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ABSTRACT 
 
The use of explanatory variables or covariates in a regression model is an important way to      rep-
resent heterogeneity in a population. Again bootstrapping is rapidly becoming a popular tool to ap-
ply in a broad range of standard applications including multiple regression. The nonparametric 
bootstrap allows us to estimate the sampling distribution of a statistic empirically without making 
assumptions about the form of the population, and without deriving the sampling distribution   ex-
plicitly. The main objective of this study to discuss the nonparametric bootstrapping procedure for 
multiple logistic regression model associated with Davidson and Hinkley's (1997) “boot” library in 
R. 
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I. INTRODUCTION 
 
Bootstrapping is a general approach to statistical 
inference based on building a sampling distribution 
for a statistic by resampling from the data at hand. 
Efron (1979) discussed bootstrap procedure that 
can be applied to estimate sampling distributions of 
estimators for the multiple regression model. A 
common approach to statistical inference is to 
make assumptions about the structure of the popu-
lation (e.g., an assumption of normality), and along 
with the stipulation of random sampling, to use 
these assumptions to derive the sampling distribu-
tion on which the classical inference is based. This 
is called parametric Bootstrapping. But in certain 
instances, the exact distribution may be intractable, 
and so we instead derive its asymptotic distribu-
tion. This parametric bootstrapping may cause two 
potentially important deficiencies:  
 

•  If the assumptions about the population 
are wrong, then the corresponding sam-
pling distribution of the statistic may be 

seriously inaccurate. On the other hand, if 
asymptotic results are relied upon, these 
may not hold to the required level of accu-
racy in a relatively small sample.  

•  The approach requires sufficient mathe-
matical prowess to derive the sampling 
distribution of the statistic of interest. In 
some cases, such a derivation may be pro-
hibitively difficult. 

 
II. NONPARAMETRIC BOOTSTRAPPING 
APPROACH FOR REGRESSION MODELS  

  
The bootstrap method can be applied to much more 
general situations (Efron, 1982), but all of the es-
sential elements of the method are clearly seen by 
concentrating on the familiar multiple regression 
model: 

              εXβy +=                            (2.1) 
where X and β  are fixed 1)(k and )( ××kn ma-
trices with full rank and kn ≥ . The components 
ofε are independent identically distributed random 
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variables with zero mean and common vari-
ance 2σ .  
 
The nonparametric bootstrap estimate of the sam-

pling distribution of an estimator *β̂ of β is gener-
ated by repeatedly drawing with replacement from 
the residual vector  

           ** βε Xy −=                       (2.2) 

If be is a )1( ×n  vector of n independent draws 

from *ε , then the corresponding bootstrap depend-
ent variable is given by 

       bb eXβy += *                        (2.3) 

For each vector by the estimator is recomputed and 
the sampling distribution of the estimator is esti-
mated by the empirical distribution of these esti-
mates computed over a large number of by . 
 

III. DATA  
 
The kyphosis data frame has 81 rows representing 
data on 81 children who have had corrective spinal 
surgery collected from the book Statistical Models 
in S, Wadsworth and Brooks, Pacific Grove, CA 
1992, pg. 200  
 
The outcome kyphosis is a binary variable and 
other three selected variables (columns) are nu-
meric. Kyphosis is a factor telling whether a post-
operative deformity (kyphosis) is "present" or    
"absent". Age represents the age of the child in 
months. Number represents the number of verte-
brae involved in the operation. And Start represents 

the beginning of the range of vertebrae involved in 
the operation. 
 
In the paper, the generalized linear model (GLM) 
tool is used to fit logistic regression model using R 
statistical software.  
 
 

IV. RESULTS  
 
A logistic linear regression model is fitted to exam-
ine the influence of selected three covariates on 
kyphosis in R by using the following command: 
  

glm(formula = Kyphosis ~ Age + Start + 
Number, family = binomial, data = Kyphosis) 

 
The results of logistic regression are given in   Ta-
ble 1.  
 
Table 1: Logistic Regression Coefficients. 
 

Coefficients Value Std. Error t value 
(Intercept) -2.03693 1.44918 -1.40557
Age 0.01093 0.00644 1.69617
Start -0.20651 0.06768 -3.05104
Number 0.41060 0.22478 1.82662

 
(Dispersion Parameter for Binomial family taken to 
be 1) 
Null Deviance: 83.23447 on 80 degrees of freedom 
Residual Deviance: 61.37998 on 77 degrees of 
freedom

 

Figure 1: Age Coefficient 
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Table 1 reveals that all three covariates are statisti-
cally significant and have expected directions. Ta-
ble 2 shows the partial correlation between the co-
variates. 

 
Table 2: Correlation Matrix. 
 

 Age Start 

Start -0.28495  

Number 0.23210 0.11075 
 
The coefficient standard errors reported by glm rely 
on asymptotic approximations and may not be 
trustworthy.  Therefore, let us turn to the bootstrap. 
Here we want to fit a regression model with re-
sponse variable y and predictors kxxx ,..., 21 . We 
have a sample of n observations 

),...,,,( 211,, ikiiii xxxyz =′ , i = 1, 2, …, n. Here we 

simply select B bootstrap samples of the iz ′ , fitting 
the model and saving the coefficients from each 
bootstrap sample.  
 
We then construct confidence intervals for the re-
gression coefficients using the methods discussed 
by Davidson and Hinkley (1997). 
 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
>boot.h 
function(data, indices) { 
        data <- data[indices, ] 
         mod <- glm(formula = Kyphosis ~ Age +   
        Start + Number, family = binomial, data  
         = data) 
         coefficients (mod) 
} 
 
 
boot (data = kyphosis, statistic = boot.h, R = 999) 
 
Table 3 shows the results of logistic regression 
performed from bootstrapping sample with a repli-
cation of 999. 

 

Table 3: Bootstrap Statistics for Selected Vari-
ables. 
 

 Original Bias Std. error 
(Intercept) -2.03671 -0.51139 2.92852 
Age  0.01093 0.00214 0.00981 
Start -0.20650 -0.02979 0.11878 
Number  0.41056 0.11311 0.51974 

 
Figure 1-3 show the histograms and normal quan-
tile-comparison plots for the bootstrap replications 
of the age (Figure 1), start (Figure 2) and number 
(figure 3) coefficients in Kyphosis data. The bro-
ken vertical line in each histogram shows the loca-
tion of the regression coefficient for the model to 
fit to the original sample. 
 
While considering bootstrapping sample we find 
that  except for Number, the bias is too small for 
covariates Age and Start. Looking at Figures 1-3, 
one can conclude that they follow approximately 
normal which in turn help us to justify the useful-
ness of bootstrapping technique.  
 
Tables 4 -9 show confidence intervals of coeffi-
cients of logistic regression model. The confidence 
intervals are observed to be very close for covari-
ates Age and Start; on the other hand, it is wider for 
Number.  So the application of bootstrapping pro-
vides us better understanding and better results. 
 
> boot.ci (boot.out =boot.k, 
type=c(“norm”,”prec”,bca”), index=2) 
 
BOOTSTRAP CONFIDENCE INTERVAL 
CALCULATIONS 
 
Based on 999 bootstrap replications 
 
CALL : 
 
Boot.ci (boot.out = boot.k, type=c (“norm”, “prec”, 
“bca”), index=2) 
 
Table 4: 95% Confidence Intervals for Age. 
 
Level Normal Percentile BCa 
95% -0.0104, 0.0280 0.0009, 0.0308 -0.0014, 0.0253
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Figure 2: Start Coefficient 

 
 

 
                                                                        Figure 3: Number Coefficient 
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CALL : 
 
Boot.ci (boot.out = boot.k, conf = 0.9, type = c 
(“norm”, “prec”, “bca”), index=2) 
 
Table 5: 90% Confidence Intervals for Age. 
 
Level Normal Percentile BCa 
90% -0.0073, 0.0249 0.0022, 0.0266 0.0005, 0.0225

 
boot.ci (boot.out = boot.k, type = c (“norm”, 
“prec”, “bca”), index=3) 
 
BOOTSTRAP CONFIDENCE INTERVAL 
CALCULATIONS 
 
Based on 999 bootstrap replicates 
 
CALL : 
 
boot.ci (boot.out = boot.k, type = c (“norm”, 
“prec”, “bca”), index=3) 
 
Table 6: 95%Confidence Intervals for Start. 
 
Level Normal Percentile BCa 
95% -0.4095, 0.0561 -0.4337, -0.0969 -0.3507, -0.0454

 
boot.ci (boot.out = boot.k, conf = 0.9, type = c 
(“norm”, “prec”, “bca”), index=3) 
 
Table 7: 90% Confidence Intervals for Start. 
 
Level Normal Percentile BCa 
90% -0.3721, 0.0197 -0.3787, -0.1101 -0.3245, -0.0721

 
boot.ci (boot.out =boot.k, type=c(“norm”, ”prec”, 
”bca”), index=4) 
 
BOOTSTRAP CONFIDENCE INTERVAL 
CALCULATIONS 
 
Based on 999 bootstrap replications 
 
CALL : 
 
Boot.ci (boot.out = boot.k, type=c (“norm”, “prec”, 
“bca”), index=4) 
 
 

 

Table 8: 95% Confidence Intervals for Number. 
 
Level Normal Percentile BCa 
95% -0.7212, 1.3161 -0.0631, 1.3212 -0.2074, 1.0777

 
CALL : 
 
Boot.ci (boot.out = boot.k, conf = 0.9, type = c 
(“norm”, “prec”, “bca”), index=4) 
 
Table 9: 90% Confidence Intervals for Number. 
 
Level Normal Percentile BCa 
90% -0.5575, 1.1524 0.0250, 1.1509 -0.1313, 0.9366

 
The normal theory and percentile intervals are rea-
sonably similar to each other, but the more trust-
worthy αBC intervals are somewhat different.  
 

 
V. CONCLUSION  

 
It may be concluded that the bootstrap method 
could potentially be applied to problems of statisti-
cal error assessment beyond biases and standard 
errors, in particular to the setting of approximate 
confidence intervals, but only if further progress 
were made in understanding the bootstrap's inferen-
tial biases. 
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