

UWL REPOSITORY

repository.uwl.ac.uk

Forgotten crops, future crops?

Lara, Szymon Wojciech (2025) Forgotten crops, future crops? In: IFST Oxford Food Summit 2025: Designing Adaptive Food Systems for Sustainable Nutrition, 10 Jun 2025, Oxford, United Kingdom.

This is the Submitted Version of the final output.

UWL repository link: <https://repository.uwl.ac.uk/id/eprint/14483/>

Alternative formats: If you require this document in an alternative format, please contact: open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

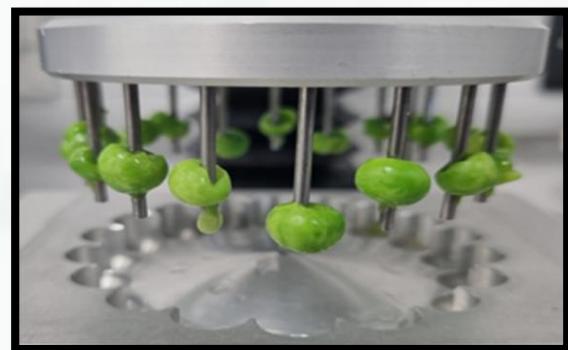
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at open.research@uwl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Rights Retention Statement:

Forgotten crops, Future Crops?

Background: Global agrobiodiversity is in decline, causing food insecurity, reduced dietary diversity, and loss of culinary heritage. Post-Green Revolution food systems are now highly homogenised, with nearly 90% of global food supply relying on just 15 crops, despite over 7,000 known edible plant species and 417 widely adapted food crops [1-3].


Rationale: Food systems are very complex and require investigating through an interdisciplinary lens [4-5]. Better *in-situ* conservation and use of underutilised landraces and minor crops, especially recognising their sensory values, is key to improving food security and protecting biodiversity. There are hidden traits that could help bring neglected crops back into food systems but are subject to various barriers and facilitators which are not well understood.

Methods: This multidisciplinary study explored barriers and facilitators to food systems diversification with forgotten crops by applying the following methods:

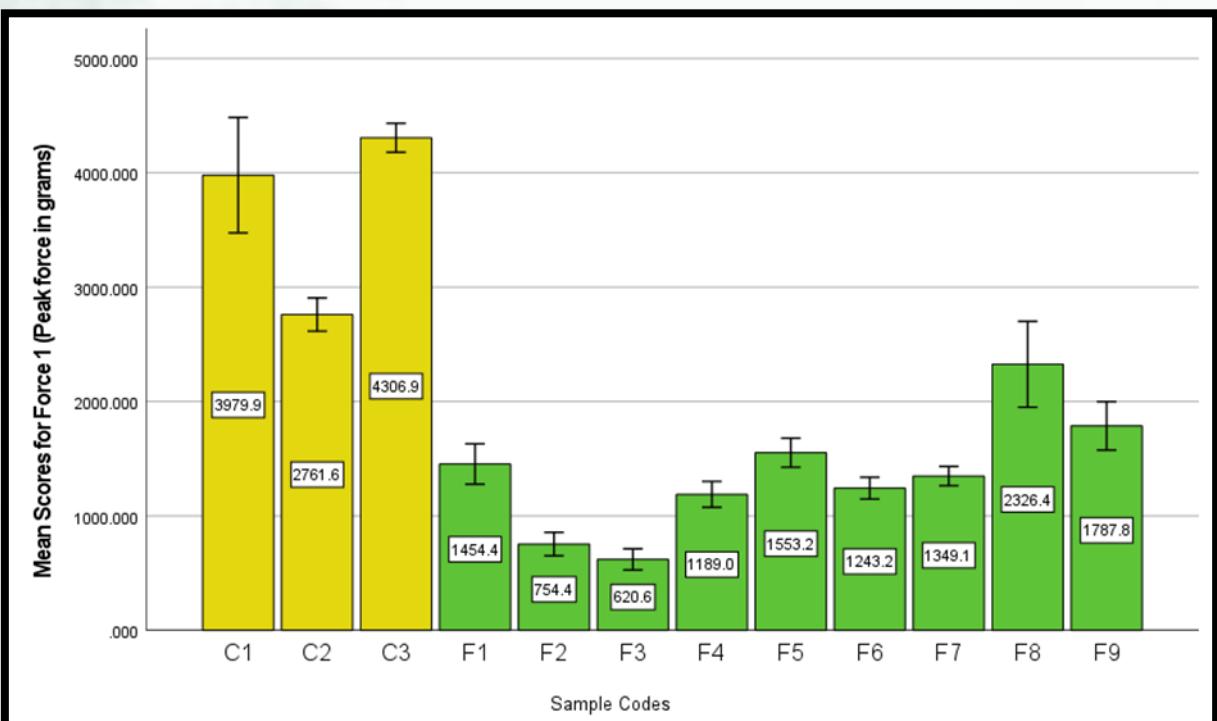

- 1) Archival Searches on UK crop data bases following a protocol by Yin, (2018),
- 2) Case study on forgotten peas (*Pisum sativum* L.) varieties, including texture analysis and sensory evaluation, based on the BS ISO 8586:2012 & BS ISO 8586:2014 standards.
- 3) Case study research on a UK business operating forgotten crops' value chains - semi structured interviews and a scoping review of documents.

Figure 1: Exemplars of landrace pea' accessions showing visual characteristics, sourced from UK seedbanks.

Figure 2: Measuring pea hardness using the TA.XT plus 100C Stable Micro Systems' Texture Analyser with Multiple Pea Testing Rig (HDP/MPT).

Figure 3: Mean scores for hardness (Peak Force - first bite) for 12 different varieties of peas, 9 of which were landraces (F) and 3 improved cultivars (C).

Conclusions: Traditional landraces are largely conserved *ex-situ*, with some *in-situ* conservation by small-scale growers. Archival searches show barriers such as unclear legislation and limited genetic-material access impacting their use [6-7]. However, these varieties offer sensory traits valuable to resilient food systems. Sensory study on peas shows significant differences across liking and consumer purchase intentions, as well as organoleptic characteristics such as hardness. Findings from the case study indicate that many bottlenecks remain and must be addressed by all actors including the producers, retailers, distributors, food service professionals, consumers, and policy makers [3,8].

References:

- 1) Antonelli A, Smith RJ, Fry C, Simmonds MS, Kersey PJ, Pritchard HW, Abbo MS, Acedo C, Adams J, Ainsworth AM, Allkin B. State of the World's Plants and Fungi (Doctoral dissertation, Royal Botanic Gardens (Kew); Sfumato Foundation).
- 2) Thrupp LA. Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. *International affairs*. 2000 Apr 1;76(2):265-81.
- 3) Sánchez AC, Kamau HN, Grazioli F, Jones SK. Financial profitability of diversified farming systems: A global meta-analysis. *Ecological Economics*. 2022 Nov 1;201:107595.
- 4) Bessada SM, Barreira JC, Oliveira MB. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. *Trends in Food Science & Technology*. 2019 Nov 1;93:53 68.
- 5) Negri V, Maxted N, Veteläinen M. European landrace conservation: an introduction. *European landraces: on-farm conservation, management and use*. 2009:1-22.
- 6) Westling M, Leino MW, Nilsen A, Wennström S, Öström Å. Crop and livestock diversity cultivating gastronomic potential, illustrated by sensory profiles of landraces. *Journal of food science*. 2019 May;84(5):1162-9.
- 7) Lara SW, Ryan P. The current state of peas in the United Kingdom; diversity, heritage and food systems. *Plants, People, Planet*. 2025 Feb 27.
- 8) Martin P, Russell J, Wishart J, Brown LK, Wallace M, Iannetta PP, George TS. Back to the future: Using ancient Bere barley landraces for a sustainable future. *Plants, People, Planet*. 2023 Sep 7.