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Abstract—The ability to produce, store and analyse large
amounts of well-labeled data as well as recent advancements
on supervised training, led machine learning to gain a renewed
popularity. In the present paper, the applicability of machine
learning to simulate ground penetrating radar (GPR) for high
frequency applications is examined. A well-labelled and equally
distributed training set is generated synthetically using the finite-
difference time-domain (FDTD) method. Special care was taken in
order to model the antennas and the soils with sufficient accuracy.
Through a stochastic parameterisation, each model is expressed
using only seven parameters (i.e. the fractal dimension of water
fraction, the heigh of the antenna and so on). Based on these pa-
rameters and the synthetically generated training set, a machine
learning framework is trained to predict the resulting A-Scan
in real-time. Thus, overcoming the time-consuming calculations
required for an equivalent FDTD simulation.
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I. INTRODUCTION

Numerical modelling can shed a light on scattering mech-
anisms and furthermore give us an insight on GPR’s perfor-
mance. The obvious requirement for this to happen is that
the model is an adequate approximation of reality. Numerical
modelling has been extensively used for qualitative studies
using simplified sensors and generic targets buried in half-
spaces [1], [2], [3]. Some efforts have also been made for
simulating cluttering sources [4] within the ground as well as
incorporating an accurate representation of the antenna system
[5], [6], [7]. In [8], [9] a numerical framework is suggested that
tries to realistically simulate GPR for AP landmine detection
incorporating soil’s inhomogeneities, rough surface, dispersive
soils, vegetation, realistic targets and accurate representations
of two GPR commercial systems [14]. The numerical frame-
work was applied using gprMax [10], an open software that
solves Maxwell’s equations using a second-order accuracy
finite-difference time-domain (FDTD) method [11], [12].

The numerical framework suggested in [8], [9] has the
potential to evaluate GPR’s performance for a given scenario.
Nonetheless, FDTD is a time consuming algorithm with large
computational requirements that still are not trivially available
to everyone. To overcome this obstacle, a machine learning
scheme was suggested in [13] which tries to predict the signal
to clutter ratio (SCR) based on a given set of parameters. The
regression model was trained based on an equally distributed
set of synthetic data. The latter were calculated using the

numerical framework suggested in [8], [9] applied in a 2D-
FDTD solver (due to computational constrains [13]). The post-
training outcome of this approach is a two-layered neural
network that predicts the SCR based on a set of given
parameters (sand, fraction, fractal dimension of soil’s surface,
depth of the target and so on). Although the training process
is computationally expensive, nonetheless, once trained, the
resulting scheme can be applied in real time using minimum
computational requirements.

In the present paper, following the notion of [13], a
machine learning framework is suggested that is trained to
predict the full GPR’s waveform in time domain. In contrast
to [13], that predicts SCR (scalar), the present technique has
the ability to calculate (in real time) the full GPR’s response
(vector). In addition, the suggested regression model is trained
using fully 3D models incorporating accurate representations
of a commercial antenna system [10].

The proposed methodology overcomes the large compu-
tational resources necessary for a 3D-FDTD simulation. The
resulting regression model acts as a real-time numerical simu-
lator that uses model’s parameters as inputs (water fraction of
soil, heigh of the antenna and so on) and gives as output (in
real time) the full response of GPR for the given inputs.

II. GENERATING TRAINING SET

A. Parameterisation of the model

In the present paper a regression model based on neural-
networks is presented that is used to predict in real time the
response of GPR given a set of parameters. The necessary
parameters to describe the model are the following:

• sand fraction (S)

• minimum volumetric fraction (m)

• maximum volumetric fraction (M )

• spatial statistics of water volumetric fraction (βw)

• maximum absolute deviation of the surface (T )

• spatial statistics of soil’s surface (roughness) (βT )

• heigh of the antenna (H)

The antenna used in the present paper is a model represen-
tation of 1.5 GHz GSSI as described in [15]. By selecting



Fig. 1. Four randomly selected models from the set used to train the
regression scheme. .

the parameters above in a stochastic manner following the
approach described in [13] an equally distributed and adequate
training set is constructed. The size of model is 40× 40× 50
cm and the discretisation step is 1 mm. The time step is chosen
based on the Courant stability conditions [12].

Recent edition of gprMax [10] has the ability to realise the
above models in a straightforward manner. Thus, gprMax is
selected to synthetically generate the training set. In addition,
gprMax allows the usage of graphics processing units (GPU)
making the procedure computationally affordable. A set con-
sisted of two thousand stochastically selected models (see Fig.
1) is proven adequate for the current application. Although
generating the training set and training the regression scheme
is time consuming, nonetheless, the post-trained regression
scheme works in real-time.

B. Reducing the dimensionality of the problem

The trace is consisted of 3000 points and any regression
scheme should be capable of predicting a relatively large vector
using seven input parameters. This increases the complexity of
the problem and create instabilities during the training process
that result to noisy outputs. This can be partially solved by
under-sampling traces every ten time steps (i.e. removing high
frequencies with null content). To reduce the dimensions of
the data furthermore, principal component analysis (PCA) is
employed. PCA maps the data to its principal orthogonal axes
from which the data can be reconstructed through a linear
combination of those. The principal axes of the training set
consists of 300 traces and its trace has 300 points. A linear
combination of these 300 traces can be reproduce every trace
of the training set. Figure (2) illustrates the 5 most dominant
axes.

To reduce the dimensionality of the training set, the 45 most
dominant axes are chosen and the best linear combination of
those that minimise the squared error between the actual traces
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Fig. 2. The 5 dominant axes of the training set as calculated using PCA.
.

and their compressed edition is evaluated

Y = Aw (1)

where Y is a vector that represents the actual trace, A is a
matrix that contain the 45 dominant axes of the training set
and w is a vector containing the 45 linear coefficients. The
vector w can be calculated in a straightforward manner using

the least-squares method w =
(

AT A
)−1

AT Y. Thus, all the
traces can be reproduced using a shared matrix A and their
unique linear coefficients w. The latter has 45 dimensions in
contrast to 3000 dimensions that the initial data had. Obviously
some information is lost during this compression, nonetheless
using 45 principal axes has negligible affects as illustrated in
Fig. 3.

III. REGRESSION MODEL

Using the input parameters (sand fraction, fractal dimen-
sion of surface etc.) different models are generated having the
same statistical properties i.e. the same fractal dimension of
water fraction and the same fractal dimension of topography.
Each model will give rise to different A-Scans all resulted
from models with the same statistical properties. The algebraic
relationship between the input parameters and their resulting
average trace is evaluated here using neural networks (NN).

The NN architecture is trained using the training set
described previously. The set is divided into training (80%),
validation (10%) and testing set (10%). The validation set is
used in each iteration of the training to check if the NN overfit.
The testing set is used to evaluate the performance of the NN
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Fig. 3. Absolute error of the training set with respect to the number of axes
used to approximate it. .
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Fig. 4. The neural network architecture consists of three layers of 10,
20 and 30 neutrons respectively. The first two layers use sigmoid activation
functions while the third layer uses a linear one. The inputs parameters are
the parameters that define the model (sand fraction, water volumetric fraction
etc.) and the output is the compressed A-Scan..

in unknown data and lastly, the training set is used to fine-tune
the NN.

The NN architecture is chosen through a trial and error
process and it is illustrated in Fig. 4. A three-hidden layer NN
is used with 10, 20 and 30 neutrons respectively. The first two
layers use sigmoid activation functions while the last layer uses
a linear one in order to predict the continuous nature of the
compressed A-Scan. A complex-conjugate gradient method is
used during the training.

Fig. 5 illustrates six randomly selected cases used to
validate the proposed NN architecture. The average traces
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Fig. 5. Six randomly selected scenarios chosen to illustrate the validity of
the trained NN. With solid line is the average trace calculated using FDTD.
With dotted lines are the predicted A-Scans (in real time) using the suggested
regression scheme. .

evaluated using FDTD are compared with the predicted com-
pressed traces using NN. Fig. 5 highlights the accuracy of the
NN at predicting the average trace for given input parameters.
Notice that NN evaluate A-Scan in real time in contrast to
FDTD that (depending on computational resources available)
is considered a computational expensive and time consuming
technique.

IV. CONCLUSIONS

A novel method to simulate GPR, alternative to traditional
techniques like FDTD is presented. It is based on a NN re-
gression scheme which is trained using numerically evaluated
data. The inputs of the NN are model parameters that uniquely
define a case study (sand fraction, water fraction, antenna
heigh etc.). The output is the predicted trace. PCA is used
in order to reduce the size of the A-Scans in order to avoid
complexities arising in training NN with high dimensional
outputs. The suggested scheme was validated at unknown cases
that were not included during the training process. The traces
evaluated using FDTD and the ones predicted using NN are
in good agreement indicating the validity of the proposed
framework. The fact that NN can run in real time can vastly
decrease the computational cost of FDTD, thus used as an
accurate and efficient forward solver for specific parameterised
environments.
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