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Abstract

Dynamic Movement Primitives (DMPs) provide a flexible framework for robotic trajectory
generation, offering adaptability, robustness to disturbances, and modulation of predefined
motions. Yet achieving reliable spatial coupling among multiple DMPs in cooperative manip-
ulation tasks remains a challenge. This paper introduces a graph-based trajectory planning
framework that designs dynamic controllers to couple multiple DMPs while preserving for-
mation. The proposed method is validated in both simulation and real-world experiments on
a dual-arm UR5 robot performing tasks such as soft cloth folding and object transportation.
Results show faster convergence and improved noise resilience compared to conventional
approaches. These findings demonstrate the potential of the proposed framework for rapid
deployment and effective trajectory planning in multi-robot manipulation.

Keywords: motion and path planning; learning from demonstration; manipulation planning

1. Introduction
Cooperative object transportation is increasingly important due to its broad applicabil-

ity in both industrial and everyday contexts, such as cloth folding or item packing. While
a single robot may be sufficient for simple tasks, multi-robot systems are indispensable
when dealing with large, heavy, or deformable objects. Such systems demand advanced
trajectory planning strategies that ensure adaptability, flexibility, and scalability, making
them a central focus in current research on multi-robot motion planning.

Learning from Demonstration (LfD) provides an effective framework for modeling
and generalizing complex, human-demonstrated movements. Compared to traditional
coordination-based methods [1,2], synchronization strategies [3–5], and path-planning al-
gorithms [6–8], LfD offers distinct advantages in capturing motion patterns. This capability
is particularly important in multi-robot trajectory planning, where the seamless integration
of individual robot trajectories is essential. Recent advances in motion planning and control
have further enhanced the capabilities of multi-robot systems [9–12].

Dynamic Movement Primitives (DMPs) [13] are fundamental to the LfD framework,
enabling efficient modeling and reproduction of demonstrated trajectories in multi-robot
settings. DMPs integrate damping mechanisms to ensure fast convergence and robust-
ness to disturbances, while their canonical system allows synchronization across multiple
dimensions, making them well suited for multi-agent manipulation. These properties
have spurred progress in areas such as human–robot skill transfer [14–16], reinforcement
learning [17], and obstacle avoidance [18,19].
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Despite these advantages, challenges remain with regard to achieving spatial coupling
among multiple DMPs to maintain formation during cooperative manipulation. This
limitation constrains the application of standard DMP methods in complex multi-robot
tasks, such as the example shown in Figure 1. To address this gap, this work introduces
a novel approach that emphasizes the spatial coupling of multiple DMPs to preserve
formation—an essential requirement for coordinated multi-robot motion planning. By
tracking a coupled generalized DMP trajectory, multiple robots can perform cooperative
tasks effectively while maintaining the desired formation. The contributions of this work
are twofold:

1. We present a novel graph-theoretic algorithm for coupling multiple DMPs with
an emphasis on spatial formation preservation. The proposed controller design is
rigorously analyzed and shown to outperform classical methods in both convergence
speed and robustness.

2. We validate the proposed approach through extensive simulations and real-world
experiments focused on multi-robot object transportation. The method is evaluated
on benchmark tasks, including cooperative transportation and human–robot collabo-
ration, demonstrating both robustness and practical effectiveness.

Manipulated objects

Initial Position Goal Position

DMP trajectory

Gripper 1 
Gripper 2 

Gripper 3 
Gripper 4 

Figure 1. Multi-trajectory planning for object transportation. The system demonstrates coordinated
manipulation where multiple robots maintain the desired formation (indicated by the red dotted
lines) while transporting objects collaboratively.

2. Related Works
To date, the comprehensive exploration of coupled or cooperative Dynamic Movement

Primitive (DMP) generalization remains limited. In the work by Dahlin et al. [20], the
coupling of two DMPs is proposed using a virtual spring model and task-specific parame-
ters, which allow for the generalization of the coupled DMP trajectory. Umlauft et al. [21]
introduce a formation control approach, incorporating an additional control input at the
velocity level, and modify the canonical equation with a scaling term to balance priorities
between formation configuration preservation and goal-reaching. In a different approach,
in [22], the coupling term modulates the velocity and acceleration levels of the DMP system,
updated recursively through Iterative Learning Control (ILC). The proposed method is val-
idated through experiments involving human–robot cooperation in tasks such as covering
a wooden box with a lid and manipulating a stick using two arms. Subsequent work by
the same group focuses on adaptive stiffness in the operation space for cooperative control
with humans [23,24], with experiments demonstrating the translation of a rigid plate.

Subsequently, an adaptive spring-damper coupled Dynamic Movement Primitive
(DMP) trajectory method is introduced, considering feature points to manipulate soft
objects [25]. The approach in [26] introduces two DMPs for coupled generalization by
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incorporating a coordinated transformation function in a leader–follower manner. When
only the translation term occurs in the transformation function, we obtain a formulation
result similar to that obtained in [22]. Simulation tests that involve holding balls of different
sizes with two arms and wiping motion validate their proposed approach. Diverging from
previous works [22,26,27] where the coupling term is designed using a spring-mass model
and additional hardware like force or haptic sensors are required for manipulating rigid
objects, our method relies solely on vision sensors. Furthermore, we remodel the DMP
coupling generalization into a multi-agent formation control problem and assess our soft
object manipulation method in both simulation and real experiments.

3. Problem Statement
3.1. DMP Preliminary

In the framework of DMP, a d dimensional system can be modeled by a second-order
ordinary differential system

τν̇ = α(β(g − p)− ν) + f (c) (1)

τ ṗ = ν (2)

where p ∈ Rd and ν ∈ Rd are the system states representing position and velocity, re-
spectively. The system parameters α, β ∈ R are designed to satisfy the critical damping
condition α = 4β, ensuring convergence without overshooting or slow responses. The
scalar parameter τ ∈ R modulates the temporal evolution of the trajectory. g ∈ Rd and
p(0) ∈ Rd denote the goal and starting positions, respectively. The nonlinear term f ∈ Rd

is learned from a demonstration trajectory, with c ∈ R representing the canonical variable.
A more detailed introduction to DMPs can be found in [13,28].

3.2. Spatial Coupling of Multiple DMPs

The formation configuration of the robotic system is represented by an undirected
graph G = (V, E), where

• V = {1, 2, . . . , n} is the set of manipulators (vertices).
• E = {(i, j) : i, j ∈ V, i ̸= j} is the set of edges representing connections between

manipulators.

The number of edges in E is denoted by l = 1, 2, . . . , n(n−1)
2 . Each manipulator i is associated

with a position pi ∈ Rd in the inertial frame, and the framework F is defined as the pair
(G, p), where p ∈ Rnd is the stacked column vector of all n manipulator positions. The
neighborhood of manipulator i is denoted as follows:

Ni(E) = {j ∈ V | (i, j) ∈ E}.

The desired formation is specified by the framework F∗ = (G∗, p∗), where

• G∗ = (V∗, E∗) defines the graph structure of the desired formation with dim(V∗) = n
and dim(E∗) = l;

• p∗ =
[
p∗1 , . . . , p∗n

]
contains the desired positions of the manipulators.

An example of a desired rectangular formation, represented by red dotted lines, is
illustrated in Figure 1.

The edge function ϕ : Rnd → Rl is defined as follows:

ϕ(p) =
[
· · · , ∥pi − pj∥2, · · ·

]
, (i, j) ∈ E,
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where the kth element of ∥pi − pj∥2 corresponds to the kth edge in E, connecting the vertices
i and j. The rigidity matrix R : Rnd → Rl×nd of the framework F = (G, p) is defined as
follows:

R(p) =
1
2

∂ϕ(p)
∂p

. (3)

The rigidity matrix R represents the relationships between manipulators in a multi-
agent system, with a row for each edge and m columns corresponding to the vertices (i.e.,
robot manipulators). For the kth edge in the edge set E connecting manipulators i and j,
the kth row of the rigidity matrix R is defined as:

rk = [0 . . . 0 (pi − pj)
T 0 . . . 0 (pj − pi)

T 0 . . . 0], (4)

where (pi − pj)
T is placed in the columns corresponding to manipulator i, (pj − pi)

T

is placed in the columns corresponding to manipulator j, and all other entries are zero.
This structure ensures that the row represents the relationship between the ith and jth
manipulators by mapping the positional differences across the system.

The desired distance d∗ij between manipulators i and j in the formation is given by

d∗ij = ∥p∗i − p∗j ∥, i, j ∈ V∗, (5)

where p∗i and p∗j denote the target positions of manipulators i and j in the desired for-
mation V∗. The distance d∗ij is a positive scalar representing the desired edge length in
the formation.

The DMP trajectory for the ith manipulator, represented by Equations (1) and (2), can
be expressed as a double integrator system:

ṗi =
vi
τ

, (6)

v̇i =
Ci
τ

, i = 1, . . . , n, (7)

where pi ∈ Rd, vi ∈ Rd, and Ci ∈ Rd represent the position, velocity, and control input,
respectively, and τ ∈ R is a temporal scaling factor.

The goal is to design the control input Ci as follows:

Ci = Ci( p̃ij, vi − vj, d∗ij), where p̃ij = pi − pj, j ∈ Ni(E∗),

such that the multiple DMPs trajectory formation F(t) converges to the desired formation F∗:

F(t) → F∗ as t → ∞. (8)

4. Proposed Method
4.1. Graph-Based Controller Design

Using Lyapunov stability theory, we design a compact controller

C =
[
· · · , C⊤

i , · · ·
]⊤

, i = 1, . . . , n,

to couple n DMP trajectories in Equations (6) and (7) into the desired formation and
maneuver them along a demonstrated DMP trajectory, as shown in Equation (8). The
controller is defined as follows:

https://doi.org/10.3390/robotics15010029
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C = −R⊤( p̃)z − k1s + υ̇ f , (9)

υ f = −k2R⊤( p̃)z + vd, (10)

where z and s represent position and velocity error terms, R( p̃) is the rotation matrix
derived from the edge distance vector p̃ ∈ Rld, and k1, k2 ∈ R are positive control gains.
Within the tolerable range of control input, increasing k1 and k2 improves the convergence
rate of the errors. However, this comes at the cost of higher control effort. For both
real-world and simulation experiments, we set k1 = k2 = 10.

The collective velocity vector vd for the formation is defined as

vd =
[
vd1, vd2, . . . , vdn

]⊤
,

with the velocity of the i-th element given by

vdi =
∫ t

0

αβ(gi − pi)− vi + fi(c)
τ

dt, (11)

τ ṗi = vi. (12)

4.2. Convergence Analysis

The edge length error eij between the current edge length ∥ p̃ij∥ and desired edge
length d∗ij is defined as

eij = ∥ p̃ij∥ − d∗ij, (13)

e =
[
· · · , eij, · · ·

]T ∈ Rl , (i, j) ∈ E∗. (14)

Based on Equations (6) and (13), the edge error dynamics could be obtained as

ėij = ( p̃T
ij p̃ij)

− 1
2 p̃T

ij(vi − vj)

=
p̃T

ij(vi − vj)

eij + d∗ij
.

(15)

For clarity in the derivation, the scalar parameter τ was omitted. Since it only controls
the evolution speed of the solution, setting τ = 1 does not affect the derivation.

A squared form error variable zij can be defined as

zij = ∥ p̃ij∥2 − d∗ij
2 = eij(eij + 2d∗ij)

z =
[
· · · , zij, · · ·

]T ∈ Rl , (i, j) ∈ E∗,
(16)

where eij = pi − pj. The Lyapunov candidate function W(e) can be defined as

W(e) =
1
4 ∑

(i,j)∈E∗
z2

ij =
1
4

zTz. (17)

This candidate is positive definite with respect to e.
Taking the derivative of W(e), Ẇ(e) is obtained as

Ẇ(e) = ∑
(i,j)∈E∗

eij(eij + 2d∗ij) p̃T
ij(vi − vj), (18)

which can be compactly rewritten in vector form as

Ẇ(e) = zT R( p̃)v. (19)
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To couple and control the DMP, here, we introduce another variable s, which is defined
s = v − v f , where v f is the fictitious control input in the velocity level. Incorporating error
s together with the edge length error e in the Lyapunov candidate in Equation (17), the
original candidate W(e) now can be reformulated as

WD(e, s) = W(e) +
1
2

sTs, (20)

with a subscript D denoting the DMP trajectory. To this end, the first term W(e) in WD(e, s)
can be interpreted as the system potential energy, and the second term can be interpreted
as the kinetic energy of the system. As it is the positive definite in e and s, the reformulated
function WD(e, s), which is the total energy of the DMP system can be a suitable Lyapunov
candidate. Taking the derivative of WD(e, s), ẆD(e, s) can be obtained as

ẆD(e, s) = zT R( p̃)v + sT ṡ

= zT R( p̃)(s + v f ) + sT(v̇−v̇ f )

= zT R( p̃)v f + sT(C−v̇ f + zRT( p̃))

(21)

To couple the multiple DMPs generalization to realize the task-specific desired forma-
tion during the manipulation, substituting Equations (9)–(12) into Equation (21),

ẆD(e, s) = −k2zT R( p̃)RT( p̃)z − k1sTs + zT R( p̃)vd (22)

Given that the framework F∗ is designed to be both infinitesimally and minimally rigid [29],
the edge lengths in the multiple DMPs formation are preserved during continuous defor-
mation. Specifically, the distances satisfy

∥pi(t)− pj(t)∥ = ∥p∗i − p∗j ∥ = Const, (i, j) ∈ E. (23)

Assuming the DMP trajectories pi(t), i ∈ V, are differentiable on t ∈ [0, 1], squaring
both sides of Equation (23) and differentiating with respect to time yields

d
dt
∥pi(t)− pj(t)∥2 = 2(pi(t)− pj(t))⊤( ṗi(t)− ṗj(t)) = 0. (24)

This condition holds for all t ∈ [0, 1], and the formation-keeping constraint for multiple
DMPs simplifies to

(pi − pj)
⊤( ṗi − ṗj) = 0, (i, j) ∈ E. (25)

If we decompose the collective velocity vd into a global translational component v0 and a
rotational component ω, the velocity of the i-th DMP trajectory becomes

vdi = v0 + ω × q̃i, (26)

where q̃i denotes the position of vertex i relative to the center of rotation. Substituting
ṗi = vdi and ṗj = vdj into Equation (25), we have

(pi − pj)
⊤(vdi − vdj) = 0. (27)

Expanding vdi − vdj using the velocity decomposition

vdi − vdj = ω × (q̃i − q̃j), (28)

yields

https://doi.org/10.3390/robotics15010029
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(pi − pj)
⊤(ω × (q̃i − q̃j)) = 0. (29)

Since the cross product ω × (q̃i − q̃j) is orthogonal to the plane defined by ω and q̃i − q̃j,
it follows that the dot product (pi − pj)

⊤(ω × (q̃i − q̃j)) = 0 is automatically satisfied.
Using the definition of the rigidity matrix R( p̃), as given in Equations (3) and (4), we

can rewrite Equation (25) in matrix form:

R( p̃)vd = 0. (30)

Therefore, the original inequality in Equation (22) can be expressed as

ẆD(e, s) ≤ −k2λmin(R( p̃)R⊤( p̃))z⊤z − k1s⊤s

≤ −min
(
2k1, 4k2λmin(R( p̃)R⊤( p̃))

)
WD(e, s),

(31)

where λmin denotes the smallest eigenvalue of R( p̃)R⊤( p̃). The term min(2k1,
4k2λmin(R( p̃)R⊤( p̃))) is a positive constant, and WD(e, s) = 1

4 z⊤z+ 1
2 s⊤s = 1

4∥z∥2 + 1
2∥s∥2

is positive definite.
Hence, by applying the exponential stability theorem as defined in [30], we conclude

that (e, s) = 0 is exponentially stable. Therefore, the multiple DMPs’ formation F(t)
converges to the desired formation F∗.

As t → ∞, e(t) → 0, and the error variable z(t) converges to 0. Consequently, p̃ and R(p̃)
are bounded, which allows the original design of υ f in Equation (10) to be simplified as

υ f = vd. (32)

This simplification leads to the compact controller in Equation (10) reducing to the expres-
sions in Equations (1) and (2). This implies that all the engaged manipulator trajectories
converge to the canonical DMPs trajectory. Thus, it is proven that the coupling of all
engaged DMPs drives the system to move collectively into the desired formation, as shown
in Equation (8).

5. Experimental Validation
5.1. Experiments Overview

To evaluate the proposed multiple DMP coupling method, we conducted a compre-
hensive assessment through numerical analyses, computer simulations, and real-world
experiments, focusing on multiple DMPs formation coupling. In the numerical analyses
(Figure 2), we explored various scenarios with different demonstrated DMP trajectories and
goal-reaching positions. Simulations were performed in the Bullet Physics library (Figure 3)
using four 3-DOF serial manipulators to transport a soft film to multiple goal positions.
Real-world experiments employed two 6-DOF UR5 robots (Universal Robots A/S, Odense,
Denmark) For end-effector pose tracking in real-world experiments, we employed an Intel®

RealSense™ Depth Camera D435 (Intel Corporation, Santa Clara, CA, USA) mounted in
a fixed position above the workspace. Colored markers (spherical markers with 2 cm
diameter) were attached to each robot end-effector. The marker coordinates were extracted
using a YOLOv5-based object detection algorithm [31] for real-time marker localization in
the RGB image stream, followed by depth alignment to obtain 3D coordinates in the camera
frame. YOLOv5 was selected for its balance between detection accuracy and computational
efficiency, achieving real-time performance on standard hardware. A hand–eye calibration
procedure was performed to transform the coordinates from the camera frame to the robot
base frame using the approach described in [32]. The marker detection algorithm achieves
an update rate of 30 Hz with positional accuracy of approximately ±2 mm under good
lighting conditions. This vision-based approach provides real-time feedback on manipu-

https://doi.org/10.3390/robotics15010029

https://doi.org/10.3390/robotics15010029


Robotics 2026, 15, 29 8 of 17

lator end-effector coordinates, ensuring accurate and responsive trajectory adjustments
during the experiments.

Figure 2. (a) Multiple DMPs ‘Rectangle’ formation coupling while following a ‘Semi-Circle’ DMP
trajectory. The initial formation (red squares) transitions through intermediate coupling states
(shown by green triangles at different time steps) to reach the desired formation at the goal position
(blue circles). The blue dashed lines show uncoupled DMP trajectories, while green solid lines
demonstrate our coupled approach maintaining formation throughout the trajectory. (b) Multiple
DMPs ‘Trapezoid’ formation coupling while following the ‘J’ DMP trajectory, showing similar
formation preservation characteristics. The transition process demonstrates rapid convergence from
the initial non-coupled state to the desired coupled formation.

Figure 3. (a–d) Multiple DMPs coupling used in object transportation from ground to ground,
with subfigure (d) showing the final configuration at the ground-level target destination.
(e–h) Transportation from ground to table, with subfigure (h) demonstrating successful positioning
on the elevated table surface. The green solid line represents the coupled DMP trajectories. The red
solid line represents a rigid-link manipulator. The thin green film represents the deformable cloth
being transported. The red sphere represents an obstacle positioned along the manipulation path
to assess formation coupling robustness. (i,j) show the formation coupling error eij (in meters) over
time for scenarios (a–d) and (e–h), respectively. The error curves demonstrate that coupling errors
converge to near-zero values within 2 s and 1 s, respectively, and remain stable even when passing
the obstacle (at approximately t = 3 s), with error variation remaining within ±0.02 m. The faster
convergence in (j) is achieved with higher control gains (k1 = k2 = 20) compared to (i) (k1 = k2 = 10).

5.2. Numerical Analysis

In the numerical analysis presented in Figure 2a, multiple DMPs attempt to achieve
the ‘Rectangle’ formation coupling when starting from a non-coupling initial formation.
It is evident that all engaged DMPs can reach the goal position and follow the desired

https://doi.org/10.3390/robotics15010029
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‘Semi-Circle’ DMP trajectory even without our controller (depicted by the blue dashed line).
However, the ‘Rectangle’ coupling formation is only achieved at the goal position. This
holds true for both goal one and goal two. The reason is that multiple DMPs generalize
independently, and the formation coupling constraints do not influence every engaged
DMP’s generalization. Consequently, the formation gradually evolves from the initial non-
coupling formation (depicted by the red square) to the coupling formation (depicted by the
blue circle) at the goal position. In contrast, our method efficiently couples the multiple
DMPs into the desired formation (depicted by the green triangle line). Notably, the multiple
DMPs quickly deviate from the blue dots’ trajectories once they begin generalizing from
the initial position. Our method ensures a rapid formation coupling, preserving this
relationship until the goal position is reached for two different goals. The transition process
from initial formation to coupled formation is illustrated by intermediate green triangle
markers, showing that coupling is achieved within approximately 20% of the total trajectory
duration (within the first 0.8 s of a 4 s trajectory). A similar performance is observed in
different numerical analyses in Figure 2b, where the desired ‘Trapezoid’ formation coupling
and the desired ‘J’ DMP trajectory validate the effectiveness of our method in various
multiple DMPs coupling configurations. The results in Figure 2a,b demonstrate that the
multiple DMPs can quickly converge into the desired coupling formation while following
the demonstrated DMP trajectory.

5.3. Bullet Real-Time Physics Simulation

Using the multiple DMPs coupling trajectories from the numerical analysis presented
in Figure 2, a simulated object transportation application was set up and tested in the
Bullet Physics C++ engine (Bullet Physics Project, San Francisco, CA, USA), as illustrated
in Figure 3. The trajectories of multiple DMPs needed to be carefully designed for the
n manipulator system to preserve the deformable object’s shape during transportation.
Benefiting from our method, the transported object’s shape can be maintained in the desired
coupling formation throughout the transportation process. Our method exhibits good
adaptability in manipulation applications, even with different initial and goal positions.

We also investigated the influence of parameters k1 and k2 in Equations (9) and (11)
on multiple DMPs coupling performance. In this analysis, k1 and k2 are two times larger
when transporting from the ground to the table (k1 = k2 = 20 in Figure 3e–h) than when
transporting from the ground to the ground (k1 = k2 = 10 in Figure 3a–d). In Figure 3i,j, it
can be observed that both cases start with a large formation coupling error, but this error
stabilizes after 2 s and 1 s for case one and case two, respectively. This reflects the positive
influence of parameters k1 and k2 on multiple DMPs coupling convergence, with higher
gains achieving faster convergence at the cost of increased control effort.

An obstacle, denoted by the red sphere in Figure 3, was introduced along the manip-
ulation path at approximately t = 3 s to assess our method’s robustness. The obstacle is
positioned to create workspace constraints without physically blocking the manipulators’
paths, simulating scenarios where robots must maintain formation awareness in constrained
environments. It can be observed that the formation coupling error in Figure 3i,j does not
deviate significantly due to the obstacle (the error remains within ±0.02 m during obstacle
proximity), and the object’s formation is maintained in the desired shape while passing by
the obstacle. In summary, as depicted in Figure 3, the trajectory generated by our method
effectively guides the multiple manipulators to accomplish the object transportation task
with preserved formation, even when the initial formation is not ideal.

https://doi.org/10.3390/robotics15010029

https://doi.org/10.3390/robotics15010029


Robotics 2026, 15, 29 10 of 17

5.4. Real Experiments: Dual Arms Cloth Folding
5.4.1. Robot-Robot Collaboration (RRC)

We further validate our method in the dual-arm cloth folding task, as illustrated in
Figure 4. Two DMPs need to be coupled together for the dual-arm robot to maintain
the desired arm relative distance while following the demonstrated ‘Semi-Circle’ DMP
trajectory. From both the top view and side view in Figure 4a, it is evident that the robot ma-
nipulators initially start close to each other, inducing wrinkles in the cloth. Upon initiating
the manipulation (starting at 2 s and 4 s), the dual arms extend outward, creating tension
in the cloth and ultimately reaching the goal position (the white marker on the cloth).

Figure 4. (a) Snapshots of manipulation of cloth from a random initial state to the goal position
(marked by white markers on cloth corners) following a ‘Semi-Circle’ DMP trajectory. The red dotted
line represents the coupled DMPs trajectories. The blue solid ball represents an obstacle positioned
along the path. The obstacle does not physically block the manipulators’ end-effectors but serves
to demonstrate the robustness of formation coupling under workspace constraints. (b,c) show the
position errors in the X, Y, and Z directions (in meters, relative to the robot base frame) for the right
and left manipulators, respectively. The X-axis is aligned with the forward direction of the robot base,
Y-axis points laterally, and Z-axis points vertically upward. (d) shows the formation coupling error
∥pright − pleft∥ − d∗ over time, demonstrating convergence to approximately 1 cm steady-state error
(relative to the desired 40 cm distance), which is acceptable for cloth manipulation tasks.

One interesting points can be observed in the formation coupling error plot in
Figure 4d. The steady-state error does not precisely converge to 0 within the first few
seconds. The presence of noise in the 3D depth camera coordinate measurements could
impact the overall coupling performance.

5.4.2. Human-Robot Collaboration (HRC)

We also explored a potential application direction in HRC based on our proposed mul-
tiple DMPs coupling method in Figure 5. Leveraging the intrinsic advantage of imitating
demonstrated trajectories, humans can interact with robots more naturally, enabling the
completion of more complex collaborative manipulation tasks, such as cooperative cloth
folding. In contrast to the experiments in Figure 4, where the robot imitated a demon-
strated swing DMP trajectory while maintaining relative distance coupling, the results in
Figure 5b–d show a similar coupling performance despite increased perturbations during
manipulation and encountering obstacles. However, it is noteworthy that the manipu-
lator’s relative distance error does not significantly increase, and the relative formation
is preserved. Considering that the desired dual-arm relative distance is 40 cm and the
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steady error is approximately 1 cm, we consider this to be a negligible error in real-world
applications. The additional disturbance introduced by the human hand can contribute to
measured coordinate errors, potentially causing degradation in HRC.

Figure 5. (a) Snapshots of folding cloth cooperated with a human from a random initial state to the
goal position following a swing DMP trajectory. The red dotted line represents the coupled DMPs
trajectories, and the blue ball represents an obstacle. Similar to Figure 4, the obstacle demonstrates
workspace awareness without causing physical interference. The human collaborator introduces
additional perturbations through hand movements and varying grip forces. (b,c) show the position
errors in the X, Y, and Z directions (in meters) for the right and left manipulators, respectively.
Increased oscillations compared to Figure 4 reflect human-introduced perturbations. (d) shows the
formation coupling error, which remains bounded despite human interaction, with steady-state error
of approximately 1 cm relative to the desired 40 cm distance.

After conducting a series of experiments in Figures 4 and 5, it is evident that the desired
multiple DMPs coupling can be achieved as multiple DMPs imitate the demonstrated
DMP trajectory for the dual-arm robot folding or collaborative tasks with humans. In
both scenarios, the performance of multiple DMP coupling is unaffected by the initially
undesired formation, and the proposed method demonstrates rapid convergence. Moreover,
the presence of a complex manipulation environment with obstacles does not compromise
formation coupling performance based on our proposed method. This flexibility is crucial
for a system with multiple manipulators, offering enhanced adaptability in varied scenarios.

5.5. Performance Metrics Analysis

To systematically evaluate the efficiency and effectiveness of the proposed method,
we analyzed convergence time and task completion metrics across all experiments. The
results are summarized in Table 1.

Table 1. Performance metrics comparison across experiments.

Experiment Convergence Time Task Completion Steady-State
(95% Settling) Time (s) Error (cm)

Numerical (Rectangle) 0.8 s 4.0 s <0.1
Numerical (Trapezoid) 0.9 s 4.2 s <0.1
Bullet Sim (Ground-Ground) 2.0 s 5.5 s 0.3
Bullet Sim (Ground-Table) 1.0 s 4.8 s 0.2
Real UR5 (RRC) 2.5 s 6.0 s 1.0
Real UR5 (HRC) 3.0 s 7.5 s 1.2
Benchmark Method [33] 4.5 s 6.8 s 1.5
Proposed Method (Comparison) 1.8 s 4.2 s 0.8
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The convergence time is defined as the duration required for the formation coupling
error to settle within 5% of its steady-state value and remain within this bound. Task
completion time refers to the total duration from the initial state to the point at which the
goal position is reached with the desired formation maintained.

Several key observations emerge as a result of this analysis. First, numerical simu-
lations demonstrate the fastest convergence (0.8–0.9 s) due to ideal conditions without
noise or modeling errors. Second, Bullet physics simulations show moderate convergence
times (1.0–2.0 s), and the influence of control gains is evident (higher gains yield faster
convergence). Third, real-world experiments exhibit longer convergence times (2.5–3.0 s)
due to sensor noise, calibration errors, and environmental uncertainties. The human–robot
collaboration (HRC) scenario shows the longest convergence time due to additional per-
turbations from human interaction. Fourth, compared to the benchmark method, our
approach achieves 60% faster convergence (1.8 s vs. 4.5 s) and 38% shorter task completion
time (4.2 s vs. 6.8 s), validating the superior performance of the proposed graph-based
coupling framework.

The steady-state errors in real experiments (1.0–1.2 cm) are acceptable given the desired
formation distance of 40 cm (representing 2.5–3% relative error), which is well within the
tolerance for soft object manipulation tasks.

5.6. Robustness to Disturbance

Based on the experimental results presented in Figures 4d and 5d, it is apparent that
the measured noise could contribute to the degradation of the multiple-DMP coupling
performance. Consequently, we conducted a systematic investigation of the impact of
measurement noise or disturbance from the sensors on our method.

To address this, we introduced an additional term accounting for DMP dynam-
ics uncertainty into the coupled DMPs equations. The original DMPs, as expressed in
Equations (1) and (2), were reformulated to include the noise term as follows:

τv̇i = α(β(gi − pi)− vi) + fi(s) + Ci + wnui (33)

τ ṗi = vi + wnvi (34)

The terms wnui and wnvi can be interpreted as noise-induced uncertainty at the acceleration
and velocity levels, respectively. We introduced additional noise by adding 1%, 5%, 10% of
Ci and vi to the DMPs with all other experimental settings kept constant.

As depicted in Figure 6, it is evident that the perturbation in the DMPs coupling
error increases slightly with the rising noise level, but the magnitude of the coupling error
remains relatively stable as the noise level increases from 1% to 10%. This observation aligns
with the results from our real experiments presented in Figures 4d and 5d. Additionally,
the multiple-DMP coupling error quickly returns to a tolerable level under all three noise
levels, demonstrating the robustness of our proposed method against measurement noise.
Therefore, even with added noise in the coupled DMP formulation, our method preserves
the formation coupling effectively.
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Figure 6. The robustness with extra noise uncertainty.

5.7. Discussion

In the context of coupling multiple DMP trajectories for robotic manipulation, force-
based coupling methods, as proposed in [22] and further developed in [34], have demon-
strated their utility. These methods rely heavily on sensory feedback to ensure the robot’s
gradual adaptation to different configurations. However, in our context, force-based cou-
pling exhibits significant limitations. Specifically, the deformable nature of manipulated
objects prevents the effective transfer of coupling forces between agents. Furthermore,
these methods depend on the object’s ability to withstand the generated coupling forces
during generalization, which is not always feasible. In certain scenarios, excessive coupling
forces risk damaging the manipulated objects, thereby reducing the method’s applicability
in industrial robotic manipulation tasks.

As the number of DMPs increases, the complexity of force-based coupling models
escalates significantly, as highlighted in [22]. This increased complexity hinders scalability,
making these approaches less practical for applications involving complex multi-DMP
trajectory design. In contrast, our proposed method addresses these challenges effectively.
By leveraging the concept of formation coupling relationships, which can be flexibly
designed for various scenarios and numbers of robotic agents in Equation (5), our approach
offers enhanced generality and scalability. However, our controller’s design relies on
detecting formation edge errors p̃ in Equation (14) using vision-based feedback, which can
pose challenges in scenarios with a high number of robotic agents. In such cases, issues like
occlusion become more pronounced. Several potential solutions can address these occlusion
challenges: deploying multiple cameras from different viewpoints with measurement
fusion based on visibility confidence scores; using predictive filtering techniques (e.g.,
Kalman filtering) to maintain pose estimates during temporary occlusions; or employing
onboard sensors such as IMUs for sensor fusion to complement vision-based measurements.
Regarding computational complexity, our graph-based controller scales as O(l), where l is
the number of edges in the formation graph. For a fully connected graph with n agents,
this results in l = n(n − 1)/2 and thus O(n2) complexity. However, practical formations
typically employ sparse connectivity patterns, such as nearest-neighbor graphs where
l ≈ n, reducing the computational complexity to approximately O(n). This sparse graph
structure makes the proposed method computationally tractable for multi-robot systems,
though the exact performance depends on the specific hardware implementation and the
complexity of the vision processing pipeline.

In comparison to other, similar approaches, the algorithm proposed in [8] addresses
the transportation of deformable objects through a hierarchical optimization framework.
This framework centrally designs the formation of robot trajectories and subsequently
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distributes the individual trajectories to each robot. However, this method also relies on
interactive force sensing to modulate distributed robot trajectories. The complexity of opti-
mization problems involving kinematic and dynamic constraints poses a barrier to meeting
the demands of rapid generalization and deployment in modern robotic applications.

In [33], multiple DMPs were coordinated through a matrix that was optimized via
dimensionality reduction and reinforcement learning (RL). However, determining the
optimal dimensionality in practical applications is challenging, as it directly impacts task
fidelity and system responsiveness. In a soft cloth-folding task in Figures 7 and 8, both their
approach and ours achieved formation coupling for a ‘Semi-Circle’ trajectory. However,
our method demonstrated significantly faster convergence of relative distances between
manipulators and desired coupling distances. Quantitatively, our method achieved 95%
convergence in approximately 1.8 s compared to 4.5 s for the benchmark method, repre-
senting a 60% improvement in convergence time.
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Converge to desired
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Figure 7. Performance comparison with the benchmark method [33] for a soft cloth-folding task
following a ‘Semi-Circle’ trajectory. The top row shows snapshots from the benchmark method at key
time points (t = 0 s, t = 2 s, t = 4 s, t = 6 s). The bottom row shows corresponding snapshots from
our proposed method at the same time instants. The benchmark method exhibits slower formation
convergence, with the manipulators reaching the desired relative distance only at t ≈ 5 s, while our
method achieves coupling by t ≈ 2 s.

Figure 8. Dual robot arm formation coupling error comparison between the benchmark method [33]
(blue dashed line) and the proposed method (red solid line). The proposed method achieves faster
convergence (reaching 95% of steady-state value at t ≈ 1.8 s vs. t ≈ 4.5 s for benchmark). The
convergence time is defined as the time required for the error to settle within 5% of its steady-
state value.

We note that discrepancies between simulation and real-world experimental results are
expected due to the idealized assumptions inherent in simulation environments. Numeri-
cal and physics-based simulations assume accurate models and measurements, whereas
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real-world experiments are affected by vision sensor noise, hand–eye calibration uncer-
tainty, robot joint compliance, and unmodeled environmental disturbances. Accurately
reproducing all these effects in a simulation is nontrivial and often infeasible. Accord-
ingly, the simulations in this work are intended to illustrate the baseline behavior and
relative performance of the proposed method under controlled conditions, rather than
to exactly replicate physical experiments. The real-world experiments serve as the pri-
mary validation of practical applicability. Despite quantitative differences, the proposed
approach consistently exhibits faster convergence and lower steady-state error compared
to baseline methods across both simulation and real-world settings, indicating robustness
to non-ideal conditions.

6. Conclusions
This work addressed the challenge of coupling multiple DMPs through a graph-

theoretic algorithm. The proposed controller achieves rapid convergence, strong noise
resistance, and high responsiveness, consistently outperforming existing approaches in
comparable scenarios. Although this study focused primarily on multi-robot manipulator
systems, this method holds broader promise for trajectory planning in other domains,
including formation control of autonomous vehicles and aerial robots. It should be noted
that the present framework considers spatial coupling under static or fixed formations
during the generalization process. A natural direction for future research is to extend
the approach to dynamic formation coupling of multiple DMPs, thereby broadening its
applicability in more complex and adaptive multi-robot tasks.
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