UNIVERSITY OF
WEST LONDON

The &Yﬁﬂ’ University

i

UWL REPOSITORY

repository.uwl.ac.uk

TOA estimation of chirp signal in dense multipath environment for low-cost
acoustic ranging

Zhang, Lei, Chen, Minlin, Wang, Xinheng ORCID: https://orcid.org/0000-0001-8771-8901 and
Wang, zhi (2018) TOA estimation of chirp signal in dense multipath environment for low-cost
acoustic ranging. IEEE Transaction on Instrumentation and Measurement, 68 (2). pp. 355-367. ISSN
0018-9456

http://dx.doi.org/10.1109/TIM.2018.2844942
This is the Accepted Version of the final output.
UWL repository link: https://repository.uwl.ac.uk/id/eprint/5104/

Alternative formats: If you require this document in an alternative format, please contact:
open.research@uwl.ac.uk

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are
retained by the authors and/or other copyright owners and it is a condition of accessing
publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy: If you believe that this document breaches copyright, please contact us at
open.research@uwl.ac.uk providing details, and we will remove access to the work
immediately and investigate your claim.



mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

TOA Estimation of chirp signal in Dense Multipath
Environment for Low-cost Acoustic Ranging

Lei Zhang, Minlin Chen, Xinheng Wang, Senior Member, IEEE, and Zhi Wang, Member, IEEE

Abstract—In this paper, a novel time of arrival (TOA) es-
timation method is proposed based on an iterative cleaning
process to extract the first path signal. The purpose is to
address the challenge in dense multipath indoor environments
that the power of the first path component is normally smaller
than other multipath components, where the traditional match-
filtering (MF) based TOA estimator causes huge errors. Along
with parameter estimation, the proposed process is trying to
detect and extract the first path component by eliminating
the strongest multipath component using a band-elimination
filter in fractional Fourier Domain (FrFD) at each iterative
procedure. To further improve the stability, a slack threshold and
a strict threshold are introduced. Six simple and easily calculated
termination criteria are proposed to monitor the iterative process.
When the iterative ‘cleaning’ process is done, the outputs include
the enhanced first path component and its estimated parameters.
Based on these outputs, an optimal reference signal for the match-
filtering (MF) estimator can be constructed, and a more accurate
TOA estimation can be conveniently obtained. The results from
numerical simulations and experimental investigations verified
that, for acoustic chirp signal TOA estimation, the accuracy
of the proposed method is superior to those obtained by the
conventional MF estimators.

Index Terms—TOA estimation, acoustic ranging, multipath,
iterative ‘cleaning’ process.

I. INTRODUCTION

With wide use of smartphones and high demand of indoor
location-based services, various approaches for indoor posi-
tioning have been proposed by using the technologies based
on sound, GSM, Bluetooth, Wi-Fi, light and magnetic fields
[1], [2], [3], [4], [5]. Among these approaches, sound-based
positioning technology has attracted researchers’ attention [6]
due to its advantages of being fully compatible with commercial
off-the-shelf (COTS) smartphones, relatively higher positioning
accuracy and low-cost infrastructure. Low-cost acoustic ranging
technology is the base-stone of this kind of indoor localization
and navigation systems. Most of the prototype systems are
using time of arrival (TOA) estimation of an acoustic chirp
signal to realize ranging based positioning [1], [7], [8], [9],
[10], because TOA is apparently the most widely used ranging
technique in ranging systems [11].

The TOA estimation techniques have been discussed exten-
sively in the past few decades within radar and impulse radio
Ultra-Wideband (IR-UWB) systems, and many methods have
been proposed, including match-filtering (MF) based coherent
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methods [14], energy-detection based non-coherent methods
[13], and super-resolution estimation method [19]. Benefiting
from low-rate sampling, non-coherent methods can be quickly
converged [13], but the estimation accuracy is not satisfactory.
Coherent methods based on MF can obtain a more robust
performance. In [14], the peak of the MF output is considered
as the location of the direct path, but this is only applicable
for single-path channels with additive white Gaussian noise
(AWGN) [15]. For a multipath channel, a threshold detection
method is studied and proposed in [16], [18], and [17], in
order to detect the direct path based on MF outputs. Different
from non-coherent and coherent methods, the super-resolution
method is used to detect the first path component in frequency
domain, where a multiple signal classification (MUSIC) and
independent component analysis (ICA) based method are
proposed in [19] and [21], respectively. In [20], a MUSIC
based super-resolution method to realize TOA estimation of
acoustic chirps is proposed. However, it still needs to firstly
estimate the channel impulse response (CIR) using the MF
method. Meanwhile, the frequency domain techniques only
improve the TOA resolution in flat fading channels which
are not feasible assumptions in many applications, and the
performance seriously degrades when there are a number
of highly correlated interference signals in the same range,
especially in lower signal to ratio (SNR) situations [21].

Due to the similarities between acoustic ranging, radar
systems and IR-UWB, a fixed-threshold based MF method
is widely used to realize TOA estimation of acoustic chirp
signals, based on an assumption of full prior knowledge of the
source signals [1], [7], [8], [9], [10], where the TOA value is
considered as the time delay of the first path component, which
is the direct path in line-of-sight (LOS) scenarios. Unfortunately,
this assumption of full prior knowledge of source signals is unre-
alistic in practical applications, especially in low-cost acoustic
ranging systems due to the poor performance of electronic
components. Accurate TOA estimation in dense multipath
environments via smartphones and low-cost infrastructure is
still an open problem and many challenges still need to be
overcome:

Firstly, indoor multipath propagation is a well-known chal-
lenge to the TOA estimation [22]. Compared with radio signals,
indoor acoustic signals usually endure a denser multipath
propagation due to their poor penetrating capacity. In the
geometrical room acoustic theory, the received acoustic signal
consists of multiple attenuated and delayed replicas of the
source signal due to the acoustic reflections and diffusions
[23]. This multipath propagation effect introduces echoes and
spectral distortions into the observed signal which severely



deteriorates the source signal [24]. In this case, it is common
that the first path component is not the strongest, especially in
large space environments. TOA estimation is the detection of
the direct path instead of maximum MF output, otherwise, a
substantial ranging error occurs. Then, the first path detection
strategy of an MF estimator is a key to the accurate TOA
estimation.

Secondly, sampling frequency offset between the source
signal, transmitter, and receiver is another great challenge.
Acoustic ranging systems designed for smartphones are usually
used on smart mobile devices and low-cost infrastructure,
this makes the full prior knowledge of the transmitted source
signals also very hard to be obtained. It is understood that
the low-cost acoustic related COTS modules are used for
communications and entertainment. Once these modules are
used as sensors for ranging measurement, many defects will be
exposed. Except for the poor performance and non-consistency
of micro-electromechanical systems (MEMS) microphones and
speakers, the speed of the crystal oscillator, which provides
the clock of the audio sampling and broadcasting system, is
usually unstable. This could induce severe signal distortions and
frequency shift. For example: a discrete single-frequency signal
s[n] is designed under sampling frequency f;, and the center
frequency is f.; if s[n] is broadcast under an actual sampling
frequency fs;, the center frequency of the received signal will
shift to f.- (fst/fs). If we still use the prior knowledge of
fc to realize the TOA estimation, a considerable error will
definitely occur.

Thirdly, the frequency shift caused by Doppler Effect is also
a challenge, because smart mobile devices are usually carried
by human beings. The arbitrary movement of a human being
coupled with arm swinging makes the smart mobile devices an
extremely complex manoeuvring movement with a high speed.
It could introduce an obvious frequency shift of the received
signals even at a slow walking speed, due to the low speed of
sound propagation.

In a summary, indoor multipath propagation, sampling
frequency offset, and Doppler Effect severely degrade the TOA
estimation and pose great challenges for accurate acoustic
ranging. These problems are strongly needed to be resolved
to pave the way for the applications of sound-based indoor
localization in the real world. Therefore, aiming to realize a
robust TOA estimation via low-cost infrastructure in a dense
multipath environment for acoustic ranging, a novel TOA
estimation technique based on an iterative ‘cleaning’ process is
proposed. The basic idea of this method is trying to detect and
extract the first path component and estimating its TOA using
an MF estimator with an optimal reference signal by detecting
the maximum of the MF outputs. In this way, the performance
of MF based TOA estimator can be greatly improved in dense
multipath environments.

The main contributions of this paper are as follows:

o An iterative ‘cleaning’ process is proposed using a band-
pass filter and a band-elimination filter in fractional Fourier
Domain (FrFD). The first path component can be detected
and extracted from the received signals in FrFD by
eliminating the strongest multipath component at each
iterative procedure. Along with parameter estimation of

the filtered signal during the iterative ‘cleaning’ process,
the influence of sampling frequency offset and Doppler
Effect to accurate TOA estimation are greatly mitigated.

o A slack threshold and a strict threshold are proposed in
FrFD to dynamically determine a target area which con-
tains the first path component at each iterative procedure,
where the first path component is detected, locked and
extracted. The strict threshold is dependent on the noise
energy, and the scaling factor of the slack threshold is
increased with the number of iterations. Through this
strategy, the stability of the first path detection can be
greatly improved.

e Six termination criteria, which include four successful
detection criteria and two abnormal exit criteria, are
proposed to guarantee that the iterative ‘cleaning’ process
can be terminated at right time and return the right
outputs. All the criteria are simple judgement of logic
relations which make it very convenient to use in practical
applications.

The remainder of this paper is organized as follows. In
Section II, we discuss the problems in TOA estimation of
acoustic chirps, and formulate the consequences of unreliable
prior knowledge and first path detection strategy to MF based
TOA estimator. The details of our proposed novel TOA
estimation method is introduced in Section III, including
the calculation steps of the iterative ‘cleaning’ process and
six termination criteria. In Section IV, simulations are run
to present the detailed process of the proposed method and
investigate the performance of TOA estimation and first path
detection. Experiments and results are introduced in Section
V to demonstrate the applications of the proposed method in
a underground car park. At last, we draw our conclusions in
Section VI.

II. PROBLEM FORMULATION

With regard to the TOA estimation based on the MF output
for the low-cost acoustic ranging, two main influential factors
have severely limited its accuracy and practical applications,
which are the unreliable prior knowledge of the transmitted
signals and unreliable detection strategy of the first path
component.

A. Unreliable prior knowledge of the transmitted signals

The complex formation of a chirp signal is expressed as

s(t) = e/2mUot+3kot™) 4 ¢ [0, T, (1)
where fo and kg are the initial frequency and modulation rate,
respectively, and 7" is the time duration of the chirp signal.
However, these prior knowledge of source signal becomes no
longer reliable when we consider the relative moving speed v
between the transmitter and receiver, and the poor performance
of COTS modules.

If the frequency of a digital to analog (DA) converter in the
transmitter is f5; and the sampling frequency at the receiver is



fsr, the initial frequency and modulation rate will change to
fo = Fol£(1+2)]
’ v 2
ko = ko[ £(1+2)]"
T =T/ 14 2)
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when the received signal is analyzed with prior knowledge of
fs, and c is the propagation speed of the sound. From this
relation, we can clearly find that the sampling frequency offset
and Doppler Effect can introduce a considerable bias to the
initial frequency and modulation rate. Accordingly, the signal
with the parameters f(/), k(l) and T is the actual transmitted
signal and denoted as s (t).

Then, when s (¢) is transmitted over an L path fading
channel, the complex form of the received signal x(¢) can be
formulated as

L-1
a(t)=s (t)*h(t) =Y s (t—7)+n(t), 3
i=0
where h(t) is the channel impulse response (CIR) of room
acoustics, «; and 7; are the complex channel fading coefficient
and propagation delay of the ith propagation path, and n(t) is
the additive noise, respectively. Generally, 7o < 71 < ---Tr_1,
and parameter 7, is the TOA of the first path component.
Based on the prior knowledge of source signal to estimated

7o, that is using s(¢) as the reference signal, the MF output
R,s(7) is

L +o0
RmS(T) = Z/ OliS/ (f)s*(f)e*j%TfTiejQﬂ'def
+o0 ‘
+/ n(f)s*(f)e* 7 df

L
= ZaiRs/s(’T) *5(7'_7—2') +Rns(7)a 4)

where R,/ () is the cross-correlation result of s (t) and s(t),
and R,s(7) is the result of noises n(t) and s(t).

In the real world, n(t) usually contains the colored noise.
The term R, (7) submerges the weak multipath components
and degrades the TOA estimation performance of MF estimator
at far distance in the practical use. Except R,s(7), from Eq.
(4), we can find that the representation of multipath time delay
in Rs(7) is mainly dependent on R (7). The properties of
R, () are described as follows:

(1) If s (t) is identical to s(t) after both energy normalization,
which means the prior knowledge is reliable, R (7)
could be considered as the auto-correlation result. Then
R, (1) < R ,(0). The time delay of each multipath
components can be correctly represented by R,s(7).

If s’ (t) approximates to s(¢) after energy normalization,
which means the prior knowledge is no longer reliable,
R, (T) < Ry .(p), where p is a constant value which
is determined by the difference between s (¢) and s(t).
Then, the estimated TOA will be embedded with a bias
related with p and R,,_s(7).

2

Therefore, if we still use the prior knowledge of initial
frequency and modulation rate, which is no longer reliable
in the real world, to construct the reference signal for MF
estimator, it will introduce a substantial error to TOA estimation.
Thus, the parameters of the received signal should be estimated
to construct the reference signal for the MF estimator, in order
to mitigate the influence of frequency shift caused by sampling
frequency offset and Doppler Effect.

B. Unreliable detection strategy of the first path component

Assuming that s (t) = s(t), at each 7 =7, a positive
extremum will definitely appear at the peak envelope of R,«(7).
Thus, the estimated path delay 7; can be calculated by

7; = Extremum {peaks [| R.s(7)|]} , )

where peaks|-] is the peak finding operator, and Extremum{-}
is the extremum extraction operator. By using a threshold-based
first path detection method, the TOA estimation of the first
path component 7 can be obtained by

T0 = miinﬂst(%iN > Amax [|Rys(7)[]}, (©)

where A is a scaling factor of the threshold used to detect
the first path component. The TOA is considered as the first
extremum peak exceeding this threshold. Due to the existence
of colored noise, the term R, s(7) is not equals to zero, and
the value of A should be carefully chosen.
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Fig. 1. MF output of received signals in a multipath environment.

Shown in Fig. 1 is the MF output of received signals
in a dense multipath environment. Each extreumum can be
considered as a signal component received from a propagation
path. We can clearly find that the signal component from first
path is no longer the one with the strongest power, then, the
maximum peak selection strategy for TOA estimation is no
longer reliable. When a threshold is chosen appropriately, the
first path can be correctly detected and an accurate TOA could
be obtained. Otherwise, a substantial TOA estimation bias will
occur. If A is too small, a high false alarm rate or early detection
is expected where the peak prior to the first path is detected
due to the corruption of colored noise. On the other hand, if
A is too large, there is a high chance of late detection because
actual TOA peak is possible below A\ due to fading. All of
these cases introduce large TOA estimation errors and degrade
the performance of acoustic positioning systems dramatically.



Actually, the optimal value of A is very hard to choose
due to the complexity of indoor environment in the real
world, because it is mainly depended on the power ratio
of the background noise, the first path component and the
strongest multipath component. Theoretically estimating a
rough range of A\ needs more additional prior knowledge, such
as the geometrical information of the room and the absorption
factors of absorbers. A fast and commonly used approach is
experimentally calibrating A through few ranging tests.

In addition, the unreliable prior knowledge of the source
signal further degrades the performance of fixed-threshold
based MF estimator. Thus, to achieve a higher ranging accuracy
and improve the stability of the MF based TOA estimator, a
new technology is needed to mitigate the effects of sampling
frequency offset, Doppler Effect, and unreliable detection
strategy of the first path component.

III. PROPOSED METHOD

In this section, a novel TOA estimation method based on
an iterative ‘cleaning’ process is proposed, aiming to realize
a robust TOA estimation via low-cost infrastructure in dense
multipath environments for acoustic ranging. The framework
of our proposed method is shown in Fig. 2. The received
signal z[n] is sent into the iterative ‘cleaning’ process to
detect and extract the first path component in FrFD. At each
iterative procedure, the parameters of input signal are firstly
estimated to guarantee that all the operations are within the
optimal FrFD. The current strongest multipath component is
eliminated under the monitoring of termination strategy. When
the iterative ‘cleaning’ process is done, the outputs include
the enhanced first path component ' [n] and its estimated
parameters f and k. At last, based on these outputs, an optimal
reference signal can be constructed for the MF estimator, and
a more accurate TOA estimation of acoustic chirp signal can
be conveniently obtained in the dense multipath environment
for low-cost acoustic ranging.

Estimated f.k | Reference signal

parameters d construction
t |
Iterative ‘cleaning’ '
x[n] —» & —»x[n}] MF TOA

process
Termination Maximum

strategy detection

Fig. 2. Diagram of the proposed TOA estimation method.

A. The description of iterative ‘cleaning’ process

Benefiting from the superior time-frequency representation
capacity for the chirp signal [26], fractional Fourier transform
(FrFT) technique is chosen to realize the iterative ‘cleaning’
process. Conventional FrFT based TOA estimation framework,
which is proposed in [25], directly extracts the target component
using a band-pass filter in the optimal FrFD. Unfortunately,
same as the MF estimator, the performance is greatly degraded

due to the unreliability of the threshold strategy and the prior
knowledge of the source signal.

The block diagram of the proposed iterative ‘cleaning’
process is shown in Fig. 3. Different from the framework
in [25], our proposed iterative ‘cleaning’ process is mainly
using a band-elimination filter to eliminate the current strongest
multipath component in the optimal FrFD at each iterative
procedure. Compared with directly claiming a component being
the first path component in the non-optimal FrFD, it is safer to
eliminate the strongest component which is more certain to be
a multipath component. Therefore, instead of directly detecting
the first path component, we use the iterative ‘cleaning’ process
to conservatively ‘wait’ for the appearance of the first path
component.

x[n]

¢ Iterative

Parameter Band-elimination
A FrFT X
estimation filter

! f

Band-Pass Parameter
filter "] estimation |

‘cleaning’ stage

— Criteria matching

"o o>

Signal
enhancemnet

IFrFT

Initialization stage

KOy g ——

Enhancement stage

Fig. 3. Diagram of the proposed iterative ‘cleaning’ process.

It is essential to guarantee that all the operations are within
the optimal FrFD, where the strongest components always have
the best representation, in order to reduce the energy losing of
the weak first path component during the elimination operation.
Then, parameter estimation is always the first operation at each
iterative procedure to obtain the parameters of the strongest
multipath component.

At the ith iterative procedure, the input signal is denoted
as x'[n]. The first operation is estimating the parameters
of x*[n], which are the angle of FIFT a, initial frequency
f# and modulation rate k. X{[u] is the digital fractional
Fourier spectrum of x‘[n] by using FrFT with angle . By
eliminating the strongest multipath component in X [u], the
filtered signal x**![n] is obtained by using inverse fractional
Fourier transform (IFrFT).

With the progression of the iterative ‘cleaning’ process, the
first path component will gradually become the strongest one.
And if any criterion of termination strategy is triggered, the
iterative process will be terminated immediately and the filtered
signal «'[n] with its parameters are returned.

B. Parameter estimation

Many methods for chirp parameter estimation have been
proposed in the literature, including maximum likelihood
estimation (ML) [27], and time-frequency analysis based
estimation such as multinomial phase parameter estimation [28],
Wigner-Hough transform [29], and Radon-ambiguity transform



(RAT) [31]. Computation load is an especially concerned
problem in the parameter estimation. In our approach, the
ML estimator can be calculated by general cross-correlation
to reduce the computation load.

In the presence of AWGN, an ML estimator can achieve
the Cramer-Rao lower bound (CRLB) in a single-path channel
[30]. This performance can’t be achieved in the dense multi-
path environment, due to the interference between multipath
components. But, the ML estimator still can be used to estimate
the parameters of the strongest multipath component.

When the digital time duration of the received signal z[n] is
N, based on the ML estimator, the estimated initial frequency
f and modulation rate k are given by finding

N-1
[F k] = max |G (£, k)| = ma ZO el n—dl|, (7
where r[n] = eI2m[/nA+3kMAY] p =1 2 ... N’ is the ref-

erence signal. N is the time duration of r[n], and can be
calculated by N' = |T"/A|, where A = 1/fs. To obtain the
values of f and l%, we need to search a three-dimension
parameter space which makes it not being used via low-cost
infrastructures.

_ According to Eq. (2), we can establish the relation between

f and k as
| k
Jo W

Due to the unknown value of T,, we can construct the reference
signal r[n] by setting f = 0 and N = min[N, | f,/2k]] to
further reduce the dimension of the searched parameter space.
The Eq. (7) can be rewritten as

f= (8)

N+N' -1
> alnlrn—dl| = max Ry, [k.d]| . )
n=—N’ ’

where R.,.[k,d] is the cross-correlation result of z[n] and r[n].

Through Eq. (9), we can scan the whole time-frequency plane
to estimate k by using a fast Fourier transform (FFT), and the
dimension of searched parameter space is reduced to one. In
order to further reduce the computation load, modulation rate
could be searched over a limited parameter space |k — kq| < p.

C. Filtering in FrFD

The FrFT of signal s(¢) is considered as a rotation in the
time-frequency plane with an angle «, which is defined as [32]

+oo
Fs(t)] = Sa(u) = / s(t) Ka(u,t)dt, (10)
Werﬂ;tQ cot a—ut csc ar) a 75 n
6(u+1t) a=(2n—-1)r
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where K, (t,u) is the transformation kernel and n is an integer.
The signal can be easily recovered from FrFD by using IFrFT,
which is the FrFT with angle —a:

“+oo
s(t) = F~%*[Sa(u)] = [ So(u)K_q(u,t)dt.

12)

Applying Eq. (10) to Eq. (1), when kg + cot a = 0, the
Fractional Fourier spectrum s(t) is

- |sin a|*/2

|Se (1) sinc[r(fo —ucsca)T)],  (13)
where sinc[] represents the sinc function. It is very clear to find
that the energy of the chirp signal is concentrated in the band-
width of B, =|2-sina/T|. If and only if ko + cot e =0
and fo —ucsca =0, |S,(u)| reaches the peak value. When
signal s(t) is delayed by 7, the FrFT of the delayed signal

s(t — 7) can be written as

sin o cos a
2

2 .
Fs(t — 7)) = Sa(u — 7 cos oz)ej( —uTsine) - (14)

which suggests that |F“[s(¢ — 7)]| reaches the peak value at
u = 7 cosa. Thus, we denote this position in FrFD as wug
corresponding to 79 in MF output.

Then, the delay estimation based on FrFT can behave with
respect to the location of the extremum of the Fractional Fourier
spectrum. Based on these properties, we can very easily extract
or eliminate a signal component in z(¢) by multiplying a
window function to its fractional Fourier spectrum X, (u) and
transform the result into time domain. This process is expressed
as

2 (t) = F~[Xo(w)w(w)], (15)

where z'(t) is the filtered signal, and w(u) is a specially
designed window function. The digital form is

2 [n] = F~%[ X [u]w[u]]. (16)

In this paper, we use the digital FrFT algorithm proposed by
Haldun M. Ozaktas and et al in [33] to realize the transform
operation between time domain and FrFD.

The optimal rotation angle o can be obtained from the
relation kg 4+ cota =0 and the estimated k. Due to the
dimensional normalization in the digital FrFT algorithm, « is

given by
o= {

For the band-pass filter in FrFD, we propose a window
function which is the combination of a Blackman window and
a rectangular window, and the digital expression is:

7+ arccot(—kNA2), k>0

. 17
arccot(—kNA?), k<0 1n

Bn+G+1, -G<n<-1-—N,
wp(n] = 1, —Np <n < N» , (18)
Bn+Ny—N,], N.+1<n<G

where B[n] is the Blackman function in time domain, which
is

B[n] = 0.42 — 0.5 cos(mn/Ny) 4+ 0.08 cos(2mn/Np). (19)

N, is the half-length of the rectangular window or band-pass
in FrFD, N, is the half-length of the Blackman function, and
G = Ny + N,.. Accordingly, the window function of the band-

elimination filter is:
waln] =1 - gw(n], (20)

where ¢ is the gain in the attenuation band. Shown in Fig.
4 are the diagrams of wp[n| and w4[n] in FrFD with the



parameters of N, = 10, N, = 20 and g = 0.95. In order to
extract or eliminate one chirp component, these parameters
should be chosen carefully to reduce the interference of other
components and avoid introducing a ‘ghost’ signal.

Passband enuation b

Amplituds
>
=
>
a

Samples Samples

(@) wp[n] (b) wan]

Fig. 4. Diagrams of window function in FrFD.

From Eq. (13), the most energy of a chirp signal is
concentrated in the bandwidth of B,, in FrFD. Thus, the
value of N, should equals to B,, to guarantee that the most
energy of a chirp signal is extracted or eliminated. Due to the
dimensional normalization in the digital FrFT algorithm, the
value of N, can be given as

1
N, = LBmNA-‘ . (21)
Generally, we can set N, = 2N, + 1 for simplicity in practical
applications.

D. The algorithm of iterative ‘cleaning’ process

The successful rate of the first path detection directly impacts
the performance of TOA estimation. In order to improve the
successful rate, a slack threshold and a strict threshold are
proposed in FrFD to dynamically determine a target area which
contains the first path component at each iterative procedure.
The first path component is detected and extracted from this
target area, which is between u} and w. in FrFD. u} and
u, are estimated positions obtained by a slack threshold and
a strict threshold, where the superscript ¢ denotes the ith
iterative procedure. The slack threshold is a criterion same as
Eq. (6) and the scaling factor increases with iterative process.
The strict threshold is based on the noise power. Generally,
Uy < ug < uf\

The detailed process of the ‘cleaning’ process is shown in
Fig. 8, and the main steps are as follows:

Stepl: Band-pass filtering and initialization

(1) pre-filter z[n] using an FIR (Finite Impulse Response)
digital band-pass filter to eliminate the frequency compo-
nents out of band [fy, koT'A], and the obtained signal is
denoted as x°[n];

(2) estimate the parameters of x°[n] using Eq. (8) and Eq.
(9), and denote the initially estimated parameters as /;0,
f O, where the superscript 0 denotes the initial step of the
iterative process;

(3) calculate angle o by Eq. (17) with initially estimated k°;
calculate FrFT of signal 2°[n] with angle a and denote
it as XO[ul;

(4) estimate the time delay of the strongest multipath compo-
nent in X0 [u] by using

D, = ma [| X0 ]

(22)

estimate the time delay of the first path component in
FrFD based on the slack threshold method and the strict
threshold method by using

u, = peaks [‘Xg[u]H

uQ = min {| X3 [uy)
Up

> o [X2lumaall} (23
Y

|
Uy = min{’Xa[upH > }

where \g denotes the initial value of the scaling factor
A of the slack threshold, and -~y is the strict threshold
obtained by choosing the maximum value of noise part
in | X0[u]]. It is certain that the relationship of u3,,,,
and uy is uy < ul <l

(5) design the window function w[u] of band-pass filter as

0
ux

{ wP[u_ugnaxL u?)@ax_Géuéug@ax_FG

whu] = 0, others
(24)
where G =N, + N, N, = |uﬁY — u?nm| + B, and

Ny > [B,, NA] + 1. By, is a protection band to ensure
that the first path component is contained in the pass band
of the designed filter;

(6) use Eq. (16) to filter out a part of multipath com-
ponents and noise in the signal x°[n] in FrFD, and
recover the result into time domain with —c«, that is
x![n] = F~[Xgluw[u]};

(7) input x'[n] into Step2, the iterative ‘cleaning’ stage.

Step2: Iterative ‘cleaning’ stage
Assuming that the current iterative time is ¢, then:

(1) estimate parameters k' and fi of xi[n]; renew o with l%l
calculate the FrFT of signal z¢[n] with a and denote it
as X! [u];

(2) estimate u!,,..

and u} by using
u, = peaks [| X! [u,]
Ul = max [| XE [u]

uf = min { X o] > Ay Xk}

;o (25

max

where the scaling factor of the slack threshold
Ai = Xi—1 + 6, and A is a factor compensation value
of A to improve the stability of first path detection during
the iterative process;

(3) estimate the set of target components u; by finding

up = {vu;v|up 2 uinaa:’ ‘X(Zx[up” >0.3- |Xé[u:nax”}7
(26)
where the elements, denoted as wu;;, are the strongest
multipath component and the other target components to
be eliminated.
(4) update the window function w[u] of band-elimination filter

wlu] = [T wjful,

S walu =y, wy -G <u<u +G
wjlu] = { 1, others ’
(27)



where G = N, + Ny, the value of IV, is obtained by Eq.
(21), Ny > 2N, +1 and g = 0.8;

use Eq. (16) to filter out the strongest multipath component
and the other target components in the signal x%[n] in
FrFD, and recover the result into time domain with «,
that is 2" [n] = F~* [ X} [uJw[u]];

calculate the termination criteria and judge whether the
iterative process is completed or not based on the termina-
tion strategy; if any termination criterion is satisfied, the
iterative process will be terminated immediately. A signal
will be sent to Step3 as the input signal based on the
Case category of termination criteria; otherwise, continue
to execute the rest operations.

start the (i + 1)th iterative procedure with z°"1[n] as the
input signal.

Step3: Signal enhancement and result output

&)

(6)

@)

Assuming that the input signal is z”[n], we need to repeat
operations (1)~(5) of Step2 once again. And the set of target
components u; of operation (3) is given by

w = {Vuplu, < ub

max?

|Xg[up]| >0.3- |Xg[u177naw]|}7 (28)

to enhance the filtered signal. The output of the iterative
‘cleaning’ process includes the filtered signal z [n] = P! [n]
and its parameters: k = kP and f = fP.

E. Termination strategy

The termination strategy is essential for the stability of the
proposed iterative ‘cleaning’ process. The proposed termination
strategy must guarantee that the iterative process could be
terminated at right time. For this purpose, the first approach we
thought was using the machine learning to identify the spectrum
change at each iterative procedure. However, it usually has to
endure heavy computation load. Aiming to make this method
being used on COTS mobile devices and low-cost infrastructure,
the proposed termination strategy must be simply and easily
calculated. Under this condition, the proposed termination
strategy includes four successful detection criteria and two
abnormal exit criteria. The successful detection criteria are
used to avoid ‘inadequacy-cleaning’, and the abnormal exit
criteria are designed for avoiding ‘over-cleaning’.

All the criteria are simple judgement of logic relations which
make them very convenient to use in practical applications.
The iterative process will be terminated when any criterion is
triggered.

1) Successful detection criteria: There are four conditions
being considered as successful detection of the first path
component, as shown in Fig. 5, and listed as follow:

o case 1: ul,,, =ul =u,, the iterative process is termi-
nated at ith iterative procedure, and the input signal of
Step3 is x°[n];

o case 2: ul,,. = u, and u, — u§ < du, the iterative pro-
cess is terminated at ith iterative procedure, and the input
signal of Step3 is x'T1[n);

o case 3: u!,,. = u, and u, — u} > du, the iterative pro-
cess is terminated at ith iterative procedure, and the input
signal of Step3 is x°[n];

¢ = U5 > u, the iterative process is termi-
nated at sth iterative procedure, and the input signal of
Step3 is x'[n].

o case 4: u’

max = U =U, First path is U;

Case 1: |:">
i ) i
Upax =U, First pathis U,
i
u;
Case 2: i |:">
e — — —
i ) i
Upax = uy First pathis U
ul
Case 3: 4 |:">
u:nax = u; First path is UL
u7
Case 4: —>
_ — — —
Fig. 5. Termination conditions of iterative process and detected first path.

Compared with ., we give a higher confidence level to
ul. Casel and cased are the two normal results when the
strongest component appears in the target area. C'ase2 and
cased are the two special conditions that happened when the
initially estimated parameters have a substantial bias which
makes the spectrum in FrFD unable to correctly express the
energy and delay property of chirp components. This will
greatly increase the probability of a condition that the first
path component falls outside of the target area [u.,u}]. By
eliminating the components with the strongest power and
estimating modulation rate ki during the iterative process, the
first path will appear and could be detected by setting a safe
distance du.

2) Abnormal exit criteria: To further improve the stability
of the proposed iterative process, abnormal exit criteria are
necessary to break the iterative process when the first path
is falsely eliminated, by monitoring the spectrum change in
FrFD at real time. Thus, we first compare the differences of
spectrum in FrFD before and after eliminating the correct first
path component. Those differences can be characterized as the
criteria to break the iterative process.

Shown in Fig. 6 is the comparison of the fractional Fourier
spectrum before and after eliminating a main component of a
received single z[n| in FrFD. z[n] is a mono-component signal
and expressed as x[n] = s[n] + N [n]. The parameters of source
signal s[n] are: fy = 3kHz, ko = 100kHz/s, T'= 50 ms and
fs = 44.1kHz. The noise N[n] is additive Gaussian noise and
the SNR is 0dB. The fractional Fourier spectrum of x[n]
is calculated with optimal rotation angle o = 0.536 - ™ and
shown in Fig. 6(a). It is clear that the energy of s[n] is well



concentrated in a quit narrow band and the noise spectrum is
well suppressed in FrFD.

Eliminating component s[n] by the band-elimination filter
based on the window function of Eq. (27) with N, = 1
and N, = 3, the result is shown in Fig. 6(b). There is a big
difference before and after eliminating s[n] from z[n| in FrFD.
Based on this change, we can characterize the abnormal exit
criteria.
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Fig. 6. Contrast of | X [u]| before and after eliminating s[n].

One exit criterion is to set up a bound to the number of
peaks exceeding a peak power threshold which is the same as

Eq. (6). This variable is denoted as n; at ¢th iterative procedure.

To improve the stability, another supplementary criterion is
proposed by using the ratio of peak number at ith and (¢ — 1)th
iterative procedure which is expressed as r’ = nﬁfl / nﬁ,. Then,
the abnormal exit criteria are:

o if n} > N, the iterative process is terminated at ith
iterative procedure, and the input signal of Step3 is
(R

e if % > 4, the iterative process is terminated at ith iterative
procedure, and the input signal of Step3 is x°~![n];

where IV, is a threshold of peak number.

In practical applications, N, can be set to 15 from experience,
and ng = 1000 to avoid iterative process being terminated at
first cycle. The value selection of threshold r*, which equals to
4, should consider the ‘ghost’ phenomenon after eliminating
a component at a high SNR. Shown in Fig. 7 is the ‘ghost’
phenomenon when the first path component is eliminated by a
band-elimination filter with NV,. and N, obtained by Eq. (21)
under SNR = 20dB.

It should be noted that ‘ghost’ phenomenon only appears at
high SNRs, and the cause is the rudimental energy of target
component. Because the band-elimination filter with parameters
obtained by Eq. (21) only eliminates the most power of the
target component, the rudimental energy is still large enough
to make it observed at the time-frequency plane. If we extend
the value of N, and NV}, the ‘ghost’ of the target component
can be completely killed. However, based on the projection
property of FrFT, the bandwidth of N, in time domain is given
by B, = N,sec(a). It is very clear that the oversized value
of N, and N, can greatly decrease the time resolution of the
filter. Actually, the proposed N, and N, from Eq. (21) can
be considered as a trade-off between high time resolution and
filtering performance. When the SNR is low, this ‘ghost’ is
submerged by the noise components.
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Fig. 7. Ghost phenomenon of band-elimination filter when parameters are
chosen as N, = [%BmNA] and N, = 2N, + 1 at high SNR.

IV. NUMERICAL SIMULATION

Simulations have been run on Matlab to demonstrate the
detailed process of the proposed method, and, investigate the
performance of TOA estimation and first path detection. We will
firstly use a simple indoor propagation model to demonstrate the
detailed process of the proposed method. Then, the performance
of TOA estimation and successful rate for first path detection
is evaluated based on an indoor CIR generator. The following
setting has been chosen. The formation of source signal s[n|
is chosen as the digital formation of Eq. (1). The simulation
parameters and applied values are shown in Table 1.

TABLE I
SIMULATION PARAMETERS AND APPLIED VALUES.
Objects Parameter Definition Value
fo Initial frequency 3kHz
Source signal s[n] ko Modulation frequency 100 kHz/s
g T Time duration 50 ms
fs Sampling frequency 44.1kHz
Transmitter st DA converter frequency 44.3kHz
) for Sampling frequency 44.1kHz
Receiver v Moving speed 1m/s

A. The detailed process of the proposed method

Assuming that an indoor channel has eight propagation
paths with AWGN noise, and SNR = 0dB. The parameter sets
of CIR are {o;} = {0.4,0.6,0.75,0.9,0.95,0.7,0.6,0.5} and
{r:/A} = {500,550, 680, 760, 880, 1040, 1140, 1240}, respec-
tively, where ¢ = 0,1,--- ,7 and A = 1/ f,. The moving speed
of a receiver v is a relative speed corresponding to a transmitter
which equals to 1 m/s. Accordingly, the parameters of the actual
transmitted signal s’ [n] are fy = 3022.5Hz, ko = 101 504 Hz/s
and 7' = 49.6 ms. The observation time of the received signal
x[n] is N = 4096.

Shown in Fig. 8 is the calculating process of the proposed
method. We also use time frequency distribution WVD to
show the details of signal change at each step. The WVD and
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Fig. 8. Calculating process of our proposed method.

spectrum in FrFD of the received signal z[n] are shown in Fig.
8(a-1) and Fig. 8(a-2), respectively. Based on Stepl of the pro-
posed iterative ‘cleaning’ process, the last four components with
{m:/A} = {880,1040, 1140, 1240} are eliminated, including
the strongest power component. The filtered signals are shown
in Fig. 8(b-1) and Fig. 8(b-2). The parameters used in Stepl
are chosen as B = 1000 and N, = 50. Figures from Fig. 8(c)
to Fig. 8(d) are obtained by Step2 with 3 iterative procedures.
Multiple components are gradually eliminated from 73 to 7.
At 4th iterative procedure, the process is terminated by the
successful detection criterion casel. Then, the recovered signal
is input into Step3 to further filter out noise and enhance the

(e-2) Spectrum of signal z’ [n] in FrFD

(f-2) MF output of our proposed method

detected signal component. In the end, the output of iterative

‘cleaning’ process is the signal z [n] shown in Fig. 8(e-1) and

Fig. 8(e-2) with k = 101526 Hz/s. The values of parameters
during each iterative procedure are shown in Table II.

Based on the MF output of x[n] and s[n], as shown in Fig.
8(f-1), the estimated TOA is 7y = 476 based on the threshold
method where A = 0.3. Fig. 8(f-2) is the MF output of 2 [n]
and designed reference signal 7[n] with k& = 101 526 Hz/s and
f = 3022.8 Hz. Using detection of maximum MF output based
on the reference signal constructed with estimated parameters,
the estimated TOA is 7p = 503A. Comparing the two TOA
estimation methods, the proposed method can achieve a more



TABLE I
THE VALUE OF PROCEDURE PARAMETERS.

iterative time  )\; k* Uhae uh  mb !
0 (stepl) 0.1 101526 1530 1450 100 -
1 0.2 101518 1505 1450 2 0.02
2 0.3 101836 1488 1450 2 1
3 0.4 101526 1461 1450 2 1
4 0.5 101526 1450 1450 1 0.5
5 (step3) 0.3 101526 1450 1450 - -

accurate result.

B. Performance investigation

The following simulation is designed to investigate the
performance of TOA estimation and the successful rate of
first path detection under dense multipath environments. The
root mean square error (RMSE) is used to analyze the statistical
performance of our method and conventional fixed-threshold
based MF estimator. A room impulse response generator
proposed in [34] is used to simulate the dense multipath
propagations. The environment is chosen as a 3-dimensional
room with 40 x 3 x 2.7(m). The positions of the receiver
and transmitter are at [2,1.5,1](m) and [2+ D,1.5,1](m)
respectively. The variable D = 1,2,--- ;30 (m) is the distance
between the transmitter and the receiver. At the same time,
the reflection coefficient and order are chosen as 0.5 and -
1. The simulation at each distance is calculated 1000 times.
The TOA estimation performance is shown in Fig. 9, and the
successful rate of first path detection is shown in Fig. 10. At
last, the performance of TOA estimation under AWGN with
SNR € [-5, 5|dB is presented in Fig. 11.

—&— Proposed method
—4&— MF estimator using initially estimated parameter with \ = 0.3
MF estimator with A = 0.3

Fig. 9. RMSE performance of TOA estimation.

The result of Fig. 9 is obtained under AWGN noise and
SNR = 0dB. The performance of conventional MF estimator
with the fixed threshold and our proposed method is compared.
We can find that our proposed method can achieve a higher
accurate TOA estimation and more stable than other MF esti-
mators. For the method of MF estimator using prior knowledge,
performance can be greatly improved by constructing the
reference signal with initially estimated parameters, when the
ranging distance is within 15 m. However, with ranging distance
exceeding 20 m, TOA estimation accuracy decreases rapidly
and becomes unstable. Within shorter ranging distance, the SNR
of received signal is higher than the longer distance. Because
the reliability of initially estimated parameter is decreased as

the increase of ranging distance, the performance of initial
parameter estimation based on ML estimator decreases rapidly
when ranging distance increases.

The performance of the MF estimator using prior knowledge
of the received signal seems abnormal. This phenomenon is
caused by signal parameter setting in this simulation. We
can check the TOA estimation result in Fig. 8. Due to prior
knowledge of initial frequency and modulation frequency being
smaller than actual value, that is fo < f, and ko < ko, time
delay estimation 7y = 476A is smaller than the true-value.
While the ranging distance is larger and SNR is lower, the
energy of earlier arrived component will be greatly impaired
which makes them unable to be detected in the MF output.
The TOA estimation result will become larger and larger, and
gradually approach the true value, and exceed it finally. Under
this condition, the RMSE of the TOA estimation will appear as
a decreased trend, which is shown in Fig. 9, and an increased
trend soon afterward.

Our proposed method can achieve a higher TOA estimation
performance and stability. This is benefiting from the successful
rate of the first path detection. The performance of detecting
the first path component is also investigated and shown in Fig.
10.
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Fig. 10. Successful rate of first path detection under different SNR.
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Fig. 11. Performance of TOA estimation under different SNR.

The successful rate of first path detection is investigated at
three often encountered noise levels in practical applications,
which are —2dB, 0dB and 5dB. We can find that the
performance of first path detection is satisfactory within 10 m
ranging distance. The successful detection rate is higher than
75% even under SNR = —2dB. While ranging distance is
longer than 10 m, detection performance starts decreasing as the
raging distance increases. The maximum ranging area shown



in Fig. 10 is 20m . When the ranging distance reaches 30 m,
the first path is very hard to be detected, where probability
will become lower than 10%. This is because the first path
is submerged in noise and can’t be audible due to the lower
SNR.

The TOA estimation performance under different SNRs
is shown in Fig. 11. Four distances are chosen to evaluate
TOA performance under AWGN with SNR € [—5, 5]dB. We
can achieve an accuracy of ranging error smaller than 30 cm
within 30m when SNR > —1dB, and within 20m when
SNR > —3dB. Furthermore, the time consumption of TOA
estimation is from 65 ms to 95 ms, which is counted by the tic
and foc function of Matlab on a computer with 3.2 GHz 4-core
processor and 12G RAM. Due to the SNR of the received
signal being usually larger than —2 dB in practical applications,
our proposed method can meet the demand of accurate TOA
estimation of chirp signal for low-cost acoustic ranging in a
real world.

V. EXPERIMENT AND RESULTS

Experiments are conducted in an underground car park near
Yuquan Campus of Zhejiang University to test the performance
of the proposed method in the real world. The size of this
car park is 86 x 18 x 3.5 (m). The scenario and device used
in this experiment are shown in Fig. 12. The device is a
specially designed low-cost module with acoustic broadcasting
and sampling function. The main chips of acoustic part are
STM32F407 and WM8978, which are very cheap and easily
accessible. Microphones and speakers also use low-cost MEMS
component. Total cost of them is less than 5$. To realize one-
way ranging, the local time of transmitter and receiver is
synchronized by ZigBee module which can provide a high
time synchronization precision for low propagation speed of
acoustic signal. Two devices are used during this test, where
one of them is used as the transmitter and another one is used
as the receiver.

(a) Underground car park (b) Device

Fig. 12. Test scenario and device used in experiment.

The parameters of acoustic chirp signal used in this test
is the same as source signal, which is listed in Table 1. The
tested distances are uniformly distributed from 1 m to 30 m.
Sound pressure level (SPL) of background noise measured in
the underground car park is 40 dB and the SPL of source signal
is measured as 65dB. RMSE of TOA estimation is calculated
with 100 signal samples at each selected position.

The optimal value of A is determined by searching the
parameter space between 0 and 1 with interval 0.1. Test results
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Fig. 13. Performance of MF estimator with different scaling factors.

under A = {0.2,0.3,0.4,0.5} are shown in Fig. 13. When A
equals to 0.1 or is larger than 0.5, the performance decreases
rapidly. The performance of A = 0.2 and 0.3 are close with
each other within short ranging distance. At some distance,
the performance of A = 0.2 are better than A = 0.3. But when
the ranging distance is longer than 21 m, the performance of
A = 0.3 are better than A = 0.2. Comprehensively considering
the TOA estimation precision and stability, the performance of
MF estimator is better when the value of \ is set as 0.3.

I I I I |
0 5 10 15 20 25 30

Fig. 14. Performance of TOA estimation in the real world.

From test result which is shown in Fig. 14, we can find that
the proposed method could provide a higher TOA estimation
precision than the conventional threshold-based MF estimator
using prior knowledge and initially estimated parameter, where
the RMSE of TOA estimation is smaller than 33.92 cm within
30m ranging distance. The performance of the proposed
method and MF estimator using initially estimated parameters
are close to each other within 10 m, with an accuracy smaller
than 12 cm, because the initially estimated parameter is still
reliable for the MF estimator. While the ranging distance
increases, the performance of proposed method gradually
exceeds MF estimator with initially estimated parameter. Thus,
through testing in the real world, we can conclude that proposed
method could realize an accurate and robust TOA estimation
for acoustic ranging in dense multipath environments.

In addition, the performance of our proposed method was
tested and verified in the new ‘Microsoft indoor localization
competition’ of IPSN, CPS Week 2018, Porto. The evaluated
prototype systems, ‘RA2Loc’ [35] and ‘AidLoc’ [36], which are
designed based on a reduced version of the proposed method,
achieved an average 3 D localization error of 70 cm and 71 cm,



respectively, under a dynamic real scenario [37].

VI. CONCLUSION

In this paper, a novel TOA estimation method is proposed for
acoustic chirp signal based on an iterative ‘cleaning’ process
in FrFD, aiming to realize robust low-cost acoustic ranging in
dense multipath environments. Firstly, it has been confirmed
that the conventional TOA estimator based on MF method
usually can’t offer sufficient TOA estimation accuracy in
situations of dense multipath environments, especially for low-
cost acoustic ranging. Threshold-based MF estimator can’t
obtain a reliable TOA estimation. Secondly, the frequency shift
of transmitted signal via low-cost infrastructure widely exists
due to the sampling frequency offset between the transmitter
and the receiver. It makes the prior knowledge of source signal
no longer reliable for the MF estimator. To mitigate these
limitations, this novel TOA estimation method is introduced
in FrFD.

The core of this method is an iterative ‘cleaning’ process
based on FrFT to detect and extract the first path component
from the received signal. To further improve the stability of
the first path detection, the slack threshold and strict threshold
are used during the iterative process. The design approach of
window functions for band-pass filter and band-elimination
filter in FrFD are also introduced in detail. Meanwhile, the
optimal parameters of window function are given. In order to
make proposed method used in practical applications, six simple
and easy calculated termination criteria are proposed to monitor
the iterative process. At each iterative procedure, the parameters
of input signal are firstly estimated to guarantee that all the
operations are within the optimal FrFD. The current strongest
multipath component is eliminated under the monitoring of
termination strategy. When the iterative ‘cleaning’ process is
done, the outputs include the enhanced first path component
and its estimated parameters. Using the estimated parameter
of extracted first path component, we can construct an optimal
reference signal for the MF estimator, and a more accurate
TOA estimation of acoustic chirp signal can be conveniently
obtained in dense multipath environments for low-cost acoustic
ranging. The results obtained from numerical simulations and
experimental investigations verified that, for acoustic chirp
signal TOA estimation, the accuracy of the proposed method is
superior to those obtained by the conventional MF estimator.
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