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Abstract

This study examines clinician interactions with a Knowledge Graph (KG)-enhanced Large
Language Model (LLM) for diagnostic support, with an emphasis on the rare condition
pseudohypoparathyroidism (PHP). Ten medical professionals engaged with simulated
diagnostic scenarios, using the KG-enhanced LLM to support reasoning and validate
differential diagnoses. Evaluation included basic model performance (RAGAS = 0.85;
F1 = 0.79) and clinician-centered outcomes, such as diagnostic conclusions, confidence,
adherence, and efficiency. Results show the tool was most valuable for rare or uncertain
cases, increasing clinician confidence and supporting reasoning, while familiar cases elicited
selective adoption with minimal AI engagement. Participant feedback indicated generally
high usability, accuracy, and relevance, with most reporting improved efficiency and trust.
Statistical analysis confirmed that AI assistance significantly reduced time-to-diagnosis
(t(8) = 4.99, p = 0.001, Cohen’s dz = 1.66, 95% CI [73.8, 197.2]; Wilcoxon W = 0.0,
p = 0.0039). These findings suggest that KG-enhanced LLMs can effectively augment
clinician judgment in complex cases, serving as reasoning aids or educational tools while
preserving clinician control over decision-making. The study emphasizes evaluating
AI not only for accuracy, but also for practical utility and integration into real-world
clinical workflows.

Keywords: knowledge graph; large language model; retrieval-augmented generation; clinical
decision support system; diagnostic accuracy; explainable AI; pseudohypoparathyroidism

1. Introduction
Healthcare systems continue to face persistent challenges due to physician shortages,

increasing workloads, and high rates of stress and burnout [1]. Clinical decision support
systems (CDSS), which are designed to improve healthcare outcomes, also help mitigate
these pressures by providing clinicians with relevant, evidence-based guidance to inform
their decisions [2]. Large Language Models (LLMs) show promise in supporting diagnostic
reasoning and reducing errors [3,4]. However, LLMs often struggle with factual accuracy
and long-term information retention [5,6]. They can also produce misleading or fabricated
content, a limitation known as hallucination and their outputs may lack transparency,
reliability, and alignment with domain-specific standards [7].

To address these limitations, a promising strategy is to enhance LLMs with Knowledge
Graphs (KGs). KGs are structured representations that explicitly encode entities and
the relationships between them, facilitating organised data management and supporting
domain conceptualisation [8]. By grounding LLMs in this structured knowledge, KGs
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improve factual accuracy, interpretability, and domain relevance [9]. Current studies [10,11]
have demonstrated that integrating KGs can enhance LLM performance in diagnostic
support. However, evaluations often focus primarily on performance metrics such as
accuracy, without considering whether these improvements address clinician concerns or
support their reasoning.

In practice, the benefits of CDSSs are frequently limited by low adoption and incon-
sistent use among clinicians [12]. Key factors influencing adoption include the perceived
usefulness and relevance of the information, as well as the system’s ease of use and effi-
ciency [13]. Clinicians are more likely to engage with support tools in situations of high
diagnostic uncertainty, such as rare or atypical cases, whereas familiar cases may evoke a
low perceived need for assistance. This highlights the importance of evaluating not only
model performance but also understanding how these models address clinician concerns
and actively support clinical reasoning across varying diagnostic scenarios.

This study examines how clinicians interact with a KG-enhanced LLM for diagnostic
support when presented with rare case presentations that can be easily misdiagnosed as
common conditions, and compares this interaction with their approach when faced with a
familiar case that may not require support. Contributions include the following:

1. Exploration of KG-enhanced LLM in Rare Case Support: Investigates how clinicians
selectively use AI assistance for rare or atypical cases, highlighting contexts where
decision support is most valuable.

2. Understanding Clinician–AI Interaction Patterns: Observes clinician behaviour across
familiar and unfamiliar cases to identify patterns of selective adoption, reliance, and
impact on diagnostic confidence.

2. Related Works
LLMs have advanced natural language processing (NLP), enabling capabilities in

text generation, summarisation, and semantic interpretation, supporting CDSS, NLP pro-
cessing for electronic health records, medical question-answering systems, and healthcare
education [4]. However, the reliability of LLM-generated content in medical contexts re-
mains a significant concern, as limited exposure to curated medical data during training
increases the risk of factual inaccuracies [14], deviations from established guidelines [15],
and the amplification of biases, including those related to ethnicity [16]. Such limitations
pose risks, particularly in high-stakes applications, as over-reliance on training data can lead
to diagnostic errors, which may cause inappropriate treatment, unnecessary interventions,
and significant harm [17,18].

To address these limitations, recent research has explored combining LLMs with
KGs, leading to two primary integration paradigms that focus on LLM enhancements:
KG-enhanced LLMs and synergised LLMs + KGs [19]. KG-enhanced LLMs incorporate
structured knowledge to improve the accuracy, consistency, and interpretability of model
outputs during different stages of the LLM cycle, while in a bidirectional, synergised
LLM–KG integration, both systems iteratively support each other [20].

KGs support LLMs in handling complex queries by providing explicit relationships
between entities, which helps LLMs reason over multiple connected concepts, resolve
ambiguities, and generate outputs grounded in verified knowledge. This helps LLMs
reduce hallucinations and enhance reasoning accuracy, which is particularly valuable in
clinical settings where accuracy and traceability are essential [20]. They also enhance data
integration, contextualisation, and decision-making, improving adaptability to real-world
clinical scenarios [21]. However, these improvements remain constrained by the coverage
and correctness of the underlying graph; any incompleteness or bias limits the precision of
the resulting model [22].
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Many studies have built and evaluated the performance of LLMs when augmented
with KGs, reporting promising improvements in reasoning, prediction, and classification
tasks across different medical domains. Table 1 summarises recent representative works,
highlighting their integration approach, medical application, methodology, models and
datasets, evaluation metrics, and key results.

Table 1. Overview of representative studies integrating Knowledge Graphs with LLMs.

Paper KG-LLM
Integration Type Medical Application Evaluation Methods &

Metrics Key Outcomes

KG-Rank [15] KG-enhanced LLM Question & Answering
system

Quantitative analysis of
KG-based reranking
framework using
ROUGE-L, BERTScore,
MoverScore & BLEURT

KG-based reranking
improved QA
performance; GPT-4
achieved +18%
ROUGE-L
improvement on
ExpertQA-Bio dataset

DR. KNOWS [23] Synergised Integration Diagnostic Prediction

Quantitative analysis of
KG path augmentation
in prompt-based LLMs
(ROUGE-2, ROUGE-L,
CUI Precision, Recall,
F1) & Human
evaluation with 2
medical professionals

KG augmentation
improved
ChatGPT(GPT-3.5-
Turbo) diagnostic F1
from 20.96 to 26.02
(5-shot). Human
evaluation confirmed a
5% absolute
improvement in correct
diagnostic rationale
agreement (p < 0.001).

XAI-Based CDSS [11] Synergised Integration Clinical Decision
Support

Quantitative analysis of
classification tasks
using Precision, Recall,
F1

KG integration led to
modest F1 gains across
mental health detection
tasks, including a
+0.1291 increase for
Cause/Factor
Detection with the Joint
RoBERTa model.

MedIKAL [10] Synergised Integration Disease Diagnosis

Quantitative analysis of
automatic diagnosis on
datasets; comparison
with LLMs,
KG-enhanced LLMs,
and synergised
KG-LLMs using
Precision, Recall, F1

Outperformed all other
models including
KG-Rank on CMD
dataset on all metrics

While these studies demonstrate the potential of KG-enhanced LLMs, their evalua-
tions largely emphasise correctness, factuality, or text similarity metrics such as ROUGE
and BLEU. Although such metrics demonstrate measurable improvements on standard
benchmarks, they provide limited insight into the practical utility of these models in sup-
porting clinician reasoning. These metrics capture surface-level performance but fail to
reflect critical aspects of clinical decision-making, including reasoning quality, reliabil-
ity, and the ability to justify outputs in complex or uncertain scenarios. Consequently, a
disconnect remains between prevailing evaluation frameworks and the real-world require-
ments of support systems, where nuanced reasoning and clinically meaningful guidance
are essential.

Even when human evaluation is included (e.g., Gao et al., 2025 [23]), it often measures
agreement with expert labels or retrospective performance on benchmark tests rather than
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on clinician behavior, selective adoption, or decision-making under real-world diagnostic
uncertainty [24]. As a result, there is little understanding about how structured knowledge
integration affects clinician interaction, reliance, and the likelihood of clinical adoption
in real-world workflows. As a result, little is known about how structured knowledge
integration affects clinician reliance, interaction patterns, or adoption in real-world work-
flows. Moreover, the heavy reliance of LLMs on effective prompting means that model
use depends not only on model capabilities but also on clinician habits, experience with
prompting, and expectations of the tool, all of which can influence perceived usefulness,
efficiency, and willingness to adopt. This has practical implications: verbose outputs or
repeated prompting may reduce efficiency and lead to selective adoption [25].

To address this gap, our study shifts the focus from model-centric performance evalu-
ation to clinician-centred assessment. Rather than aiming to establish performance superi-
ority, this work adopts an exploratory, formative approach to understand how clinicians
interact with a KG-enhanced LLM across different diagnostic scenarios. We observe how
KG-enhanced LLMs are used differently depending on diagnostic uncertainty, capturing
interactions, trust, reasoning, and confidence, emphasising practical utility.

3. Materials and Methods
This section describes the design of a KG-enhanced LLM and an exploratory evaluation

framework aimed at understanding how such systems may support clinical reasoning in
rare disease diagnosis. Rather than optimising or benchmarking model performance, the
focus of this study is on clinician interaction, perceived utility, and trust when engaging
with a KG-enhanced diagnostic tool. The proposed framework embeds structured clinical
context into LLM responses to promote grounded, interpretable outputs.

3.1. Pseudohypoparathyroidism: Disease and Case Selection

Pseudohypoparathyroidism (PHP) encompasses rare endocrine disorders charac-
terised by end-organ resistance to parathyroid hormone (PTH), with subtypes including
type 1A, type 1B, type 1C, pseudo-PHP, and type 2 [26]. Given the high level of clinical
suspicion required to distinguish PHP from conditions such as idiopathic epilepsy or other
causes of hypocalcaemia, an LLM augmented with a structured MKG could assist clinicians
by systematically analysing symptom patterns and laboratory findings. Three case studies
were selected for evaluation. The first two focus on PHP subtypes, and the third involves
a common condition not included in the KG, serving as a control. This control ensures
the KG does not provide information outside its scope and helps establish a baseline for
clinician confidence when handling familiar conditions versus rare diseases. Quantitative
and qualitative methods assess diagnostic accuracy, clinical relevance, and practical util-
ity, offering insights into the potential of KG-enhanced LLMs to reduce misdiagnosis in
complex cases.

3.1.1. Case Study 1 (Typical Presentation: PHP Type 1A)

Based on Najim et al. (2020), this scenario describes a 34-year-old woman who
presented with symptomatic hypocalcaemia and was ultimately diagnosed with PHP
type 1A [27]. Laboratory investigations revealed abnormal calcium, phosphate, and
parathyroid hormone levels consistent with hormonal resistance. Additionally, the patient
exhibited features of Albright hereditary osteodystrophy (AHO), consistent with the clas-
sical presentation of PHP type 1A, a rare but clinically important condition that is often
underdiagnosed.

https://doi.org/10.3390/electronics15030555

https://doi.org/10.3390/electronics15030555


Electronics 2026, 15, 555 5 of 26

3.1.2. Case Study 2 (Atypical Presentation: Pseudo-PHP)

Adapted from Najim et al. (2020), this case involves a 9-year-old girl attending a
routine check-up to monitor growth given her short stature [27]. She had no clinical
complaints, and laboratory findings were normal. Despite the absence of biochemical
abnormalities, the child exhibited features characteristic of AHO, including a round face,
short stature, and brachydactyly. The constellation of findings suggested pseudo-PHP, an
atypical variant in which phenotypic features are present without hormonal resistance.

3.1.3. Case Study 3 (Control: Severe Malaria, Out-of-Scope Condition)

As a control, this case centres on a 55-year-old woman who developed severe Plas-
modium falciparum malaria following a trip to Ghana [28]. Upon returning to Florida, she
was admitted with fever, confusion, and hypotension and was treated successfully with in-
travenous artesunate. Because malaria falls outside the KG’s scope, this case was included
to assess hallucination risk when the system encounters conditions without KG coverage.

3.2. KG Construction

The KG was manually constructed from scientific publications, including the peer-
reviewed literature, textbooks, and clinical guidelines issued by authoritative institutions,
publishers, and researchers. These sources are highly trustworthy, widely available, and
provide a reliable foundation for creating a disease-specific KG. Manual construction was
chosen to ensure careful curation of clinically relevant entities and relationships, minimising
errors or omissions that automated methods might introduce. The focus was on PHP and
one of its common misdiagnoses: epilepsy [29]. This diagnostic error can occur when
patients present with seizure-like complications caused by chronic hypocalcaemia or when
tetany is mistaken for seizures. This overlap highlights the need for careful curation of
clinically relevant knowledge.

We manually extracted relevant entities and relationships from these sources. Extrac-
tion focused on key clinical features, diagnostic criteria, treatment options, and ways in
which PHP is commonly confused with epilepsy. Entities and connections were organised
into structured sets to identify critical relationships and construct a comprehensive knowl-
edge base. A simple, well-defined graph schema was designed in Neo4j (Desktop 5.x) to
capture both hierarchical and semantic relationships. Hierarchical relationships represent
subtype structures, such as the IS_A link between PHP and its subtypes PHP type 1A and
type 1B. Semantic relationships reflect clinical associations across entity types; for example,
epilepsy has a HAS_SYMPTOM relationship with seizure and a DIAGNOSED_BY link to
EEG (Figure 1). This schema supports meaningful clinical queries and enables complex
reasoning across diagnostic pathways and differential diagnoses. Each node was populated
with a detailed description of the associated entity. Nodes were also assigned properties to
encapsulate relevant clinical information and salient characteristics. This enabled accurate,
enriched representations of entities, making it easier to trace relationships and identify
potential diagnostic patterns.

In total, the KG comprises 160 nodes, 252 edges, 69 node labels, and 71 relationship
types. The KG’s scope is small but focused, centering on PHP and selected related details,
such as overlapping features with epilepsy, for example, differentiating seizures from tetany.
While the size is limited, this was intentional for an exploratory study, allowing for the
careful assessment of clinician interaction and system utility.
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Figure 1. This schematic illustrates examples of hierarchical and semantic relationships in the
Knowledge Graph. Hierarchical links represent subtype structures (e.g., PHP → PHP type 1A), while
semantic links capture clinical associations (e.g., epilepsy HAS_SYMPTOM seizure).

3.3. LLM Integration

To support the KG-enhanced system, GPT-4o-mini (version date: 18 July 2024) was
selected for its predictable reasoning and computational efficiency [30]. Compared with
GPT-3.5-turbo, GPT-4o-mini demonstrates approximately four times the reasoning capacity
and operates at roughly three times the processing speed, while supporting multimodal
inputs and extended context lengths. It was chosen over other medical LLMs not for
maximal diagnostic accuracy, but to enable smooth, low-latency interactions that allow
clinicians to explore and evaluate the system’s utility without introducing variability or
unnecessary complexity.

The integration follows a straightforward, context-enriched framework. When a user
query is received, relevant triples are retrieved directly from the Neo4j knowledge graph
using Cypher queries. These triples are structured into a textual context and injected into a
fixed prompt for GPT-4o-mini, which generates responses constrained to the KG content.
This ensures that the LLM’s reasoning is grounded in structured medical knowledge,
avoiding hallucinations while providing context-aware guidance.

LangChain orchestrates the workflow, combining query handling, KG retrieval, and
prompt construction into a seamless pipeline.

The fixed prompt template used to constrain the LLM’s responses to the retrieved
knowledge graph context is provided in Appendix A.

3.4. System Architecture

The KG-enhanced LLM system uses a lightweight, modular design tailored for ex-
ploratory evaluation. The backend is implemented in Python 3.12 with FastAPI, exposing
a single synchronous API endpoint. Queries are processed sequentially, with responses
generated only after full KG retrieval and LLM reasoning.

The KG is stored in Neo4j (Desktop 5.x), and a custom service layer retrieves sub-
ject–predicate–object triples, including node labels, descriptions, and properties. Retrieved
triples are structured and serialized into a textual context for the LLM. No ranking, thresh-
olds, similarity filtering, or re-ranking mechanisms are applied.
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https://doi.org/10.3390/electronics15030555


Electronics 2026, 15, 555 7 of 26

GPT-4o-mini handles reasoning via LangChain in a zero-shot configuration, using a
fixed prompt that instructs the model to respond solely with the KG context and indicate
when information is unavailable. Default model parameters are used, including a tempera-
ture of 0.7. Response times reflect the cumulative cost of KG retrieval, context preparation,
and LLM generation; no latency measurements or optimization strategies were applied
(see Table 2).

The frontend is minimal, featuring a query input box, system title, and response
display area. This simple interface ensures that clinician focus remains on the system’s
reasoning support rather than the interaction design.

Table 2. Key Parameters and Design Choices of the KG-Enhanced LLM Framework.

Parameter Setting/Description

Knowledge Graph Retrieval
Knowledge retrieval strategy Direct graph traversal over Neo4j using Cypher queries
Retrieval limit (Top-k) Not explicitly parameterised; up to 1000 triples retrieved per query
Similarity metric Not applicable (no embedding-based similarity search)
Re-ranking Not enabled
Filtering thresholds None applied

Context Handling
Context formatting Subject–relation–object triples rendered as text
Context injection method Full retrieved context appended to the LLM prompt

LLM Configuration
LLM model GPT-4o-mini (via LangChain)
LLM temperature 0.7

System Behavior/Constraints
Abstention behaviour Implicit, enforced via prompt instruction when KG coverage is insufficient
Response grounding Restricted to provided KG context via prompt constraint
Latency optimisation Not explicitly optimised or measured

3.5. Evaluation Process

The evaluation adopts a formative, mixed-methods design intended to explore clini-
cian interaction with a KG-enhanced LLM rather than to establish definitive performance
gains. Evaluation is divided into two stages: (1) a limited technical assessment to ensure
basic system reliability and faithfulness, and (2) a clinician-centered evaluation focused on
usability, trust, and perceived support for diagnostic reasoning (Figure 2).

3.5.1. Model Evaluation

Model evaluation follows a structured and automated approach using the Retrieval-
Augmented Generation Assessment System (RAGAS). A dataset of 10 clinically relevant
questions with expert-validated reference answers was prepared, balancing short-form and
long-form queries. The RAGAS evaluation framework, designed for RAG systems [31],
comprises five components: faithfulness, context precision, context recall, answer relevancy,
and answer correctness. These metrics are computed automatically by the framework.

Faithfulness reflects factual accuracy, calculated as the number of correct facts divided
by the total number of facts in the response, ensuring the system avoids introducing mis-
leading or incorrect information. Answer relevance measures the proportion of relevant
concepts in a response, indicating whether outputs address the clinical query meaningfully.
Context precision captures the proportion of retrieved sentences that are relevant, high-
lighting retrieval efficiency, while context recall evaluates whether the system retrieves all
relevant KG knowledge available for the query. Answer correctness combines semantic
similarity and factual accuracy to assess alignment with validated ground truth.
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Figure 2. Overview of the evaluation process. The model evaluation uses a dataset of expert-validated
questions assessed with RAGAS to measure faithfulness, relevance, and KG retrieval performance.
The clinical evaluation involves a two-phase simulation where clinicians first diagnose cases unaided,
then with KG-enhanced LLM support, capturing diagnostic accuracy, confidence, and adherence to
AI recommendations.

While ROUGE metrics (Recall-Oriented Understudy for Gisting Evaluation) were also
considered, their applicability was limited by the small sample size and the exploratory
nature of this study. The evaluation prioritised contextual relevance, transparency, and
faithfulness over surface-level text-overlap metrics such as ROUGE.

3.5.2. Clinical Evaluation

Clinical evaluation examines how clinicians interact with the KG-enhanced LLM and
perceive its utility in diagnostic decision-making. The evaluation consists of a pre-interview
survey, a two-phase clinical simulation, and a post-interview survey to capture both
performance and perceived clinical utility. Before the simulation, participants complete
a pre-interview survey to collect demographic data, including years of experience and
specialty. During the interview, participants are presented with three test cases: two
corresponding to diseases represented in the KG (Cases 1 and 2, differing in subtype and
complexity) and one control case featuring a disease outside the KG (Case 3). This design
allows for the assessment of the system’s ability to manage both familiar and “out-of-scope”
scenarios, including appropriate handling of uncertainty.

The simulation occurs in two phases. In Phase 1, participants complete the cases
without AI assistance. They record their diagnostic conclusions and time-to-diagnosis while
the interviewer acts as the patient, responding to history-taking questions. Participants
may request physical examination findings, laboratory tests, and radiology results, which
are provided according to the case and clinical judgment. The order of case presentation
varied: the first participant completed Case 2 → Case 1 → Case 3; the next eight participants
followed Case 1 → Case 2 → Case 3, starting with a straightforward case before progressing
to a more atypical one; and the final participant, with more endocrinology experience,
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completed Case 3 → Case 1 → Case 2 to explore the effect of starting with the most
familiar condition.

In Phase 2, participants complete the same cases with access to the KG-enhanced
LLM. They again record diagnostic conclusions, adherence to KG suggestions, and time-
to-diagnosis. Time-to-diagnosis is treated as a secondary, descriptive outcome. Because
participants have prior exposure to the cases and interactions with the AI include typing and
prompting, these results do not allow for causal inference and are reported for illustrative
purposes only.

The primary evaluation focuses on three key clinical outcomes: Diagnostic Assessment,
confidence, and KG adherence. Diagnostic accuracy measures whether the participant
reaches the correct diagnosis, including subtypes when applicable. KG adherence reflects
the proportion of AI recommendations integrated into the final diagnosis, classified as
full (AI suggestions fully incorporated and leading to the correct diagnosis), partial (some
engagement with AI outputs but the case is not fully resolved), or none (AI disregarded
or no diagnosis reached). Diagnostic confidence is measured using a 5-point Likert scale
before and after AI interaction, recorded during post-interview feedback, to capture changes
attributable to KG assistance. Post-interview feedback also captures participant perceptions
of accuracy, relevance, usability, trust, and overall satisfaction with the AI-assisted workflow.
Secondary metrics include time-to-diagnosis and observed instances where the model
provided misleading or incorrect suggestions outside its scope. These instances were
recorded descriptively, with a target threshold of <10%, but formal statistical false-positive
rates were not calculated. Figure 3 shows the user interface used by clinicians to submit
queries and view KG-enhanced LLM responses during the evaluation.

Figure 3. User interface.

3.5.3. Participant Selection Rationale

For this pilot, the target group consists of 10–15 clinicians, including general practi-
tioners (GP), residents, and junior doctors with 1–7 years of experience. This mix allows for
diverse perspectives, ensuring the KG-enhanced LLM is evaluated by those most likely
to benefit from decision support. Novice clinicians (1–3 years) are particularly likely to
improve efficiency and confidence with KG assistance, as they tend to rely more on exter-
nal support than experienced clinicians [32]. They may also exhibit the greatest gains in
diagnostic confidence. Mid-level clinicians (4–7 years) provide valuable insight into KG
usefulness for atypical cases, where clinical experience may be limited. Focusing on this
group also avoids potential bias from expert clinicians (10+ years), who may dismiss the
KG due to overconfidence in their diagnostic skills. This participant profile aligns with
assessing the feasibility and early utility of the KG in real-world settings. This selection
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supports the study’s aim of generating early, clinician-informed insights to guide future
system design and evaluation, rather than establishing generalisable effectiveness claims.

3.6. Ethical Considerations

Ethical principles were paramount, and we ensured compliance with key guide-
lines and regulations governing AI in healthcare. These steps ensured adherence to clin-
ical ethical standards while addressing concerns related to generative AI in diagnostic
decision-making.

3.6.1. Patient Data Privacy and Confidentiality

One critical ethical consideration was patient data privacy. To avoid risks related to
sensitive data, participants were medical professionals, and cases were based entirely on
published or edited materials with no personal information. This adheres to the General
Data Protection Regulation (GDPR), which mandates explicit consent and transparency
in the use of patient data [33]. Using simulated cases avoided real clinical settings and
ensured no patient data were compromised. This process aligned with GDPR principles of
protecting personal data and securing patient confidentiality.

3.6.2. Clinical Oversight and AI Limitations

The National Institute for Health and Care Excellence (NICE) guidelines stress
the importance of healthcare professionals reviewing AI outputs before making clini-
cal decisions [34]. We followed this principle by ensuring that the AI-driven, KG-enhanced
LLM outputs were not solely relied upon for final diagnosis but used only to assist clinicians.
A medical professional reviewed all diagnostic decisions based on AI recommendations,
mitigating risks associated with over-reliance on AI. Moreover, NICE guidelines highlight
that AI systems use fixed algorithms in clinical settings, limiting their ability to adapt to
real-time data [35]. By conducting the study in a controlled environment where clinicians
retained authority over final diagnoses, we ensured that AI complemented, rather than
replaced, clinical judgement.

3.6.3. Risk Assessment and Transparency

In line with the G7 AI Code of Conduct, which advocates continuous risk assessment
and transparency, the study prioritised transparency in its methodologies and results [36,37].
Detailed information about AI capabilities, limitations, and data used was made available
to all participants. This ensured clinicians were well-informed about system operation,
strengths, and constraints.

3.6.4. Cultural Sensitivity and Inclusivity

Ethical guidelines also call for consideration of cultural factors in healthcare. Although
cases varied in age, gender was not considered a differentiating factor, in line with real-
world clinical cases. This choice reflected the need to represent a broad spectrum of patient
demographics. Recognising that cultural factors can influence diagnosis and care, future
studies should incorporate a broader range of cultural contexts to align with evolving
standards for inclusivity and cultural sensitivity.

3.6.5. Medical Professional Involvement

Throughout the study, medical professionals played integral roles in development
and evaluation phases, addressing concerns about over-reliance or potential misuse of
technology in clinical practice. Active clinician involvement ensured appropriate oversight
of AI use. Consistent with NICE and the G7 AI Code of Conduct, healthcare professionals
retained control over AI-generated findings, with AI as a supportive tool rather than a
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decision-making authority. This approach aligns with ethical principles that prioritise
human expertise in healthcare. By ensuring AI enhanced, rather than replaced, clinical
decision-making, the study emphasised the central role of clinicians in the diagnosis.
This involvement also helped mitigate risks associated with over-reliance on AI systems,
ensuring that final diagnoses remained with experienced medical professionals.

By following these ethical principles and complying with established guidelines, the
study ensured responsible deployment of the AI model. These measures safeguarded pa-
tient privacy, maintained clinical oversight, and fostered clinicians’ trust in AI technologies.
Ultimately, by adhering to these ethical standards, the study aimed to establish a framework
for responsible, transparent use of AI in healthcare to enhance diagnostic accuracy and
support clinicians’ decision-making.

4. Results
4.1. Model Evaluation Results

The primary aim of the model evaluation was to verify that a minimally viable,
clinically coherent knowledge graph could be successfully queried and used by participants,
rather than to benchmark model performance or establish generalisable accuracy claims.
This section presents an exploratory evaluation of the KG-enhanced LLM using a small,
curated question set (n = 10) with expert-validated answers (Table 3). The questions
primarily address PHP and related endocrine features, with one question drawn from
epilepsy. They span both fact-based knowledge (e.g., hormone function, genetic mutations,
clinical features) and reasoning-oriented tasks (e.g., interpreting subtype characteristics and
management considerations). Each question was submitted directly to the KG-enhanced
LLM without additional context, instructions, or prompt engineering.

Table 3. Dataset of clinical questions with expert-validated answers and corresponding KG-enhanced
LLM responses.

ID Question Expert Validated Answer KG-Enhanced LLM Response

1 What is the primary function of
PTH?

Regulation of calcium and
phosphate concentrations

The primary function of PTH is to increase
calcium levels in the blood.

2
Vitamin D deficiency is
associated with which type of
PHP?

PHP type 2 Vitamin D deficiency is associated with
PHP type 2.

3 Which PHP subtypes have a
preserved cAMP response? Pseudo-PHP and PHP type 2

The PHP subtypes that have a preserved
cAMP response are Pseudo-PHP and PHP
type 2.

4 Which genetic mutation is
associated with PHP? GNAS mutation The genetic mutation associated with PHP

is the GNAS gene mutation.

5 AHO is typically associated
with which types of PHP?

PHP types 1a, 1c, Pseudo-PHP,
and sometimes type 2

AHO is typically associated with the
following types of PHP: PHP type 1a,
Pseudo-PHP, PHP type 1b, PHP type 1c,
and PHP type 2.

6 What clinical features are
characteristic of AHO?

Short stature, obesity, round
face, brachydactyly,
subcutaneous ossifications

The clinical features characteristic of AHO
include: short stature, round facies,
brachydactyly, obesity, and osteoma cutis.

7 How is Chvostek’s sign elicited
on physical exam?

Tap the cheek about 2 cm in
front of the ear, over the facial
nerve

Chvostek’s sign is elicited on physical exam
by performing facial nerve percussion.

https://doi.org/10.3390/electronics15030555

https://doi.org/10.3390/electronics15030555


Electronics 2026, 15, 555 12 of 26

Table 3. Cont.

ID Question Expert Validated Answer KG-Enhanced LLM Response

8 When managing PHP, what
should be prevented or avoided? Hypercalciuria

When managing PHP, the following should
be prevented or avoided: hypercalciuria
and severe symptomatic hypocalcemia.

9
Which parameters should be
monitored during long-term
management of PHP?

Serum calcium, phosphate, PTH,
renal function, urinary calcium

During long-term management of PHP, the
following parameters should be monitored:
serum PTH, serum calcium, serum
phosphate, and 24 h urine calcium.
Additionally, PHP treatment monitoring is
recommended.

10 Which age groups are associated
with febrile seizures? Infants and children Febrile seizures are seen in infants and

children.

The curated questions and corresponding model responses were evaluated using the
RAGAS framework, and the resulting scores (Table 4) confirm functional viability and
surface obvious failure modes of the KG–LLM integration, rather than providing definitive
measures of model performance or robustness.

Table 4. RAGAS Metric Results.

Question Faithfulness Context
Precision

Context
Recall

Answer
Relevancy

Answer
Correctness

Q1 1.00 1.00 1.00 1.00 1.00
Q2 1.00 0.70 1.00 0.88 1.00
Q3 1.00 0.92 1.00 0.99 0.85
Q4 0.00 0.20 0.00 1.00 1.00
Q5 0.67 0.33 0.80 0.89 1.00
Q6 0.60 1.00 0.67 0.97 1.00
Q7 0.50 1.00 1.00 0.99 1.00
Q8 0.67 1.00 1.00 0.99 1.00
Q9 0.67 0.70 0.60 1.00 1.00
Q10 1.00 0.75 1.00 0.97 1.00

Average 0.71 0.76 0.81 0.97 0.98

Across the dataset, answer relevancy (mean = 0.97) and answer correctness (mean = 0.98)
were consistently high, indicating strong alignment between model outputs, clinical ques-
tions, and expert-validated answers. Context recall (0.81) was also relatively strong, sug-
gesting that the system generally retrieved relevant entities from the KG. Although context
precision (0.76) and faithfulness (0.71) exhibited greater variability, the overall mean RA-
GAS score (0.85) reflects acceptable retrieval and response alignment at the aggregate level.

To further characterise retrieval balance, an F1 score was calculated using context
precision and recall:

F1 = 2 × Precision × Recall
Precision + Recall

.

Based on an average precision of 0.76 and recall of 0.81, the resulting F1 score was

F1 = 2 × 0.76 × 0.81
0.76 + 0.81

≈ 0.79.

This F1 score indicates a reasonably balanced level of retrieval accuracy and completeness.
However, aggregate performance masks important failure modes that become ap-

parent at the question level (Table 4). Lower context precision indicates that, while most
retrieved information was relevant, irrelevant details were occasionally included. Such
“noise” can increase cognitive load, requiring clinicians to filter extraneous information to
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extract clinically useful insights. Similarly, reduced faithfulness increases the risk of halluci-
nations, which can undermine clinical safety. This divergence highlights a fundamental
limitation of automated RAG metrics: clinically correct answers may still be insufficiently
grounded in retrieved evidence, while minor abstraction or paraphrasing may be penalised
as faithfulness errors despite remaining clinically valid.

Several question-level examples illustrate these limitations. In Q4, the model achieved
perfect answer correctness (1.00) despite scoring 0.00 for both faithfulness and context
recall and only 0.20 for context precision. Although the response was factually correct, it
was entirely ungrounded in the retrieved knowledge graph, representing a breakdown of
the intended safeguard against unsupported answers. In Q5, reduced faithfulness (0.67)
and low context precision (0.33) reflected partial hallucination, where correct information
was combined with errors, including inappropriate inclusion of PHP type 1B and omission
of subtype occurrence details. In contrast, Q7 demonstrated a different failure pattern:
faithfulness declined to 0.50 despite strong performance across other metrics because a
clinically acceptable paraphrase (“facial nerve percussion”) omitted specific procedural
detail (“tap 2 cm anterior to the ear”). While less concerning than outright hallucination,
this example highlights the sensitivity of faithfulness metrics to phrasing.

Overall, average performance indicates that the KG-enhanced LLM is sufficiently
accurate and relevant for participants to meaningfully engage, although sensitivity to
phrasing and occasional retrieval noise may pose minor challenges.

4.2. Clinical Evaluation Results
4.2.1. Pre-Interview Survey

Ten participants were included in the study. The information gathered from the pre-
interview survey, including general demographic characteristics, is summarised in Table 5.
Additional items assessed in the pre-interview survey included participants’ use of search
or AI tools, perceived trust in these tools, perceived helpfulness of responses, and frequency
of use, as summarised in Table 6. Furthermore, the types of tools used are shown in Figure 4,
along with the primary purposes for which they were applied in Figure 5.

Table 5. Demographic Information of Participants. GOPD refers to General Outpatient Department.
GP refers to General Practitioner. N/A refers to Not Applicable, used when participants are not
currently working.

ID Age Practice Department Role Years of Experience

DR01 20–29 Private Internal Medicine GP 1–3 years
DR02 30–39 Private GOPD GP 1–3 years
DR03 20–29 N/A – GP 1–3 years
DR04 20–29 Private Paediatrics GP 1–3 years
DR05 20–29 Private GOPD GP 1–3 years
DR06 20–29 Government Emergency GP 1–3 years
DR07 20–29 Private Paediatrics GP 1–3 years
DR08 20–29 N/A – GP 1–3 years
DR09 30–39 Government GOPD GP 3–5 years
DR10 20–29 Government Internal Medicine Junior Resident 1–3 years

Participants completed a survey to capture their prior experience with AI and search
tools (Table 6). Responses were collected using structured scales:

• Use of Tools: Whether participants had used AI or search tools before (Yes/No).
• Helpfulness: How useful they perceived the tools to be (Not Helpful, Neutral, Helpful,

Very Helpful).
• Trust: Level of trust in the tool’s outputs (Never, Rarely, Somewhat, Mostly, Completely).
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• Frequency of Use: How often they used the tools (Never, Rarely, Monthly, Weekly,
Daily).

Table 6. Pre-Interview Survey Responses on AI and Search Tool Usage.

ID Use of Tools Helpfulness Trust Frequency of Use

DR01 Yes Neutral Somewhat Weekly
DR02 Yes Helpful Somewhat Weekly
DR03 Yes Very Helpful Mostly Weekly
DR04 Yes Helpful Somewhat Rarely
DR05 Yes Very Helpful Mostly Weekly
DR06 Yes Very Helpful Mostly Rarely
DR07 Yes Helpful Mostly Daily
DR08 No – – –
DR09 Yes Helpful Mostly Weekly
DR10 Yes Very Helpful Mostly Daily

Figure 4. AI and search tools used by individual participants. Each bar represents a participant
(n = 10), showing which tools they reported using, including ChatGPT (7 participants), Google (4),
Medscape (2), Perplexity (1), and others.

4.2.2. Diagnostic Assessment & Adherence

Diagnostic performance was assessed descriptively, focusing on whether participants
identified the relevant condition or included appropriate differentials, including subtypes
where applicable. Participants were not required to reach a definitive diagnosis; instead,
they reported their differential diagnoses and conclusions when faced with uncertainty.
These actionable conclusions, recorded in Tables 7 and 8, provide insights into how the
KG-enhanced LLM may support clinical reasoning.

Adherence patterns were analysed for Cases 1 and 2, in which all ten participants
engaged with the KG-enhanced LLM. Case 3 was excluded, as only three participants
used AI in this case; the remaining eight opted not to engage with the system, citing high
diagnostic confidence and satisfaction with their own clinical reasoning. Across Cases 1
and 2, this resulted in 20 instances in which participants attempted to reach a diagnosis
using the KG-enhanced LLM (Table 9).
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Figure 5. Use cases of AI and search tools reported by individual participants. Each bar represents a
participant (n = 10), showing the clinical purposes for which they reported using AI or search tools,
including diagnosis (4 participants), Patient education (4 participants) and others.

Table 7. Case 1: Diagnostic Assessment and KG Adherence (PHP Type 1A).

ID No AI Conclusion AI Conclusion Adherence

DR01 Manage Symptoms PHP, no subtype Partial
DR02 Referral PHP type 1A Full
DR03 Referral PHP, no subtype Partial
DR04 Secondary Hypoparathyroidism PHP, no subtype Partial
DR05 Hypocalcaemia Inconclusive No
DR06 Referral PHP, no subtype Partial
DR07 Inconclusive PHP, no subtype Partial
DR08 Hypoparathyroidism PHP, no subtype Partial
DR09 Referral PHP, no subtype Partial
DR10 PHP, no subtype PHP, no subtype Partial

Table 8. Case 2: Diagnostic Assessment and KG Adherence (Pseudo-PHP).

ID No AI Conclusion AI Conclusion Adherence

DR01 Inconclusive Inconclusive No
DR02 Referral Pseudo-PHP Full
DR03 Referral PHP, no subtype Partial
DR04 Cushing’s Syndrome Pseudo-PHP Full
DR05 Referral Inconclusive No
DR06 Referral PHP, no subtype Partial
DR07 Referral Pseudo-PHP Full
DR08 Referral Pseudo-PHP Full
DR09 Referral Pseudo-PHP Full
DR10 Referral PHP, no subtype Partial

In three out of twenty instances (15%), the KG-enhanced LLM was unable to pro-
vide relevant or usable diagnostic support. In each of these cases, the system explicitly
communicated its limitation with messages such as “This information is not contained in
my knowledge base.” A similar outcome occurred when three participants prompted the
KG-enhanced LLM in the control case. Importantly, in none of the twenty instances did the
KG-enhanced LLM provide misleading, incorrect, or out-of-scope information.
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Table 9. Summary of Participant adherence to KG-enhanced LLM suggestions.

Case Full
Adherence

Partial
Adherence

No
Adherence

Total
Instances

Adherence
Rate

Case 1 5 3 2 10 80%
Case 2 1 8 1 10 90%

Total 6 11 3 20 85%

4.2.3. Time/Efficiency Analysis

To examine whether the KG-enhanced LLM influenced diagnostic efficiency during the
interview, time-to-diagnosis was analysed as a secondary outcome. Average and median
completion times were calculated for Cases 1 and 2. Case 3 was excluded from this analysis,
as it served as a control condition and involved minimal AI usage. Time differences were
computed at the participant level by subtracting AI-assisted completion times from non-AI
times (Table 10), where positive values indicate faster task completion with AI assistance.

Across nine participants, excluding missing data from DR05, the average time differ-
ence was 135.5 s, with a median of 141 s and a standard deviation (SD) of 81.5 s (Table 11).
These values indicate that, on average, participants took longer to complete tasks without
AI, suggesting that the use of AI improved efficiency in this context.

A paired-samples t-test was conducted to assess whether the observed improvement
in time efficiency with AI was statistically significant. This test was appropriate because
each participant completed tasks under both AI and non-AI conditions, allowing for direct
within-subject comparisons. For each participant, the average completion times for Case 1
and Case 2 were calculated separately for the AI and non-AI conditions. The test statistic
was calculated using the following formula:

t =
d̄

sd/
√

n

where d̄ is the mean of the paired differences, sd is the standard deviation of these differ-
ences, and n is the number of valid paired observations. The degrees of freedom for the
test were calculated as the number of valid paired comparisons minus one:

d f = n − 1 = 9 − 1 = 8,

reflecting the nine participants with complete paired data (excluding the missing AI value
for DR05). The mean difference was d̄ = 135.5 s with a standard deviation of sd = 81.5 s.
This resulted in a test statistic of

t(8) =
135.5

81.5/
√

9
≈ 4.99,

with a corresponding probability under the null hypothesis of p = 0.001, indicating that the
observed reduction in completion time with AI was very unlikely to have occurred by chance.

The effect size was calculated using Cohen’s dz for paired samples:

dz =
d̄
sd

=
135.5
81.5

≈ 1.66,

indicating a very large effect of AI on time efficiency. A 95% confidence interval (CI) for the
mean difference was computed as

CI95% = d̄ ± t0.025,8 ·
sd√

n
= 135.5 ± 2.306 · 27.17 ≈ [73.8, 197.2].
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To check the robustness of these findings, we conducted a Wilcoxon signed-rank
test including all valid paired observations (excluding the missing value for DR05). The
Wilcoxon test statistic was calculated as:

W = 0.0, p = 0.0039,

confirming that the reduction in completion time with AI was also statistically significant
under this non-parametric sensitivity check.

Table 10. Participant-level Results (No AI vs. AI).

ID Case 1 No AI Case 1 AI Case 2 No AI Case 2 AI No AI Avg AI Avg Difference

DR01 470 s 354 s 480 s 478 s 475.0 s 416.0 s 59.0 s
DR02 600 s 507 s 900 s 502 s 750.0 s 504.5 s 245.5 s
DR03 300 s 130 s 392 s 557 s 346.0 s 343.5 s 2.5 s
DR04 375 s 215 s 552 s 290 s 463.5 s 252.5 s 211.0 s
DR05 214 s – 355 s – 284.5 s – –
DR06 206 s 244 s 476 s 218 s 341.0 s 231.0 s 110.0 s
DR07 80 s 180 s 620 s 180 s 350.0 s 180.0 s 170.0 s
DR08 80 s 97 s 487 s 330 s 283.5 s 213.5 s 70.0 s
DR09 278 s 269 s 568 s 295 s 423.0 s 282.0 s 141.0 s
DR10 180 s 225 s 572 s 106 s 376.0 s 165.5 s 210.5 s

Table 11. Summary Statistics Across Participants excluding missing data (DR05).

Statistic Case 1 No AI Case 1 AI Case 2 No AI Case 2 AI Difference

Average 285.4 s 246.8 s 560.8 s 328.4 s 135.5 s
Median 278.0 s 225.0 s 552.0 s 295.0 s 141.0 s

SD 174.3 s 123.4 s 144.3 s 154.5 s 81.5 s

4.3. Post-Interview Results

The post-interview survey collected changes in confidence and participants’ evalua-
tions of the AI-assisted tool.

4.3.1. Diagnostic Confidence

Changes in diagnostic confidence before and after AI use were analysed to assess
whether the KG-enhanced LLM provided meaningful support during clinical reasoning.
Confidence was captured using a five-point likert-type scale and converted into numeric
change (Table 12) scores to enable comparison across cases and participants (Table 13).

Case 1: Most participants began with moderate confidence, with scores around “Neu-
tral” (3 on the Likert scale). After using the KG-enhanced LLM, 7 out of 10 participants
(70%) reported an increase in confidence, 2 participants (20%) experienced no change, and
1 participant (10%) reported a slight decrease. This indicates that the AI tool generally
supported clinicians’ confidence when dealing with this case.

Case 2: Participants initially showed mixed confidence, ranging from “Low” to “High”
(2–4). Following interaction with the KG-enhanced LLM, 6 participants (60%) reported
an increase in confidence, 3 participants (30%) had no change, and 1 participant (10%)
experienced a decrease. The tool appeared to provide moderate benefit, particularly for
those who initially had lower confidence.

Case 3: Most participants were already confident before AI assistance, with initial
ratings mostly “High” or “Very High” (4–5). Eight participants (80%) who opted not to
engage with the KG-enhanced LLM reported no change in confidence, while 2 participants
(20%), despite receiving no helpful information from the AI, experienced a slight increase
as they felt validated in their own knowledge.
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Table 12. Mapping of qualitative Likert-scale metrics to numeric values before and after KG-enhanced
LLM interaction, allowing for easier interpretation of changes.

Qualitative Metric Numeric Value Qualitative Change Numeric Value

Very Low 1 Decreased Significantly −2
Low 2 Decreased Slightly −1

Neutral 3 No Change 0
High 4 Increased Slightly +1

Very High 5 Increased Significantly +2

Table 13. Participant-level change across cases before and after KG-enhanced LLM interaction.

ID Case 1
Before

Case 1
After

Case 2
Before

Case 2
After

Case 3
Before

Case 3
After

DR01 3 +1 3 +1 3 0
DR02 2 +2 2 +2 4 0
DR03 2 +2 2 +2 5 0
DR04 4 +1 4 +2 3 0
DR05 4 -2 4 -2 4 0
DR06 4 +2 4 +2 4 0
DR07 2 +1 2 +1 2 0
DR08 3 +1 3 +1 3 0
DR09 3 +1 3 +1 5 0
DR10 4 +1 2 +1 4 +1

4.3.2. Participant Feedback

Participant feedback was collected using 5-point Likert scales for five aspects of the
KG-enhanced LLM (Table 14). The scales were defined as follows:

• Usability: Overall ease of using the KG-enhanced LLM, rated on a 5-point scale from
Very difficult to Very easy (Very difficult, Difficult, Neutral, Easy, Very easy).

• Relevance of Responses: How often the AI responses provided relevant and useful
information to aid clinical diagnosis, rated on a 5-point scale from Never to Always
(Never, Rarely, Sometimes, Most of the time, Always).

• Accuracy: How accurate participants perceived the AI tool’s suggestions in support-
ing diagnosis, rated on a 5-point scale from Very inaccurate to Very accurate (Very
inaccurate, Somewhat inaccurate, Neutral, Accurate, Very accurate).

• Efficiency: Whether the AI tool improved the diagnostic process, rated on a 5-point
scale from Slowed significantly to Improved significantly (Slowed significantly, Slowed
slightly, No impact, Improved slightly, Improved significantly).

• Trust: The degree to which participants trusted the AI tool’s suggestions and guidance
for clinical decision-making, rated on a 5-point scale from Never to Completely (Never,
Rarely, Somewhat, Mostly, Completely).

Summary:

• Usability: Most participants found the tool easy or very easy to use (7/10).
• Relevance of Responses: Six out of ten reported the responses as mostly or always

relevant.
• Accuracy: Seven out of ten rated the tool as accurate or very accurate.
• Efficiency: Eight out of ten felt the tool slightly or significantly improved their diag-

nostic process.
• Trust: Six out of ten reported mostly or complete trust in the AI suggestions.
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Table 14. Participant feedback on KG-enhanced LLM (Likert scale responses).

ID Usability Relevance of Responses Accuracy Efficiency Trust

DR01 Easy Most of the time Neutral Improved slightly Mostly
DR02 Easy Most of the time Accurate Improved significantly Completely
DR03 Very easy Always Very accurate Improved significantly Completely
DR04 Neutral Always Very accurate Slowed slightly Mostly
DR05 Difficult Rarely Somewhat inaccurate Slowed slightly Somewhat
DR06 Very easy Always Very accurate Improved slightly Mostly
DR07 Neutral Most of the time Accurate Improved slightly Mostly
DR08 Neutral Sometimes Neutral Improved slightly Somewhat
DR09 Neutral Sometimes Neutral Improved slightly Somewhat
DR10 Difficult Sometimes Accurate Improved slightly Somewhat

5. Discussion
PHP is an endocrine disorder that is frequently misdiagnosed, particularly as epilepsy

in some regions, because of overlapping neurological symptoms. Diagnostic complexity is
compounded by the condition’s rarity and the varied presentations of its subtypes.

5.1. Case Study 1 (Typical Presentation: PHP Type 1A)

In Case 1 (Table 7), which included clearly abnormal laboratory values, diagnoses
in the non-AI round were broad and inconsistent. Suggestions included secondary hy-
poparathyroidism, Cushing’s syndrome, adrenal insufficiency, and in some instances, no
definitive diagnosis. Most participants ultimately opted to refer the case. Four partici-
pants initially suspected Cushing’s syndrome due to truncal obesity associated with AHO;
one also mentioned osteodystrophy. One participant referred the patient to a neurolo-
gist because of seizure-like features. Only one participant, a junior resident with recent
endocrinology experience, correctly diagnosed pseudohypoparathyroidism, but did not
specify a subtype.

With AI support, participants engaged more effectively with the case. Six reached
a diagnosis of PHP without specifying the subtype, whereas one participant asked tar-
geted questions and used the KG-enhanced LLM to identify the correct subtype. Three
participants remained inconclusive despite AI assistance.

5.2. Case Study 2 (Atypical Presentation: Pseudo-PHP)

Without AI assistance, most participants struggled with Case 2 (Table 8). The first
participant was unable to make a diagnosis, even with the KG-enhanced LLM, because the
information provided was deemed unhelpful. Among the subsequent eight participants,
several requested genetic testing but were unfamiliar with how to interpret the results. Four
offered incorrect differentials, Down syndrome, DiGeorge syndrome, autism, or Cushing’s
syndrome, based on physical features and observed behavioral abnormalities. Most opted
to refer to a specialist (neurologist or paediatrician). However, only the last participant, the
junior resident, correctly referred to an endocrinologist.

With AI support, participants navigated the atypical presentation more effectively.
Four participants correctly diagnosed pseudo-PHP, while two identified PHP without
specifying a subtype. Four participants remained inconclusive or misdiagnosed the case.
Among the nine out of ten participants who completed Case 1 before Case 2, those who
identified PHP without specifying a subtype found Case 2 confusing because its presenta-
tion resembled Case 1 but with normal laboratory values. This prompted some participants
to ask more targeted questions, which in some cases led to identifying the specific subtype,
something they had not achieved in Case 1.
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5.3. Case Study 3 (Control: Severe Malaria)

In Case 3, most participants relied on their own clinical judgement. Without AI, only
four out of ten participants diagnosed malaria, and just one correctly specified severe
malaria. The majority suspected alternative diagnoses such as sepsis, pneumonia, or
metabolic acidosis. Given the clinical findings, including a high white blood cell count
and an abnormal anion gap, sepsis or metabolic acidosis were not unreasonable. Similarly,
pneumonia was suspected because of respiratory distress.

Seven out of ten participants expressed high confidence in their clinical assessment,
noting relief at handling a familiar condition and choosing not to use the KG-enhanced
LLM. The three who engaged with the AI found it unhelpful because the clinical features
of this case were not represented in the KG.

5.4. Participant Reflections and Feedback

Most participants noted that the interview felt more like an exam, which made it
easier to forget routine questions and omit standard investigations, e.g. failing to request a
malaria parasite test in Case 3, which is routine in the region). Participants also emphasised
that, in clinical practice in this region, making a precise diagnosis is not always the imme-
diate priority. Instead, the focus is often on managing presenting complaints and clinical
abnormalities before referring the patient to a specialist. Most participants appreciated
that the system provided information only when asked, rather than offering unsolicited
suggestions; this gave users a sense of control and reduced the risk of information overload.
However, some participants were concerned that the KG-enhanced LLM often provided
too much information to be practical in a clinical setting, reflecting the context precision
score (0.76) and its implications for cognitive load. “Responses need to be more specific,”
one participant emphasised. This design also placed an additional burden on clinicians,
who had to know what to ask and how to ask it. Participants uncertain about next steps
or terminology sometimes failed to uncover helpful leads, not because the AI lacked the
answer, but because the prompt did not provide practical guidance.

Many participants emphasised the importance of transparency and trustworthiness in
medical AI tools. Participants suggested validation mechanisms, such as tracking accuracy
rates or implementing clinical trials, before full adoption. Others proposed domain-specific
restrictions or safeguards, although some could not identify specific requirements, possibly
due to unfamiliarity with AI regulations or limitations. Several participants expressed
concern that clinicians might gradually trust AI tools more than their own diagnostic
reasoning, potentially leading to a decline in critical thinking over time. This aligns with
existing concerns in the literature about automation bias in medical decision-making.

Participant feedback indicated a generally positive reception toward AI-assisted tools,
particularly as supportive instruments rather than primary diagnostic tools. Most partici-
pants would consider incorporating such a tool into their workflow, especially for rare or
complex cases, but not in emergencies or routine scenarios where clinical judgment is more
straightforward. Some participants feel the tool had greater value as an educational aid
than as a primary diagnostic tool.

A relevant question that emerged, although not explicitly asked, seems crucial: Do
clinicians fear misdiagnosing patients more because of their own judgment or because
of over-reliance on an AI tool? This distinction could provide deeper insight into how
responsibility, confidence, and trust interact in clinical decision-making. Future evaluations
should incorporate such a question.
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5.5. Limitations

This study has several limitations, the most significant being the small number of
participants and the limited evaluation dataset. Only ten clinical questions were used, and
the study involved ten participants. These constraints limit generalisability, and the results
should be interpreted as exploratory rather than conclusive. While the qualitative insights
were rich and meaningful, they do not support statistically significant conclusions.

Several limitations relate to the KG-enhanced LLM framework and its supporting
knowledge graph. The KG was manually curated from trusted sources such as textbooks
and clinical guidelines. While reliable, this introduced biases affecting completeness and
scope. Selection bias occurred because only well-documented information about PHP
and epilepsy was included, whereas newer or less established findings were excluded,
limiting representation of the full clinical picture. Expert bias also influenced content,
reflecting the perspectives and priorities of its creator. For example, the KG may emphasise
certain causes, such as low calcium in PHP-related seizures, while overlooking alternative
explanations, including neurological conditions or atypical presentations. This narrowing
of diagnostic paths could reduce the likelihood of surfacing rare but important differentials.
The restricted scope of the KG further limited its utility: with only two diseases represented,
it could not provide detailed differentials or address broader diagnostic queries, and
symptoms were represented simply as present or absent, without considering severity,
frequency, or triggers. This simplification could reinforce textbook-style reasoning and, in
complex cases, bias participants toward familiar presentations.

Other limitations relate to the clinical evaluation itself. Participant experience levels
were skewed: nine had 1–3 years of clinical experience, and one had 3–5 years. All were
general practitioners except for one junior resident. While this offered consistency in
perspective, it reduced diversity in clinical backgrounds and may have influenced how the
KG-enhanced LLM was used and evaluated. The simulated diagnostic setting was also
artificial; several participants noted that sessions felt more like exams than natural clinical
interactions, which could have affected prompting style, communication confidence, and
willingness to explore the system. Additionally, the order of case presentation was not
fully balanced, potentially introducing fatigue, priming effects, or familiarity bias. Because
participants completed the same cases in both the AI-assisted and non-AI phases, observed
differences may reflect learning effects rather than the AI’s impact. Longer-term impacts,
such as whether repeated use would influence diagnostic confidence, accuracy, or cognitive
bias, were not assessed due to time constraints and study design.

Usability was also a constraint. The system relied entirely on participants to frame
questions, offering no guidance when queries were vague or unclear. Consequently, partici-
pants sometimes failed to obtain useful responses even when the relevant information was
present in the KG.

Despite these limitations, the study provides valuable exploratory insights into how
clinicians interact with KG-enhanced LLMs and highlights practical challenges and consid-
erations for future clinical evaluations, including participant diversity, naturalistic settings,
and system usability.

5.6. Future Improvements

Future development of the KG-enhanced LLM should begin with targeted technical
improvements. Expanding the KG’s size and scope would enable coverage of a broader
range of diseases, rare presentations, and atypical symptom patterns, supporting cases char-
acterised by high diagnostic uncertainty. However, such expansion must be accompanied
by careful information prioritisation and relevance filtering to prevent excessive or poorly
structured information from overwhelming clinicians. Metric inconsistencies observed in
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the current evaluation highlight the need for additional safeguards. Future work could
incorporate abstention or fallback mechanisms to explicitly signal uncertainty when context
is insufficient, alongside systematic failure-case analyses. Introducing a re-ranking stage
to prioritise clinically relevant entities and relationships could further improve retrieval
quality, interpretability, and overall clinical reliability.

An expanded KG would also enable larger, clinician-led trials to more rigorously
examine diagnostic reasoning in atypical and rare cases under increased information
volume. Rather than treating AI responses as standalone answers, future studies should
explicitly examine how retrieved information supports different stages of clinical reasoning,
such as hypothesis generation, confirmation, exclusion of alternatives, and confidence
calibration. Capturing these interaction patterns would clarify when KG-enhanced LLMs
provide meaningful support and when they are bypassed due to low perceived need
for assistance.

Such trials would additionally allow for the assessment of whether KG-enhanced
LLMs meaningfully reduce diagnostic effort or instead introduce additional cognitive
load. Iterative refinement of system prompts and interaction design could then be used to
optimise response length, tone, usability, and cognitive load reduction, supporting real-
world clinical adoption. Future evaluations should also systematically assess interaction
efficiency under realistic time and workload constraints, including prompting behaviour
such as the number, length, and specificity of prompts, as well as the proportion of clinically
useful information returned. Prompt-tuning strategies, context-aware interactions, and
proactive detection of vague or incomplete inputs—with suggested clarifying follow-up
questions—may further reduce interaction friction and minimise trial-and-error during
clinical reasoning.

To reliably isolate AI-specific effects in future studies, a cross-over design with ran-
domised case order would be required. Where cases are repeated, inclusion of a washout
period would help minimise learning effects from prior exposure, ensuring that observed
improvements can be more confidently attributed to AI assistance. Future evaluations
should also expand the number and diversity of out-of-KG cases and explicitly require
participant interaction with the system to reliably assess hallucination rates, abstention
behaviour, and handling of unsupported or unfamiliar queries. In parallel, bias mitigation
strategies, including adversarial datasets designed to expose overfitting or spurious corre-
lations, will be essential to prevent misleading or overly narrow diagnostic suggestions.
Evaluation frameworks should further account for cultural and clinical practice variations,
as well as ethical considerations surrounding responsibility, trust, and accountability in
clinical decision-making.

Long-term integration goals focus on embedding the KG-enhanced LLM in ways that
align with clinicians’ workflows and decision-making practices. Multi-centre validation
across diverse clinical settings will be important to understand how clinicians adopt the
system selectively, identify workflow-specific constraints, and evaluate usability in real-
world contexts. Robust APIs compliant with interoperability standards such as HL7 FHIR
would support smooth data exchange and context-aware decision support, reducing friction
for clinicians. Piloting the system in targeted clinical settings will provide insight into
clinician interaction patterns, including frequency of use, number and type of prompts
issued per case, and how AI input is balanced with professional judgment. Collecting
continuous feedback from clinicians will guide iterative refinements, ensuring that the
system supports efficient decision-making, maintains trust, and integrates safely into
routine practice without adding undue cognitive burden.
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6. Conclusions
This study demonstrates that a KG-enhanced LLM can effectively support clinicians

in complex or rare cases, particularly those with atypical presentations, while offering
limited benefit in routine or familiar scenarios. Rather than replacing clinical judgment, the
system functioned as an assistive tool, supporting reasoning, providing second-opinion
insights, and acting as an educational aid. Clinicians were more likely to engage with AI
support when diagnostic confidence was low, especially in rare endocrine cases such as PHP.
Notably, AI responses that explicitly acknowledged uncertainty increased clinician trust,
suggesting that transparency and humility are important design features for medical AI.

The findings also show that the system’s usefulness depends heavily on clinician inter-
action, requiring users to recognise uncertainty and articulate effective queries. Improving
the model’s ability to detect ambiguity and proactively guide users through prompt sug-
gestions may enhance its clinical value. Participants consistently preferred to rely on their
own judgment in familiar cases, indicating that KG-enhanced LLMs are most beneficial in
situations characterised by diagnostic uncertainty rather than routine decision-making.

Safeguards remain essential to prevent overreliance, preserve clinical reasoning, and
reduce the risk of misdiagnosis, reinforcing the need for AI to remain an assistive, not
authoritative, component of clinical workflows. Strengthening the underlying KG and
validating performance across larger and more diverse datasets will be critical for ensuring
reliability. Transparent feedback and performance indicators may further support trust and
responsible adoption.

With careful design and validation, KG-enhanced LLMs can serve as effective collabo-
rative tools in clinical decision-making, enhancing diagnostic confidence while keeping
final responsibility with clinicians.
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MKG Medical Knowledge Graphs
MMR Maximal Marginal Ranking
NICE National Institute for Health and Care Excellence
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PLM Pre-trained Language Model
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RAG Retrieval-Augmented Generation
RAGAS Retrieval-Augmented Generation Assessment System
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RR Re-Ranking
SD Standard Deviation
SFT Supervised Fine-Tuning
SQuAD Stanford Question Answering Dataset
UHC Universal Health Coverage
UMLS Unified Medical Language System
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Appendix A. Prompt Template
The following prompt template was used to generate responses from the KG-enhanced

LLM. Retrieved knowledge graph context was injected verbatim, and the model was
instructed to ground its response strictly in the provided information.

Knowledge Graph Context:

{Retrieved triples formatted as subject–relation–object statements}

User Question:

{User-provided clinical query}

Instruction:

Please answer using only the information from the knowledge graph context
above. If the information required to answer the question is not available, respond
with “I couldn’t find this information in my knowledge base.”
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