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AN EVOLUTIONARY POLYNOMIAL REGRESSION (EPR) MODEL 
FOR PREDICTION OF H2S INDUCED CORROSION IN CONCRETE 
SEWER PIPES 

 

A. ROMANOVA, A. FARAMARZI, M. MAHMOODIAN, M. A. ALANI. 

Department of Civil Engineering, School of Science & Engineering, University of Greenwich, 

Central Avenue, Chatham Maritime, Kent, ME4 4TB, United Kingdom 

The sulphuric acid is a known growing threat to concrete sewer pipes. Acid production is 

dictated by rapid urbanisation, increased use of hot water and discharge of toxic metals and 

sulphate containing detergents into the wastewater. Concrete sewer pipe corrosion due to 

sulphuric attack is known to be the main contributory factor of pipe degradation. Very little 

tools are available to accurately predict the corrosion rate and most importantly the remaining 

safe life of the asset. This paper proposes a new robust model to predict the sewer pipe 

corrosion rate due to sulphuric acid. The model makes use of a powerful Evolutionary 

Polynomial Regression method that provides a new methodology of hybrid data-mining. The 

results obtained by the model which was validated in the field indicates that the proposed 

hybrid methodology can accurately predict the corrosion rate in concrete sewer pipe’s given 

that the pipe installation conditions as well as in-pipe sewage conditions are known.  
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INTRODUCTION 

 

All over the world the costs involved in dealing with sewer pipe corrosion are escalated to 

billions of dollars per year [1], as a consequence of corrosion process, pipes collapse and may 

cause surface flooding. 

In USA there are around 550,000km of concrete pipes. Annual rehabilitation costs of 

concrete sewers on its own for Los Angeles county rounded to €400 million [2]. Where it was 

estimated that in total in USA an annual cost of water and wastewater asset concrete corrosion 

is costing $36 billion [3] and given the aging infrastructure, more intense use and higher rate of 

degradation the renovation cost are expected to increase [2, 4]. In city of Sarnia, Canada, 440m 

of sewer main on Calbrone Street had to be replaced after collapse due to corrosive 

deterioration which resulted in a cost of $350,000 [5].   

In Australia and New Zealand since 1910 the majority of pipes are chosen to be of steel-

reinforced concrete material, and currently there are around 300,000km of concrete pipes 

installed between both countries [6]. Figures suggest that Australia has 110,000km of concrete 

sewers [7] and on average the pipe corrode at a rate of 1-3mm a year [6]. In Sydney area alone 



there are nearly 900km of concrete sewer pipes, with annual expense of AUS $40 million on 

rehabilitation program [8]. 

In continental Europe the sewer pipes of 250-800mm in diameter are dominantly classified 

as concrete pipes that were primary installed in 1930-1980
th
. As example, in the city of Hague, 

Netherlands, 95% of sewer pipes are of concrete material [9]. In Germany the costs of concrete 

sewer rehabilitation due to corrosion were estimated to be €100 million [5, 10]. Overall, 

continental European cities are calculated to spend more than €5 billion on sewer rehabilitation 

each year [11]. 

UK holds the most aged sewer system network in the world with majority of pipes being 

installed in 19
th

 century.  Total length of sewer pipes in the UK reaches 392,599km, from which 

70,667km are concrete pipes [12]. In the last operational year 2012/2013 alone in the UK 

concrete sewer pipes experienced 11,165 collapses, most caused by pipe deterioration due to 

biochemical induced corrosion, and 8,864 main bursts all leading to 1800 incidents of internal 

property flooding of which 209 are classified as severe [12, 13]. Overall, these incidents are 

costing £84.8 million annually to the water authorities, companies and consumers in the UK 

[14]. To overcome this problem water companies are renovating and replacing approximately 

550km of sewers a year which accounts only for 0.14% of overall sewer length in the UK 

[13,14] and is insufficient to fight against aging pipe network.   

 

The build-up of sulphide is considered to be one of the most critical problems in aged 

concrete wastewater pipes, where sulphide production and emission is the dominating cause of 

pipe crown and walls corrosion. Furthermore, extended facts suggest that the primary reason for 

concrete pipe failure is the deterioration caused by the corrosion process [15-18]. Due to a 

complex interaction between factors resulting in pipe wall corrosion, the rate at which a pipe 

corrodes is unique. To support this there are known a number of cases which show that the 

pipes may collapse in 3-20 years’ time when designed to last 50-100 years [15, 19]. In general 

the sewer pipe wall corrosion rate is governed by the rate at which the sulphuric acid is 

generated as well as the chemical and structural properties of the concrete material. Due to the 

chemical processes which take place in the gas phase and effluent interaction the sulphides are 

formed which facilitate the production of sulphuric acid. The last acts as a conductor between 

hydration product, present in concrete pipe wall, transformation into calcium sulphate or 

gypsum [20]. The chemical mutation which is involved in sulphide build-up is well understood, 

where the microbiologically induced corrosion or sulphide corrosion has two stages: In the first 

stage the sulphate contained in wastewater is converted into sulphide in solid and gaseous form 

as hydrogen sulphide. In the second stage the hydrogen sulphide is converted into sulphuric 

acid, which is the main component facilitating the pipe wall corrosion process.    

 

Accurate estimations of sulphide build-up as well as models predicting the remaining safe 

life of the buried concrete sewer pipes have been studied before. Among those there are 

techniques which are based on deterministic models, statistical models, probabilistic models, 

Artificial Neural Networks (ANN) and Fuzzy logic, however none of those have considered in 

depth a full range of parameters influencing sewer failure as well as used extended real life 

sewer data to validate the model [21].    

Current paper will use Evolutionary Polynomial Regression (EPR) to estimate the 

remaining safe life of a given section of a sewer pipe where the model was trained and further 

calibrated purely based on extended data measured in the field as well as historical data 

available for the selected sewers. 



FIELD EXPERIMENTS AND DATA 

 

Extended field data was collected in Neulengbach, Vienna Region, Austria in partnership with 

University of Natural Resources and Life Sciences (BOCU) and water asset management 

company AWV Anzbach Laabental.  

A total number of 142 concrete pipe sections, most with corrosion problem were selected. 

Pipes were chosen to represent a range of internal diameters (D) of 300mm, 400mm, 500mm, 

600mm, 800mm and 1200mm, where the largest population studied were 300mm pipes, totaling 

to 105 sections. Predominantly the selected pipe sections were installed in 1980’s and on the 

time of survey had an age of 21-29 years (y). Table 1 shows measured parameters minimum, 

maximum and mean values, where columns left to right show pipe diameter, slope, water depth, 

flow width, flow velocity, effluent temperature, temperature of air above the effluent, estimated 

concentration of dissolved sulphite and value relative to pH. Parameters C1 and C2 will be 

explain in the next section. Flow depth and width was calculated as annual averaged based on 

visual data available in periods from 2006-2012. Temperatures were measured in 2014 and in 

combination with historical meteorological data [22] annual average values were estimated. 

 

Table 1. Statistical values of measured pipe and effluent parameters 

 

Value 
D  

[mm] 

s  

[-] 

h  

[mm] 

b  

[mm] 

u  

[m/s] 

Ts  

[C] 

Ta  

[C] 

DS  

[-] 

j  

[-] 

C1 

[mm/y] 

C2 

[mm/y] 

Min 300 0.0003 4.50 72.93 0.36 11.82 10.00 0.00 0.03 0.03 0.02 

Max 1200 0.09 200.00 731.17 9.12 13.10 14.40 5.39 0.20 1.01 1.04 

Mean 385.21 0.02 45.18 222.50 2.95 11.82 12.50 0.85 0.07 0.26 0.23 

 

Moreover, the chemical properties of the effluent as concentration of biological oxygen 

demand [BOD5] and pH were measured in 2014, these ranged between 140-520ml/l and 7.6-

8.53, respectively. The [BOD5] was used to calculate the total sulphite build-up value d[S]/dt as 

described in [15], see Eq. (1) where (r) is pipe internal radius. Further these values were used to 

estimate the concentration of dissolved sulphite [DS] as described in [23], see Eq. (2). Values of 

pH were further used to obtain relative (j) values introduced by [19], see Eq. (3) which is only 

valid for pH values in range of 7-8.6.   



d[S]

dt
103[BOD5] 1.07 

Ts 20 
r1 10.37D      (1) 



[DS]  0.8
d[S]

dt









0.2        (2) 
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MODEL PRINCIPLES  

 

The evolutionary polynomial regression (EPR) method is a fairly novel technique adopted in 

artificial intelligence (AI) modelling. This method is a data-driven technique which has an 

ability to process and learn large number of data which do not exhibit linear relation and 

provide a desirable solution based on input parameters. EPR makes use of a combination of 

genetic algorithm (GA) and least square (LS) in order to generate a pseudo-polynomial 



regression model suitable to supplied library of data. A general EPR expression can be 

presented in the following form [24]: 

    0
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where y is the desired system output, i is a sequential number, n is the total number of terms in 

the expression which excludes the bias term a0, F is a function constructed by the process, ai is 

a constant, X is the matrix of input variables and f is the function defined by the user. The core 

functional structure in Eq. (4), which is represented by F(X, f(X), ai), is constructed by EPR 

from basic functions using genetic algorithm (GA), which selects the useful input vectors from 

X to be combined together [15]. The user defines the elements of the structure F based on 

engineering problem and physical 26understanding of the process. The evolutionary process is 

responsible for selecting and combining the feasible elements of the structure, whereas the least 

square method estimates the ai parameters [15].  

EPR method modelling is commenced by evolving equations, where the number of 

contributing parameters that represent the studied phenomenon is increased together with 

amplified evolutions. The accuracy of the developed model is measured by the coefficient of 

determination (CD) at each evolutionary stage: 
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where N is the number of data points on which the CD is computed, Ya is the actual input 

values, Yp is the EPR prediction value.  

The EPR technique makes use of a range of objective functions which help to optimize the 

outcome based on physical sense. With the development of EPR technique the output objectives 

previously only based on the accuracy of fitted data expanded to multi-objective genetic 

algorithm (MOGA). The multi-objective EPR focuses on optimising two or more objective 

functions, where one would control the model fit, and one or more would control the model 

complexity and physical logic. This approach enables to receive the best possible solution 

which allows the user to select the combination of model complexity and best fit [24, 25]. The 

study presented in this paper will use the multi-objective EPR technique [15].  

 

 

SIMULATION AND RESULTS 

 

The data for 142 pipe sections was used in EPR model simulation. Before the training process 

started the available data was split into two groups, independent training and validation. 

Training data was chosen to represent the same statistical population as those for validation. 

This was ensured by including statistical analysis and comparison of minimum, maximum, 

mean and standard deviation values for all contributing parameters relevant to each pipe 

section. Additionally, to avoid extrapolation, it was ensured that the statistical parameters of the 

validation data fell between the minimum and maximum values of the training data. From the 

above, the data with the closest values of mean and standard deviation from training and 



validation groups were used to carry out EPR model development. This process ensures 

adaptive learning of the EPR model and construction of the optimized output model.  

When the subsequent assembly of EPR model begins a number of settings (i.g. function 

type, number of terms, exponent range, etc.) can be adjusted, further step-by-step the EPR 

model involves outlined parameters and includes them in model build-up. Each developed 

model is trained and validated using set data pools, where at each stage the model accuracy is 

measured by the use of CD, see Eq. 5. 

Carrying out the steps detailed above for several EPR runs and trying out different 

combinations of  input and model parameters, two robust models, see Eq.(6) and (7), have been 

developed to predict the corrosion rate C1 and C2 (mm/y) of a concrete pipe:  
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where in both equations h is the flow depth, s is the pipe slope, u is the flow velocity, D is pipe 

internal diameter, b is flow width, Ts is effluent temperature, Ta is the temperature of air above 

the effluent, [DS] is the concentration of dissolved sulphite in the effluent calculated by Eq. (1) 

& (2) and j is the value relevant to effluent pH calculated by Eq. (3). Both of these models were 

selected based on physical sense they exhibit and scientific findings which explain the process 

of corrosion build-up in pipes. 

Model predicting corrosion rate in millimeters per year (see Table 1) which is shown in Eq. 

(6) has demonstrated a coefficient of determination of 95% and is quite simple to be used by an 

operator. C1 model has three terms and mainly concentrates on pipe geometry, flow velocity 

and basic geometry in cross-section as well as effluent temperature. A similar model without a 

temperature factor was tested and it was found that a CD of 48% could only be achieved. This 

indicates the high importance of the temperature factor to be included in the analysis and the 

influence of the temperature on corrosion rate and further prediction.   

Model predicting the corrosion rate (see Table 1) shown in Eq. (7) is more complex to that 

shown in Eq. (6). C2 model has seven terms and several repetitions of factors which are related 

to pipe geometry and flow, additionally factors as Ta, [DS] and j appeared in this model 

(compared to C1 model) and the coefficient of determination of 99% is achieved. This semi-

empirical model suggests the importance of effluent pH and dissolved sulphate values as well 

as the above effluent temperature which all affect the creation of H2S gas that directly influence 

the corrosion process if the pipe wall.   

The discrepancy between the prediction models in Eq. (6) & (7) is small in terms of 

predicting the yearly corrosion rate in (mm) and the total remaining safe life of a given pipe 

section. Figure 1 demonstrates the corrosion rate of 114 pipe sections, which were classified to 

suffer from corrosion (C<1mm on 2006-2012 survey), predicted by the both models C1 and C2. 

The mean value of corrosion rate of 0.26mm/y and 0.27mm/y and standard deviation of 



0.15mm/y and 0.15mm/y was predicted by both models respectively. In 78% of cases C2 

predicts the higher rate of corrosion than the one shown by C1 model and in only in 5% of the 

cases model C1 (sections 52, 53) predicts considerably higher corrosion rate than that in C2.    

 

Figure 1. Pipe section corrosion rate predicted by models C1 and C2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pipe section year of collapse as predicted by models C1 and C2. 

 

Figure 2 demonstrates the predicted year of collapse for each pipe section based on the 

knowledge of corrosion rate predicted by models C1 and C2 and the knowledge of pipe wall 

thickness. It was estimated that the pipe failure occurs when 75% of pipe wall thickness is 

corroded as well as it was assumed that corrosion rate remains constant with time. On average 

models C1 and C2 predict that the pipes will collapse in year 2217 and 2210 with standard 

deviation of 117 and 103 years, respectively. Interestingly that the pipe sections No. 41 and 42 

located in sequence were predicted to collapse in year 2023 and 2015 by model C2. The initial 

recorded survey was carried out in 2006, which showed corrosion level of 24mm and 30mm in 

these pipe sections respectively. On secondary survey, which took place in autumn 2013, most 

of the pipe wall crone was gone and the decision was made by the managing company to 

replace the pipe section shortly before any severe consequences were faced. 

A sensitivity analysis was carried out for both of the models, as described in [15], to 

identify the parameters which by most influence the equation. Table 2 summarises the results 

for both models, where parameter sensitivity in the equation is expressed in percentage.  

C1 

C2 

C1 

C2 



 

Table 2. Sensitivity analysis of parameters involved in models C1 and C2, shown in % 

 
Model D s  h  b  u  Ts  Ta  DS  j  

C1 10.43 22.61 25.22 17.39 20.87 3.48 - - - 

C2 12.48 20.80 22.19 19.42 20.11 1.39 0.35 1.18 2.08 

 

In models C1 and C2 the corrosion rate was found to decrease with increasing values of D, u and 

j, where opposite relation was observed for other values. In model C1 all parameter weights 

were rank as h, s, u, b, D, Ts, with first having the most influence. This was confirmed in model 

C2, where the parameters were ranked as h, s, u, b, D, j, Ts, [DS], Ta. Surprisingly, the last four 

parameters had very little effect on the equations, however they do improve the general fit of 

the model. It is believed that the sensitivity of these parameters in the model are minimal due to 

the very specific, and in temperature perspective - small, range of values and thought that their 

weight will significantly increase when the extended range of these values will be considered.      

 

 

CONCLUSIONS 

 

This paper presents the Evolutionary Polynomial Regression (EPR) method which was used to 

develop a model capable of predicting the corrosion rate in concrete sewers and as a 

consequence estimate the remaining safe life of the pipe section. The model was created based 

purely on field data of live sewers. The data was collected in 142 pipe sections located in 

Neulengbach, Vienna Region, Austria. Primarily the pipes were of 300mm in diameter, 

however few sections of 400-1200mm were also studied, all within 21-29y group. Pipe 

geometrical parameters and effluent characteristics were collected between 2006-2014 and 

hence the average annual data was used in EPR. As a result of simulation two models were 

created, where factors such as h, s, u, b, D, j, Ts, [DS], Ta, were considered. First model had 3 

terms and expressed a coefficient of determination of 95%, whereas the second model had 7 

terms and suggested an accuracy of 99%. Both models are true for the range of pipe sizes and 

conditions considered in the model, whereas to generalise these models a calibration on larger 

classes of pipes with extended variety of physical and chemical conditions as well as possibly 

mechanical loading from soil and traffic are required.   
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