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Self-potential (SP) is a passive geophysical method that can
be applied in a straightforward manner with minimum re-
quirements in the field. Nonetheless, interpretation of SP
data is particularly challenging due to the inherited non-
uniqueness present in all potential methods. Incorporating
information regarding the target of interest can facilitate
interpretation and increase the reliability of the final output.
In the current paper, a novel method for detectingmultiple
sheet-like targets is presented. A numerical framework is
initially described that simulates sheet-like bodies in an arbi-
trary 2D resistivity distribution. A scattered field formula-
tion based on finite-differences is employed that allows the
edges of the sheet to be independent of the grid geometry.
A novel analytical solution for two-layeredmodels is derived
and subsequently used to validate the accuracy of the pro-
posed numerical scheme. Lastly, a hybrid optimization is pro-
posed that couples linear least-squares with particle-swarm
optimization (PSO) in order to effectively locate the edges
of multiple sheet-like bodies. Through numerical and real
data, it is proven that the hybrid optimization overcomes
local minimal that occur in complex resistivity distributions
and converges substantially faster compared to traditional
PSO.
K E YWORD S
Inversion, Modelling, Numerical study, Passivemethod, Potential
field
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1 | INTRODUCTION
Self-potential (SP) is a passive near-surface geophysical technique that gained a renewed popularity due to its

practicality andminimum requirements (Nyquist and Corry , 2002;Minsley , 2007). SP is often used to assist electrical
resistivity tomography (ERT) (Mao , 2015) and provide further information regarding the coupled flowmechanisms
responsible for spontaneous voltage sources (Marshall et. al , 1959; Sato andMooney , 1960). Numerous case studies
have been reported in the literature in which SP has been successfully applied in hydrogeophysics (Birch , 1998; Naudet
et. al , 2003; Jouniaux et. al, , 2009), geothermal exploration (Corwin andHoover , 1979), volcanology (Fournier , 1989;
Aizawa , 2004), coal fire detection (Shao et. al , 2014, 2017), hydrothermal ore deposits (Kawada and Kasaya , 2017) and
marinemineral deposits (Heinson et. al , 2005).

Interpretation of SP is particularly challenging due to the embedded non-uniqueness present in all potential-field
methods (Pedersen , 1975; Karaoulis et. al , 2014). Traditional inversion coupled with regularizers can tackle non-
uniqueness (Tikhonov and Arsenin , 1977) by constraining the solution and thus reducing the optimization space. The
most common regularizationmethod in geophysics is theOccam inversion that constrains the solution to be spatially
smooth (Constable et. al , 1987). In potential methods, sparse solutions are often more preferable since geological
targets such as faults and ore deposits are compact discreet volumes. Last and Kubik (1983) and Portniaguine and
Zhdanov (1999) suggested a regularization scheme that prefers sparse distributions with a minimum volume span.
Regardless of the chosen constrain, the sensitivity of the measurements to the parameters of the model is greatly
reducedwith depth. Due to that, the inversion becomes biased to near-surface disturbances. This can be overcomed
with a scaled sensitivity initially suggested by Li andOldenburg (1996, 1998) and applied to gravity andmagnetic data.
The scaled sensitivity, combinedwith a compactness regulizer, has been successfully applied byMinsley (2007) and
Minsley et. al (2007) to 3D SP data. Minsley (2007) also shown that the resistivity distribution can vastly affect the
resulting source distribution and should be coherently implemented in the inversion scheme. Recently, 4D inversion
schemes, combined with additional regularizers have been applied to gravity data and numerical evidences shown
promising results in time-varying non-static models (Karaoulis et. al , 2014).

The scaling factor of the selected regulizer is chosen such as to balance between respecting the constrains while
minimizing the missfit between the actual and the synthetic data. The L-curve method (Hansen , 1992, 1993) is an
attractive choice for selecting the scaling factor in ill-posed problems and has been applied for both SP and gravity
data (Minsley et. al , 2007; Karaoulis et. al , 2014). When proper scaling factors are chosen and the constrains are
accurately selected, SP inversion can reliably reconstruct the source distribution in an efficient manner. Nonetheless,
background noise, over or under regularizations and improper initial-guess for subsurface resistivity distribution (for
SPmethod) can give rise to large errors due to the unstable nature of the source inversion. Amore straightforward way
to constrain the solution is to make direct assumptions regarding the geometry of the target. This approach tackles
non-uniqueness in a direct manner and provides accurate results if the target follows the pre-assumed geometry.
Pedersen (1975) suggested amethod that assumes a two layered-mediumwith an arbitrarily interface between the two
phases and applied it to gravity data. Themodel consists of discreet prisms and their size and densities are evaluated
during the inversion. Biswas (2015) assumed that the targets are cylinders or spheres and applied global optimizers
to interpret gravity data. Similar geometrical constrains assuming spherical and cylindrical sources were applied to
SPmethod (Bhattacharya and Roy , 1981) using analytical approaches and nomograms. A special case is that of the
electroencephalography (EEG) in which SP signals are processed in order to define the current distribution inside the
brain. Both parametric and non-parametric approaches have been reported in EEG (Grech et. al , 2008) and single and
multiple infinitesimal dipoles (up to ten) have beenwidely used as geometrical constrains (Grech et. al , 2008) .

Awide range of geological targets such as geothermal fields associatedwith faults, faults filledwithwater ormineral
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deposits (graphite and sulphide lodes, etc) generate self-potential anomalies that can be simulatedwith a pair of 2D
line sources with equal strength and opposite sign (Jagannadha et. al , 1993). This formulation is often refereed to as
"sheet-like body" and its suitable for simulating contacts between two different surfaces (Sharma , 1997). Sheet-like
bodies have been used since the early development of SP (Meiser , 1962) and they kept their popularity throughout
the years (Rao and Babu , 1983; Eppelbaum and Khesin , 2012; Essa and Elhussein , 2017) due to their simplicity and
efficiency on simulating geological targets of interests (such as fault-relatedmineral deposits). Meiser (1962) suggested
a curvematching technique assuming sheet-like bodies subject to a homogeneous half-space. Atchuta (1982) suggested
an analytical approach applied in thewavenumber domain assuming sheet-like bodies in a homogeneous half-space.
Rao and Babu (1983) proposed a quantitative way of interpreting SP anomalies by using limitedmeasurement points.
This approach provides fast results, nonetheless is very sensitive to noise and assumes a homogeneous half-space.
Jagannadha et. al (1993) used a non-linear damped least square inversion to determine the optimized sheet-like body
for a homogeneous half-space. Their approach also allows for automatic adjustment that tackles the impropermanual
correction of the regional field. Akgun (2001) used the Hilbert transform in order to determine the characteristics of
a sheet-like body in a homogeneous and flat earth. Hesham et. al (2009) used a shallow neural network in order to
establish the underlying relationship between the given SP anomalies and the characteristics of the sheet-like body.
The neural architecture was trained for homogeneous half-space. Recently, global optimizers have been employed in
an effort to overcome local minimal and avoid initialization during the inversion process (Biswas and Sharma , 2014;
Biswas and Shashi , 2014b;Maio et. al , 2016; Dwa andWarnana , 2018).

It should beemphasized that themethodsdescribed above canbeappliedonly tohomogeneoushalf-spaces. Minsley
(2007) supported the premise that the resistivity distribution can highly affect the interpretation of SP data and should
be accurately incorporated in any detection scheme. Giannakis et. al (2012) suggested a numerical scheme that can
simulate sheet-like bodies in an arbitrary 2D resistivity distribution. This technique is based on finite-differences (FD)
(Dey andMorrison , 1979) with a modification that allows the sources to be grid-independent (Spitzer et. al , 1999).
Grid-independence allows the edges of the sheet-like body to freely move in the spatial domain which is crucial for any
optimization schememeant to be coupled with the aforementioned numerical framework. The fact that the source
can be placed in a continuous 2D space allows for an accurate estimation of the coordinates of the dipole without
using two-step procedures that employ a dense sub-grid inside amain sparse one (Haas et. al. , 2013). Subsequently, a
dumbed non-linear least squares method (Marquadt , 1963) is used in order to estimate the properties of the sheet-like
body subject to a 2D resistivity distribution.

The method suggested by Giannakis et. al (2012) is constrained to a single sheet-like body and requires good
initialization in order to avoid local minimal when complex resistivity distributions are used. In addition, due to the
lack of analytical solutions, the reliability of the numerical scheme is not properly validated especially when applied
tomarine applications in which high resistivity contrasts are present. In the present paper, an analytical solution for
sheet-like bodies in two-layeredmedia is derived and furthermore used to validate the grid-independent numerical
scheme. Subsequently, in order to avoid local-minimal, a particle-swarm optimization (PSO) (Kennedy and Eberhart ,
1995) is used to estimate the coordinates of the targets. The PSO is combined with a linear inversion for estimating the
intensity of the sources. This is not to be confusedwith hybrid schemes that use convex and global optimization in a
sequential manner in which the convergence point of the global search is used as an initial point for the subsequent
convex optimization (Soupios et. al , 2011; Basokur , 2007, 2011) . The present technique uses least squares to describe
the intensity of the sources with respect to the coordinates of the sheet-like bodies in order to reduce the optimization
space. A similar hybridPSO-linear schemehavebeen successfully applied for fittingmulti-Debye expansions toHavriliak-
Negami for electromagnetic applications (Kelley et. al , 2007). The hybrid linear-PSO scheme is superior to PSO since
it reduces the optimization space resulting to faster convergence and increased stability. Neither initialization of
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the model nor tuning the regularization parameters are required. Lastly, the hybrid optimization scheme, due to its
increased stability, makes it possible to accurately and efficiently detect multiple sheet-like bodies for any arbitrarily
2D resistivity distribution. The validity and the performance of the hybrid optimization scheme are evaluated using
both real (Vargemezis et. al , 2012) and numerical data from a variety of case studies including, surfacemeasurements,
borehole surveys andmarine geophysics.

2 | FORWARD MODEL
The electric potential due to a 3D point source is described by Poisson’s equation (Dey andMorrison , 1979)

−∇ · (σ (x, y, z)∇φ (x, y, z)) =
∂ρ

∂t
δ (xs) δ (ys) δ (zs) (1)

where σ is the conductivity, φ is the electric potential, ρ is the charge density, δ is the delta function and (xs, ys, zs)

are the coordinates of the point source. Dey andMorrison (1979) derived a 2.5D formulation that can excite a 2D
resistivity distribution

(
∂σ
∂y

= 0
)
with a 3D point source. To do so, the potential is transformed from the space domain

(x, y, z) to the space-wavenumber domain (x,Ky , z)

−∇ ·
(
σ (x, z)∇φ (x,Ky , z)

)
+K2

yσ (x, y)φ (x,Ky , z) = Qδ (xs) δ (zs) (2)

whereKy is the wavenumber in the y direction, φ is the transformed potential and Q is the constant steady state
current density (Dey andMorrison , 1979). The relationship between the transformed and the normal potential is a
cosine Fourier transform

φ (x,Ky , z) =

∫ ∞
0

φ (x, y, z) cos (Kyy) dy (3)

φ (x, y, z) =
2

π

∫ ∞
0

φ (x,Ky , z) cos (Kyy) dKy . (4)

Due to the reciprocity theoremand the2Dresistivity distribution, the integral of thepotential alongy axis∫∞−∞ φ (xr, y, zr) dy

due to a point source with current intensity Is at (xs, ys, zs), equals to the potential φ (xr, ys, zr) due to a line source
extended at y dimension at (xs, zs)with current intensity per meter equals to Is. Consequently, the potentialΦ due to
a line source at (xs, zs)with current intensity per meterQ, equals to

Φ (x, z) =

∫ ∞
−∞

φ (x, y, z) dy = 2φ (x, 0, z) . (5)

Substituting (5) to (2) results to

−∇ · (σ (x, z)∇Φ (x, z)) = 2Qδ (xs) δ (zs) . (6)

Equation (6) is the partial differential equation that describes the spatial distribution of the electric potential due to a
line source located at (xs, zs) with current intensity per meter equalsQ. The relationships betweenΦ→ φ and φ→ φ

are exploited in Appendix A in order to derive analytical solutions for homogeneous space and two-layeredmedia. The
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solution for homogeneous half-space is essential for numerically evaluating (6) in a grid-interdependentmanner (Spitzer
et. al , 1999). The analytical solution for two-layeredmedia is used as a benchmark to evaluate the suggested numerical
framework (see Appendix A), especially in cases when high resistivity contrasts are present e.g. marine surveys (see
chapter 4.3).

2.1 | Grid-independent finite-difference scheme
While numerical algorithms for solving partial differential equation (finite differences, finite elements etc.) depend
on grid geometry, Spitzer et. al (1999) suggested amethod in which Poisson’s equation is numerically evaluated for
grid-independent electrode positioning. This is particularly important for any optimization schememeant to estimate
the coordinates of a sheet-like body. Having the ability to map the optimization space in a continuous manner facilitates
interpretation by avoiding integer-based gradients and integer-steps in convex and global optimizers respectively. In
addition, a grid-independent based inversion can estimate the position of a dipole accurately without the usage of dense
grids or dense sub-grids within a sparsemain grid like themethodology proposed by Haas et. al. (2013).

Assuming a homogeneous half-space, equation 6 becomes

−σ∇2Φn (x, y) = 2Qδ (x) δ (z) (7)

where σ is the homogeneous resistivity distribution and Φn is the potential measured subject to a homogeneous
half-space. Substituting 7 to 6 results to

∇ · (σ (x, z)∇Φ (x, y)) = σ∇2Φn (x, z) . (8)

The potentialΦ can be divided into an anomalous (Φa) and normal (Φn) part

Φ = Φa + Φn. (9)

From (9) and (8) it is easy to show that

∇ · (σ (x, z)∇Φa (x, y)) = −∇ · ((σ (x, z)− σ)∇Φn (x, z)) . (10)

Equation 10 can bewritten in a discretized form as

KaVa = KnVn (11)

where Ka is the stiffness matrix for σ, Kn is the stiffness matrix for σ − σ, Va is a vector containing the anomalous
potential andVn is a vector containing the potential for a homogeneous half-space. The anomalous potentialVs is to
be found since both stiffness matrices andVn (see Appendix A) are known. The vectorVn can be evaluated for any
arbitrary source position since it has a known analytical expression (23). From (11) it is clear that the load vector is
substituted by the vectorKnVn. The latter is an apparent load vector, fromwhich it is possible to obtain the values of
the anomalous part of the potential for any arbitrarily placed sheet-like body. Subsequently, the anomalous part of the
potentialΦa is added toΦn in order to obtainΦ. Notice that in an optimization scheme, the stiffness matricesKa and
Kn have to be evaluated one time since in each iteration only the vectorVn is changing.
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The stiffness matrices are calculated using the integral method suggested by Dey andMorrison (1979) forKy = 0.
Regarding the boundaries, the Newman boundary condition is chosen in order to avoid instabilities arising from the fact
that line sources can not converge to zero at the boundaries (Nostrand and Kenneth , 1966). The Newman boundary
condition constrains the normal spatial derivatives to be zero at the boundaries (Dey andMorrison , 1979). Thus, the
resulting fields are relative to a reference point that has to be defined by the user. This is the equivalent of the fixed
electrodemeasurements that often applied in the field.

3 | HYBRID PSO-LINEAR OPTIMIZATION

Particle-swarm optimization (PSO) is a biological based global optimizer that mimics the behavior of swarms in nature
(Robinson and Rahmat-Samii , 2004). PSO has proven very effective in optimizingmulti-dimensional problems and in
certain cases outperforms other global optimizers like genetic algorithms (Kennedy and Spears , 1998). PSO is relatively
new in geophysics (Shaw and Srivastava , 2007) and has been successfully applied to seismics (Haijun et. al , 2017),
1D-DC (Martinez et. al , 2010), gravity (Pallero et. al , 2015, 2017) and SP (Gokturkler and Balkaya , 2012; Peksen et. al. ,
2011; Santos , 2010) . In the present paper, PSO is chosen in an effort to overcome local minimal that are present in
complex resistivity environments andwhenmultiple sheet-like bodies aremeant to be recovered. In addition, we apply
a hybrid scheme that combines PSOwith least-squares (Kelley et. al , 2007). The latter is proven to have substantially
higher convergence rate compared to simple PSO.

PSO uses the concept of moving particles inside a predefined optimization space. Similar to a swarm of insects
moving in a 3D space, the particles in PSO are moving in a multi-dimensional space searching for the coordinates in
which the given error function isminimized. PSO is initialized by choosing the number of particles and defining the upper
and lower bounds of the problem. The particles are constrained tomovewithin these bounds avoiding unnecessary
searches for unrealistic scenarios. The particles are randomly placed within the predefined domain and for each particle
a cost function is evaluated. Subsequently an initial velocity is chosen for each particle in a randommanner. In every
iteration each particle remembers its best performance and its corresponding n-dimensional coordinates. In addition,
the best performance of the whole swarm is also saved along with its corresponding n-dimensional coordinates. Based
on these, the velocity vector is updated according to (Shi and Eberhart, , 1998)

vτn = w · vτ−1
n + c1 · rand ()

(
qτ−1
n − qbn

)
+ c2 · rand ()

(
qτ−1
n −Qb

) (12)

where vτn and qτn are the velocity (parameter correction vector) and the position (parameter) of the nth particle
at τ iteration respectively, qbn is the best position for the particle n andQb is the best position for all the particles in
the swarm. The variablesw, c1, and c2 are constants that adjust the behavior of the swarm. Equation 12 is a stochastic
relationship with rand () being a uniform distribution between [0, 1] (Kelley et. al , 2007). Notice that for each particle
the velocity is a vector with dimensions equal to the number of the parameters need to be optimized. The velocity
vector is used to update the particle’s position based on a simple step procedure qτ+1

n = qτn + vτn.
The first term of (12) forces the particle to continue its previous trajectory allowing it to explore "worse" solutions

thus overcoming local minimal. The second parameter makes each particle biased to directions towards qbn, i.e. the
position in which every particle independently had its best performance. Lastly, the third term shifts the whole swarm
towards the position in which the best swarm-performance is achieved. In every iteration, the positions of the particles
are updated according to the estimated velocities using (12). The procedure is repeated for a predefined number of
iterations or when some given convergence criteria aremet. Large values for c2 results to faster convergence with the
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expense of increasing the chances of getting trap to local minimal. Largew reduces the chances of getting trap to local
minimal with the expense of decreasing the convergence rate. Choosing the optimized parametersw, c1 and c2 that
balance between efficiency and accuracy is case-dependent and various values have been proposed in the literature
(Robinson and Rahmat-Samii , 2004). Although generic PSO parameters applicable to any type of problem are very
appealing, nonetheless, as it is stated by (Dieterich and Hartke , 2000), a specific version tuned to the problem at hand is
a more suitable choice. In addition, generic PSO parameters are tuned based on clinical functions (spherical functions,
Schaffer’s f6 function etc.) that often deviate from reality leading to false conclusions regarding the performance of
PSO (Dieterich and Hartke , 2000). For the current problem, the parameters should be set such as for PSO to effectively
convergence to a global solution for a diverse set of scenarios. From simple cases such as a single dipole buried in a
homogenous half-space tomultiple dipoles subject to a complex stochastic resistivity distribution. In the first scenario,
w = 0 and c1 = c2 = 1will result to a fast convergence rate since the problem lacks of local minimal when proper
initialization is applied. For the second case, a largew is necessary in order to tackle the numerous local minimal and
plateaus present in the problem due to themultiple sheet-like bodies and the complex resistivity distribution.Through
trial and error, and in an effort to be conservative,w = 1, c1 = 1 and c2 = 0.5 are chosen for the current problem. The
number of particles used in PSO is also crucial. Using small number of particles increases the efficiency of the algorithm
by compromising accuracy. A number between 40-70 is proven sufficient for the examples examined in this study.

Theoptimization space formultiple sheet-like bodies isR5S whereS is the number of sheet-like bodies. In particular,
every sheet-like body is a dipole for which its coordinates and current intensity per meter are to be found. The hybrid
scheme that it is used in the present study takes advantage of the fact that parts of the unknowns can be expressed
with respect to others in a linear manner. To further elaborate on that, we introduce the function E (x, I) where x
and I are both vectors needed to be fine-tuned in order to optimizeE. The hybrid scheme can be applied only if I can
be expressed with respect to x in a linear manner. If the optimized I for every set of x can be evaluated using linear
least squares then the function can be re-written asE (x,W (x)). The hybrid scheme can be applied using both global
optimizers and convex non-linear inversion. The non-linear optimization will search in the optimization space defined
by x since the optimized I can be expressed with respect to any set of x using linear least-squares. This reduces the
optimization space and accelerates the convergence rate to problems that can be expressed in this form (Xu et. al , 2000;
Kelley et. al , 2007).

From (11) it is evident that changing the current intensity permeter affect only the vector Vn in a linearmanner.
Consequently, by setting the absolute value of the current intensity per meter to one, the problem can be stated as

M = GI (13)

whereM is a vector that contains the measurements and G = [V1,V2...VS ] is a matrix that contains the synthetic
measurements for each sheet-like body setting their current intensity permeter to one. The optimized current intensity
per meter for every sheet-like body can be evaluated using least squares

ILSQ =
(GTG)−1 GTM (14)

where ILSQ = [I1, I2...IS ]T is a vector that contains the current intensity per meter for each sheet-like body. Substi-
tuting 14 to 13, the synthetic data can be expressed only as a function of the coordinates of the sheet-like bodies

Msyn = G(GTG)−1 GTM. (15)
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Notice that by expressing the current intensity of a sheet-like body with respect to its coordinates the optimization
space is reduced since the cost function needed to be optimized is only related to the coordinates of the sheet-like
bodies

Cost =
||M−Msyn||2

N
=

(
M− G(GTG)−1 GTM

)T (
M− G(GTG)−1 GTM

)
N

(16)

whereN is the number of the measurements. The hybrid scheme employed in the present paper uses PSO to
minimize equation (16). Nonetheless, other global optimizers like genetic algorithms ormodified non-linear schemes
(Soupios et. al , 2011) can be applied instead of PSO in a straightforwardmanner. To illustrate the effect of the hybrid
scheme to the overall performance of the optimization, both the PSO and the proposed hybrid scheme are applied
in two cases studies. The first case consists of a two layered medium with ρ1 = 50 ohm.m, ρ2 = 100 ohm.m and
h = 10m. A single dipole is placed in the first layer and its current intensity equals to I = −3mA. In the second case,
ρ1 = 300 ohm.m, ρ2 = 100 ohm.m and h = 20m. Two sheet-like bodies are placedwithin the first layer with different
polarizations with current intensity equals to I = 3 mA. Figure 1 shows the cost function (16) for every iteration
using the hybrid scheme and the PSO. Bothmethods use 40 particles and the samew, c1 and c2. It is apparent that the
proposedmethod convergencesmuch faster than traditional PSOwhich facilitates interpretation. Notice that as the
number of dipoles increases, the performance of traditional PSO is reduced compared to the hybrid scheme. This makes
the proposedmethodology crucial for interpretingmultiple sheet-like bodies in an efficient manner.

4 | NUMERICAL EXPERIMENTS
In the current section, four numerical case studies are investigated using the hybrid PSO optimization. Two examples
of surfacemeasurements are given, onewith surface-boreholemeasurements and one example coming frommarine
geophysics. The number of particles is set to 50 and the parameters of PSO are w = 1, c1 = 1 and c2 = 0.5. For
all four cases, the hybrid scheme converges in less than 60 iterations. The following examples use the same scale for
convenience. It is apparent, that based on the application, the problem can be re-scaled accordingly in a straightforward
manner.

The following examples illustrate the potential of the proposedmethod to estimate the coordinates of sheet-like
bodies. It should be noticed that the accuracy of the hybrid scheme can be compromised from noise, non-adequate
measurements and the accuracy of the estimated resistivity distribution. Nonetheless, using adequatemeasurements
and a good resistivity approximation, the current technique can approximate the coordinates of multiple sheet-like
bodies in an efficient manner. Recovering the current intensity per meter is very challenging and under realistic
circumstances the proposed method is not capable of accurately recovering it. The reason for this is highlighted in
the analytical solutions for homogeneous half-space and two-layeredmedia. From (23), (26) and (27) it is evident that
resistivity and current intensity per meter consist a non-unique set. Thus, discrepancies between the estimated and the
actual resistivity distribution greatly affect the estimated current intensity per meter.

4.1 | Ground survey
In the first example, a simple geometry excited by a single sheet-like body is examined. Themodel is a two-layer structure
with a resistive bedrock (500 o.ohm) and a conductive overburden (40 ohm.m). A step-like feature is implemented in an
effort to simulate a typical geometry associated with normal faults. The sheet-like body is placed underneath the step
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of the bedrock. Figure 2 illustrates the simulated geometry as well as the inversion results. Notice that a smoothed
resistivity is used as background for the hybrid scheme in order to simulate the resulting resistivity distribution using
ERT (Constable et. al , 1987). Low level Gaussian noise (2-3 mV) is also added to the data. Similar noise levels are
added to all the numerical examples in this section in an effort to simulate cases with good overall signal to noise ratio.
In hydro-geological applications in which the signal is usually low (Minsley , 2007) the noise is expected to be more
dominant and pre-processing should be considered. The resulting sheet-like body using the suggested hybrid scheme is
in good agreement with the actual model. This showcases the capability of the proposed framework at detecting single
faults in complex resistivity distributions.

The case study above hasmostly theoretical significance since faults and fractures usually occur in groups resulting
from the stresses applied to a given area. Thus, it is crucial for an algorithm to be capable to interpret SP anomalies
resulting frommultiple sheet-like bodies in an efficient manner. The second example investigates the case of conjugate
faults and the importance of choosing the right number of sheet-like bodies is highlighted . The investigatedmodel is
shown in Figure 3. The resistivity of the bedrock and the overburden layer are 200 ohm.m and 70 ohm.m respectively.
The sheet-like bodies are placed beneath the fault lines (see Figure 3). Similar to the previous example, a smoothed
edition of the actual resistivity model is used during the inversion and Gaussian noise is added to the observed data.
In Figure 3 the results using one and two sheet-like bodies are shown. It is apparent that using one sheet-like body
does not adequately fit themeasurements. Using two sheet-like bodies results to a stable and accurate solution that
sufficiently approximates the actual model. Increasing the number of sheet-like bodies increases the non-uniqueness
which consequently results tomultiple solutions with the same accuracy. This is highlighted in Figure. 4 in which three
sheet-like bodies are used during the inversion. Due to the stochastic nature of PSO, in the presence of non-uniqueness,
the algorithmwill converge to different results with each execution. In Figure 4 three different solutions are illustrated
that result to the same potential distribution on the surface. Thus, increasing the number of sheet-like bodies should be
followed by an increase of the available information either through extrameasurements (longermeasurement lines,
borehole data etc.) or through constrains coming from geological or geophysical data.

4.2 | Surface-Borehole survey
In the third example, four sheet-like bodies are distributed in a realistic resistivity distribution that is generated using
fractal correlated noise (Turcotte , 1992). Due to the inherited non-uniqueness of SP, surface measurements are
not adequate to resolve multiple sheet-like bodies concentrated in a relative small space (see previous example).
Consequently, both surface and borehole measurements are employed in the current example in an effort to increase
the available information. Figure 5 shows the positions of the boreholes as well as the positions of the sheet-like
bodies. Similar to the previous examples, a smoothed edition of the original resistivity distribution is used during the
inversion. Figure 5 illustrates the results using the proposed hybrid inversion. The estimated sheet-like bodies are in
good agreement with the actual ones indicating that the proposed scheme, when adequate information is available, can
be used for estimatingmultiple sheet-like bodies in complex resistivity distributions.

4.3 | Marine survey
SP is an attractive technique for detectingmarine ore deposits associatedwith geothermal activity (Kawada and Kasaya
, 2017). The reasons for that are the reduced noise levels and the ability to contact continuousmeasurements (Kawada
and Kasaya , 2017). The biggest obstacle in marine SP surveys is the fact that water mass is a very conductivemedium
that acts as a low pass filter, thus reducing the available information. Nonetheless, measurements can be taken at
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different depths increasing the available information and the overall reliability of the interpretation.
The case study examined here is illustrated in Figure 6. Two faults are placed inside a bedrock with a stochastically

varying resistivity. The average resistivity of the bedrock is≈ 150 ohm.m and the resistivity of the water mass is 1
ohm.m. Three different profile measurements are taken. Profile-A follows the topography of the bedrock. Profile-B
is a straight line at 20m depth. And Profile-C is a straight line at 10m depth. All three lines are used as inputs to the
hybrid scheme. Similar to the previous examples, a smoothed resistivity distribution is used during the inversion and the
observed data are corrupted with Gaussian noise. Figure 6 illustrates the resulting sheet-like bodies using the proposed
scheme. The edges of the sheet-like bodies are adequately approximated. The accuracy of the prediction is related to
the depth of the target. This is because deeper poles have a small contribution to the overall signal, thus they are very
susceptible to noise and discrepancies between the simulated and the actual resistivity distribution.

4.4 | Uncertainty Analysis
The current section evaluates the sensitivity of the current technique to noise and clutter. We define as noise everything
that can be described effectively as a Gaussian process. This includes errors in the positioning of the electrodes as
well as the inherited noise of the system. The term "clutter" is usually used to characterize amore systematic source
of errors. Here, clutter is chosen to describe the errors that occur due to the discrepancies between the actual and
the estimated resistivity distribution. The effect of clutter has been investigated for extreme cases (Minsley , 2007;
Giannakis et. al , 2012), wheremajor simplifications (homogeneity assumption) take placemis-representing the actual
model completely. Here we examinemore realistic scenarios, in which the resistivity distribution is a smooth edition of
the actual one.

The case study examined in this section is illustrated in Fig. 7. A single dipole is placed inside a fractal resistivity
distribution. The resistivity varies from 30-330 ohm.m. The resulting signal is corrupted with Gaussian noise with zero
mean and an increasing standard deviation (2.5, 5 and 10mV). For each noise level the hybrid scheme is applied and
the results are shown in Fig. 8. It is evident that when adequatemeasurements are taken (i.e. when themeasurement
step is adequately small) the proposedmethodology can effectively deal with Gaussian noise even in the case of highly
corrupted data.

Fig. 9 shows the inversion results using a smoothed edition of the actual resistivity distribution. The high-
wavenumber components of themodel are gradually reduced in an effort to introduce clutter to themodel. Although
incorporating the resistivity distribution is crucial (Minsley , 2007; Giannakis et. al , 2012), nonetheless a first level
approximation is proven to be adequate for accurately recovering the coordinates of the dipole using the proposed
framework (see Fig. 9).

Lastlywewant to evaluate the ability of the proposed approach to performunder sparse sets of data. To that extend,
different measurement-steps are used starting from dense configurations to sparse ones. The data are corrupted with
Gaussian noise with 2.5 mV standard deviation and the resistivity model used during the inversion is the actual one
(non-smoothed version). As it is shown in Fig. 10, for a reasonablemeasurement-step and noise-level, the suggested
methodologymanage to accurately recover the position of the sheet-like body.

5 | REAL MEASUREMENTS
In the current section, the proposed technique is applied on real data acquired during a geophysical investigation
that took place in Chalkidiki, northern Greece (Vargemezis et. al , 2012). The investigated area consists primarily
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of ophiolithic outcrops. Prior to the investigations, there were geological indications that the contact between the
ophiolites and the overburden sediments is associated with a possible fault that lead to the subduction of the ophiolites
(Vargemezis et. al , 2012). A combined focusing approach using ERT, SP and very low frequency (VLF) electromagnetic
methodwas applied (Vargemezis et. al , 2012) in order to locate possible water zones associatedwith the suspected
faults. Subsequently, a borehole was drilled that confirmed the geophysical results. For more details regarding the
geology of the area as well as the results of the geophysical investigation the reader is referred to Vargemezis et. al
(2012).

Here we focus on the tomography line in which the borehole was drilled. The tomography line is 235meters long
and the resistivity distribution is mapped down to 60meters depth. The surface is relatively smooth and for the current
inversion it is assumed to be flat. The ERT profile consists of 48 electrodeswith 5meters spacing. Both dipole-dipole and
pole-dipole measurements were used and the resulting resistivity distribution is shown in Figure 11 (Vargemezis et. al ,
2012). A low resistivity zone can be observed at x, z ≈ 150, 50. VLF data also suggest a low resistivity zone at that area
associated with a normal fault (Vargemezis et. al , 2012). Following the geophysical indications, a borehole was drilled at
x ≈ 150meter (see Figure 11) that confirmed the geophysical results and led to a water supply of 5− 10m3/h.

Using the resulting resistivity tomography and the SP data provided by Vargemezis et. al (2012), the proposed
hybrid scheme is applied assuming two unknown sheet-like bodies. The results are shown in Figure 11. One normal
fault is recovered at around x ≈ 160meters. A normal fault at that position is in good agreement with all the available
geophysical evidences as well as the borehole outcomes. In addition to the normal fault, another deeper fault is
recovered (see Figure 11) with much smaller current intensity per meter compared to the normal fault. Although
there are some evidences that point to the existence of the second fault (Vargemezis et. al , 2012), nonetheless
further geophysical investigations are needed for a conclusive result. Due to its small current intensity per meter
(compared to the normal fault) and its large depth, the second fault might be an artifact that addresses the non-optimal
background-removal (Jagannadha et. al , 1993) of the SP data prior to the inversion (see Figure 11).

6 | CONCLUSIONS

A grid-independent finite-difference scheme is used in order to implement multiple sheet-like bodies in arbitrary
locations subject to a given 2D resistivity distribution. The proposed framework is validated using novel analytical
solutions for 2D dipoles in two-layeredmedia. The ability to excite themodel with grid-independent sources allow us
to use non-linear optimization andmap the optimization space in a continuousmanner. In the present work, a hybrid
PSO-linear optimization is suggested that manages to overcome local minimal that are present in realistic resistivity
distributions. It is shown that the proposed hybrid scheme converges substantially faster compared to typical PSOwhile
retaining its accuracy. Through numerical and real experiments, strong indications are given to support the premise that
the suggested technique can be a useful asset at detecting geological targets associated with faults i.e. marinemineral
deposits, hydrothermal ore deposits and so on. Lastly, it should be emphasized that the proposedmethodology can be
seen as a dipole-based inversion in which the user constrains the number of dipoles while their intensity is expressed
with respect to their coordinates. Consequently, the hybrid optimization scheme can be applied in a similar manner to
other potential-field methods by allowing the user to define the number of gravitational or magnetic poles based on the
available information.
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A | ANALYTICAL SOLUTION FOR TWO LAYERED MEDIA

Analytical solutions for sheet-like bodies in homogeneous half-spaces have beenwidely used in the SP literature (Meiser
, 1962; Atchuta , 1982; Akgun , 2001). Nonetheless, analytical solutions for line sources embedded in two-layeredmedia
–to our knowledge– have never been reported. The latter are important when numerical solvers need to be tested in
a challenging scenario. In addition, when the geology of an area can be represented by a two-layered structure, an
analytical solution can provide a practical and elegant interpretation tool avoiding computationaly intense numerical
approaches.

The relationship between φ (x, y, z)→ φ (x, 0, z)→ Φ (x, z), described in section 2.1, can be exploited in order to
use known analytical solutions for φ and transformed them toΦ. For homogeneous half space the surface potential due
to a point source located at the origins of the axes (0, 0, 0) equals to (Nostrand and Kenneth , 1966)

φ (x, y, z) =
Iρ

2π

1√
x2 + y2 + z2

(17)

where I is the current intensity of the point source and ρ is the resistivity (1/σ). Substituting (17) to (3) results to

φ (x,Ky , z) =
Iρ

2π

∫ ∞
0

cos (Kyy)√
x2 + y2 + z2

dy =
Iρ

2π
K0

(
Ky
√
x2 + z2

)
(18)

whereK0 is the zero-order modified Bessel function of the second kind (Xu et. al , 2000). Substituting (18) to (5) results
to

Φ (x, z) =
Iρ

π
lim
Ky→0

K0

(
Ky
√
x2 + z2

)
. (19)

The potential is an artificial non-physical parameter which is related to the electric field through its gradientE = −∇φ.
Thus, the boundaries of the potential field are arbitrarily set and often assumed to be zero at infinity. Equation 19 equals
to infinity for any set of coordinates. Thus, the potential due to a line source can not be expressed as a function that
converges to a given value at infinity. Nostrand and Kenneth (1966) initially mention this unique aspect of line sources.
Subsequently they explained that the potential due to a line source can be evaluated only with respect to a reference
point since zero-value (or any value) boundary conditions can not be implemented. This is not the case when linear
dipoles are used to excite themodel. Using two equal sources with opposite signs results to

Φ (x, z) =
Iρ

π
lim
Ky→0

(
K0

(
Ky

√
x21 + z21

)
−K0

(
Ky

√
x22 + z22

))
. (20)

Where (x1, z1) and (x2, z2) are the coordinates with respect to themeasurement point of the positive and negative
sources respectively (see Fig. 12). WhenKy tends to zero the zero-order modified Bessel function of the second kind
can be expressed as (Abramowitz and Stegun , 1964; Arfkens andWeber , 2001)

lim
Ky→0

K0 (Kyr) = − lim
Ky→0

(
ln

(
Kyr

2

))
+ γ (21)
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where γ is the Euler-Mascheroni constant (Abramowitz and Stegun , 1964). Substituting (21) to (20) results to

Φ(x, z) =
Iρ

π
lim
Ky→0

ln

Ky

√
x22 + z22

2

− ln

Ky

√
x21 + z21

2


 . (22)

Further expanding the logarithms leads to

Φ(x, z) =
Iρ

π

(
ln
√
x22 + z22 − ln

√
x21 + z21

)
=
Iρ

π
ln

(
r2

r1

)
(23)

where r1 =
√
x21 + z21 and r2 =

√
x22 + z22 . Equation 23 is the well known equation that describes the surface

potential due to a sheet-like bodywith edges at (x1, z1) and (x2, z2) respectively (Jagannadha et. al , 1993).
The same procedure i.e. transformingφ→ Φ, can be applied to derive the analytical solution of line sources subject

to two-layeredmedia. The surface potential due to a point source in a two layeredmedium equals to (Tang et. al , 2011)

φ (x, y, z) =
Iρ1

2π

 1√
x2 + y2 + z2

+

∞∑
n=1

kn

 1√
x2 + y2 + (2nh− z)2

+
1√

x2 + y2 + (2nh+ z)2


 , z ≤ h

(24)

φ (x, y, z) =
Iρ1 (1 + k)

2π

∞∑
n=1

kn

 1√
x2 + y2 + (2nh+ z)2

 , z ≥ h (25)

whereh is the depth of the first layer, k = ρ2−ρ1
ρ2+ρ1

and ρ2, ρ1 are the resistivities of the second and first layer respectively.
Transforming φ→ Φ similar to the homogeneous case and using dipoles to enforce zero-valued boundary condition
results to

Φ (x, z) =
Iρ1

π

(
lnr2 − lnr1 +

∞∑
n=1

kn (An +Bn)

)
, z1, z2 ≤ h (26)

Φ (x, z) =
Iρ1 (1 + k)

π

∞∑
n=1

knCn, z1, z2 ≥ h (27)

An = ln

√
x22 + (2nh− z2)2 − ln

√
x21 + (2nh+ z1)2 (28)

Bn = ln

√
x22 + (2nh+ z2)2 − ln

√
x21 + (2nh− z1)2 (29)

Cn = ln

√
x22 + (2nh+ z2)2 − ln

√
x21 + (2nh+ z1)2 (30)
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To validate the accuracy of the grid-independent numerical scheme presented in 2.1, we compare the analytical and
numerical solutions for two case studies (see Figure 13). In the first example the resistivity of the overburden layer is
50 ohm-m and that of the bedrock is 400 ohm-m. The thickness of the first layer is 50m. The sheet-like body is placed
in a non-integer position inside the first layer. The second case consists of two layers with 30 ohm.m and 300 ohm.m
respectively. The first layer has 10m thickness. The sheet-like body is tilted and placedwithin the bedrock. Similar to
the first example the fault is placed in a non-grid position. Figure 13 shows that the numerical and the analytical results
are in good agreement indicating the validity of the grid-independent FD scheme. Before we apply the hybrid scheme to
marine surveys (see chapter 4.3), the grid-independent numerical framework should be validated in environments with
high resistivity contrasts. Figure 14 illustrates the comparison between analytical and numerical results for two layered
media with varying resistivity contrast. It is evident that the suggested scheme can be reliably used to simulate marine
environments in which a conductive water mass lays on top of a resistive bedrock.
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L I S T OF F I GURES
1 Convergence rateof thehybridPSOcompared to simplePSO.Up: Themodel is a two layeredmediumwithρ1 = 50

ohm.m, ρ2 = 100 ohm.m and h = 10m. A tilted sheet-like body is placed in the first layer with current intensity
I = −3mA. Down: Themodel is a two layeredmedia with ρ1 = 300 ohm.m, ρ2 = 100 ohm.m and h = 20m. Two
normal to the surface sheet-like bodies are placed parallel to each other with 10 m distance. In both examples the
parameters of PSO are,w = 1, c1 = 1, c2 = 0.5 and the number of particles equals to 40. . . . . . . . . . . . . . .

2 Down: The self-potential anomaly generated by a normal fault. The resistivity of the bedrock and the overburden
layer is 500 ohm.m and 40 ohm.m respectively. Up: The resulting sheet-like body using the proposed scheme sub-
ject to a smoothed resistivity distribution. The observed data are illustrated with circles while the calculated SP
anomaly with solid line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 C: The self-potential anomaly generated by two normal faults. The resistivity of the bedrock and the overburden
layer is 200 ohm.m and 70 ohm.m respectively. B: The resulting sheet-like body using the proposed scheme sub-
ject to a smoothed resistivity distribution. The observed data are illustrated with circles while the calculated SP
anomaly with solid line. A: Similar to B using two sheet-like bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 The observed and the calculated SP anomaly are illustrated with circles and solid lines respectively. The model is
similar to theonedescribed inFigure3. Threedifferent cases are shown that sufficientlyfit themeasureddata. This
highlights the fact that inverting for multiple sheet-like bodies requires adequate information (data or constrains)
in order to tackle the non-uniqueness embedded in SPmeasurements. . . . . . . . . . . . . . . . . . . . . . . . .

5 Left Down: The self-potential anomaly generated by four dipoles. A fractal correlated noise is used to generate a
realistic resistivity distribution. Left Up: The resulting sheet-like bodies using the proposed scheme subject to a
smoothed resistivity distribution. On the right, the observed and calculated data are illustrated with circles and
solid lines respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Left Down: The self-potential anomaly generated by two dipoles in a marine environment. The water mass is illus-
trated with light blue colour. The resistivity of the water is 1 ohm.m. Left Up: The resulting sheet-like bodies using
the proposed scheme subject to a smoothed resistivity distribution. On the right, the observed and calculated data
are illustrated with circles and solid lines respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 The actualmodel used to evaluate the sensitivity of the current technique to noise and clutter. A single tilted dipole
is placed inside a fractal resistivity distributionwhich varies from30-330 ohm.m. Themeasurement-step equals to
1meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 The hybrid scheme is applied to data with different levels of noise. The inverted dipole is illustrated with red line.
The actual position of the dipole is shown in Fig. 7. The data are corrupted with Gaussian noise with 2.5,5 and
10 mV standard deviation. It is evident that the proposed scheme can affectively deal with Gaussian noise (in the
presence of dense measurements) and accurately recover the coordinates of the sheet-like body. Due to the suf-
ficient number of measurements, the squared root of the misfit function (16) is close to the standard deviation of
the noise, in particular√Cost = 2.3, 5.2 and 10.7mV respectively. . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Three different resistivity models are used to approximate the one shown in Fig. 7. The models are increasingly
smoothed in order to introduce clutter to the data. It is evident that first level approximations of the resistivity
structure are adequate for recovering the coordinates of the dipole. . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Three different measurement steps are used for the numerical experiment showing in Fig. 7. Gaussian noise with
standard deviation 2.5 mV is added to the data. It is evident that the proposed method is robust for reasonable
measurement steps and noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 The observed (circles) and the calculated (solid line) SP anomalies using data from a geophysical investigation that
took part in Chalkidiki, northern Greece (Vargemezis et. al , 2012). Down: The resulting potential distribution due
to the normal fault. Up: The resulting potential distribution with both faults. The faults are depicted as black lines.
The position of the borehole is highlighted with a blue star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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12 Blue circle illustrates the measurement point. Red and green triangles correspond to the two edges of the sheet-
like bodywhile ρ1 and ρ2 are the resistivity values of the first and second layer respectively. . . . . . . . . . . . . .

13 Comparison between analytical and numerical solutions for two-layered media using the grid-independent FD
method (Spitzer et. al , 1999). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Numerical (circles) and analytical (solid lines) measurements over a normal fault located at a resistive background
with ρ2 = 300 ohm.m. The resistivity of the overburden layer varies from ρ1 = 0.05− 2 ohm.m. The width of the
first layer is 20meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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F IGURE 1 Convergence rate of the hybrid PSO compared to simple PSO. Up: Themodel is a two layeredmedium
with ρ1 = 50 ohm.m, ρ2 = 100 ohm.m and h = 10m. A tilted sheet-like body is placed in the first layer with current
intensity I = −3mA. Down: Themodel is a two layeredmedia with ρ1 = 300 ohm.m, ρ2 = 100 ohm.m and h = 20m.
Two normal to the surface sheet-like bodies are placed parallel to each other with 10m distance. In both examples the
parameters of PSO are,w = 1, c1 = 1, c2 = 0.5 and the number of particles equals to 40.
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F IGURE 3 Down: The self-potential anomaly generated by a normal fault. The resistivity of the bedrock and the
overburden layer is 500 ohm.m and 40 ohm.m respectively. Up: The resulting sheet-like body using the proposed scheme
subject to a smoothed resistivity distribution. The raw data are illustrated with circles while the inverted SP anomaly
with solid line.

4 | NUMERICAL EXPERIMENTS

In the current section, four numerical case studies are investigated using the hybrid PSO optimization. Two examples

of surfacemeasurements are given, onewith surface-boreholemeasurements and one example coming frommarine

geophysics. The number of particles is set to 50 and the parameters of PSO arew = 1, c1 = 1 and c2 = 0.5. For all

four cases, the hybrid scheme converges in less than 60 iterations. The following examples use the same scale for

convenience. It is apparent, that based on the application, the problem can be re-scaled accordingly in a straightforward

manner.

The following examples illustrate the potential of the proposedmethod to estimate the coordinates of sheet-like

bodies. It should be noticed that the accuracy of the hybrid scheme can be compromised from noise, non-adequate

measurements and the accuracy of the estimated resistivity distribution. Nonetheless, using adequatemeasurements
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F IGURE 2 Down: The self-potential anomaly generated by a normal fault. The resistivity of the bedrock and the
overburden layer is 500 ohm.m and 40 ohm.m respectively. Up: The resulting sheet-like body using the proposed
scheme subject to a smoothed resistivity distribution. The observed data are illustrated with circles while the
calculated SP anomaly with solid line.
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F IGURE 3 C: The self-potential anomaly generated by two normal faults. The resistivity of the bedrock and the
overburden layer is 200 ohm.m and 70 ohm.m respectively. B: The resulting sheet-like body using the proposed scheme
subject to a smoothed resistivity distribution. The observed data are illustrated with circles while the calculated SP
anomaly with solid line. A: Similar to B using two sheet-like bodies.
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F IGURE 4 The observed and the calculated SP anomaly are illustrated with circles and solid lines respectively. The
model is similar to the one described in Figure 3. Three different cases are shown that sufficiently fit themeasured data.
This highlights the fact that inverting for multiple sheet-like bodies requires adequate information (data or constrains)
in order to tackle the non-uniqueness embedded in SPmeasurements.
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F IGURE 4 The observed and the calculated SP anomaly are illustrated with circles and solid lines respectively. The
model is similar to the one described in Figure 3. Three different cases are shown that sufficiently fit themeasured data.
This highlights the fact that inverting for multiple sheet-like bodies requires adequate information (data or constrains)
in order to tackle the non-uniqueness embedded in SPmeasurements.
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F IGURE 4 The observed and the calculated SP anomaly are illustrated with circles and solid lines respectively. The
model is similar to the one described in Figure 3. Three different cases are shown that sufficiently fit themeasured data.
This highlights the fact that inverting for multiple sheet-like bodies requires adequate information (data or constrains)
in order to tackle the non-uniqueness embedded in SPmeasurements.
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in order to tackle the non-uniqueness embedded in SPmeasurements.



GIANNAKIS ET AL.

20 40 60 80 100 120

10

20

30

40

50

60

70

120

140

160

180

200

220

240

260

280

300

320

20 40 60 80 100 120
X-axis (m)

10

20

30

40

50

60

70

Z-
ax

is
 (m

)

20 40 60 80 100 120

10

20

30

40

50

60

70

120

140

160

180

200

220

240

260

280

300

320

20 40 60 80 100 120
X-axis (m)

10

20

30

40

50

60

70

Z-
ax

is
 (m

)

20 40 60 80 100 120

10

20

30

40

50

60

70

100

150

200

250

300

350

20 40 60 80 100 120
X-axis (m)

10

20

30

40

50

60

70

Z-
ax

is 
(m

)

20 40 60 80 100 120

10

20

30

40

50

60

70
20 40 60 80 100 120

X-axis (m)

10

20

30

40

50

60

70

Z-
ax

is
 (m

)

20 40 60 80 100 120

10

20

30

40

50

60

70
20 40 60 80 100 120

X-axis (m)

10

20

30

40

50

60

70

Z-
ax

is
 (m

)

Ohm.m

Ohm.m

20 40 60 80 100 120
X-axis (m)

-50

0

50

m
V

Surface measurements

0 10 20 30 40 50 60 70
X-axis (m)

-20

-10

0

10

m
V

Borehole at 10 meters

0 10 20 30 40 50 60 70
X-axis (m)

-50

0

50

m
V

Borehole at 40 meters

0 10 20 30 40 50 60 70
X-axis (m)

-60

-40

-20

0

m
V

Borehole at 70 meters

0 10 20 30 40 50 60 70
X-axis (m)

-100

-50

0

m
V

Borehole at 100 meters

Boreholes

Faults

F IGURE 5 Left Down: The self-potential anomaly generated by four dipoles. A fractal correlated noise is used to
generate a realistic resistivity distribution. Left Up: The resulting sheet-like bodies using the proposed scheme subject
to a smoothed resistivity distribution. On the right, the observed and calculated data are illustrated with circles and
solid lines respectively.
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F IGURE 6 Left Down: The self-potential anomaly generated by two dipoles in amarine environment. The water
mass is illustrated with light blue colour. The resistivity of the water is 1 ohm.m. Left Up: The resulting sheet-like bodies
using the proposed scheme subject to a smoothed resistivity distribution. On the right, the observed and calculated
data are illustrated with circles and solid lines respectively.
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F IGURE 5 The actual model used to evaluate the sensitivity of the current technique to noise and clutter. A single
tilted dipole is placed inside a fractal resistivity distribution which varies from 30-330 ohm.m. Themeasurement-step
equals to 1meter.

F IGURE 7 The actual model used to evaluate the sensitivity of the current technique to noise and clutter. A single
tilted dipole is placed inside a fractal resistivity distribution which varies from 30-330 ohm.m. Themeasurement-step
equals to 1meter.
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F IGURE 8 The hybrid scheme is applied to data with different levels of noise. The inverted dipole is illustrated with
red line. The actual position of the dipole is shown in Fig. 7. The data are corruptedwith Gaussian noise with 2.5,5 and
10mV standard deviation. It is evident that the proposed scheme can affectively deal with Gaussian noise (in the
presence of densemeasurements) and accurately recover the coordinates of the sheet-like body. Due to the sufficient
number of measurements, the squared root of themisfit function (16) is close to the standard deviation of the noise, in
particular√Cost = 2.3, 5.2 and 10.7mV respectively.
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F IGURE 9 Three different resistivity models are used to approximate the one shown in Fig. 7. Themodels are
increasingly smoothed in order to introduce clutter to the data. It is evident that first level approximations of the
resistivity structure are adequate for recovering the coordinates of the dipole.
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F IGURE 10 Three different measurement steps are used for the numerical experiment showing in Fig. 7. Gaussian
noise with standard deviation 5mV is added to the data. It is evident that the proposedmethod is robust for reasonable
measurement steps and noise.

F IGURE 10 Three different measurement steps are used for the numerical experiment showing in Fig. 7. Gaussian
noise with standard deviation 2.5mV is added to the data. It is evident that the proposedmethod is robust for
reasonable measurement steps and noise.
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F IGURE 11 The observed (circles) and the calculated (solid line) SP anomalies using data from a geophysical
investigation that took part in Chalkidiki, northern Greece (Vargemezis et. al , 2012). Down: The resulting potential
distribution due to the normal fault. Up: The resulting potential distribution with both faults. The faults are depicted as
black lines. The position of the borehole is highlighted with a blue star.
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F IGURE 12 Blue circle illustrates themeasurement point. Red and green triangles correspond to the two edges of
the sheet-like bodywhile ρ1 and ρ2 are the resistivity values of the first and second layer respectively.
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F IGURE 13 Comparison between analytical and numerical solutions for two-layeredmedia using the
grid-independent FDmethod (Spitzer et. al , 1999).
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F IGURE 14 Numerical (circles) and analytical (solid lines) measurements over a normal fault located at a resistive
backgroundwith ρ2 = 300 ohm.m. The resistivity of the overburden layer varies from ρ1 = 0.05− 2 ohm.m. The width
of the first layer is 20meters.


