 

an opportunity to examine the performance of the approach with observed 5 

evidence. A discrepancy function is used to identify the deviation between 6 

the outputs of the experimental and numerical models. To alleviate 7 

computational burden, the numerical model and the model discrepancy 8 

function are replaced by Gaussian processes. Results indicate a significant 9 

reduction in the stiffness of concrete in the damaged state, which is identical 10 

to cracks observed on the body of the structure. The discrepancy function 11 

reaches satisfying ranges in both states, which implies that the properties 12 

of the structure are predicted accurately. Consequently, the proposed 13 

methodology contributes to a more reliable judgment about structural 14 

safety.   15 

 16 

Keywords 17 

Finite Element Model Updating, Bayesian framework, Gaussian process, 18 
Structural Health Monitoring, Box girder bridge, Vibration analysis 19 

 20 
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Introduction 1 

Civil infrastructure plays a significant role in keeping urban systems operational, but 2 

any malfunctions in routine performance can result in major hazards and even threaten 3 

lives. Therefore, it is important to regularly investigate the safety of infrastructure. 4 

Many researchers such as Frangopol (2011) and Li et al. (2016) have acknowledged 5 

the importance of monitoring the behaviors of structures using information provided 6 

by structural health monitoring (SHM). An accredited approach to addressing the 7 

aforementioned objective is finite element model updating (FEMU), which aims to 8 

improve the accuracy of the finite element models (FEMs) of real structures and 9 

reduce the discrepancy between the output of FEMs and experimental measurements. 10 

The availability of reliable FEMs of structures is beneficial in terms of evaluation of 11 

structural performance, reliability analysis, load-carrying capacity assessment, and 12 

damage detection. 13 

However, FEMU faces significant barriers that prevent it from reaching its peak 14 

efficiency. For example, computational burden, especially in the case of complex 15 

structures, makes this technique cumbersome, and in some cases, the process of 16 

updating may lead to ill-conditioned optimization problems with limited practical 17 

applicability. Although some approaches have recently been introduced to improve 18 

computational efficiency, such as the response surface method (Shahidi and Pakzad, 19 
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2013) and the substructure technique (Weng et al., 2012), this challenge still needs to 1 

be addressed. 2 

Another challenge when updating a model relates to addressing different sources 3 

of uncertainties. To overcome this problem, probabilistic approaches that are more 4 

reliable than their deterministic counterparts have been introduced in the field of 5 

FEMU (Jesus et al., 2014; Jesus et al., 2018). Deterministic techniques, which 6 

consider fixed values regarding input parameters and response outputs, rarely 7 

provide a satisfactory correlation between the numerical model and real data 8 

because of inherent structural uncertainties (Friswell and Mottershead, 2013). In 9 

contrast, probabilistic approaches do not regard input parameters as fixed numbers 10 

to lock the updating process in those values; instead, they consider a realistic 11 

statistical distribution for each parameter. This consideration is more logical 12 

because it is impossible to confidently assert a certain value for one parameter using 13 

an updating process because of the existence of uncertainties. Therefore, in most 14 

cases, probabilistic approaches are more reliable. According to Kennedy and 15 

O’Hagan (2001a, 2001b), the main sources of uncertainty in model prediction are 16 

uncertainty in model parameters, modeling errors, and uncertainty resulting from 17 

observation errors. Uncertainty in model parameters relates to inputs to the 18 

computer model that are unknown and cannot be identified directly from physical 19 

experiments, such as the material properties of a damaged structure. Another source 20 
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of uncertainty—modeling error or model inadequacy—refers to any assumptions 1 

or simplifications made while developing FEMs, such as considering a material 2 

linear, isotropic, and homogenous. This source of uncertainty occurs even when all 3 

parameters are accurately identified. The observation error (i.e., experimental 4 

uncertainty) is usually present in physical experiments. This type of uncertainty 5 

denotes variations that may occur in the experimental measurement even when the 6 

test is repeated with the same settings. 7 

Despite the significant effects of the abovementioned uncertainties, few studies 8 

have addressed all of these aspects. A number of probabilistic approaches have 9 

been developed in FEMU, including the fuzzy number-based method, Kalman 10 

Filter-based technique, model falsification diagnosis method, Markov process-11 

based method and sampling method. Among all probabilistic FEMU techniques, 12 

Bayesian updating has been found to be one of the most applicable approaches for 13 

updating FEMs. Several attempts have been made to apply Bayesian updating, and 14 

Beck’s method is eminent among them because it proposes a robust predictive 15 

approach (Beck and Katafygiotis, 1998; Beck and Au, 2002). The major weakness 16 

in the presentation of Bayesian methods in SHM practices is that uncertainty 17 

resulting from modeling errors is not properly considered. Only a few researchers 18 

have performed the Bayesian approach with consideration of this aspect (Higdon 19 

et al., 2008; Simoen et al., 2013). Higdon used a comprehensive modular Bayesian 20 
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approach (MBA) that was formerly established by Kennedy and O’Hagan (2001a), 1 

but it was not generally successful in addressing identifiability. Identifiability 2 

represents the ability to achieve the true value of model parameters based on 3 

available data to illustrate a physical property such as Young’s modulus (Arendt et 4 

al., 2012a). Arendt et al. (2012b) proposed an improvement to Kennedy and 5 

O’Hagan’s original formulation using the MBA to overcome the identifiability 6 

problem by applying measured data with various responses. This method replaces 7 

an FEM with a Gaussian process (GP) model as a metamodel (Kennedy and 8 

O’Hagan, 2001a). It has been found that the method significantly reduces 9 

computational effort—especially in cases of complex structures (Lophaven et al., 10 

2002; Jesus et al., 2017; Conde et  al.,  2019;  Jesus  et  al.,  2019). The GP model 11 

for interpolation that considers uncertainties is found to be effective, even if data 12 

are limited. This formulation is preferable to former studies in model updating 13 

because it comprises the main sources of uncertainties and consequently reaches 14 

more realistic outcomes. 15 

Based on the thriving interest in the MBA, this study validates its practical 16 

performance in FEMU by means of measured vibration data. The study investigates 17 

the applicability of the algorithm to a lab-scaled reinforced concrete box girder 18 

bridge (BGB), which represents a typical hollow core bridge deck in Australia. The 19 

MBA is applied in two states—undamaged and damaged—to calibrate multiple 20 
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parameters of the FEM. The performance of the approach is examined according 1 

to the observed evidence of the undamaged condition with initial minor cracks and 2 

the damaged condition with imposed cracks. The damaged state represents changes 3 

in structural parameters as a result of aging or overloading. Accordingly, this study 4 

aims to identify changes in the structural parameters and provide a reliable updated 5 

model for each state. The structural identification provided through the applied 6 

framework will not only provide a better understanding of structural performance, 7 

but will also contribute to providing suitable guidelines for decision-making 8 

regarding maintenance actions. 9 

 10 

Model Updating Methodology 11 

This section describes the model updating approach used in this study. The first 12 

subsection explains the connecting equation between the observations and the outputs 13 

of the numerical model. The second subsection briefly presents the GP, and the last 14 

subsection outlines the framework. 15 

 16 

 17 

 18 
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Observation and numerical model relationship 1 

We assume that a real and unobservable process ƒ has n observations of q responses 2 

Ye from the measured data, where the superscript “e” is the experimental model. 3 

The relationship between ƒ and Ye can be denoted as equation (1): 4 

 5 

    Ye= ƒ + ε                                                                                                        (1)          6 

                                                                            7 

where ε = [ε1, …, εn]T is the observation error, which is supposed to work as a 8 

Gaussian distribution with a mean of 0 and variance of Ʌ ∈ ℝ. Alternatively, the 9 

real process ƒ can be interpreted as equation (2) to comprise the numerical model:   10 

 11 

   ƒ = Ym(θ*) +δ                                                                                                    (2)            12 

                                                                                              13 

where δ is a discrepancy function that represents the difference between the 14 

numerical model and the real process. Ym (θ*) is the numerical model’s output and 15 

θ* is an r-dimensional vector of the true structural parameters. This equation is an 16 

idealized form of the final model (i.e., the model after successful calibration), while 17 

the model parameters θ take the values θ*. Significantly, the discrepancy function 18 
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does not depend on the model’s output and is an unknown in addition to the 1 

structural parameters. Equation (2) is then substituted into equation (1) to obtain 2 

equation (3): 3 

 4 

   Ye = Ym(θ *)+δ+ ε                                                                                                    (3) 5 

 6 

Equation (3) is a comprehensive equation of the model updating process. It denotes 7 

the output of the processes within the domain of a calibrated status θ =θ *, which 8 

implies the best fit compared with the observed data. 9 

In the next step, the numerical model and the discrepancy function are substituted 10 

with two multiple-response Gaussian processes (MRGPs) whose hyperparameters 11 

must be found. These hyperparameters describe the MRGPs and illustrate the 12 

approximation of their associated uncertainties such as variability of the numerical 13 

model, modeling discrepancies, and observation errors. 14 

 15 

Gaussian Process  16 

Gaussian processes (GP) modeling is an interpolation approach that considers 17 

uncertainty highly efficient even when data are limited (Kennedy and O’Hagan, 18 

2001a; Rasmussen et al., 2006). By applying interpolations and extrapolations, this 19 
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approach offers a predicted GP that is fitted on all observation points. In this study, 1 

an MRGP is applied by assuming that the metamodel of model Y is a single 2 

realization of a spatial random process with a prior mean function and covariance 3 

function (O’Hagan, 2006; Rasmussen et al., 2006). Regarding approximation of the 4 

metamodel, it is assumed that a dataset of Y with a size of g and N observations 5 

should be available as input. Dimension g represents the number of responses (Y1, 6 

Y2,…, Yg). To generate the MRGP, the mean function is required to be obtained, 7 

which exists at every design input point without uncertainty. In the spaces located 8 

between or outside the design input points, the MRGP will produce either a possible 9 

interpolation or extrapolation from the existing data points. 10 

In the MRGP, the prior mean function is supposed to be a member of a hierarchical 11 

structure of linear functions. It can be generalized as the form M=Hβ. Herein, 12 

matrix H comprises N polynomial constant regression functions and the matrix of 13 

regression coefficient β for each term included in matrix H and each fitted response 14 

in Y. That is, H is a row vector of regression functions and β is a column vector of 15 

regression functions. 16 

The prior covariance function of the MRGP for the model and discrepancy function 17 

can be formulated as equation (4): 18 

 19 

Page 59 of 96

https://mc.manuscriptcentral.com/aise

Advances in Structural Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 
 

     𝐕𝐕 = ∑2 ⊗  𝐑𝐑                                                                                                    (4) 1 

 2 

where V is covariance function,  ∑𝟐𝟐 ∈ ℝ𝑔𝑔×𝑔𝑔  is a non-temporal variance matrix, and 3 

𝐑𝐑 ∈ ℝ𝑁𝑁×𝑁𝑁  is a temporal correlation matrix, and ⊗ is the Kronecker product 4 

operation on the two matrices. This equation can be interpreted as the separation of 5 

a variance between the g responses (which are being approximated) and a correlation 6 

between the N times histories. Each entry of Matrix R contains a correlation function 7 

that needs to be approximated. This assumption is applicable to the correlation 8 

function of the numerical model. In addition, because the FEM is linear, a linear 9 

correlation function is assumed for the correlation function in this study, as shown in 10 

equation (5). This model fits properly to the data and is numerically stable (Lophaven 11 

et al., 2002). 12 

 13 

   𝐑𝐑(𝜔𝜔,𝜃𝜃,𝜃𝜃′) = ∏ max {0, 1−𝜔𝜔𝑗𝑗�𝜃𝜃𝑗𝑗 − 𝜃𝜃′𝑗𝑗�}𝑟𝑟
𝑗𝑗=1                                                 (5)  14 

 15 

In equation (5), 𝜔𝜔𝑗𝑗  (j=1,...,r) is the roughness parameter and represents how 16 

roughly the responses change from point θ to point θ' for each of the structural 17 

parameters of interest. 18 

In contrast, the correlation matrix for the discrepancy function is simply assumed 19 

as an identity matrix as R=I. This assumption implies that the final predicted 20 
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responses have no temporal correlation. This is reasonable for natural frequencies 1 

obtained from a laboratory model because they vary randomly without any definite 2 

relations. The final hyperparameter that needs to be estimated to conclude the 3 

description of the MRGP is Ʌ as the N×1 variance vector of the observation error 4 

ε, which can simply be added to equation (4) to reach equation (6). 5 

 6 

   𝐕𝐕 = ∑2 ⊗  𝐑𝐑   + Ʌ                                                                                          (6) 7 

 8 

  9 
After providing a certain amount of data Y, the MRGP is provided (supposing a non-10 

informative prior for β and given ω and ∑). The posterior distribution of the response 11 

is given by equation (7): 12 

 13 

     y l ∑, ω, Ʌ, Y ~ N (m*, ∑ ⊗ ɣ*)                                                                      (7) 14 

with  15 

   m* = hβ �  + ɣT  Г-1  (Y - H β �  )                                                                                (8) 16 

 17 

   ɣ*= ɣ - ɣT  Г-1  ɣ + [hT - HT Г-1 ɣ]T [HT Г-1 H]-1 [hT - HT Г-1 ɣ]                             (9)  18 
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where y represents the MRGP, h is the hierarchical structure of regression 1 

functions. ɣ is defined as a relational correlation matrix, which maps the correlation 2 

between the indices of points of available dataset and the indices of points supposed 3 

to be predicted (Conti et al., 2009). The used correlation function is the same as 4 

equation (5). β�  stands for the estimated matrix of β and is given by calculating 5 

equation (10): 6 

 7 

   HT R-1 Hβ �  = HT R-1 Y                                                                                  (10) 8 

 9 

which refers to the linear regression solution of the best linear unbiased predictor. 10 

Г is an N×N correlation matrix that contains the linear functions. The MRGP in 11 

equation (7) can be defined by estimating the hyperparameters ω, β, ∑, and Ʌ. 12 

Characterization of the hyperparameters can be conducted using a Bayesian 13 

approach, which would address all of the mentioned uncertainties and identify all 14 

of the hyperparameters at the same time. However, this approach is not efficient 15 

because it comprises a huge computational process (Liu et al., 2009). Therefore, 16 

for better computational efficiency, the hyperparameters are calculated with the 17 

maximum likelihood estimations (MLEs). A more comprehensive description of 18 

the GP method can be found in Arendt et al. (2012a). 19 
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Modular Bayesian approach (MBA) 1 

The MBA separates the updating process into four steps. The hyperparameters of 2 

the MRGP are approximated separately and consecutively, as shown in Figure 5 in 3 

the study by Arendt et al. (2012a). In the MBA, the hyperparameters continue to be 4 

estimated until the first order of uncertainties is found, and then they are fixed. It is 5 

worth noting that setting up the hyperparameters at fixed estimations decreases the 6 

degree of approximation of the uncertainties. In addition, the “second-order” 7 

resolution of the uncertainties is ignored to alleviate the computational burden and 8 

make it faster than fully considering the uncertainties in the Bayesian framework. 9 

This act of estimating and fixing the hyperparameters is performed sequentially 10 

when progressing from module 1 to module 2 and from module 2 to module 3. 11 

The first module basically substitutes the computer model to an MRGP model and 12 

estimates its hyperparameters based on only the simulation data. In this module, 13 

the simulation is run in finite element modeling software (e.g., Abaqus) to obtain 14 

the simulated responses by randomly changing the input parameters using Latin 15 

hypercube sampling (LHS). For the experimental validation in this study, 120 and 16 

80 runs were conducted in the undamaged and damaged states, respectively, to 17 

provide a dataset. The estimation can be carried out using numerical optimization 18 

methods by fitting a likelihood between the MRGP and the available simulation 19 
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data. In this study, a genetic algorithm (GA) routine was applied in MATLAB. For 1 

the GA setup, an initial population of size 40 is generated in the [0; 1] range, a 2 

Gaussian mutation function with a scale of 1 (i.e., initial standard deviation of 1) 3 

and a standard deviation shrink of 1 is chosen, and a scattered crossover function 4 

applied to a portion of 0.8 of the population at each generation is defined. 5 

Convergence criteria are set as either a maximum number of 100 generations or 6 

until an average change in the fitness value of 1×10-6 is reached. 7 

In module 2, the discrepancy function is estimated by fitting another MRGP model 8 

according to the measured data from the experiment, the simulation data, and the 9 

prior distribution of the calibration parameters. The GA is used to approximate the 10 

discrepancy function by estimating the hyperparameters of the GP. This task is 11 

carried out by an MLE, which indicates that the fitness function of the GA is a 12 

likelihood function. It should be mentioned that either the MBA or the full Bayesian 13 

approach can estimate the hyperparameters of the abovementioned MRGP models 14 

through MLE and Bayesian posterior distributions, respectively. As discussed in 15 

the previous section, the MBA is used in this study because Bayesian posterior 16 

distributions can be computationally inefficient. In addition, according to Bayarri 17 

et al. (2007), both approaches have similar results in predicting the discrepancy 18 

function and calibration parameters. 19 
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In module 3, Bayes’ theorem is applied to approximate the posterior distribution of 1 

the updated parameters and its likelihood function containing the two MRGP 2 

models approximated in modules 1 and 2. Since multiple parameters are calibrated 3 

in this study, a Markov chain Monte Carlo method can be used to estimate the 4 

MBA. This choice implies that a target distribution must be used, and in this study, 5 

a multivariate normal distribution is chosen (Arendt et al., 2012b). 6 

In module 4, the experimental responses are calculated by applying the measured 7 

data and the estimated hyperparameters obtained from modules 1 and 2. After the 8 

simulated and measured data are collected in modules 1 and 2 and the calibrated 9 

parameters are estimated in module 3, the posterior distribution response of the 10 

updated model together with the updated discrepancy function can be obtained. For 11 

the prediction of the responses, 40 measured data points for the undamaged state 12 

and 60 data points for the damaged state are randomly distributed along the 13 

simulated data points. It is worth noting that simulated data have been provided by 14 

applying the LHS approach as described in the first module. In addition, it is 15 

assumed that the measured responses are independent of time, temperature 16 

variation, and other operational effects. 17 

 18 

 19 

 20 

Page 65 of 96

https://mc.manuscriptcentral.com/aise

Advances in Structural Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17 
 

 Finite element model updating for a box girder bridge 1 

The first subsection presents details of the BGB and two different states (i.e., 2 

undamaged and damaged) of the structure. Details of an FEM and experimental 3 

modal analysis as two counterparts in model updating are provided in the second 4 

and third subsections, respectively. The fourth subsection highlights sensitivity 5 

analysis as a tool to select appropriate parameters and responses in FEMU. 6 

 7 

Two states of box girder bridge 8 

A downscaled reinforced concrete BGB, which was constructed in the civil 9 

engineering laboratory at the Queensland University of Technology, is investigated 10 

in this study. This structure represents a typical in-service hollow core bridge deck 11 

in Australia. The length of the BGB is 6 m, and it was cast in three separate parts 12 

as the bottom slab, the webs, and the top slab. Detailed dimensions of the structure 13 

are shown in Figure 1 (a). Further information about the casting steps can be found 14 

in Pathirage (2017). The BGB was placed on two simple supports as a pin at one 15 

end and a roller at the other end, as shown in Figure 1 (b). This platform refers to 16 

the undamaged state (first state), despite the existence of some minor cracks 17 

beneath the soffit slab. 18 

 19 
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   1 

        (a) 2 

   3 

    (b) 4 

Figure 1. The BGB details: (a) BGB’s dimensions and (b) Boundary conditions in BGB as Roller (left) and 5 

Pin (right). 6 

 7 

In the second state (damaged state), a point load and then a cyclic load were applied 8 

at the midspan of the BGB. These impacts resulted in some significant cracks on 9 

the soffit slab and the webs of the BGB. Eight significant cracks were observed, 10 

each of which ran through the whole width of the bottom slab and propagated to 11 

the webs. Figure 2 shows some observed cracks on the body of the structure. 12 

 13 
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 1 

 2 

                   Figure 2. Detected cracks on body of the BGB in damaged state. 3 

 4 

 Numerical model  5 

Given the lack of available information about the structural parameters of the BGB, 6 

such as material properties and boundary conditions, nominal values of the 7 

parameters were assumed from the designing details and were used to create a 8 

numerical model of the BGB. The initial BGB’s FEM was built in the Abaqus 9 

software package, as shown in Figure 3 (Abaqus, 2017). 10 
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                                1 

                                           Figure 3. FEM of BGB built in ABAQUS 2017. 2 

From the Abaqus element library, a C3D8R solid element and a T3D2 truss element 3 

were assigned to the concrete and reinforcement elements, respectively. Regarding 4 

material properties, according to the design details, Young’s modulus (E) is assumed 5 

as 200 (GPa) for reinforcement and 32 (GPa) for concrete. Further, mass density (ρ) is 6 

assumed as 7,850 kg/m3 for reinforcement and 2,400 kg/m3 for concrete. In addition, 7 

the boundary conditions were considered fixed in vertical displacement for both 8 

supports. In this study, a convergence assessment for mesh size selection was 9 

performed by applying a load-displacement control. Herein, load against midspan 10 

deflection was examined for different mesh sizes. A mesh size of 50 mm was 11 

determined to be fit enough by considering the experimental displacement at the mid-12 

zone in failure mode. More details of the analysis can be found in Jamali et al. (2018). 13 

In this study, four natural frequencies of the FEM—first vertical bending, second 14 

vertical bending, first lateral bending, and third vertical bending modes—were selected 15 
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and used to update the FEM because similar mode shapes and natural frequencies were 1 

extracted from the measured data. 2 

 3 

Modal data analysis 4 

During the casting process of the BGB, several small steel plates were attached to 5 

the BGB’s surface to facilitate sensor installation. The sensory system used in this 6 

study is shown in Figure 4 (a). Regarding the selection of the right sensor layout, 7 

different aspects were noticed in relation to the number and type of available 8 

sensors, the excitation source, and the maximum number of channels in the data 9 

acquisition system. More details regarding the preparation of the experiment can 10 

be found in Jamali et al. (2016). The BGB was excited by applying multipoint 11 

random excitation with an impact hammer for each vibration test. Vibration 12 

responses were recorded using a data acquisition system. In this study, the vibration 13 

responses of the structure in both the undamaged and damaged states were 14 

measured and used in the FEMU process. Figure 4 (b) shows three examples of 15 

sensor layout arrangements that were applied in the modal analysis in this research. 16 

Each arrow in the figure represents a single sensor in the corresponding direction. 17 

 18 

 19 
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   1 

  2 

    3 

 4 

 Figure 4. Structural response measurement: (a) Sensory system on the BGB and (b) Sensor layouts. 5 

 6 

The measured acceleration responses were post-processed in the modal analysis 7 

step. In this regard, the stochastic subspace identification (SSI) method, which is 8 

embedded in the ARTeMIS Modal software package, was applied (ARTeMIS, 9 

2011). An example of modal analysis for a dataset is illustrated in Figure 5. 10 

layout 1 layout 2 layout 3 

Channels 

DAQ 

Accelerometer 

Steel plate 

Cables 

     (a) 

(b) 
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 1 

 2 

                Figure 5. Modal Analysis to capture experimental frequency in ARTeMIS. 3 

 4 

Modal parameters for 40 datasets in the undamaged state and 60 datasets in the 5 

damaged state were analyzed. The test was conducted in a controlled environment 6 

in the laboratory, where ambient effects had little effect on the measured responses; 7 

therefore, the number of modal analyses in both states was sufficient. The detected 8 

natural frequencies were the first vertical bending, second vertical bending, first 9 
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lateral bending, and third vertical bending modes, similar to the FEM’s results. 1 

These modes were selected for the FEMU process because they could be detected 2 

in both the undamaged and damaged states. The four measured mode shapes were 3 

transferred into the FEMtools software package (Dynamic Design Solutions, 4 

2012). The number of degrees of freedom (DOF) of an experimental model is often 5 

smaller than that of the corresponding FEM as a result of a lack of available sensors 6 

(Moravej et al., 2017). In this study, a coordinate expansion technique was applied 7 

to increase the number of DOFs of the experimental model to the same number in 8 

the FEM (Moravej et al., 2017). The values of the natural frequencies in both states 9 

are shown in Table 1. In this table, the mode order refers to the ordering number of 10 

the modes. The experimental and numerical mode shapes are illustrated in Figure 11 

6. 12 

 13 

Table 1. Frequency in the initial designed model and measured frequency in two states 14 

 
Mode 
order 

 
Freq as Designed 
(Hz) 

 
 Measured Freq (Undamaged) 

 
Error (%) 

 
  Measured Freq (Damaged) 

 
Error  
(%) 

Mean value (Hz) STD Mean value (Hz) STD 
1 24.339 21.65 0.106 -12.42 18.78 0.082 -29.60 

2 81.29 67.06 0.21 -21.22 63.06 0.174 -28.9 

3 92.108 84.32 0.124 -9.24 80.73 0.14 -14.09 

4 109.75 98.21 0.18 -11.75 95.74 1.023 -14.63 

 15 
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                     1 

                         2 

 3 

 4 

  5 

  6 

Figure 6. Four mode shapes: (a) Numerical model and (b) Measured model. 7 

 8 

 9 

 10 

1st vertical bending 2nd vertical bending 

1st lateral bending 3rd vertical bending 

2nd vertical bending    
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Sensitivity analysis 1 

A key step in most model updating approaches is the selection of appropriate 2 

parameters and responses in advance to initiate the updating process. Sensitivity 3 

analysis is a technique used to select the most sensitive parameters to the responses 4 

of a numerical model. This technique tends to analyse the effect of a very small 5 

perturbation of a parameter’s value on a response by sketching the tangents on the 6 

response-parameter curve (Mottershead and Friswell, 2011). In this study, 7 

differential sensitivity analysis was applied to choose the most sensitive parameters 8 

to the selected responses using FEMtools (Dynamic Design Solutions, 2012). A 9 

differential sensitivity coefficient was calculated as the slope of the response Ti in 10 

relation to parameter Bj at a known state of the parameter. Once these differentials 11 

were calculated for all selected responses in relation to all selected parameters, 12 

sensitivity matrix S was generated by equation (11). 13 

 14 

   S = Sij = 
𝛿𝛿𝑇𝑇𝑖𝑖
𝛿𝛿𝐵𝐵𝑗𝑗

                                                                                                       (11) 15 

 where:     16 

  i: 1,…,n    T: Responses 17 

  j: 1,…,n   B: Parameters 18 

 19 
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Each column of the sensitivity matrix corresponds with a parameter Bj and each 1 

row corresponds with a response Ti. Regarding the responses in this experiment, 2 

the four modal frequencies identified in the previous subsections were selected as 3 

sensitive responses. Details of the selected responses are shown in Table 1. 4 

In the initial FEM, the simple supports were modelled as fixed in the vertical 5 

direction. However, by applying a correlation analysis between the mode shapes 6 

from the FEM and those from the experiment, it was observed that the roller in the 7 

experimental model was not fixed, as a bouncing was observed in the second 8 

vertical mode shape, as shown in Figure 7. Further, similar results were obtained 9 

for the third vertical bending mode shape. Therefore, a more accurate simulation of 10 

the boundary condition was used in this study to better represent the behavior of 11 

the structure. 12 

  13 

Figure 7. Correlation between FEM (Blue) and experimental (Red) in 2nd vertical mode shape. 14 

 15 
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For the updating process, the parameters related to concrete in three different parts 1 

(i.e., bottom slab, webs, and top slab) were selected separately because the BGB 2 

was cast in the three corresponding steps. Further, observed changes in the health 3 

condition of the three parts were different after the damage was induced. Hence, 4 

the parameter selection resulted in 10 parameters: (1) Young’s modulus of concrete 5 

(top), (2) Young’s modulus of concrete (web), (3) Young’s modulus of concrete 6 

(bottom), (4) Young’s modulus of reinforcement, (5) vertical spring stiffness 7 

(roller), (6) vertical spring stiffness (pinned), (7) mass density of reinforcement, (8) 8 

mass density of concrete (top), (9) mass density of concrete (web), and (10) mass 9 

density of concrete (bottom). Results of the sensitivity analysis, as shown in Figure 10 

8, provide a clearer picture of which parameters were sensitive to the selected 11 

responses. The vertical axis in this figure refers to sensitivity magnitude. Based on 12 

the sensitivity analysis, the selection resulted in the five most sensitive parameters: 13 

Young’s moduli of the bottom slab, the webs, and the top slab (EcBot, EcWeb, and 14 

Ectop); and vertical spring stiffness coefficients of the two supports (Kroller and Kpin). 15 

Reducing the number of parameters of interest is essential to decrease the 16 

computational cost. 17 

 18 

 19 

 20 
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 1 

 2 

 3 

  4 

 5 

 6 

 7 

 8 

Result and discussion 9 

The FEM of the BGB was updated for the two states—undamaged and damaged—10 

by applying the MBA and using the four natural frequencies, mentioned in the 11 

previous section, as the responses. This section highlights the outcomes regarding 12 

the calibrated parameters and predicted responses in both states. 13 

 14 

 FEMU for undamaged state 15 

There was a lack of testing results from the casting stage, such as core sampling 16 

and tensile strength, to provide insights into prior distribution. Therefore, normal 17 

distributions were selected to represent all parameters’ prior probability distribution 18 

Se
ns

iti
vi

ty
 

Parameter 

Figure 8. Sensitivity Analysis between selected parameters and responses. 
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functions. This was in line with Mirza et al. (1980), Darmawan and Stewart (2007) 1 

and recommendations from the code of practice AS-5104, as shown in Table 2. 2 

 3 

 Table 2. Parameter Prior Probability Distribution in Undamaged state 4 

Parameter Mean Coefficient of Variation 

(EcTop) Young’s modulus - Concrete - Top slab 32 GPa 7.13 

(EcWeb) Young’s modulus - Concrete - Web 32 GPa 7.13 

(EcBot) Young’s modulus - Concrete - Bottom slab 32 GPa 7.13 

(KRoller) Spring Stiffness Roller support 5×107 N/m 9×1013 

(KPin) Spring Stiffness Pinned support 5×107 N/m 9×1013 

 5 

In this study, the computational process was carried out using a computer equipped 6 

with an Intel i7 quad-core processor with 3.4 GHz speed, 16 GB of RAM, and a 7 

fast-access solid-state drive (SSD). For modules 1 and 2, hyperparameters were 8 

obtained that characterize the estimation of the calibrated parameters and the 9 

discrepancy function, and consequently represent the GPs. These hyperparameters 10 

included a variance matrix ∑, a matrix of regression coefficient β, roughness 11 

parameters ω, and a noise variance matrix Ʌ, as explained in the methodology. 12 

Results of the calibrated parameters after applying the MBA in the undamaged state 13 

are illustrated in Figure 9 and Table 3. The posterior may require more data before 14 

it faithfully represents the calibrated parameters; as a result, it did not present any 15 

Page 79 of 96

https://mc.manuscriptcentral.com/aise

Advances in Structural Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

31 
 

changes compared with the prior. It is worth noting that the likelihood identified 1 

the calibrated parameters according to the measured data. As shown in Figure 9, in 2 

the undamaged state, there were no considerable changes in Young’s moduli of the 3 

webs and the top slab in the likelihood against their priors. A significant change 4 

was observed in the reduction in the bottom slab’s Young’s modulus (EcBot), which 5 

was identical to the observed minor cracks beneath the BGB. Another noticeable 6 

change was a reduction in vertical spring stiffness at the roller support, which infers 7 

that the vertical fixity at the roller support was overestimated. This outcome is well 8 

matched with the observed bouncing in the roller previously noticed in Figure 7. 9 

 10 
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1 

 2 

 3 

Figure 9. Prior, Max Likelihood and Posterior PDF for calibrated parameters in undamaged state. 4 

 5 

 6 
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Table 3. The Likelihood and Posterior distribution for calibrated parameters in undamaged state 1 

                  Posterior                Likelihood 

Part Mean Coefficient of 
Variation 

Mean Coefficient of 
Variation 

EcBot 31.81 (GPa) 4.1 30.84 (GPa) 8.3 

EcWeb 31.83 (GPa) 4.5 32.69  (GPa) 2.9 

EcTop 32.34 (GPa) 3.4 33.67  (GPa) 5.2 

KRoller 5.10×107 (N/m) 3.32×1014 1.68×107 (N/m) 2.02×1014 

KPin 5.15×107 (N/m) 1.66×1014 9.53×107 (N/m) 3.82×1014 

 2 

The discrepancy functions for all four modes in the undamaged state are depicted 3 

in Figure 10 (a). In this figure, the horizontal axis represents the sample ordering 4 

numbers of the simulated data. The black line represents the predicted mean, and 5 

the shaded region denotes a 95% prediction interval. As shown, the MBA predicted 6 

the measured responses accurately for all modes, with deviations of less than 6%. 7 

Figure 10 (b) depicts the measured responses together with the prediction intervals 8 

for all four modal frequencies. The measured data points obtained from the 9 

experimental tests, as shown by red spots in Figure 10 (b), are randomly distributed 10 

among the simulated data points. As shown, the measured data points are located 11 

in the 95% prediction interval and are very close to the mean values of the predicted 12 

responses. The predicted mean values almost coincide with those of the measured 13 

data points for all modes (see Table 1). However, it can be inferred from the 14 
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predictions that the higher the mode order that is examined, the larger the scatter 1 

interval that is obtained. 2 

                                                      3 

 4 
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(a) Discrepancy functions for frequency responses. 
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                1 

 2 

Figure 10. The results of Discrepancy function and predicted response for numerical model in undamaged 3 

state for all four modal frequencies as: (1) 1st vertical bending frequency, (2) 2nd vertical bending 4 

frequency, (3) 1st lateral bending frequency & (4) 3rd vertical bending frequency. 5 

 6 

FEMU for damaged state 7 

The next step of model updating refers to the damaged state, where some significant 8 

cracks were observed on the bottom slab and the webs of the BGB. It is worth 9 

mentioning that the number of calibrated parameters was reduced to three (Young’s 10 

moduli) because it was assumed that the applying impacts in the damaged state did 11 

not affect the boundary conditions. Results of the prior, likelihood, and posterior 12 

distributions of the calibrated parameters are illustrated in Figure 11 and Table 4. 13 
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(b) Predicted interval 95% confidence for numerical model and experimental data points. 
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                       1 

 2 

 Figure 11. Prior, Max Likelihood and Posterior PDF for calibrated parameters in damaged state. 3 

 4 

Table 4. The Likelihood and Posterior distribution for calibrated parameters in damaged state 5 

                   Posterior                Likelihood 

Part mean Coefficient of 
Variation 

 mean Coefficient of         
Variation 

EcBot 30.45 (GPa) 6.45 20.63 (GPa) 25.59 

EcWeb 30.82 (GPa) 3.58 27.82 (GPa) 5.99 

EcTop 32.54 (GPa) 2.26 30.54 (GPa) 35.45 
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As shown in Figure 11, a significant change was targeted at the likelihood in 1 

Young’s modulus of the bottom slab, indicating a reduction of about 35.5% to a 2 

new mean value of 20.63 GPa. Further, the decrease in Young’s modulus of the 3 

web section was noticeable, showing a likelihood mean of 27 GPa. The impact 4 

forces had little effect on the top slab, and its updated Young’s modulus was almost 5 

the same as its initial value. The reduction in the Young’s moduli of the bottom 6 

slab and the webs is well matched with the cracks observed in the damaged state, 7 

as mentioned in the section Two states of box girder bridge. The discrepancy 8 

functions for all four modes in the damaged state are depicted in Figure 12 (a). As 9 

shown in the figure, the discrepancy increases in the damaged state, especially for 10 

the second and third vertical bending modes. In addition, the discrepancy functions 11 

in the damaged state are distributed more sparsely than those in the undamaged 12 

state. This may be because the cracks cause nonlinearities in the properties of 13 

structural materials and the mechanism of the experimental response. 14 

Results of the measured responses together with predicted intervals for all four 15 

modes are shown in Figure 12 (b). As shown, the measured data points are observed 16 

in the corresponding predicted intervals and are very close to the mean values for 17 

all modes except the last one (third vertical bending mode). Results for the third 18 

vertical bending mode are very scattered. It is worth noting that the discrepancy of 19 

this mode is larger than that of the other modes, as shown in Figure 12 (b). This can 20 
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be explained because nonlinearity effects resulting from cracks become more 1 

significant when the vibration mode contains a higher-order curve. 2 
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(a) Discrepancy functions for frequency responses. 
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      1 

   2 

 3 

 4 

Figure 12. The results of discrepancy function and predicted response for numerical model in damaged 5 

state, for all four modal frequencies as: (1) 1st vertical bending frequency, (2) 2nd vertical bending 6 

frequency, (3) 1st lateral bending frequency & (4) 3rd vertical bending frequency. 7 

 8 

Conclusions  9 

In this study, the performance of an MBA was investigated in a large lab-scaled 10 

BGB using vibration data. Sensitivity analysis was conducted to select the most 11 

sensitive parameters and responses. Further, a metamodel was used instead of a 12 
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(b) Predicted interval 95% confidence for numerical model and experimental data points. 
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whole numerical model. Therefore, the computational task and processing time was 1 

reduced in comparison with other probabilistic updating techniques. This benefit 2 

distinguishes this approach, especially in applications to complex structures. 3 

This study is the first to apply the MBA for two different states: damaged and 4 

undamaged. These two states represent the health conditions of the structure during 5 

its life span, and the outcomes can be used for further structural investigations. 6 

Although a case study is rather simple compared with full-scale real structures, such 7 

a scale provides a possibility to investigate the performance of the proposed 8 

approach in two different states according to the observed evidence on the structure. 9 

Further, this study highlighted the advantages of FEMU because it illustrated that 10 

even an FEM of a downscaled structure requires accurate calibration to be reliably 11 

used in further structural assessments. 12 

Moreover, in contrast to many previous studies, which applied the MBA to a single 13 

parameter, this study investigated model updating on multiple parameters, such as 14 

material properties and boundary conditions, at the same time. In this study, the 15 

changes to these parameters were well matched with the observed evidence in both 16 

states. Natural frequencies of the first four modes, used as the measured data points, 17 

were predicted correctly. The updated model was sufficiently matched with the 18 

physical observation of the damaged structure. In turn, the results generated from 19 
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this study might be attributed to the proposed uncertainty quantification 1 

methodology. Further, as the results showed in the damaged state, the discrepancy 2 

functions increased, and experimental responses were not predicted as accurately 3 

as in the undamaged state. Such increases in the discrepancy functions are inferred 4 

as a guide for designers, implying that the FEM needs to be refined by considering 5 

additional aspects such as crack modeling. Further, response prediction can be 6 

improved and discrepancy can be reduced by adding other experimental data points 7 

(e.g., strain and mode shape) and information about environmental conditions (e.g., 8 

temperature and humidity). Although natural frequency was selected as the 9 

response for the updating process in this study, the MBA is capable of considering 10 

other types of responses. Thus, the performance of the approach when applied to 11 

other responses, such as mode shape, should be investigated in future studies. 12 

Consequently, the proposed methodology contributes to more reliable judgments 13 

about structural safety and more informed maintenance decision-making. 14 

 15 
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 17 

 18 

 19 
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