

UWL REPOSITORY

repository.uwl.ac.uk

Peas, natural resources for a sustainable future: a multifaceted review of nutritional, health, environmental, and market perspectives

Nikolic, Nada Cujic, Mutavski, Zorona, Knez, Marija, Savilkin, Katarina, Živkovic, Jelena, Van Bavegem, Evelien, Can Aytar, Erdi, Aydin, Betül, Jones, Petra, Ender Künili, İbrahim, Ozmen, Ozge, Seylam Kusumler, Aylin, Pavlovic, Suzana, Ozalp Unal, Derya, Gunduz, Selin, Copperstone, Claire, Lara, Szymon Wojciech, Akin, Melekseven, Orahovac, Amil, Balazs, Balint, Milesevic, Jelena, Sirbu, Alexandrina and Negrao, Sonia (2026) Peas, natural resources for a sustainable future: a multifaceted review of nutritional, health, environmental, and market perspectives. *Frontiers in Nutrition*. (In Press)

This is the Published Version of the final output.

UWL repository link: <https://repository.uwl.ac.uk/id/eprint/14462/>

Alternative formats: If you require this document in an alternative format, please contact: open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at open.research@uwl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Rights Retention Statement:

OPEN ACCESS

EDITED BY

Muhammad Zubair Khalid,
Government College University,
Faisalabad, Pakistan

REVIEWED BY

Muhammad Usman Khalid,
Bahauddin Zakariya University, Pakistan
Amanullah Sabir,
Guangdong Ocean University, China

*CORRESPONDENCE

Nada Ćujić Nikolić
✉ ncujić@mocbilja.rs

[†]These authors have contributed equally to this work

RECEIVED 12 September 2025

REVISED 13 November 2025

ACCEPTED 17 November 2025

PUBLISHED 12 January 2026

CITATION

Ćujić Nikolić N, Mutavski Z, Šavikin K, Živković J, Pavlović S, Jones P, Copperstone C, Can Aytar E, Aydin B, Van Bavegem E, Kunili IE, Özmen Ö, Küşümler AS, Unal DO, Gunduz S, Lara SW, Akin M, Orahovac A, Balázs B, Milešević J, Širbu A, Negrão S and Knez M (2026) Peas, natural resources for a sustainable future: a multifaceted review of nutritional, health, environmental, and market perspectives. *Front. Nutr.* 12:1703760. doi: 10.3389/fnut.2025.1703760

COPYRIGHT

© 2026 Ćujić Nikolić, Mutavski, Šavikin, Živković, Pavlović, Jones, Copperstone, Can Aytar, Aydin, Van Bavegem, Kunili, Özmen, Küşümler, Unal, Gunduz, Lara, Akin, Orahovac, Balázs, Milešević, Širbu, Negrão and Knez. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Peas, natural resources for a sustainable future: a multifaceted review of nutritional, health, environmental, and market perspectives

Nada Ćujić Nikolić^{1*†}, Zorana Mutavski^{1†}, Katarina Šavikin¹, Jelena Živković¹, Suzana Pavlović², Petra Jones³, Claire Copperstone³, Erdi Can Aytar⁴, Betül Aydin⁵, Evelien Van Bavegem⁶, Ibrahim Ender Kunili⁷, Özge Özmen⁸, Aylin Seylam Küşümler⁹, Derya Ozalp Unal¹⁰, Selin Gunduz¹⁰, Szymon Wojciech Lara^{11,12}, Melekse Akin¹³, Amil Orahovac¹⁴, Bálint Balázs¹⁵, Jelena Milešević², Alexandrina Širbu¹⁶, Sonia Negrão¹⁷ and Marija Knez²

¹Department for Pharmaceutical Research and Development, Institute for Medicinal Plants Research "Dr Josif Pančić", Belgrade, Serbia, ²Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia, ³Department of Food Science, Nutrition and Dietetics, Faculty of Health Sciences, University of Malta, Msida, Malta, ⁴Usak University, Faculty of Agriculture, Department of Horticulture, Uşak, Türkiye, ⁵Gazi University, Faculty of Science, Department of Biology, Ankara, Türkiye, ⁶Research Centre AgroFoodNature, HOGENT University of Applied Sciences and Arts, Ghent, Belgium, ⁷Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey, ⁸Department of Food Engineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye, ⁹Istanbul Okan University, Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul, Türkiye, ¹⁰Institute of Field Crops Central Research, Ministry of Agriculture and Forestry, Republic of Türkiye, Ankara, Türkiye, ¹¹Royal Botanic Gardens, Kew, Richmond, London, United Kingdom, ¹²London Geller College of Hospitality and Tourism, University of West London, London, United Kingdom, ¹³Horticulture Department, Faculty of Agriculture, İgdir University, İgdir, Türkiye, ¹⁴Faculty of Food Safety, Food Technology and Ecology, University of Donja Gorica, Podgorica, Montenegro, ¹⁵ESSRG Nonprofit Ltd, Budapest, Hungary, ¹⁶FMMAE Râmniciu Vâlcea, Constantin Brâncoveanu University of Piteşti, Râmniciu Vâlcea, Romania, ¹⁷School of Biology and Environmental Science, University College Dublin, Dublin, Ireland

The pea (*Pisum sativum* L.) is an emerging pillar in plant-based nutrition and sustainable food systems due to its high-quality proteins, diverse bioactive compounds, and agroecological benefits. This review provides an updated synthesis of the nutritional composition, health-promoting properties, and environmental relevance of peas, emphasizing recent scientific findings. Pea seeds typically contain 20%–40% protein, 45%–55% starch, and 10%–15% dietary fiber, alongside essential micronutrients such as vitamin C (40–60 mg/100 g), folate (60–70 µg/100 g), vitamin K (30–45 µg/100 g), iron (1.5–2.0 mg/100 g), and manganese (0.4–0.6 mg/100 g). Their storage proteins, primarily legumin and vicilin, offer high digestibility and amino acid profiles compatible with human requirements, supporting their rapidly growing use in protein isolates and meat- and dairy-alternative products. Peas represent a valuable source of phenolic acids, flavonoids, and saponins, which contribute to notable antioxidant (50–120 µmol Trolox/g) and anti-inflammatory activities demonstrated in preclinical studies. Compared with other legumes, peas exhibit a lower glycemic index (35–45), making them suitable for metabolic health applications. Agronomically, pea cultivation enhances soil fertility through

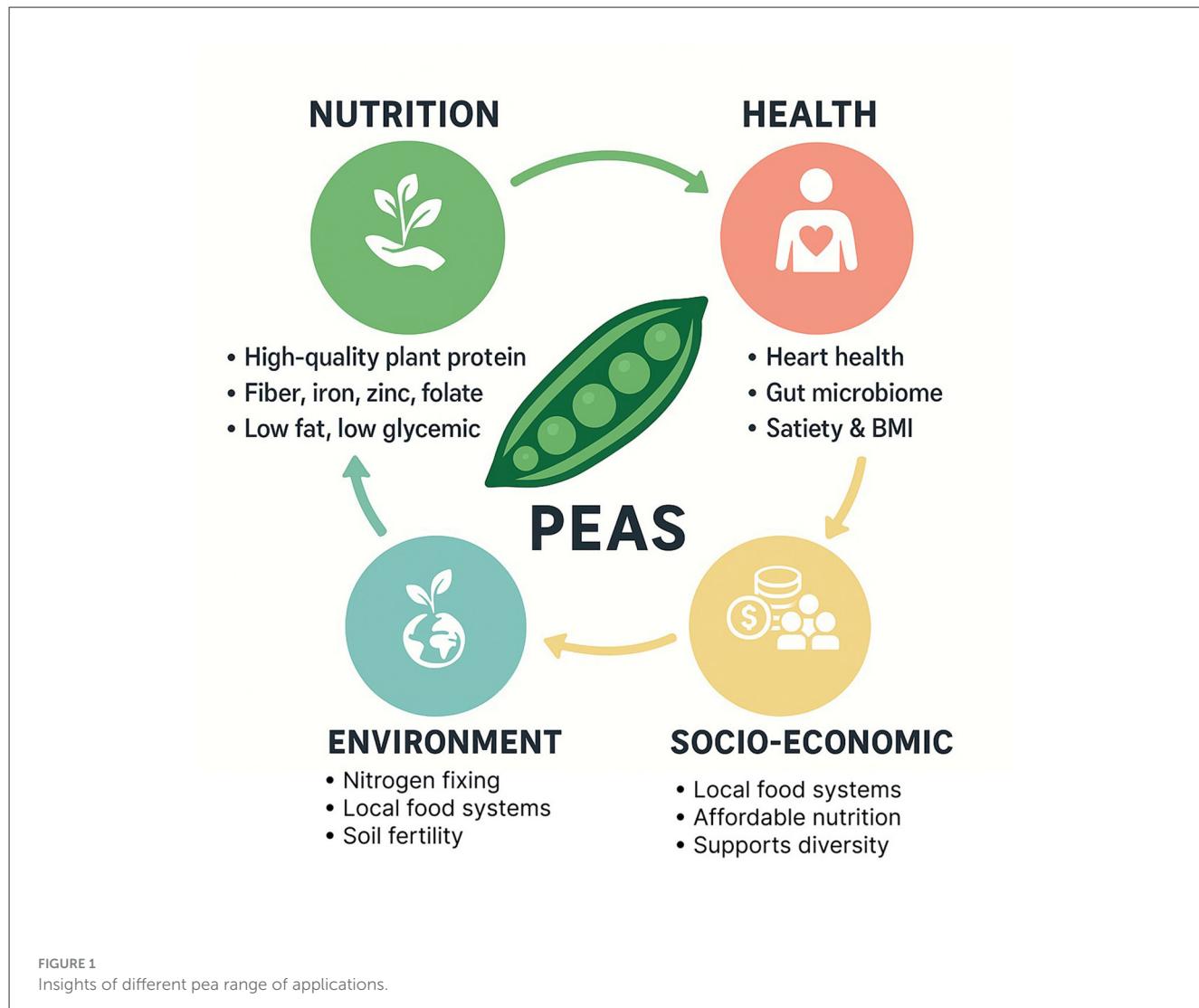
biological nitrogen fixation (up to 150 kg N/ha), supporting reduced fertilizer inputs and improved crop rotation performance, aligning with circular economy and climate-resilience strategies. Despite these advantages, global consumption and breeding innovation remain insufficient to meet the rising demand for alternative proteins. Future opportunities include improving protein extraction technologies, valorizing processing side-streams, and exploring underutilized phytochemicals to strengthen the nutritional and sustainability profile of pea-based food systems.

KEYWORDS

Pisum sativum L., peas, sustainable food systems, nutritional composition, bioactive compounds, health-promoting properties, legume sustainability, antinutritional

1 Introduction

Pea (well-known as *Pisum sativum* L.), currently reclassified taxonomically as *Lathyrus oleraceus* Lam. syn *P. sativum* L., is one of the most widely cultivated legumes in the world and has long played an essential role in the human diet. Its popularity is due not only to its agronomic adaptability and favorable cultivation characteristics, but also to its rich nutritional composition and broad applicability in food systems (1). Although botanically a legume, the pea is primarily consumed in its immature form as a vegetable, valued for its mild sweetness, delicate texture, and bright color, and continues to attract scientific and industrial interest due to its nutritional and functional potential.


Growing global interest in plant-based diets has increased the demand for peas as a sustainable source of plant proteins, complex carbohydrates, and dietary fiber (2), offering many health benefits. Peas are also particularly rich in micronutrients, including vitamin C, vitamin K, folate, copper, manganese, iron, zinc, phosphorus, and magnesium (3). Beyond their macronutrient and micronutrient composition, peas are rich in bioactive compounds such as phenolic acids, flavonoids, and saponins that exhibit antioxidant, anti-inflammatory, and potential anti-cancer effects, supporting vital physiological processes such as immune function and cellular activity (4), making peas a functional food with disease-preventive potential. The presence of these bioactives enhances their role not only in basic nutrition but also in strategies aimed at reducing the burden of chronic, non-communicable diseases (5).

The macro and micronutrient composition, specifically bioactives, have been associated with improved glycemic regulation, enhanced gastrointestinal function, support hematological, neurological, and skeletal health, and protection against oxidative and metabolic stress (1, 5–7). Scientific research, including both *in vitro* and *in vivo* studies, has demonstrated that these compounds may help reduce the risk of cardiovascular disease, obesity, and certain types of cancer. Notably, peas have a low glycemic index, making them suitable for people who need to manage their blood sugar levels, including those with insulin resistance or type 2 diabetes (8). Moreover, underutilized components such as pea pods and seed coats are emerging as valuable sources of fiber and phenolic compounds with demonstrated antidiabetic, hepatoprotective, and renoprotective activities (9). Emerging evidence further indicates that pea-derived peptides and dietary fibers may modulate the gut microbiome,

supporting microbial diversity and metabolic balance, thereby contributing to their overall health-promoting effects (10). These characteristics highlight their potential role in the development of functional foods, sustainable nutrition strategies, and improving global food and nutrition security.

Beyond their nutritional and health benefits, peas have also gained significant attention for their ecological and economic value, especially in the context of sustainable and circular food systems. Environmentally, peas play a key role in improving soil health due to their nitrogen-fixing properties. As a legume, they absorb nitrogen from the atmosphere, enriching the soil and reducing the reliance on synthetic fertilizers, which supports more sustainable farming practices (11–13). In addition, the growing focus on circular economy principles highlights the need to maximize resource efficiency and minimize waste across the food chain (14). Pea production and processing generate nutrient-rich by-products, such as pods and husks, that are often discarded despite their nutritional potential (9, 15). Valorizing these materials as food ingredients or bio-based materials aligns with circular food system goals, reducing waste while enhancing economic and environmental sustainability (16, 17). These environmental advantages complement their emerging use in modern food innovation through upcycling, where peas are utilized in applications ranging from minimally processed meals to highly formulated plant-based products.

With the rising demand for sustainable, nutritious, and versatile ingredients, peas are used in a wide range of food applications, including plant-based beverages, meat analogs, and flour-based products (18–20), and innovative delivery systems like encapsulated bioactives and biodegradable packaging (21). These applications underscore their versatility and technological potential in modern food innovation, positioning pea as one of the key ingredients for the future of food production. These technological advances not only enhance the functional versatility of peas but also have broader implications for nutrition security and public health. Beyond individual health benefits, the properties of peas also impact public health strategies and the development of functional foods (22). As an affordable, accessible, and nutrient-dense food, peas can help address global issues like food insecurity (20), micronutrient deficiencies and diet-related chronic diseases. Their environmental compatibility and potential role in circular food systems position peas as a cornerstone of sustainable and health-promoting diets (Figure 1).

With growing global interest in sustainable, health-conscious diets, a comprehensive understanding of the nutritional and therapeutic potential of peas is more crucial than ever. Despite these diverse benefits and applications, comprehensive insights linking the compositional traits, health effects, and sustainability potential of peas remain limited. Existing literature often addresses these aspects in isolation, leaving a gap in understanding how peas can simultaneously contribute to nutrition security, environmental resilience, and circular bioeconomy goals. To address these gaps, this review synthesizes current evidence on the nutritional composition, bioactive compounds, physiochemical properties, and health benefits of peas; examines their technological and functional applications in sustainable food innovation; and highlights opportunities for valorizing underutilized pea components within circular economy frameworks. Given its growing importance as a sustainable, nutrient-rich, and multifunctional legume, this article examines the full range of peas' value, from their fundamental nutritional contributions to their emerging roles in disease prevention and the treatment of various health conditions. This review aims to position peas

as a strategic crop at the intersection of human and planetary health, as well as environmental sustainability. Additionally, the insights gained from this review could inform and facilitate policy development, supporting the creation of frameworks that promote sustainable agricultural practices, enhance food security, and drive the transition to circular food systems. By integrating perspectives from nutrition, agronomy, food technology, and public health, this review aims to position peas as a strategic crop at the intersection of human and planetary health, as well as environmental sustainability. Additionally, the insights gained from this review could inform and facilitate policy development, supporting the creation of frameworks that promote sustainable agricultural practices, enhance food security, and drive the transition to circular food systems (Tables 1, 2).

2 Materials and methods

The literature search was conducted electronically using the Scopus database in June 2024. Scopus was selected as the

TABLE 1 Historical and modern utilization of peas and their significance.

Period	Timeline	Utilization	Significance
Ancient period	≈5000–1000 BCE	Domestication and early cultivation; staple food; dried peas stored for winter.	Primary protein source; important in early agriculture; early recognition of storage and food security.
Classical & medieval period	1,000 BCE–1,500 CE	Common in soups and porridges; crop rotation for soil fertility; medicinal uses.	Early agronomic knowledge; peas as functional food; contribution to soil nitrogen.
Early modern period	1500–1800 CE	Selective breeding (Mendel's experiments 1850s–1860s); fresh and dried peas in European cuisine.	Discovery of inheritance patterns; diversification in culinary use.
Industrial era	1800–1950	Canning and preservation; livestock feed; recognition of nutritional value.	Extension of shelf-life; protein source for humans and animals; industrial food applications.
Modern period	1950–Present	Food industry: pea protein isolates, snacks, soups, plant-based dairy alternatives; health/functional foods: bioactive compounds, antioxidants; sustainable agriculture: nitrogen-fixing crop, crop rotation; circular economy integration; biotechnological breeding; high-protein, low-antinutrient, climate-resilient varieties.	Functional and nutraceutical applications; contribution to sustainable food systems; bioactive compound research; climate-resilient agriculture; supports plant-based diets.

TABLE 2 Overview of global pea production, nutritional value, and commercialization challenges.

Aspect	Details
Global pea production	~10.5 million tons (dry peas), ~7 million tons (fresh peas)
Regional significance	Most commonly produced pulse in Europe and Central Asia
Nutritional value	High in plant-based proteins, fiber, and essential nutrients
Climate requirements	Prefers cool climates; sensitive to soil salinity
Agricultural challenges	Crop rotation needed; yield affected by weather conditions
Market challenges	Price volatility, limited consumer awareness, and underutilization
Trends in plant-based foods	Growing consumer interest, increasing availability of plant-based products, and product innovation in meat/dairy alternatives

References: FAO (217–219).

primary database for this review as it offers a comprehensive and multidisciplinary coverage of peer-reviewed journal articles across relevant disciplines. In line with the established guidance on systematic review methodology (23) Scopus also provides a robust search functionality, including advanced evidence search options.

2.1 Boolean code

The literature search was conducted using the following Boolean code: “*Pisum sativum*” AND (“functional food*” OR nutraceutical* OR vitamin* OR antioxidant* OR polyphenol* OR phenol* OR flavonoid* OR flavan* OR anthocyanin* OR metabolomic* OR phytochemical* OR “organic ac-id*” OR “secondary metabolites” OR bioactivity OR “bioactive compound*” OR Carbohydrate* OR fiber* OR protein* OR “amino acid*” OR “fatty acid” OR mineral* OR macroelement* OR microelement* OR macronutrient* OR micronutrient* OR vitamin* OR *toxin* OR

OR anti-nutrient* OR antinutrient* OR “protease inhibitor*” OR phytate* OR “phytic acid” OR oxalate* OR lectin* OR tannin* OR saponin* OR amylase* OR oligosaccharide* OR trypsin*) AND (health OR pharmacol* OR diet* OR nutrition*) AND NOT (“grass pea*” OR “butterfly pea” OR “zombi pea” OR fish* OR aquaculture).

The searches were limited to peer-reviewed and published journal articles only; gray literature was not considered for inclusion. The searches were not limited by any date restraints, geographical location, or area of study. Articles were, although required to be written in English.

2.2 Shortlisting, screening, and selection of evidence

Following the execution of the Boolean search, we conducted an additional shortlisting step, an in-text keyword verification using the same keywords as the original search string, including PubMed and Web of Science. We screened records to remove items that have been retrieved through indexing or algorithmic noise but did not actually contain the specified terms in the title, abstract, or full text.

All retrieved records underwent a two-stage screening process. Stage 1 comprised title and abstract screening to assess apparent relevance. Records judged potentially relevant were advanced to stage 2 screening, in which the full text was assessed against the eligibility criteria. Data from shortlisted studies were extracted into Excel 2016 for full-text screening and synthesis. At each screening stage, two reviewers independently assess records, with any disagreement resolved by a third reviewer.

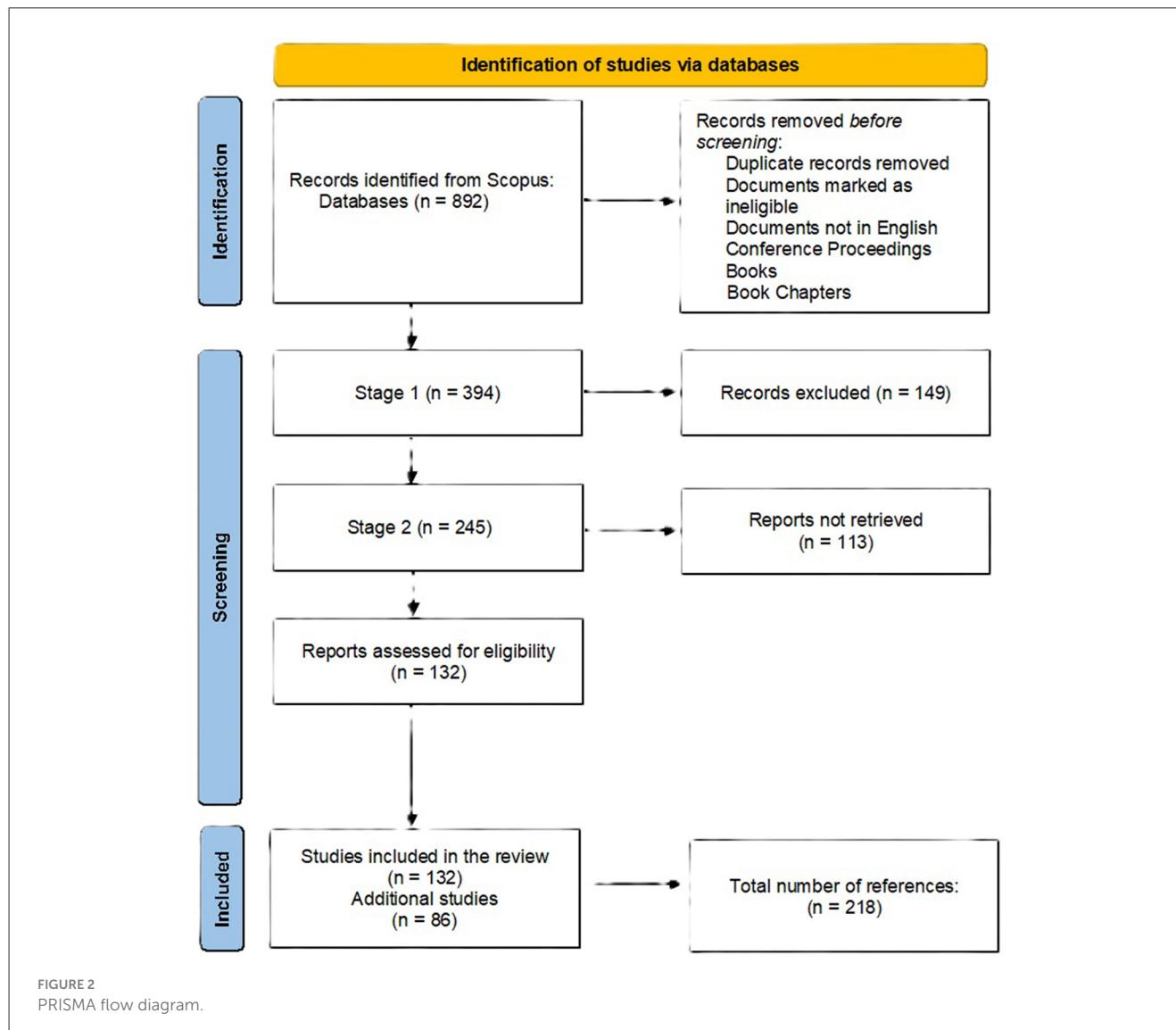
2.3 Inclusion and exclusion criteria

Inclusion criteria were used throughout the search, shortlisting, and selection of relevant evidence. Studies were eligible for inclusion if they contained primary or secondary evidence that reported or mentioned the nutritional, bioactive, and physicochemical composition of peas (*Pisum sativum* L.).

On the other hand, studies were excluded if they (i) mentioned peas only incidentally without further analysis of their composition; (ii) focused on non-composition aspects of peas (e.g., agronomic practices, cultivation, processing technologies) without a direct link to the specified composition themes, or (iii) investigated plant species other than *Pisum sativum* L.

2.4 Data presentation

Data from all eligible studies were synthesized descriptively and organized into thematic sections across the manuscript: (i) the composition and nutritional profile of peas, (ii) health benefits associated with pea consumption, (iii) toxins and antinutritional factors in peas, and (iv) comparisons with other legumes.


2.5 PRISMA flow diagram

The literature searching strategy is presented using the PRISMA diagram. This review is structured as a narrative synthesis of

the literature, incorporating certain systematic elements such as database search and predefined inclusion criteria. However, it does not adhere to the full PRISMA guidelines, which require a registered protocol, a comprehensive search strategy, risk of assessment, and a standardized flow diagram. Therefore, the present work should be considered a narrative review with structured components, rather than a systematic review. The flow diagram included is inspired by the PRISMA framework and is intended to provide transparency in the selection process, but it does not imply full compliance with PRISMA standards (Figure 2).

2.6 Additional references

Literature strategy was performed during June 2024, and manuscript preparation was performed from August 2024 to January 2025, with the available literature so far. Additional research included relevant references published in 2025.

2.7 Ethical considerations

Ethical approval was not required for this review.

3 Pea composition and nutritional profile

Whole peas are nutrient-dense legumes with a well-balanced profile of macronutrients, micronutrients, and bioactive compounds. As a source of high-quality plant protein, peas provide essential amino acids, particularly lysine and arginine, which are often limited in cereal-based diets (24). While peas have a high lysine content, they lack amino acids with thiol groups. In addition to protein, peas are rich in dietary fiber, including both soluble and insoluble fractions (such as starches and non-starch polysaccharides), which can contribute to digestive health and metabolic regulation. Among many bioactive phytochemicals, peas contain a variety of polyphenols, such as phenolic acids, flavonoids, and saponins, all of which have well-documented antioxidant and anti-inflammatory effects. The differences in the colors of the pea coat are usually associated with flavonoid content, and dark-seed coat samples generally have a higher flavonoid content than light-colored samples. The peas' exact composition can vary depending on the cultivar, maturity stage, and processing method, but overall, peas are recognized as a multifunctional food ingredient with both nutritional and functional value (5). Besides the mentioned compounds, peas also contain anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, which may interfere with nutrient bioavailability (Table 3).

TABLE 3 Nutritional and phytochemical constituents of peas.

Compound class	Specific compounds/examples	Notes	References
Carbohydrates	Starch (amylose, amylopectin), total sugars, resistant starch	Starch content: 39%–69% DW; RS up to 5–53 g/kg	(25, 26)
Proteins	Globulins (legumin, vicilin), albumins, glutelins, prolamins	13%–38% DW; high digestibility; legumin/vicilin ~2:1	(28, 37)
Lipids	Linoleic acid, α -linolenic acid, oleic acid, palmitic acid	1.4–1.9 g/100 g DW; rich in PUFA	(26, 43, 116)
Dietary Fiber	Cellulose, hemicellulose, lignin	Present in moderate quantities	(26, 220)
Minerals	Fe, Zn, Mg, Ca, K, P	Contribute to nutritional and functional properties	(57, 129)
Vitamins	C, E, B-complex (especially folate), K	Mostly in fresh green peas	(55)
Phenolic Acids	Protocatechuic, vanillic, ferulic, p-coumaric, gentisic, syringic, caffeoylquinic acids, rosmarinic acid	Higher concentration in seed coats, especially in dark-colored varieties	(50, 64, 65)
Flavonoids	Epigallocatechin, luteolin glycoside, apigenin glycoside, quercentin-3-O-rhamnoside, morin, naringin, chrysins, rutin, pinocembrin	Higher in dark-colored seed coats; contributes to antioxidant capacity	(55, 63, 65)
Other Polyphenols	Galangin, hesperetin, tetrahydroxy dihydrochalcone	Detected in various seed coat extracts	(50, 65)
Carotenoids	All-trans-lutein, all-trans-zeaxanthin, 13-cis-lutein, 15-cis-lutein	TCC up to 29.61 ± 4.46 mg/g (yellow split pea)	(43)
Amino Acids	Lysine, arginine, leucine, isoleucine, glutamic acid, and aspartic acid	Pea proteins are rich in lysine, poor in sulfur amino acids	(28)
Tannins	Catechin-type, condensed tannins	In the seed coat, influences digestibility and color	(55, 61)

3.1.2 Proteins

Proteins are one of the main constituents of pea seeds. Its levels in pea seed range from 20% to 30% (28), but there are existing references from 13.7% to 38% (29, 30). This variability in protein content is attributed to genotype, environment, genotype \times environment interaction, and the methods of determination. The heritability of protein content is moderate to high (31–33). However, the content and composition of pea protein are governed by complicated genetic mechanisms that involve multiple gene families (28).

The protein fraction in peas is primarily composed of globulins (legumin and vicilin) and albumins, which are storage proteins with relatively high nutritional value. Pea proteins are especially rich in the essential amino acids, lysine and arginine, although they are limited in sulfur-containing amino acids such as methionine and cysteine.

There are various references and reports on the relationship between pea protein content and seed characteristics, such as shape and color. According to Eliis et al. and Ren et al., (34, 35) wrinkled seeds have higher protein content and different protein composition compared to round seeds. However, other studies report that the protein content in peas was not affected by seed color and seed shape (30, 36).

Apart from protein content, protein composition is an essential factor for pea nutritive value. Pea protein excels compared to other plant proteins due to its high digestibility, comparatively lower occurrence of allergic reactions, and lack of adverse health issues. There are four main categories of pea protein: glutelin, prolamin, albumin, and globulin (37). Globulin makes up 55%–65% of the total protein content in peas, and is the energy storage protein (38), and is classified into 11S legumin and 7S vicilin (37). The legumin/vicilin ratio plays a significant role in the nutritional value and functionality of pea proteins (39). This ratio is about 2:1, with legumin composed of more sulfur-containing amino acids than vicilin per unit of protein (40). It has a positive correlation with total protein content, and even though it is mainly under genetic control, it is also affected by agronomic conditions (40). In this regard, Yang et al. (41) point out that breeding could alter this ratio.

Although the protein content of yellow peas tends to be lower (~23–25% dry matter) than that of soybeans and lupins, their protein quality and digestibility make them an attractive choice for dietary diversification.

According to Cervenski et al. (26), the average protein content in the tested material was 23.89%, and the total nitrogen content in the seeds ranged from 3.66 to 4.49 g per 100 g. In extruded gray pea products, the highest protein content was found in the sample without added grains or egg powder (26.9 ± 0.2 g 100 g⁻¹), and the lowest (18.6 ± 0.5 g 100 g⁻¹) was in the sample with the highest grain proportion (27).

Beyond their nutritional role, pea proteins exhibit functional properties, including emulsification, foaming, and gelling, making them highly suitable for food processing and formulation, particularly for developing meat analogs, dairy alternatives, and protein supplements. Pea proteins are widely used in the food system, including for the encapsulation of bioactive compounds, the production of degradable films, and as an alternative to animal proteins. Some physicochemical characteristics of pea proteins closely resemble those of soybean

proteins (5). The growing interest in pea proteins within the food industry reflects not only their nutritional value but also their allergen-free and sustainable nature compared to animal-derived or soy-based proteins. Importantly, pea protein is generally well-digested, making it more bioavailable and associated with fewer allergic reactions, enhancing its acceptance among diverse consumer groups.

3.1.3 Lipids and other components

Although peas are not a primary dietary fat source, the quality of their lipid fraction complements their high fiber and protein content, further supporting their role as a low-fat, nutrient-dense, and heart-healthy food. Peas, like most temperate legumes, contain relatively low levels of total lipids, but contribute beneficial fatty acids and lipid-associated bioactives to the human diet (3). From a food science perspective, the low-fat content also contributes to extended shelf-life stability, since peas are less susceptible to lipid oxidation than oil-rich seeds and nuts.

On average, peas contain between 1.0 and 2.0 g of total fat per 100 g of dry seeds, with variation depending on cultivar, maturity, and agronomic conditions (42). While this represents a small fraction of their total dry matter, the qualitative composition of pea lipids is nutritionally significant. According to Cervenski et al. (26) fatty oil content in selected winter pea lines ranged from 1.48 to 1.89 g per 100 g. In the study by Strauta et al. (27), a greater fat content was found in the sample with onion flavor, up to 9.5 ± 0.5 g per 100 g, while the least was in the unseasoned sample, 0.6 ± 0.05 g per 100 g.

Despite the modest overall lipid concentration, the fatty acid profile of peas is nutritionally favorable, with unsaturated fatty acids predominating. The oil yield and fatty acid composition of Canadian legume varieties varied widely. The oil yield (% dry weight) ranged from 1.65 ± 0.10 for large green lentils to 8.39 ± 0.03 for Leader chickpeas. The samples were predominantly composed of unsaturated fatty acids, with polyunsaturated fatty acids (PUFAs) ranging from 46.81% to 66.88%, and monounsaturated fatty acids (MUFAs) ranging from 10.25% to 34.21%. The saturated fatty acid content ranged from 14.25% to 20.64%. Linoleic acid (18:2n-6) was the major fatty acid in the legumes, constituting 27.09% to 60.75% of the total lipids profile. It was followed by α -linolenic acid (18:3n-3), which ranged from 2.64% to 37.47%, oleic acid (18:1 c Δ 9), ranging from 7.29% to 30.29%, palmitic acid (16:0), from 9.99% to 14.71%, stearic acid (18:0), from 1.25% to 3.40%, and myristic acid (14:0), from 0.30% to 3.46% (43).

These unsaturated fats are associated with cardioprotective effects, including the modulation of serum lipid profiles and the reduction of inflammation. Given the very low saturated fatty acid content, this further supports the health benefits of peas in populations with lipid sensitivity. The favorable ratio of unsaturated to saturated fats contributes to the overall cardiometabolic benefits of including peas in a balanced diet (1). In addition to fatty acids, peas contain lipid-soluble micronutrients such as small amounts of tocopherols (vitamin E) and phytosterols, which may contribute to antioxidant capacity and cholesterol-lowering effects (42).

While lipids are not the primary nutritional strength of peas, their high-quality fat profile complements the legume's overall health-promoting potential. It reinforces their role in plant-based, functional, and preventive nutrition strategies. Despite their relatively low lipid content, their unsaturated fatty acid profile and bioactive lipid compounds enhance their nutritional value and align with recommendations for diets aimed at reducing chronic disease risk.

3.2 Micronutrient content (vitamins, minerals)

In the context of modern nutrition, micronutrients, vitamins, and minerals required in small quantities play an essential role in maintaining optimal health, supporting growth, immunity, metabolism, and the prevention of chronic diseases (1, 4). While legumes are widely recognized for their macronutrient content, especially protein and fiber, their contribution as sources of bioavailable micronutrients is often underappreciated. Peas provide a range of essential micronutrients that complement their macronutrient profile and enhance their functional value in diverse diets. Peas contain a variety of water- and fat-soluble vitamins, along with key trace elements and macro-minerals, many of which contribute to physiological processes with public health relevance (3).

Among micronutrients, peas supply significant levels of folate (vitamin B9), vitamin K, vitamin C (in fresh forms), iron, magnesium, and phosphorus, all of which play essential roles in cellular metabolism, hematological function, and bone health. Peas are among the highest natural sources of folate, providing approximately 65–70 µg per 100 g of cooked peas (4, 44). Since folate is critical for DNA synthesis, red blood cell formation, and neural tube development, peas are a valuable food for pregnant women and in populations where neural tube defects remain a concern (4).

Additionally, yellow peas are rich in iron and lower in dietary fiber compared to other legumes, making them easier to digest and more suitable for a broader range of consumers. Jarecki and Migut, 2022 found that yellow peas contain adequate levels of essential micronutrients like phosphorus, potassium, and magnesium (45). Their iron content is particularly notable, enhancing their value in addressing iron deficiencies (45).

The tocopherol content obtained from lipophilic extracts varied among different legume varieties. For instance, in the yellow whole pea (Golden) variety, α -tocopherol was 2.40 ± 0.04 mg/g, γ -tocopherol was 54.17 ± 0.12 mg/g, δ -tocopherol was not detected (ND), and the total tocopherols were 57.00 ± 0.76 mg/g. In the yellow split pea variety, α -tocopherol was 2.30 ± 0.22 mg/g, γ -tocopherol was 46.14 ± 2.56 mg/g, δ -tocopherol was not detected (ND), and the total tocopherols were 48.44 ± 2.76 mg/g. In the green split pea variety, α -tocopherol was 2.13 ± 0.03 mg/g, γ -tocopherol was 50.39 ± 0.49 mg/g, δ -tocopherol was not detected (ND), and the total tocopherols were 52.52 ± 0.52 mg/g (43, 46).

The micronutrient composition of peas, especially when consumed as part of minimally processed or fresh, adds significant value to plant-based dietary patterns. In populations that reduce or

avoid animal products, peas can help bridge common nutritional gaps, especially in iron, zinc, folate, and vitamin K.

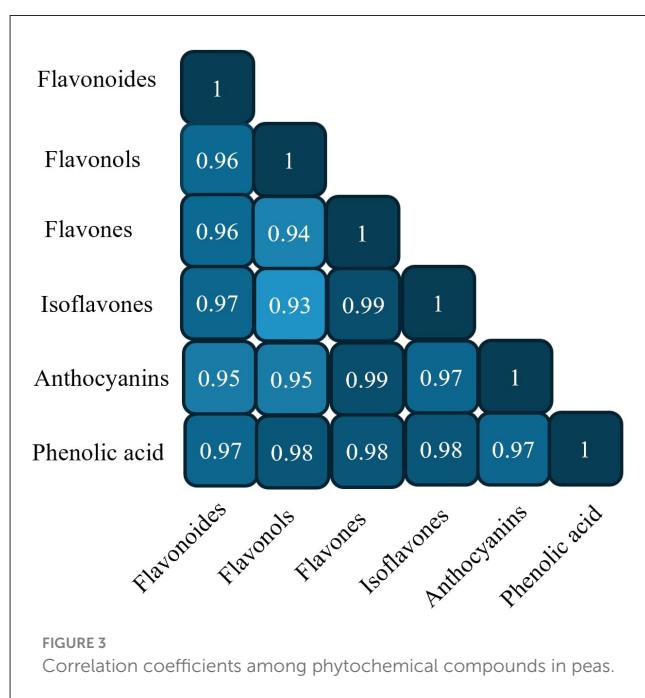
Furthermore, their low cost, wide availability, and environmental sustainability make peas a strategic crop for combating micronutrient deficiencies globally, particularly among vulnerable or low-income populations.

3.3 Dietary fiber

Dietary fiber plays a central role in human nutrition, contributing to digestive health, regulating blood glucose levels, supporting metabolic regulation, and preventing chronic diseases such as cardiovascular disease and type 2 diabetes. Legumes are among the richest natural sources of dietary fiber, and peas in particular, offer a balanced profile of both soluble (pectin and oligosaccharides) and insoluble fiber (cellulose and hemi-cellulose), making them a valuable component of fiber-rich diets (47).

The total dietary fiber content in dried peas typically ranges from 14% to 26% of dry weight, while cooked peas provide approximately 4–7 g per 100 g, depending on the variety and preparation method. The intake of daily dietary fiber is about 25 g to 38 g per day in women and men (5).

In addition to traditional fiber classification, peas are rich in resistant starch, a form of carbohydrate that resists digestion in the small intestine and behaves similarly to dietary fiber in the colon. Resistant starch enhances glycemic control, promotes satiety, and supports the growth of beneficial gut microbiota, contributing to a healthy gut environment (48). The inclusion of pea-based ingredients, such as pea flour and protein isolates with retained fiber fractions, has been increasingly explored in functional food formulations aimed at improving fiber intake in modern diets (48).


3.4 Bioactive compounds (antioxidants, flavonoids, polyphenols)

Peas have emerged not only as an essential source of micro and macronutrients, such as protein, dietary fiber, and complex carbohydrates, but also as a reservoir of numerous phytochemicals with potential health-promoting properties (5, 46, 49). Among the most studied classes of phytochemicals in peas are phenolic compounds, flavonoids, saponins, and carotenoids, which exhibit antioxidant, anti-inflammatory, and anticarcinogenic effects (50, 51). These bioactive compounds, although not essential nutrients in the classical sense, can exert beneficial physiological effects that may contribute to the prevention and mitigation of various chronic diseases, including cardiovascular disorders, type 2 diabetes, certain types of cancer, and age-related degenerative conditions (4).

Peas are widely consumed worldwide in both fresh and dried forms, and they are frequently incorporated into dietary patterns associated with health benefits. Understanding the bioactive profile of peas becomes increasingly relevant not only from a nutritional standpoint but also for the development of nutraceuticals, functional ingredients, and health-promoting food products (52) (Table 4).

TABLE 4 Bioactive phytochemicals in peas and their bioactivities.

Compound class	Primary components	Biological activities
Phenolic compounds	Phenolic Acids: Gallic, ferulic, <i>p</i> -coumaric, syringic, caffeic, and chlorogenic acids.	Antioxidant, anti-inflammatory, antihypertensive.
Flavonoids	Flavonols: Quercetin, Kaempferol, Rutin. Flavones: Luteolin, Apigenin. Flavanols: Catechin, Epicatechin.	Strong antioxidant (chelating and radical scavenging), anti-inflammatory, anti-cancer (inhibition of cell proliferation).
Isoflavones	Genistein, Daidzein, Formononetin.	Estrogen-like activity, anti-cancer, cardioprotective.
Saponins	Triterpenoid glycosides (e.g., Soyasaponins).	Antioxidant, cholesterol-lowering (by complexing with bile acids), immunomodulatory, anti-cancer.
Carotenoids	beta-carotene, Lutein, Xanthophylls.	Antioxidant, provitamin A activity (beta-carotene), eye health (lutein).
Bioactive peptides	Small protein fragments (e.g., peptides rich in Glu, Asp, Gly, Pro, Leu).	Potent antioxidant, anti-hypertensive (ACE-inhibitory), anti-diabetic, anti-inflammatory.

Phenolic compounds are among the most significant groups of bioactive constituents in peas, contributing to their antioxidant potential and nutritional value. Among these, total phenolic content (TPC) and total flavonoid content (TFC) are commonly used as indicators of antioxidant capacity (Figure 3). Numerous studies have demonstrated substantial variability in the phenolic profiles and antioxidant activities across different pea genotypes, influenced by seed characteristics such as color, shape, and seed coat composition (5, 46, 53, 54).

Peas with dark-colored seed coats have consistently been reported to contain significantly higher TPC than light-colored varieties. Similarly, round-seeded genotypes generally exhibit higher TPC compared to wrinkled seeds (5, 53, 55, 56). Phenolic acids represent the second most abundant class of polyphenols in peas, following flavonoids (57). Colored seed coats tend to accumulate higher levels of phenolic acids such

as vanillic acid, gentisic acid, and protocatechuic acid. In contrast, white seed coats are more often associated with ferulic acid and *p*-coumaric acid. Additional phenolic acids identified in various pea tissues include vanillin acid, quinic acid, coumaroyl quinic acid, 5-feruloylquinic acid, 4-O-caffeoylequinic acid, trans-ferulic acid, trans-cinnamic acid, *p*-hydroxybenzoic acid, and 4-hydroxybenzoic acid, respectively (5).

Flavonoids identified in peas span several subgroups, including flavonols, flavones, isoflavones, flavanones, flavanols (flavan-3-ols), and anthocyanins. TFC has been shown to correlate with both seed coat color and morphology (5). These flavonoid compounds are known to exhibit potent antioxidant and anti-inflammatory properties and have been implicated in immune regulation (58, 59). Such bioactivities are primarily attributed to their radical scavenging capacity and general antioxidant potential (60).

An investigation of twelve pea accessions from southern Tunisia revealed substantial variability in protein, phenolics, and antioxidant capacity. Protein content ranged from 46.91 to 151.08 mg/g DW, while LC-ESI/MS analysis identified eight phenolic acids and nine flavonoids. Antioxidant activity, measured by DPPH and ABTS assays, was positively correlated with phenolic content but negatively with protein content. Genotypes with purple flowers, brown seed coats, and wrinkled seeds exhibited the highest TPC and antioxidant values (61).

Chen et al. (50) analyzed ten pea varieties and reported TPC ranging from 0.66 to 2.66 mg/g, and TFC from 0.74 to 1.88 mg/g, with the highest phenolic content observed in variety ZW.8. The TFC values were notably higher than those reported for soybeans (50, 62). Similarly, peas grown in Nepal showed TPC of 33.14 ± 0.50 mg GAE/g and TFC of 137.12 ± 4.3 mg QE/g (57). Zhao et al. (63) assessed 75 pea varieties, revealing TPC values ranging from 0.27 to 1.95 mg GAE/g dry weight. Twenty-two varieties had above-average phenolic levels, and TFC varied from 0.53 to 5.08 mg rutin equivalents/g dried weight. Yellow peas exhibited TPC values of 0.85–1.14 mg/g and TFC of 0.09–0.17 mg/g, while green peas showed slightly lower phenolic and flavonoid content.

Qualitative and quantitative analysis of acetone extracts from pea seeds led to the identification of 25 phenolic compounds, including five not previously reported in peas (rosmarinic acid, morin, naringin, naringenin, chrysanthemum). Dueñas et al. (64) found high levels of hydroxybenzoic acids in dark-colored seeds, while

Troszynska and Ciska (56) identified vanillic, syringic, and o-coumaric acids. Stanislavljević et al. (65), on the other hand, reported exceptionally high epigallocatechin content in specific dark-colored cultivars such as Aslaug, Assas, Dora, Poneka, MBK 168, and MBK 173 (65).

Advanced metabolite profiling using UHPLC-LTQ-Orbitrap MS identified 41 phenolic compounds, including rutin, galangin, morin, naringin, hesperetin, and pinocembrin (65). Notably, 10 flavonol glycosides previously unreported in European cultivars were detected. Varieties MBK 168 and MBK 173, characterized by dark seed coats, showed high TPC and antioxidant activity, while light-colored varieties MBK 88 and MBK 90 exhibited superior metal-chelating activity. The developmental stage also significantly impacts phenolic composition and antioxidant capacity. A study on six garden pea varieties across ripening stages found that the highest antioxidant activity was recorded in the array 'Jumbo' ($1,179.99 \pm 28.08$ mg/kg). At the same time, 'Premium' showed the lowest (674.51 ± 26.54 mg/kg). The variety 'Flavora' was identified as optimal for human nutrition, with significant differences observed among different maturity groups. In a comparative study of 14 Canadian legume varieties, green peas exhibited the lowest TPC (1.16 ± 0.08 mg GAE/g DW), while large green lentils showed the highest (7.45 ± 0.69 mg GAE/g DW). Dehulling markedly reduced phenolic content, indicating that the seed coat plays a central role in phenolic accumulation. Among peas, yellow whole, yellow split, and green split varieties showed TPC values of 1.38 ± 0.06 , 1.21 ± 0.06 , and 1.16 ± 0.07 mg GAE/g DW, respectively (43).

Although not a phenolic component, carotenoid content is another group of bioactives of interest in peas. In Canadian yellow and green pea varieties, total carotenoid content ranged from 21.17 ± 1.53 mg/g to 29.61 ± 4.46 mg/g, with lutein being the dominant carotenoid (43, 66). These findings further support the classification of peas as a functional food, given their contribution to antioxidant defense and their potential health benefits.

4 Health benefits of peas

Epidemiological studies have consistently shown that higher consumption of legumes, including peas, is associated with a reduced risk of non-communicable diseases such as cardiovascular disease, metabolic syndrome, type 2 diabetes, and certain types of cancer (4, 67). As a rich source of plant-based protein, dietary fiber, and vitamins, peas are a functional food with the potential to support disease prevention and health maintenance. As previously mentioned, the protective effects are attributed not only to their favorable nutrient profile but also to the presence of a diverse array of bioactive compounds, including polyphenols, saponins, carotenoids, and other bioactive peptides. These compounds could exert a range of physiological effects, including antioxidant, anti-inflammatory, antihypertensive, hypoglycaemic, and lipid-lowering actions (68–70). The significance of phenolics is better understood due to their extensive range of beneficial properties (69–72). The soluble and insoluble fibers present in peas play a critical role in improving glycemic control, enhancing satiety, and supporting gut microbiota diversity, thereby contributing to metabolic health. In addition, pea protein has

demonstrated beneficial effects on muscle maintenance, blood pressure regulation, and postprandial glucose response, making it a valuable alternative in plant-based and clinical nutrition (1, 54).

In summary, peas possess multiple biological properties, including regulation of conditions related to metabolic syndrome, modulation of gut microbiota, antioxidant effects, anti-inflammatory properties, antihypertensive effects, obesity management, anticancer properties, anti-fatigue effects, antidiabetic properties, antimicrobial effects, anti-renal fibrosis effects, immunomodulatory activities, and prevention of osteoporosis (49). Furthermore, recent preclinical and clinical studies have highlighted the role of peas in modulating key biomarkers of inflammation and oxidative stress, improving endothelial function, and supporting immune resilience (59, 73). These findings underscore the potential of peas not only as a component of a balanced diet but also as a functional food with applications in the prevention and adjunctive management of chronic diseases. The following sections will provide a detailed examination of some of the mentioned effects of pea consumption, as well as some pea by-products on various aspects of human health.

4.1 Antioxidant activities

Numerous studies have demonstrated that peas and their by-products exhibit significant antioxidant activity, primarily due to their diverse bioactive components, including polyphenols, phenolic acids, polysaccharides, and peptides. A higher polyphenol content is generally associated with a greater antioxidant capacity, as previously reported for various pea cultivars (49). Dark-colored pea seeds (e.g., brown and dark purple) exhibit higher concentrations of polyphenolic and flavonoid compounds than lighter-colored seeds, resulting in enhanced antioxidant potential. This activity is mainly linked to the presence of compounds such as gallic acid, epigallocatechin, naringenin, and apigenin.

Comparative analyses performed by Koley et al. (60), on underutilized and commonly cultivated leguminous vegetables, including garden pea and edible-podded pea (*Pisum sativum* var. *macrocarpon*), confirmed notable antioxidant capacity in bivariate when evaluated using standard *in vitro* assays (FRAP, CUPRAC, DPPH, and TEAC). Garden peas were particularly recognized for their tender seeds, while edible-podded peas demonstrated relevance for whole pod consumption (1, 55). Despite some variability in results due to methodological differences across studies, the overall evidence consistently supports peas as an essential dietary source of antioxidants. This conclusion is further reinforced by the findings of Kabir et al. (74), who reported that peas exhibited the highest flavonoid content (17.64 mg catechin equivalent/g dry extract) and the best reducing power ($OD = 1.11$) among 12 commonly consumed leafy vegetables in Bangladesh. The strong correlation ($r^2 = 0.87$) between flavonoid content and reducing power indicates that their flavonoid composition primarily drives the antioxidant activity potential of peas (74).

4.1.1 Immune system support

Oxidative damage has been proven to cause many diseases, such as type 2 diabetes, inflammation, and certain cancers, and is driven by an excess of reactive oxygen and nitrogen species (75–77). Antioxidants, found in foods, can not only inhibit enzymes associated with ROS (reactive oxygen species) but also protect cells from oxidative damage and boost the immune system (51, 55). The main feature of phenolic food compounds is antioxidant activity, which is considerable for health preservation (75–77). When foods that strengthen the immune system are incorporated into the daily diet, the body receives the necessary nutrients. In this way, nutrition increases biological defense mechanisms, slows down the aging process, controls physical and mental disorders, and prevents and cures certain diseases (59, 73). According to growing scientific studies of naturally occurring vegetables and fruits, green peas are among the products with the highest antioxidant potential (62). The phenolic compounds found in peas are considerable active ingredients that are thought to have many health benefits beyond the ones listed above (50).

4.2 Potential in managing metabolic syndrome-blood sugar control, diabetes management, and weight management

The numerous biological activities and health-promoting effects of peas are closely associated with their nutritional and bioactive composition. Rich in dietary fibers, plant-based proteins, resistant starches, polyphenols, and micronutrients, peas are considered a promising dietary component for mitigating metabolic dysfunctions related to metabolic syndrome diseases (49, 78). With a typically low-to-medium glycemic index (below 60), peas can help improve glycemic control and partially replace high-GI foods in the diet. Being gluten-free, they are also suitable for individuals with celiac disease (49).

Metabolic syndrome is characterized by a combination of metabolic disorders, including obesity, insulin resistance, dyslipidemia, hypertension, and central obesity, all of which significantly elevate the risk of developing cardiovascular diseases (79). A growing body of evidence supports the ability of peas and their components to modulate these risk factors. Several *in vitro* and *in vivo* studies have demonstrated reductions in waist circumference, fasting glucose, and blood pressure following regular pea consumption, highlighting their potential in improving overall metabolic health (1, 39, 80). The underlying mechanisms include enhanced insulin sensitivity, regulation of lipid metabolism, modulation of adipokine secretion, and improved appetite control through ghrelin and peptide signaling (4, 81, 82). Resistant starch in peas further slows carbohydrate digestion, promoting glycemic stability and reducing insulin resistance (83, 84).

Beyond glycemic regulation, peas exert beneficial effects on cardiovascular health by improving lipid profiles, lowering total cholesterol, LDL, and triglycerides, while elevating HDL levels (8, 85). Their fiber and prebiotic components also contribute to gut microbiota diversity, reducing systemic inflammation and supporting metabolic balance (86). Peptides derived from

pea protein hydrolysates exhibit notable antihypertensive activity through ACE and renin inhibition, while hypolipidemic and antioxidant effects have been confirmed both *in vitro* and *in vivo* (8).

Recent studies also emphasize that pea by-products, such as pods, display bioactive potential and should not be overlooked. Inagaki et al. (87) reported that autoclaved pea pod extract significantly reduced serum triglyceride and cholesterol levels in rats fed a high-sucrose diet, linked to enhanced lipid excretion, pancreatic lipase inhibition, and prebiotic activity via bifidobacteria proliferation. Similarly, methanolic pea pod extract demonstrated antidiabetic and antihyperlipidemic effects in alloxan-induced diabetic mice, improving glucose metabolism, liver and kidney function, and antioxidant enzyme activity (88).

At the molecular level, specific pea-derived proteins and glycoproteins have shown promise as natural therapeutics. Pea albumin supplementation in high-fat diet-fed mice improved glucose tolerance, insulin sensitivity, and hepatic lipid metabolism, while suppressing inflammation and adipogenesis (89). Pea glycoprotein PGP2 reduced fasting glucose and improved insulin secretion in diabetic mice through activation of the IRS-PI3K-Akt-GLUT1 pathway, demonstrating strong antidiabetic potential (89). Qin et al. (78) further identified three glycoprotein fractions (PGP1–PGP3) with inhibitory effects on α -glucosidase and α -amylase, with PGP2 exhibiting the most significant activity due to its low molecular mass and high arabinose and glucose content.

Collectively, these findings confirm that peas and their by-products can modulate key metabolic pathways, including glucose and lipid metabolism, oxidative stress, and inflammation, thereby reducing risk factors associated with metabolic syndrome. However, most available data derive from *in vitro* and animal studies, and further clinical research is essential to validate these effects in humans and to optimize the utilization of pea-derived bioactives in functional foods and nutraceuticals.

4.3 Digestive health

Peas are an excellent source of both soluble and insoluble dietary fiber, contributing significantly to digestive health, promoting regular bowel movements, and supporting overall gut function (90). Soluble fiber fermenters in the colon, producing short-chain fatty acids (SCFAs) such as butyrate, which nourish colonocytes, maintain mucosal integrity, and form a gel-like substance in the gut that can aid in slowing digestion and improving nutrient absorption. This can also help manage blood sugar levels and reduce the risk of digestive disorders, such as constipation or irritable bowel syndrome (IBS). Insoluble fiber adds bulk and accelerates transit time, effectively reducing constipation. Additionally, the fermentation of pea fiber supports a beneficial gut microbiota composition, which could be linked to reduced inflammation and improved immune function, promoting a healthy microbiome (86). The administration of pea albumin in the study of Liu et al. (89) has been demonstrated to restore the composition of the gut microbiota to a state more closely resembling that observed under normal fat diet conditions. This process has been shown to selectively promote the growth of

beneficial gut bacteria, such as *Akkermansia* and *Parabacteroides*. The study's findings demonstrated that pea albumin negatively modulated lipid accumulation by suppressing adipogenesis and promoting fatty acid oxidation. This finding further substantiates its role in the management of obesity. The study highlights the potential of pea albumin as a functional ingredient for preventing obesity and improving metabolic health through multiple mechanisms, including modulation of lipid metabolism and gut microbiota composition. The study of Guo et al. (91) explores the therapeutic potential of pea-based products, green pea hull (GPH) extracts, in managing ulcerative colitis (UC), with a particular focus on their antioxidant and gut-modulating properties. Using a DSS-induced mouse model, the researchers demonstrated that GPH extracts could alleviate colitis symptoms by enhancing colonic function and reducing inflammation. These effects are primarily mediated through the activation of the Keap1-Nrf2-ARE signaling pathway, which plays a key role in regulating oxidative stress and inflammatory responses. GPH extracts are rich in phenolic compounds, especially quercetin, kaempferol, and catechin, which contribute to their bioactivity. Additionally, the extracts favorably modulated the gut microbiota, promoting beneficial bacteria such as *Lactobacillaceae* and *Lachnospiraceae* and increasing levels of short-chain fatty acids (SCFAs), which are essential for intestinal health. Collectively, these findings highlight GPH extracts as a promising functional food ingredient and sustainable dietary strategy for UC management, derived from an underutilized pea by-product.

4.4 Cardiovascular health

As was highlighted in the previous sections, peas play a crucial role in addressing key risk factors for heart disease, including cholesterol levels, blood pressure, weight management, and inflammation, acknowledged by their rich nutrient profile, which includes fiber, protein, antioxidants, and essential vitamins (49). Regular consumption of peas as part of a balanced diet can help improve blood pressure and reduce cholesterol levels. The high fiber content in peas can help lower cholesterol levels by binding to bile acids and preventing their reabsorption, which in turn may reduce the risk of heart disease. Soluble fiber binds bile acids, promoting their excretion and forcing the liver to use more cholesterol to synthesize new bile acids (92). The antioxidants in peas, such as flavonoids and vitamins, help reduce inflammation and oxidative stress, both of which are associated with cardiovascular problems (68). Peas contain phytosterols, flavonoids (e.g., kaempferol), and dietary fibers, which together could contribute to improved lipid profiles and reduced LDL cholesterol. Furthermore, the antioxidant properties of polyphenols present in peas help reduce oxidative stress and endothelial dysfunction, which are key contributors to atherosclerosis. Additionally, peas are a good source of plant-based protein, which can be a heart-healthy alternative to animal-based proteins that are often higher in saturated fats. The afore-mentioned and numerous additional mechanisms, attributable to the compositional profile of peas, act synergistically to promote cardiovascular health when peas or pea-based products are incorporated into the diet.

4.5 Bone health

Peas are rich sources of vitamins and minerals, including vitamin K, magnesium, and calcium, which are vital for bone mineralization, remodeling, and maintaining bone density (38). A 100 g serving of peas provides a nutritionally significant profile critical for maintaining bone density: 8% of daily calcium, 39% of magnesium, 45% of manganese, and 43% of phosphorus relative to recommended daily values (3). The mineral composition of peas demonstrates a pivotal role in bone metabolism. Field peas contain essential minerals critical for bone health, including potassium (97–99 mg/100 g), calcium (9–11 mg/100 g), magnesium (5–7 mg/100 g), and trace minerals such as copper, selenium, and boron (1, 4, 88, 93). These minerals and vitamins exhibit synergistic interactions that modulate bone density and structural integrity and support the physiological mechanisms of bone health. Notably, mineral concentrations can vary significantly across cultivars, with calcium reaching up to 96.25 µg/g and magnesium hitting 94.59 µg/g, depending on cultivation regions (7). The nutritional attributes of peas extend beyond their fundamental mineral content. Vitamin K, a critical micronutrient for bone metabolism, facilitates biochemical interactions with proteins such as osteocalcin and matrix Gla-protein (MGP), which are fundamental to bone mineralization and calcium sequestration (80, 81). Although peas are not considered a predominant source of vitamin K, their comprehensive mineral profile significantly contributes to the overall framework of bone health. Vitamin K (especially K1 found in green vegetables like peas) is essential for the carboxylation of osteocalcin, a protein necessary for binding calcium in the bone matrix (94, 95).

Since peas represent a compelling nutritional source with significant potential to support bone health through their intricate mineral and vitamin composition, processing methodologies can potentially enhance their nutritional bioavailability. Research published by Alonso et al. (44) demonstrated that thermal extrusion processing at 150 °C minimally alters the elemental composition of calcium, magnesium, and phosphorus while substantially enhancing mineral absorption in preclinical animal models. This improvement is hypothetically attributed to the degradation of antinutrient compounds such as phytates.

Epidemiological investigations underscore the potential of peas for bone health, with emerging evidence linking increased calcium and vitamin K intake to reduced fracture risk, particularly among older populations (96, 97). Supplementation studies exploring vitamins K, D, and calcium have produced inconsistent results regarding overall bone density, necessitating a rigorous and systematic investigation (95–102). As peas stand out as a natural, nutrient-dense option for supporting bone density due to their diverse mineral composition, despite their promising nutritional potential, existing research highlights the need for more comprehensive, longitudinal clinical trials.

4.6 Anti-inflammatory effects vs. role in reducing inflammation

Chronic diseases are often driven by inflammation, and an intriguing area of research has concentrated on the potential

anti-inflammatory properties of peas. Chronic inflammation contributes to various health issues, including diabetes, cardiovascular disease, and arthritis (79). However, it can be mitigated by consuming bioactive compounds sourced from peas (72). Polyphenols found in peas inhibit the NF-κB signaling pathway, which reduces the production of pro-inflammatory cytokines such as TNF-α and IL-6 while boosting levels of IL-10, thus promoting immune regulation and decreasing the inflammatory process (67, 103, 104). In a study by Schoeny et al. (105), researchers explored the connection between the availability of primary inoculum and the severity of Ascochyta blight in pea plants. Their findings uncovered a significant relationship between immune modulation and reduced systemic inflammation, suggesting that understanding these dynamics could improve disease management strategies. In a related line of research, Fristensky et al. (106) investigated the complex changes in gene expression that occur in peas during interactions with the pathogenic fungus *Fusarium solani*. This study revealed critical molecular responses that correlated with reduced levels of inflammatory markers, especially in contexts where the pea varieties displayed disease resistance. Together, these studies highlight the intricate relationship between plant immunity and inflammation, demonstrating the potential of peas to alleviate chronic inflammatory conditions in humans. Lignans in peas may help suppress the action of inflammatory enzymes, particularly COX and LOX, which are involved in the synthesis of pro-inflammatory mediators (52). Additionally, the dietary fiber in peas promotes gut health by encouraging the growth of anti-inflammatory bacteria, which helps reduce systemic inflammation (86, 107). Clinical studies have shown that consuming peas can enhance outcomes in inflammatory conditions like inflammatory bowel disease (IBD) and rheumatoid arthritis, further supporting their anti-inflammatory benefits (1, 39, 108). Peas are acknowledged as a source of anti-inflammatory phytonutrients, including coumarin and saponins, which modulate inflammatory cytokines such as IL-6 and TNF-α. Regular consumption may help reduce chronic low-grade inflammation associated with cardiovascular and metabolic diseases (5).

4.7 Peas in disease prevention (antioxidant properties and cancer prevention)

Peas are widely appreciated not only for their nutritional value but also as significant sources of antioxidants (109). These compounds play a crucial role in protecting cellular integrity by neutralizing free radicals and mitigating oxidative stress, unstable molecules that can cause oxidative damage to cells and tissues (60, 62). Chronic oxidative stress is implicated in the development of various diseases, including cancer (49, 76, 80). Highlighting the importance of these protective mechanisms. In plants, such as peas, oxidative stress triggers complex defense responses, including the induction of specific mRNAs and enzymatic activities, such as malate dehydrogenase, that regulate metabolic pathways to maintain cellular homeostasis (110, 111). These processes reflect conserved biochemical strategies shared with human cells, suggesting that the antioxidant and stress-mitigating properties of

peas may not only support plant health but also have implications for human disease prevention, including cancer. Consequently, the health benefits of peas extend beyond classic nutrition, encompassing molecular mechanisms that enhance resilience against oxidative damage.

Given their diverse composition of bioactive compounds, peas exhibit remarkable antioxidant and anticancer potential. Phenolic acids such as ferulic and caffeic acid efficiently neutralize reactive oxygen species (ROS), protecting cellular macromolecules from oxidative damage (53, 112). Numerous studies have demonstrated the significant relationship between diet and cancer prevention, highlighting the protective effects of legumes like peas (113). The remarkable antioxidant capacity of peas contributes to the neutralization of free radicals and the attenuation of inflammation, two central mechanisms in cancer development and progression (114, 115).

Flavonoids can significantly inhibit lipid peroxidation, reduce ROS-induced cellular damage, and prevent genetic mutations that can lead to tumorigenesis (46, 116). Furthermore, galactolipids found in peas suppress angiogenesis, a crucial process in tumor growth, particularly in hormone-sensitive cancers such as breast cancer (80). Green peas contain pigments such as carotenoids (like lutein and zeaxanthin), which exhibit antioxidant and antimutagenic activity by neutralizing free radicals, reducing DNA damage, and modulating detoxification enzymes (43). Additionally, saponins present in peas can induce apoptosis in cancer cells by disrupting signaling pathways and limiting metastatic potential. Overall, regular consumption of peas is beneficial due to their combined role in reducing oxidative stress and lowering cancer risks (1, 4, 53, 117).

5 Toxins and antinutrients in peas

The use of grain legumes as food sources is restricted by antinutritional factors, which could have harmful effects on human health (118). These factors are naturally produced as secondary metabolites that protect the plant against biological stresses, such as pest attacks. The main antinutrients are tannins, phytic acid, cyanogenic glycosides, saponins, oxalates, biogenic amines, lectins, protease inhibitors, and amylase inhibitors. The most concerning metabolites in peas are phytic acid, tannins, and trypsin inhibitors (119). These components interfere with the nutritional value of foods by reducing mineral absorption and protein digestibility, and by causing toxicity and health disorders when present at high concentrations. In previous sections, it was established that antinutrients have a strong negative relationship with micronutrient bioavailability, as higher levels of antinutrients reduce the availability or absorption of minerals and can lead to nutrient deficiency or malnutrition (Figure 4).

5.1 Antinutritional factors

5.1.1 Phytic acid and its impact on mineral absorption (iron, zinc)

Phytates, which serve as reservoirs for phosphate and minerals in seeds, may also affect the absorption of Zn and Fe from crops (120, 121), potentially limiting their nutritional value. Phytic

Antinutritional Factors

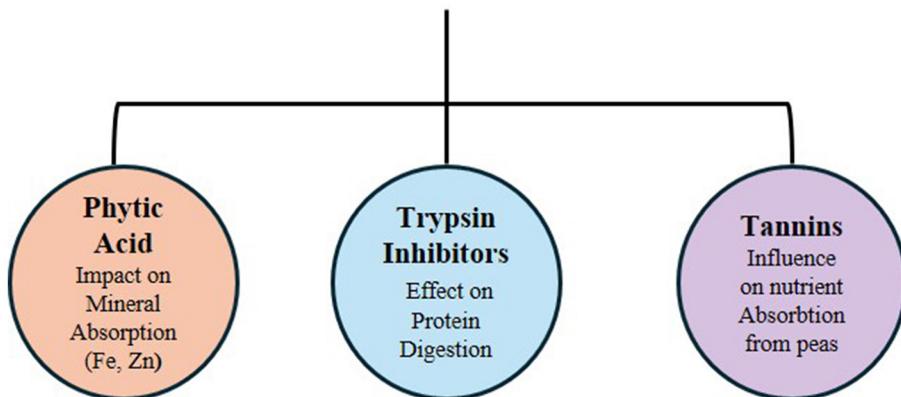


FIGURE 4
Antinutritional factors of peas.

acid forms insoluble complexes with minerals (copper, iron, and zinc), resulting in a reduction in their absorption in the human gastrointestinal tract (85). Iron deficiency is a primary global health concern, affecting infants, children, and women, leading to child and maternal mortality, decreased mental development, and increased susceptibility to infectious diseases. The leading cause of Fe deficiency is prolonged consumption of a non-diverse plant-based diet low in bioavailable Fe (66). To improve Fe and Zn bioavailability, several strategies have been used to reduce phytate content in foods. Additionally, low phytic acid crops have been produced through plant breeding, further enhancing the effectiveness of these strategies (122, 123). Liu et al. (124) showed that pea varieties with non-pigmented seed coats (i.e., low in polyphenols) had seven times greater Fe bioavailability than those with pigmented seed coats. High concentrations of polyphenolic compounds in the seed coats of Fe-biofortified common bean and black bean limited iron bioavailability (120, 125, 126). These results suggest that higher Fe concentration could be associated with higher Fe bioavailability in pea varieties with non-pigmented seed coats. Low-phytate pea lines have higher iron bioavailability than standard varieties (127). Previous studies suggest that biofortified crops with high iron content can improve iron status in iron-deficient individuals (121, 125, 128). However, recent research indicates that the phytic acid/Fe molar ratio is crucial for predicting iron absorption from digested food, with a 10:1 ratio resulting in the most significant inhibition of iron bioavailability. A recent study found that despite comparable iron levels among all pea varieties, the intake of lower-phytate peas moderately enhanced iron status and storage, as evidenced by higher hepatic ferritin levels in lower-phytate groups compared to high-phytate and no-pea diets (129). Lower-phytate pea-based diets also showed elevated expression of ferroprotein, an iron exporter that facilitates iron transfer across enterocytes (130). Although hemoglobin levels were not significantly increased in lower phytate pea groups, notable changes were found in whole body hemoglobin iron, indicating an improvement in iron status (128, 131–133).

5.1.2 Trypsin inhibitors and their effect on protein digestion

Trypsin inhibitors significantly inhibit the activity of the pancreatic enzymes trypsin and chymotrypsin, which are among the most crucial serine proteases. This reduces the digestion and absorption of dietary proteins, even in the presence of high levels of digestive enzymes (134). Inhibition of these enzymes is crucial, as excess protein intake can lead to weight gain (135), because excess amino acids are used to synthesize acetyl-CoA, a precursor of triglycerides stored as body fat. In addition, excess amino acids can be used as substrates for glucose production during gluconeogenesis (136). The trypsin inhibitors of legumes are divided into 2 families according to their molecular size: Kunitz (KTIs) (~20 kDa), which are predominantly active against trypsin, and Bowman-Birk (BBTIs) (~20 kDa), which are active against trypsin and chymotrypsin (137). Thermal treatments are widely accepted as the most effective method for improving the nutritional value of legume seeds by inactivating thermostable antinutritional factors, particularly trypsin inhibitors. These treatments promote the breakage of intermolecular bonds, thereby altering the active site conformation. Some methods used in thermal treatments include cooking, boiling, autoclaving, microwaving, and roasting. For pea seeds, microwaving (2,450 MHz for 4 min), boiling (100 °C for 20 min), and pressure cooking (120 °C for 10 min) resulted in total inactivation of trypsin inhibitors, improving *in vitro* protein digestibility by 6.53%, 6.28%, and 2.72%, respectively (137). Nonetheless, despite the efficacy and rapidity of these processes, it has been noted that temperatures exceeding 80 °C may compromise specific essential nutrients, including lysine, sulfur amino acids, and heat-sensitive vitamins (138–141). As a preventive agent, protease inhibitors have been shown to inhibit the proliferation of preadipocytes, suggesting a potential to combat obesity (142). Serine protease inhibitors have also been associated with boosting the immune system and blood development (143–145). Synthetic inhibitors of digestive enzymes

have been developed for various purposes; however, they often have adverse effects, ranging from diarrhea to hepatotoxicity (146). Given the global prevalence of obesity and type 2 diabetes mellitus (T2DM), the identification of alternative enzyme inhibitors is essential. Compounds from natural sources (e.g., dietary components) are more desirable because they are reported to have a lower risk of adverse side effects than synthetic inhibitors (8).

5.1.3 Tannins and their influence on nutrient absorption from peas

Legumes are a rich source of essential nutrients, such as minerals and dietary proteins. They are a healthier alternative to animal proteins, as they are not associated with cardiovascular disease, but they also contain significant amounts of tannins. Tannins can interfere with the protein digestive process and hinder the efficient utilization of nutrients (147–150). The effects of bean tannins on protein digestibility may be related to their ability to form stable and insoluble complexes with dietary proteins (79, 151–153). The tannin content of certain beans can be reduced by soaking in various solutions (154), possibly due to the leaching of polyphenols into the soaking water (150, 155). Therefore, these polyphenolic compounds, which are mostly water-soluble and found in the seed coat, can be reduced by pre-processing methods like soaking, which can help reduce the level of water-soluble/leachable antinutritional factors, such as tannins (156).

Lectins are metabolites that can be found in cereals, legumes, and nuts, which can attach to red blood cells, bind to carbohydrates, and attach to the lining of the gut/small intestine (157, 158). Lectins can agglutinate red blood cells, interfere with carbohydrate digestion, and cause mineral and nutrient deficiency (158).

Tannins, saponins, and lectins can also interfere with nutrient absorption, but through a different mechanism. Instead of forming a complex system with micronutrients, they bind to the lining of the human gut and promote inflammation, thereby preventing the absorption of nutrients and minerals (158–160). Therefore, these antinutrients should be reduced (if not completely removed) as they can cause numerous and severe health problems associated with deficiencies of minerals and nutrients (160, 161). Although lectins are resistant to enzymatic digestion in the gastrointestinal tract, they can be removed from foods by various processes. For example, soaking, autoclaving, and boiling cause irreversible denaturation of lectins. Boiling legumes for 1 hour at 95 °C reduced hemagglutinating activity by 93.77%–99.81% (162). Microwave ovens, on the other hand, are not an effective method for lectin deactivation. Though microwaving destroyed hemagglutinins in most legume seeds, it did not significantly affect lectins in common beans (162). Additionally, fermentation over 72 h has been demonstrated to destroy almost all lectins in lentils (*Lens culinaris*) (162).

Saponin can be found in legumes, tea leaves, and Allium species, seeds that inhibit the activities of digestive enzymes, disrupt the membrane cholesterol of erythrocytes (160, 163, 164), and decrease nutrient absorption, indigestion disorders, and hemolysis (160, 165).

5.2 Methods to reduce antinutrients and toxins

Due to the presence of various anti-nutritional factors in legumes such as peas, their nutritional quality and beneficial effects may be limited. Different processing techniques have been applied to peas, improving their functional properties and expanding their applications in the food industry. Processing methods, such as cooking, soaking, roasting, boiling, pressure cooking, milling, drying, and sprouting, are effective in decreasing antinutritional factors.

Extrusion of different blends of rice, carob (*Ceratonia siliqua*) fruit, and green pea significantly reduced the myo-inositol hexakisphosphate (phytic acid) or IP6 (5.7%–30.9%) contents, while the lectin contents were reduced by 50%–100%, and the protease inhibitors were eliminated (166, 167).

Cooking also affected the contents of bioactive compounds in peas, such as reducing total polyphenols by 48%–70%, reducing total saponins by 14%–30%, and reducing total oligosaccharides by 20% (168). On the other hand, cooking can improve the nutritional quality by inactivating or reducing the level of anti-nutritional factors (169), could increase free phenolic acids in peas and reduce bound phenolic acids; the carotenoid content in peas increased significantly after cooking treatment.

Various previous studies have confirmed that fermentation is one of the best methods for reducing anti-nutritional factors in foods compared to other methods. However, germination followed by fermentation also showed promising results for reducing the level of antinutrients in foods. Microbial fermentation activates many endogenous enzymes, like phytase, which generally degrade phytate in the food. Therefore, the quality of food crops like cereals and grains can be improved by subjecting them to various processing methods, especially germination and fermentation (158).

Soaking is a necessary step that precedes other food processing treatments, such as cooking, microbial fermentation, and germination. Soaking does not significantly alter the chemical composition of pea flours but does affect their physicochemical properties and antinutritional factors. Soaking could disrupt the protein and fibrous matrix around starch granules in yellow peas, leading to greater swelling during gelatinization and thereby increasing the gelatinization viscosity of yellow pea flours. Soaking could increase the protein solubility of yellow pea flours to some extent, possibly due to proteolytic enzyme breakdown of proteins. Soaking could also significantly reduce the levels of lectins and oxalates in peas, but did not affect phytic acid levels. Soaking the seeds of soya bean, green pea, chickpea, lentil, broad bean, and common bean in distilled water significantly decreased the contents of lectins and total and soluble oxalates (169). Compared to soaking, the cooking process was more efficient in reducing the levels of lectins, oxalates, IP6, saponins, and tannins in legume seeds. Milling is a process that utilizes mechanical force to break down particles into smaller pieces or fine particles, affecting *in vitro* starch and protein digestion properties (169).

However, the selection of processing methods should consider the balance between nutrient retention and the reduction of antinutritional compounds. Excessive heat or prolonged processing

can lead to the loss of essential amino acids, vitamins, and phenolic compounds. In contrast, milder treatments, such as fermentation and germination, effectively reduce phytates, tannins, and trypsin inhibitors while improving protein digestibility and mineral bioavailability. From a technological perspective, optimizing these processes is essential to developing pea-based food products with improved nutritional quality and functional properties suitable for industrial applications.

6 Comparison of peas with other common legumes and unique properties of peas; pea-based products, and the application of peas; environmental benefits; market perspectives; current gaps in research and future directions

Legumes are globally recognized for their rich nutrient content and significant health benefits. Among these, peas have gained attention not only for their nutritional value but also for their unique bioactive compounds and functional properties. This section presents a comprehensive comparison of peas with other common legumes and crops, including lentils (*Lens culinaris*), chickpeas (*Cicer arietinum*), and common beans (*Phaseolus vulgaris*), with a focus on their nutritional composition and distinctive characteristics (Figures 5, 6).

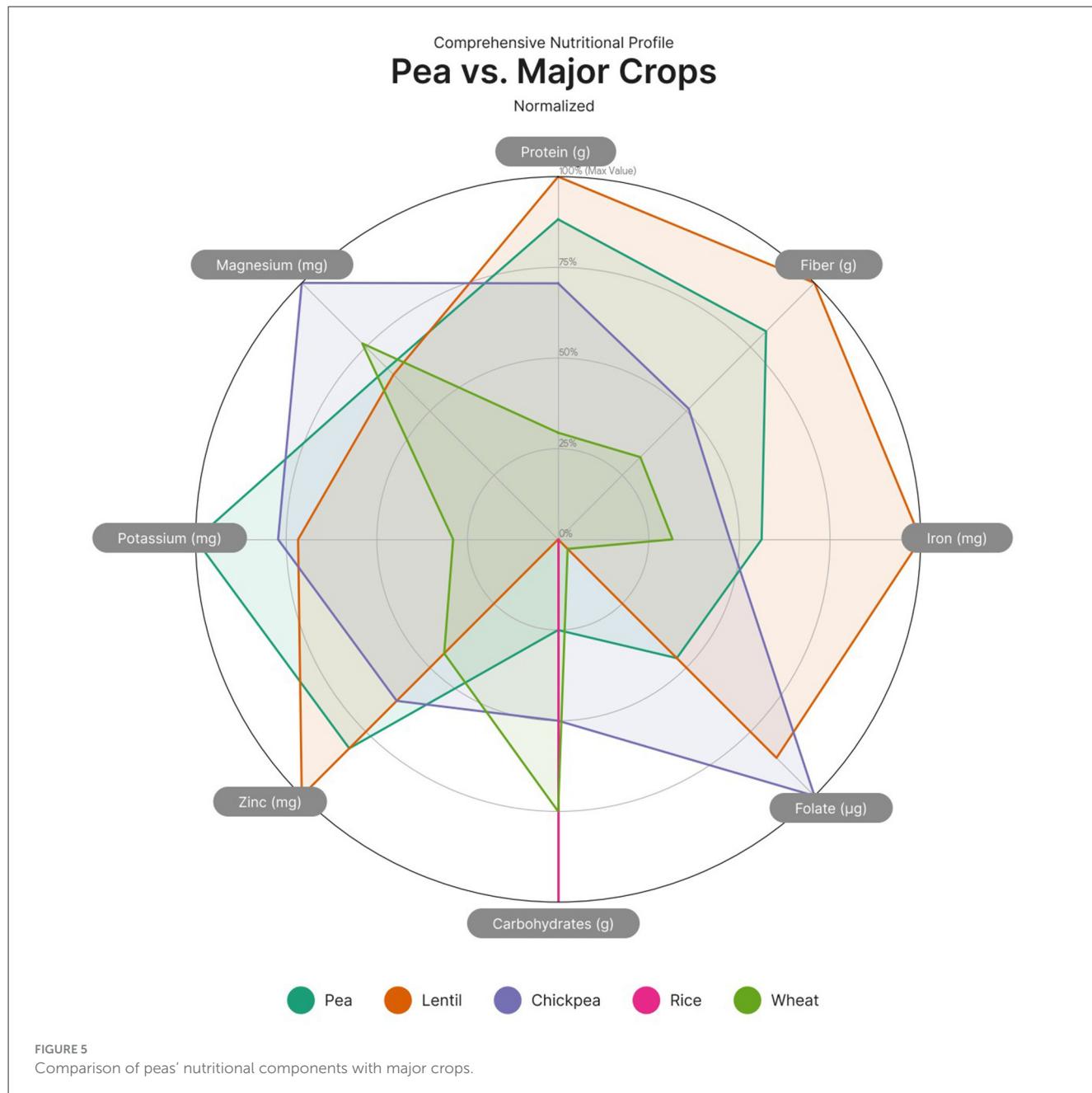
6.1 Nutritional and non-nutritional comparison between peas and other common legumes

6.1.1 Proteins

Peas contain ~20%–25% protein by dry weight, comparable to lentils and chickpeas, and slightly less than some common bean varieties (50, 68). The protein quality of peas stands out due to their high lysine content, an essential amino acid often limited in cereal grains, making them a valuable complementary protein source in plant-based diets. However, like most legumes, peas have a relatively low methionine content, necessitating dietary combinations with other protein sources to achieve a balanced intake of amino acids. Compared to soybeans, which contain a higher total protein (~36 g/100 g dry weight), pea protein is slightly lower in quantity but comparable in quality when complemented appropriately (170). Moreover, Multescu et al. (171) systematized the results of several studies and reported different protein concentrations in studied legumes, i.e., 43.86% in soy; 28.2%–33.2% in yellow, green, red, brown, and black lentils, where black lentils stood out with the highest content; up to 24% in common beans, 26%–28% and 19% in chickpea. Considering all these results, peas stand out for their high protein content. Unlike beans or lentils, pea protein is generally easier to digest, with fewer antinutritional factors such as trypsin inhibitors and tannins, particularly in yellow and green split pea varieties.

6.1.2 Carbohydrates

Carbohydrates in peas mainly consist of starch, which comprises about 50%–60% of their dry weight, with a significant portion being resistant starch (37). Resistant starch resists digestion in the small intestine and acts as a prebiotic in the colon, promoting gut health by stimulating beneficial microbiota. Starch is also a primary nutrient in most legumes—a lower amount (<20%) has been reported for soy and lupin (171). The dietary fiber content in peas is high (15%–20%), like other legumes, contributing to improved digestive health, glycemic control, and cholesterol reduction (83). Grela et al. (172) reported the highest amount of fibers in lupins (73.84–126.2 g/kg DW), with white lupin as the most abundant. Compared to this, they reported 45.71 g/kg DW in peas. On the other hand, a lower amount of fibers in pea cultivars was reported by Chen et al. (50) where the content of soluble dietary fiber was 0.71%–1.90 %, insoluble nutritional fiber 9.45–17.46 % while total dietary fiber content ranged from 11.34% to 18.79% (Figures 5, 6).


6.1.3 Non-nutritional compounds

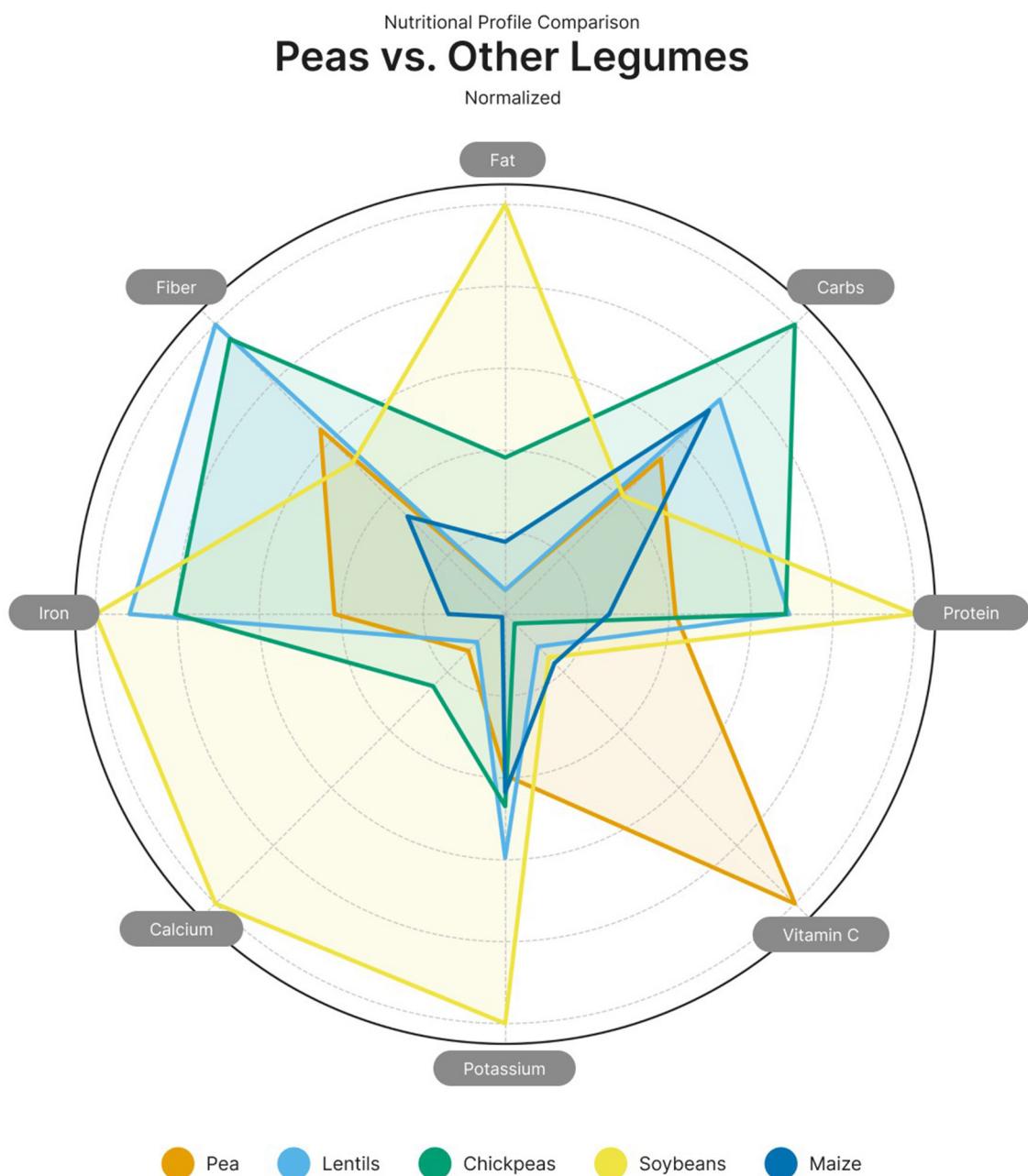
Peas are distinguished by their high levels of polyphenols, flavonoids, phenolic acids, isoflavonoids, and carotenoids, compounds with antioxidant and anti-inflammatory properties. Compared to lentils and chickpeas, peas often exhibit higher concentrations of flavonoids like kaempferol and quercetin derivatives (117, 164). Chen et al. (50) studied different pea cultivars and among 12 identified phenolic compounds, pelargonidin 3-(6''-p-coumarylglucoside)-5-(6''-acetylglucoside), protocatechuic acid, coumaric acid, malic acid, p-hydroxy benzoic acid, hexose gallic catechins, quercetin di-pentoside, and others were reported. These bioactives have been associated with various health benefits, including a reduced risk of chronic diseases such as cardiovascular disease, certain cancers, and type 2 diabetes. Xu et al. (173) studied 33 cool-season legumes in comparison with common beans and soybeans. In this study, colored common beans as well as black soybeans exhibited higher total phenolics and total flavonoids content than yellow and green peas and chickpeas. Antioxidant activities were strongly correlated with the amount of total phenolics.

6.2 Unique properties of peas

Peas stand out among legumes not only for their rich nutritional profile and bioactive compounds with health benefits, but also for their environmental value through nitrogen fixation and sustainable cultivation. The resistant starch and fiber content in peas contribute to their prebiotic potential, which supports a healthy gut microbiome. This, in turn, positively influences metabolic health by enhancing insulin sensitivity and reducing inflammation.

Unlike soybeans or peanuts, peas exhibit relatively low allergenic potential, making them suitable for consumption by individuals with legume allergies and increasing their use in hypoallergenic food formulations (68).

FIGURE 5
Comparison of peas' nutritional components with major crops.


Pea proteins possess functional properties, such as emulsification, water retention, and gel formation, which have been exploited in the food industry to create plant-based meat alternatives, dairy substitutes, and gluten-free products. This versatility supports the growing shift toward sustainable and plant-based diets (174). Moreover, edible films based on pea protein and starch showed considerable potential for various applications in food or non-food sectors. Also, while the foaming capacity of pea commercial protein concentrate was like that of commercial protein isolate of soy, the foaming stability of pea proteins was higher (175).

Additionally, peas, being nitrogen-fixing plants, contribute to soil fertility and reduce the need for synthetic fertilizers (176). This characteristic enhances their sustainability compared to other

legumes and crops, making them an environmentally friendly choice for food production. Their high fiber and bioactive content contribute to lowering blood cholesterol levels, improving glycemic control, and exerting anti-inflammatory effects. These properties suggest a role for peas in the dietary management of cardiovascular diseases, diabetes, and obesity.

6.3 Pea-based products and the application of pea

Peas contain valuable components and have a wide range of applications in the food, pharmaceutical, and agricultural industries due to their favorable nutritional profile and functional

FIGURE 6
 Comparison of peas' nutritional components with other legumes.

properties. In the food sector, peas are commonly used in the production of plant-based protein products, including meat analogs, protein-enriched snacks, and dairy alternatives such as pea milk and yogurt. Pea protein isolate is particularly valued for its emulsifying, gelling, and water-binding properties, making it a versatile ingredient in functional foods. In addition, whole peas and pea flour are used in bakery products and gluten-free formulations to improve nutritional value. Beyond food, peas are utilized in the development of nutraceuticals and dietary supplements due to their bioactive compounds, which exhibit antioxidant, anti-inflammatory, and cholesterol-lowering effects. In agriculture, peas

serve as a sustainable rotational crop that enhances soil fertility, while their residues can be repurposed for animal feed or as raw material in biodegradable packaging. These diverse applications highlight the potential of peas as a multifunctional and sustainable resource. Peas are also naturally suited to European climates, making them a perfect cover crop (Table 5).

6.3.1 Pea-based beverages

Pea protein is increasingly used in the formulation of plant-based beverages such as pea milk, yogurt, and probiotic drinks,

TABLE 5 Key bioactive compounds in peas and their bioactivity mechanism of action.

Bioactive category	Examples in peas	
Polyphenols and flavonoids	Quercetin, kaempferol, catechins	Antioxidant activity → reduces ROS, modulates inflammatory pathways, and improves vascular function
Carotenoids	Lutein, zeaxanthin	Antioxidant activity → eye health, modulate lipid peroxidation
Saponins	Soyasaponins	Cholesterol-lowering, modulating gut microbiota, and immune-modulating
Dietary fiber	Soluble and insoluble fibers	Modulate gut microbiota → SCFA production → metabolic regulation, improve glycemic response, cholesterol-lowering
Peptides and proteins	Bioactive peptides released during digestion	ACE inhibition → blood pressure reduction, antioxidant and anti-inflammatory effects
Vitamins and minerals	Folate, vitamin C, zinc, and iron	Cofactors for enzymatic reactions, immune modulation, and antioxidant defense
Starch, resistant starch	Slowly digestible starch	Modulates postprandial glucose, gut microbiota (SCFA), and satiety regulation

offering a lactose-free, low-allergen alternative to dairy. These beverages typically exhibit favorable emulsification and foaming properties, while the addition of probiotics can further enhance their functional appeal. Innovations in fermentation and flavor masking are continually improving the sensory acceptance of these products, making them attractive to vegan and health-conscious consumers (5).

6.3.2 Meat alternatives

As previously explained, pea protein concentrates and isolates are widely applied in meat analogs, including chicken-style nuggets, burger patties, and meatballs. Their neutral flavor, high protein digestibility, and good water- and fat-binding capacity contribute to desirable texture and juiciness. In combination with extrusion and binding technologies, pea-based meat alternatives can closely mimic the mouthfeel and nutritional profile of traditional animal-based products (24, 174).

6.3.3 Flour-based products

Pea flour, obtained by milling whole or dehulled peas, is used to enrich baked goods and other staple products such as cake, bread, soups, and biscuits (32). Its application improves the protein and fiber content while also enhancing the glycemic control properties of these foods. However, due to its characteristic flavor and reduced gluten functionality, pea flour is often blended with other flours to balance taste and texture (167).

6.3.4 Encapsulation and packaging

Beyond food formulations, pea-derived materials are finding use in the development of encapsulation systems and biodegradable packaging solutions (5). Pea protein and starch can be engineered into nano- and microparticles to protect sensitive bioactive compounds (e.g., vitamins, probiotics, polyphenols), enhancing their stability and enabling controlled release. Moreover, biodegradable films and carrier matrices derived from pea by-products represent eco-friendly alternatives to petroleum-based plastics, aligning with circular economy principles (177). Pea protein and starch-based edible films hold considerable potential for sustainable packaging solutions. Incorporation of innovative

processing techniques and application of novel additives could improve the functional properties of those films, thus extending their applications beyond food packaging (175).

6.3.5 Germinated pea products

The germination of peas enhances their nutritional value by increasing levels of bioavailable micronutrients and antioxidant activity. Sprouted peas and microgreens are increasingly consumed fresh, offering rich sources of vitamins C and E, phenolic compounds, and essential amino acids. These forms are particularly appealing in raw vegan diets and gourmet cuisine due to their visual, textural, and nutritional qualities (178).

6.4 Sustainability and peas as a functional food (environmental benefits of growing peas)

Food production significantly contributes to the overall adverse environmental impact on our planet. Therefore, populations must transition to plant-based diets, which are less detrimental to the environment, thereby reducing overall greenhouse gas emissions (GHGs) and facilitating the achievement of the Sustainable Development Goals (SDGs) within the designated timeline. The recently revised Eat-Lancet Commission report underscores the importance of healthy, sustainable, and equitable food system approaches, recognizing the food system as the leading contributor to the disruption of planetary system boundaries and the primary driver behind five of the six “breached” boundaries (179). Moreover, climate change poses a serious threat to crop production, owing to issues such as significant temperature increases that adversely influence drought conditions and decrease yields, thereby exacerbating food insecurity concerns among vulnerable populations.

Peas have traditionally been utilized within crop rotation systems, serving to improve production yields for crops such as cereals. The pea plant is considered useful in crop rotation systems because of its ability to fix atmospheric nitrogen; however, yields vary and are dependent on a number of abiotic and biotic factors. The type of soil tillage systems was also found to influence the

amount of nitrogen fixation from the atmosphere, with direct sowing providing the highest yields at 50.2% (180). A recent study in Norway also highlights the importance of shifting toward plant-based diets, in a population that traditionally relies on meat and dairy products as its main protein sources. Pea production can face some challenges during production; however, the lower environmental impacts compared to animal products highlight the need for further work to improve cultivation methods and increase consumption of this crop. Lifecycle Analysis (LCA) results showed that overall, the environmental impact of peas is lower than that derived for animal proteins, although further socio-economic considerations and more precise calculations (including those concerning soil mineralization and leaching effects) are needed (181). Another LCA study carried out in Austria evaluated the environmental impact of oat: pea intercropping, as well as pea monocropping, with positive (low environmental impact) outcomes reported, and with further research recommended (182) (Table 6).

Among many favorable impacts on the environment, the most significant of nitrogen fixation to enhance soil fertility, peas could reduce greenhouse gas emissions (183), improve water conservation, increase biodiversity (184), and have a lower environmental footprint through plant-based protein production.

The most important of these environmental advantages is the ability of peas to fix nitrogen, which results from a symbiotic relationship with nitrogen-fixing bacteria (*Rhizobium* spp.) found in the root nodules (184, 185). Pea accumulates nitrogen in the soil (186) and has the most beneficial impact on SOC by increasing humus levels and providing organic carbon as a consequence of nitrogen fixation (187).

Pea cultivation significantly reduces the use of synthetic fertilizers (188), particularly reducing the emission of nitrous oxide (N_2O), a potent greenhouse gas released during the production and application of nitrogen-based fertilizers (183). Excessive use of pesticides and fertilizers leads to a decrease in soil fertility and microbial biodiversity, while also causing an increase in environmental pollution and greenhouse gas emissions (189). As claimed by Everwand et al. (190), legumes can benefit biodiversity when included in cropping systems, since the over-usage of fertilizers and pesticides diminishes microbial biodiversity.

Field peas provide a cropping system that is less dependent on phosphorus use efficiency (PUE) and phosphorus fertilizer input. In addition, their nitrogen fixation activity, yield stability,

and ability to maintain sufficient biomass under phosphorus-deficient conditions allow for more efficient use of phosphorus remaining in the soil by extending the time it can contribute to production (191). Moreover, rotation of legumes with other crops improves soil health and adaptability (176). Through crop rotation and intercropping with cereals, legumes play a critical role in sustainable agricultural systems. According to Foyer et al. (192), 21 Mt of nitrogen is fixed by legumes worldwide, while Stagnari et al. (193) reported a 30% increase in wheat grown with legume rotation, and specifically after rotation with field pea, nitrogen uptake of various crops increased by 23%–59%. The increase in nitrogen use efficiency in cereals through rotation with legumes provides a sustainable alternative to the need for fertilizer use (187). Additionally, integrating peas into crop rotation breaks the cycles of pests and diseases, making farming systems more resilient (193). As a plant-based protein and an important source of feed and forage for animals, about one-third of human protein needs worldwide are met by legumes (185). Peas are cheap and easily accessible food rich in carbohydrates, protein, vitamins, and minerals, making them a valuable source of nutrition for both humans and animals (4). The average protein concentration of peas is 22.3%, according to Tzitzikas et al. (30), while Hood-Niefer et al. (33) claimed it to be between 24.2% and 27.5%. Many studies have concluded that plant-based foods cause less environmental damage per kg of product than animal-based foods (181, 194). According to Nijdam et al. (194), animal-based products have up to 60 times more impact on environmental degradation than legumes. It was also found that a pea-based meal had significantly lower environmental impacts in terms of land and pesticide use than a meat-based meal (195).

These considerations collectively underscore the need to prioritize climate-smart technologies that support farmers in producing crops resilient to the increasingly harsh climate changes globally, by enhancing soil health and improving pea production yields.

6.5 Circular economy and waste valorization

The management of agricultural waste presents significant challenges, affecting not only the agricultural sector but also broader areas such as environmental conservation and

TABLE 6 Functional applications of pea-based ingredients across diverse industries.

Sector	Application	Purpose/Function
Food industry	Pea protein isolate (meat analogs, protein bars, plant-based dairy)	Plant-based protein source, texture, emulsification, and water-binding
	Whole peas and pea flour in the bakery and pasta	Nutritional enrichment, gluten-free formulations
Nutraceuticals	Extracts rich in flavonoids, saponins, and phenolic acids	Antioxidant, anti-inflammatory, and cholesterol-lowering effects
Pharmaceuticals	Dietary supplements based on pea bioactives	Cardioprotective and glycemic control support
Agriculture	Rotational crop	Improves soil fertility through nitrogen fixation
	Pea residues (husks, stems) as compost or green manure	Soil amendment, sustainable waste valorization
Animal feed	Pea by-products (hulls, protein-rich meal)	Protein and fiber sources in livestock and aquaculture diets
Biomaterials	Use of pea starch and fibers in biodegradable packaging materials	Renewable raw material for sustainable packaging

sustainability (196). Improper disposal of these residues into the environment can lead to serious ecological consequences, including soil degradation, water contamination, and greenhouse gas emissions. Therefore, the development of effective waste management strategies is essential to mitigate these impacts and promote sustainable agricultural practices.

In this context, the valorization of pea by-products represents a promising approach to transforming materials traditionally regarded as waste into valuable resources. Pea pods and substandard peas discarded during industrial processing contain a rich array of bioactive compounds, essential nutrients, and functional components that can be utilized in the production of various value-added products (15). These components have potential applications across multiple sectors, including the food, pharmaceutical, and cosmetic industries. This approach aligns with the principles of the circular economy, which emphasize waste minimization, resource efficiency, and the creation of sustainable value chains. By converting agricultural residues into useful materials, industries can simultaneously reduce environmental burdens and enhance economic sustainability.

Empty pea pods represent a promising feed resource due to their favorable nutritional composition. They are rich in crude protein (19.8%), soluble sugars, phenolics, and macro- and micro-elements (197).

Recent studies have highlighted the potential of pea processing by-products, such as pea pod powder and pea peel protein, as functional ingredients in health-oriented foods (198–202). These findings highlight this powder as a versatile functional ingredient capable of enhancing the nutritional and physicochemical quality of diverse food products, from bakery items to emulsions, supporting both health benefits and sustainable food production.

The increasing concern for environmental sustainability and waste management has prompted the exploration of agricultural by-products as valuable resources for material applications. Lata et al. (197) reported that discarded pea peels retain notable nutritional value, containing 19.79% crude protein, 7.87% ash, 2.27% fat, and 1.84% fiber. These residues can be repurposed into biodegradable films, exhibiting desirable mechanical and physical features. Such biofilms provide an eco-friendly substitute for petroleum-based plastics, offering added socio-economic benefits through employment generation, energy recovery, and improved livelihood security.

Beyond their nutritional and polymeric applications, agricultural residues are increasingly recognized for their physicochemical properties and economic viability as adsorbent materials. Owing to their lignocellulosic composition, mainly lignin, cellulose, and hemicellulose, pea processing by-products have also been successfully converted into biochar and bioethanol (203). Furthermore, bioethanol represents a renewable alternative to fossil fuels, though reliance on edible feedstocks raises concerns regarding food-fuel competition. Upendra et al. (204) demonstrated that underutilized agro-wastes, such as field bean and green pea pods, can serve as low-cost substrates for bioethanol production. These transformations demonstrate the multifunctional nature of pea residues, establishing them as versatile feedstocks for both material innovation and bioenergy generation.

6.6 Market perspectives

Peas are among the most significant pulse crops in global agriculture, with annual production of ~10.5 Mt of dry peas and ~7 Mt of fresh peas (205). Their share in global pulse output is substantial, estimated at 26–40% depending on datasets and classification criteria (206, 207). Canada consistently leads global production and exports, with 3.2 million tons (Mt) recorded in 2023–2024; however, climatic variability continues to affect yields and marketable supply (208). Other major producers, Russia, France, Ukraine, and India, support global availability, though pea-specific trade series have remained fragmented in recent years. Looking forward, global agricultural production is projected to expand by ~14% by 2034, with pulse crops benefiting from productivity gains in middle-income countries (209) (Table 7).

In the European Union, peas are increasingly framed as a strategically important crop for protein autonomy, plant-based dietary transitions, and climate objectives. Scenario analyses suggest strong expansion potential: pea acreage could nearly double to triple if plant-based meat substitutes capture 12.5%–40% of market share (210). Policy instruments under the Farm to Fork Strategy aim to reduce reliance on imported soy and maize, though empirical quantification of direct impacts on pea supply chains remains limited in the 2020–2025 literature (211).

Market segmentation highlights distinct demand drivers. Dry peas serve both food and feed industries, with utilization sensitive to price competition and protein content (~20%–25% crude protein, dry basis) (206). Fresh and frozen markets remain steady but are commonly aggregated within broader statistical categories. The strongest growth is observed in processed ingredients, including protein isolates, starch, and fibers, which support expanding plant-based, gluten-free, and functional food applications (Tables 8, 9).

Innovation trajectories align strongly with circular bioeconomy strategies. Advances in wet and dry fractionation enhance protein purity and functionality while facilitating the valorization of co-streams (212). By-products such as hulls, fibers, and starch can support nutraceutical, feed, and bioplastic markets, with integrated biorefineries capable of reducing environmental impacts by ~30%–40% relative to single-product approaches (213). Overall, recent evidence positions peas as a key enabler of sustainable protein transitions and resilient agri-food systems. However, harmonized production/trade statistics, standardized market indicators, and robust assessments of policy impacts are needed to fully characterize future market trajectories and support informed investment across breeding, processing, and supply-chain infrastructure.

Key constraints include uneven regional processing infrastructure, price volatility of protein concentrates, and breeding gaps (protein yield, flavor, and stress tolerance). Strengthening local and regional processing capacity (to move up the value chain from raw peas to isolates and specialty ingredients), targeted breeding programs, and investment in quality-assurance and sustainability certification could help small and medium producers capture greater shares of the added value.

TABLE 7 Peas' contributions to the circular economy and sustainable food systems.

Role and function	Peas contribution	Specific metrics	Link to circular economy and sustainable food systems
Nitrogen fixation and soil fertility enhancement	Peas form symbiotic relationships with nitrogen-fixing bacteria, thereby reducing synthetic nitrogen fertilizer use.	Peas have been shown to biologically fix 45–125 kg N/ha in Greek experiments. Some sources estimate legumes fix between 72–350 kg N/ha/year. A typical range for peas: 50–300 kg N/ha.	By reducing external synthetic fertilizer inputs and returning nitrogen to the system, peas support closed-loop nutrient cycles: less input, more internal recycling of N, so more sustainable and circular.
Crop rotation and agro-ecosystem resilience	Incorporating peas into crop rotations improves yields of subsequent crops and reduces fertilizer demand.	In a rotation, sowing legumes like peas before wheat can boost the subsequent wheat yield by up to ~17%. Legume-inclusion rotations reduce the need for nitrogen fertilizer by about 40 kg N/ha in the following crop. Large meta-analysis: including legumes increased the main crop's yield by up to ~20%.	Rather than a linear "monoculture + high inputs → waste" model, rotating with peas helps regenerate soil fertility, reduce external inputs, and enhance system resilience - all characteristics of circular and sustainable food systems.
Lower environmental footprint (GHG, water, land)	The lower input demand for legumes reduces emissions and resource use compared to high-input crops or animal-based protein.	Peas fix N and reduce fertilizer use, thus lowering GHG associated with fertilizer production.	By reducing resource depletion (fertilizer manufacture, synthetic N) and emissions, peas contribute to a more resource-efficient, lower-waste food system.
High nutritional value and plant-based protein	Peas are a nutritious plant-based protein source, supporting diets less reliant on resource-intensive animal protein.	High protein content and lower environmental cost.	Encouraging plant proteins like peas helps shift diets toward more sustainable food systems and supports circularity by using land/time resources more efficiently.
Valorisation of by-products and waste streams	Pea processing leaves residues (hulls, pods, etc) that can be used as feed, fiber, or other value-added uses rather than being wasted.	Legume residue contributions.	This loops value from what would otherwise be waste back into the system (feed, compost, materials), a key principle of the circular economy (closing loops, multifunctional use).
Support for local/regional food systems and reduced transport/emissions	Peas can be grown in temperate zones (including Europe) and thus support regional production and consumption, reducing reliance on long supply chains.	General statements for legumes emphasize local/regional potential.	Shorter supply chains, local production/consumption mean less transport, less food-waste risk, more system resilience: aligning with sustainable food systems and circular economy ideals.
Soil health improvement and biodiversity enhancement	Peas' root systems, nitrogen enrichment, and crop-diversity effect improve soil structure, microbial diversity, reduce erosion, and support ecosystem services.	Legume-based rotations improved soil biodiversity, fertility, and productivity (in India) - e.g., the maize-peas-groundnut system achieved high yield. Meta-analysis: legumes support biodiversity, soil health, especially when fertilizer inputs are low.	Healthy soils and diverse agro-ecosystems are foundational to sustainable food systems; the circular economy in agriculture emphasizes regeneration (not depletion) of soil and ecosystem resources, which peas help enable.

6.7 Current gaps in research, challenges, and future directions

Increasing the sustainability of food systems through popularizing peas and other legumes requires an interdisciplinary approach to enhance feasibility and maximize impact. Current literature primarily focuses on agricultural productivity and the nutritional composition of peas, particularly underutilized and neglected varieties (187). However, sensory and organoleptic characteristics remain mostly overlooked despite their crucial role in promoting higher intake, dietary diversity, and driving broader sustainability changes in agri-food systems through the valorization of hidden traits (193).

Flavor, texture, and other sensory attributes could be leveraged to advance sustainable development goals via market-driven approaches. Yet most heritage and lesser-known pea cultivars, preserved both *in situ* and *ex situ*, have not been systematically evaluated for these qualities, representing an underexploited reservoir with significant potential for nutrition and sustainability initiatives.

Furthermore, critical gaps remain in understanding the long-term health outcomes of pea consumption, the bioavailability of key nutrients, and the mechanisms influencing allergenicity. For example, Hara et al. demonstrated the utility of artificial neural networks (ANNs) in predicting and optimizing protein content in peas, outperforming traditional models by capturing complex interactions among environmental and soil factors (214). This approach could enable targeted agronomic interventions to enhance nutritional quality, supporting the growing demand for plant-based proteins. However, adoption of such technologies in breeding programs remains limited.

Another emerging concern is the lack of mandatory allergen labeling for pea protein in significant markets such as the EU, US, and Canada, which poses a risk of unintentional exposure, especially for individuals with legume allergies. Increased awareness among healthcare professionals and further research into legume cross-reactivity are needed to improve allergen management (215).

Moreover, legumes can contain a wide range of anti-nutritional factors, such as cyanogenic glycosides, phytic acid, oxalates,

TABLE 8 Global pea production overview (2023–2025).

Metric	Value/Range (2023–2025)	Comment
Global production (dry peas), Mt	≈12–15 Mt (2023); ≈13–16 Mt (2024–2025)	Estimated increase in 2024–2025 due to expanded land and improved yields in key growing regions.
Global production (green/fresh peas), Mt	≈~20 Mt (2023); ≈~21 Mt (2024–2025)	Slight increase expected in 2024–2025.
Global harvested area (ha)	≈ 7–7.5 million ha (2023); ≈ 7.5–8 million ha (2024–2025)	Expansion in cultivated area due to favorable market conditions.
Average yield (t/ha)	Dry peas: ~2.0–3.5 t/ha; Green peas: ~1.5–2.5 t/ha	Yield improvements expected in 2024–2025.
Top producers (dry peas)—Mt	Canada ~4.0–4.6; Russia ~2.1–2.4; China ~1.0–1.5; India ~0.7–0.9; France ~0.7–0.8; USA ~0.7–1.0	Based on FAOSTAT aggregates and Crop Trust/FAO reviews.
Regional production share (%)	North America ~35%; Europe ~20%; Asia ~25%; Other ~20%	Approximate shares of global dry pea production.
Major exporters and trade flows	Canada largest exporter; Russia & Ukraine significant; main importers: China, India	The pea trade is significant for global markets, with annual export values varying.
Trend (2010–2023)	Dry pea production +20%–35%; green pea production +15%–25%	FAOSTAT and Crop Trust reports show steady growth in production and harvested area.
Nutritional highlights (per 100 g dry weight)	Dry peas: protein 20%–25%, fiber 15%, low fat <2%, iron 5 mg, zinc 2–3 mg; Green peas: protein ~5%, fiber ~5%, vitamin C 40 mg	Data from FAO/USDA; dry peas are an excellent plant protein source, rich in fiber and micronutrients.
Usage and applications	Human consumption (soups, snacks, plant protein), animal feed, protein concentrates	Dry peas are versatile; green peas are mainly fresh/frozen; both contribute to sustainable diets.
Key cultivation regions	Canada (Prairies), Russia (Central & Southern), China (North), India (Northern), France, USA	Major dry pea-producing regions are temperate with good soils; green peas are often grown for fresh consumption.

TABLE 9 Pea market perspectives (2020–2025).

Period	Market and value	Key drivers	Key constraints	Regional notes
2020	Global pea protein market valued at ≈USD 1.1 billion, projected to reach ≈USD 2.1 billion by 2025 (CAGR ≈ 13.5%).	Rising demand for plant-based proteins, allergen-free foods, and sustainable agriculture.	Limited processing capacity, taste challenges, and inconsistent supply quality.	Early investment surge in North America and Europe for plant-based food applications.
2021–2022	Global peas market ≈ USD 10.6 billion (2021), expected to reach ≈ USD 12.5 billion by 2024 (CAGR ~ 6.3%).	Expansion of vegan and flexitarian diets; integration of pea ingredients into snacks and meat analogs.	Volatile weather patterns are affecting yields, the supply chain, and transport disruptions.	Asia (China, India) is leading in production and consumption; North America is expanding ingredient processing.
2023	The pea protein market ≈ is USD 2.12 billion (2023), projected to reach USD 4.71 billion by 2030 (CAGR ≈ 12.1%).	Food and beverage sector innovation: clean-label and non-GMO trends.	Raw material cost increases; competition from soy and fava bean proteins.	North America holds ~33% share; the Pacific region is growing fastest.
2024	Asia-Pacific peas market forecast at USD 11.49 billion, with a 3.29 % CAGR toward 2030.	Rising demand in Asia for plant-based proteins; regional dietary diversification.	Infrastructure and logistics gaps; limited R&D for local pea processing.	China, India, and Australia are key players; exports from Russia and Canada remain significant.
2025 (outlook)	EU-27 field-pea production forecast ≈ 2.0 million tons (MY 2025/26); pea-protein industry projected ≈ USD 2.1 billion globally.	Supply tightening in Europe; growing functional food and feed applications.	Weather and input costs; reduced planting area (~ –19 % YoY).	European Union output stabilizing; Asia and North America drive demand growth.

CAGR, compound annual growth rate; EU-27, European Union (27 member states); MY, marketing year; YOY, year-on-year; USD, United States Dollar; R&D, Research and Development; Non-GMO, non-genetically modified organism.

saponins, lectins, biogenic amines, proteases, and α -amylase inhibitors, which challenge their nutritional quality and health benefits. Phytic acid, trypsin inhibitors, oxalates, and lectins have been found as the main pea anti-nutritional factors (5, 216).

The rising popularity of plant-based diets has significantly increased the use of pea protein in various food products (82). Although traditionally considered a safe alternative and relatively uncommon, peas are emerging as potential food allergens,

particularly in susceptible individuals sensitized to legume proteins such as vicilins and legumins. Cross-reactivity with peanut allergens has been reported, raising concerns for food labeling, especially with the growing use of pea protein in plant-based meat alternatives. Recent findings from a case series highlight the ever-increasing concern surrounding pea-related allergic reactions in children. Six pediatric cases in the United States revealed allergic responses to foods containing green peas or pea protein,

with symptoms ranging from hives and angioedema to severe anaphylaxis (215). The allergens identified, originating from *Pisum sativum*, are members of the vicilin and con-vicilin protein families, known to provoke immune reactions (117). Cross-reactivity with other legumes, such as peanuts and lentils, presents additional challenges, particularly for those with pre-existing legume allergies (215). Clear allergen labeling and risk communication are crucial in clinical and regulatory contexts.

In summary, future research should address the following areas:

- Comprehensive sensory profiling of diverse pea varieties to improve consumer acceptance;
- Breeding strategies aimed at enhancing both sensory and nutritional traits, along with the valorization of by-products, to support sustainable and technologically relevant food production;
- Studies on nutrient bioavailability and long-term health impacts of pea-based diets;
- Expanded use and validation of predictive modeling (e.g., ANNs) to optimize pea quality and yield under varying conditions;
- Development of clear allergen labeling standards and deeper investigation into allergenic potential and cross-reactivity within legumes;
- By filling these gaps, the full potential of peas to contribute to sustainable, nutritious, and acceptable food systems can be realized.

7 Conclusion

Peas are a nutrient-dense, environmentally sustainable crop that can support global efforts toward healthier, more resilient food systems. This review emphasizes their comprehensive macronutrient profile, especially their high-quality protein and slow-digesting carbohydrates, as well as their valuable micronutrients and a wide range of bioactive compounds, including phenols, flavonoids, carotenoids, and saponins. These components contribute to antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory effects, offering significant potential for health care and the development of functional foods. Besides their nutritional benefits, peas also provide significant agronomic and environmental advantages. Their ability to fix atmospheric nitrogen enhances soil fertility, and their adaptability to diverse climates makes them a dependable crop amid changing ecological conditions. As a plant-based protein source, peas align well with current food trends focused on sustainability and health. However, despite their potential, peas remain underutilized in certain regions, particularly in their seed hulls and protein fractions, which are rich in phytochemicals, as well as other by-products such as pea hulls and pods. The presence of anti-nutritional factors, such as phytic acid, lectins, and trypsin inhibitors, underscores the need for processing strategies that enhance nutrient bioavailability and safety. Nonetheless, peas have appealing sensory and organoleptic qualities and hold strong cultural connotations, making them suitable for diversifying diets across food systems. Future research should aim to explore

the full bioactive potential of lesser-known pea components, enhance processing methods to reduce anti-nutrients, and support breeding programs for varieties with improved nutritional and sensory qualities. With their broad range of benefits, peas could increasingly contribute to sustainable agriculture, nutrition, and public health. Their impact extends beyond individual nourishment to wider public health initiatives and food security.

Data availability statement

Data sets used for this study are available from the corresponding author upon reasonable request.

Author contributions

NĆN: Project administration, Investigation, Resources, Writing – original draft, Writing – review & editing, Data curation, Visualization. ZM: Investigation, Resources, Writing – original draft, Writing – review & editing, Data curation, Visualization. KŠ: Writing – original draft, Writing – review & editing. JŽ: Writing – original draft, Writing – review & editing. SP: Investigation, Writing – original draft, Writing – review & editing, Visualization, Methodology. PJ: Writing – original draft, Writing – review & editing. CC: Writing – original draft, Writing – review & editing. ECA: Writing – original draft. BA: Writing – original draft. EVB: Writing – original draft. IEK: Writing – original draft. ÖÖ: Writing – original draft. ASK: Writing – original draft. DOU: Writing – original draft. SG: Writing – original draft. SWL: Writing – original draft, Writing – review & editing, Methodology. MA: Writing – original draft, Writing – review & editing, Methodology. AO: Writing – original draft, Writing – review & editing. BB: Writing – review & editing. JM: Writing – review & editing. AS: Writing – original draft, Writing – review & editing. SN: Writing – review & editing, Funding acquisition. MK: Conceptualization, Methodology, Visualization, Writing – review & editing, Supervision, Project administration.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by COST Action DIVERSICROP (CA22146), supported by COST (European Cooperation in Science and Technology). COST Action CA22146-Harnessing the potential of underutilized crops to promote sustainable food production. This research was supported by the Ministry of Science, Technological Development, and Innovation, Republic of Serbia (Grants No. 451-03-136/2025-03/200015 and 451-03-136/2025-03/200003).

Conflict of interest

BB was employed by ESSRG Nonprofit Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that Gen AI was used in the creation of this manuscript. Declaration of AI and AI-assisted technologies in the writing process: During the Manuscript writing and revision processes, the authors used Gen AI, Grammarly, and ChatGPT (version 4) to correct grammatical errors. After using these tools, the authors reviewed and edited the content as needed and take full responsibility for the originality of the publication. All images

and tables were created by the author and represent original, fully editable material.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Kumari T, Deka SC. Potential health benefits of garden pea seeds and pods: a review. *Legume Sci.* (2021) 3:1–13. doi: 10.1002/leg3.82
2. Tulbek MC, Wang Y. (Lindsay), Hounjet, M. Pea—a sustainable vegetable protein crop. In: *Sustainable Protein Sources*. Amsterdam: Elsevier (2024). p. 143–162. doi: 10.1016/B978-0-323-91652-3.00027-7
3. Hacisalihoglu G, Beisel NS, Settles AM. Characterization of pea seed nutritional value within a diverse population of *Pisum sativum*. *PLoS ONE*. (2021) 16:e0259565. doi: 10.1371/journal.pone.0259565
4. Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (*Pisum sativum* L.). *Br J Nutr.* (2012) 108:S3–S10. doi: 10.1017/S0007114512000852
5. Wu D-T, Li W-X, Wan J-J, Hu Y-C, Gan R-Y, Zou L-A, et al. Comprehensive review of pea (*Pisum Sativum* L.): chemical composition, processing, health benefits, and food applications. *Food.* (2023) 12:2527. doi: 10.3390/foods12132527
6. Grdeň P, Jakubczyk A. Health benefits of legume seeds. *J Sci Food Agric.* (2023) 103:5213–20, 12585. doi: 10.1002/jsfa.12585
7. Gebreegziabher BG, Tsegay BA. Proximate and mineral composition of Ethiopian pea (*Pisum sativum* var *abyssinicum* A. Braun) landraces vary across altitudinal ecosystems. *Cogent Food Agric.* (2020) 6:1789421. doi: 10.1080/23311932.2020.1789421
8. Patil P, Mandal S, Tomar SK, Anand S. Food protein-derived bioactive peptides in management of type 2 diabetes. *Eur J Nutr.* (2015) 54:863–80. doi: 10.1007/s00394-015-0974-2
9. Nasir G, Zaidi S, Asfaq TN. A review on nutritional composition, health benefits, and potential applications of by-products from pea processing. *Biomass Convers Biorefin.* (2024) 14:10829–42. doi: 10.1007/s13399-022-03324-0
10. Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, et al. The biological activity mechanism of chlorogenic acid and its applications in the food industry: a review. *Front Nutr.* (2022) 9:943911. doi: 10.3389/fnut.2022.943911
11. Nikolopoulou D, Grigorakis K, Stasinis M, Alexis MN, Iliadis K. Differences in chemical composition of field pea (*Pisum sativum*) cultivars: effects of cultivation area and year. *Food Chem.* (2007) 103:847–52. doi: 10.1016/j.foodchem.2006.09.035
12. Kebede, E. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. *Front Sustain Food Syst.* (2021) 5:767998. doi: 10.3389/fsufs.2021.767998
13. Okumu O, Otieno HMO, Okeyo GO. Production systems and contributions of grain legumes to soil health and sustainable agriculture: a review. *Arch Agri Environ Sci.* (2023) 8:259–67. doi: 10.26832/24566632.2023.0802024
14. Gonçalves MLM, Maximo GJ. Circular economy in the food chain: production, processing and waste management. *Circ Econ Sustain.* (2023) 3:1405–23. doi: 10.1007/s43615-022-00243-0
15. Fatima R, Fatima F, Altemimi AB, Bashir N, Sipra HM, Hassan SA, et al. Bridging sustainability and industry through resourceful utilization of pea pods: a focus on diverse industrial applications. *Food Chem X.* (2024) 23:101518. doi: 10.1016/j.fochx.2024.101518
16. Tassoni A, Tedeschi T, Zurlini C, Cigognini IM, Petrusan J-I, Rodriguez O, et al. State-of-the-Art production chains for peas, beans and chickpeas—valorization of agro-industrial residues and applications of derived extracts. *Molecules.* (2020) 25:1383. doi: 10.3390/molecules25061383
17. Guo F, Danielski R, Santhiravel S, Shahidi F. Unlocking the nutraceutical potential of legumes and their by-products: paving the way for the circular economy in the agri-food industry. *Antioxidants.* (2024) 13:636. doi: 10.3390/antiox13060636
18. Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull SB, Najda A, et al. The current situation of pea protein and its application in the food industry. *Molecules.* (2022) 27:5354. doi: 10.3390/molecules27165354
19. Tan M, Nawaz MA, Buckow R. Functional and food application of plant proteins – a review. *Food Rev Int.* (2023) 39:2428–56. doi: 10.1080/87559129.2021.1955918
20. Sadohara R, Cichy K, Thompson H, Uebersax MA, Siddiq M, Wiesinger J, et al. Nutritional attributes, health benefits, consumer perceptions and sustainability impacts of whole pulses and pulse flour-based ingredients. *Crit Rev Food Sci Nutr.* (2025) 3:1–24. doi: 10.1080/10408398.2025.2538544
21. Wang J, Kadyan S, Ukhano V, Cheng J, Nagpal R, Cui L, et al. Recent advances in the health benefits of pea protein (*Pisum Sativum*): bioactive peptides and the interaction with the gut microbiome. *Curr Opin Food Sci.* (2022) 48:100944. doi: 10.1016/j.cofs.2022.100944
22. Didinger C, Thompson HJ. Defining nutritional and functional niches of legumes: a call for clarity to distinguish a future role for pulses in the dietary guidelines for Americans. *Nutrients.* (2021) 13:1100. doi: 10.3390/nu13041100
23. Sutton A, Clowes M, Preston L, Booth A. Meeting the review family: exploring review types and associated information retrieval requirements. *Health Info Libr J.* (2019) 36:202–22, 12276. doi: 10.1111/hir.12276
24. Alcorta A, Porta A, Tárrega A, Alvarez MD, Vaquero MP. Foods for plant-based diets: challenges and innovations. *Food.* (2021) 10:293. doi: 10.3390/foods10020293
25. Santos CS, Carbas B, Castanho A, Vasconcelos MW, Vaz Patto MC, Domoney C, et al. Variation in pea (*Pisum sativum* L.) seed quality traits defined by physicochemical functional properties. *Food.* (2019) 8:570. doi: 10.3390/foods8110570
26. Cervenski J, Danojevic D, Savic A. Chemical composition of selected winter green pea (*Pisum Sativum* L.) genotypes. *J Serb Chem Soc.* (2017) 82:1237–46. doi: 10.2298/JSC170323094C
27. Strauta L, Muižniece-Brasava S, Gedrovica I. Physical and chemical properties of extruded pea product. *Agron Res.* (2016) 14:1467–74.
28. Daba SD, Morris CF. Pea proteins: variation, composition, genetics, and functional properties. *Cereal Chem.* (2022) 99:8–20. doi: 10.1002/cche.10439
29. Pandey S, Gritton ET. Protein levels in developing and mature pea seeds. *Can J Plant Sci.* (1975) 55:185–90. doi: 10.4141/cjps75-027
30. Tzitzikas EN, Vincken J-P, de Groot J, Gruppen H, Visser RGF. Genetic variation in pea seed globulin composition. *J Agric Food Chem.* (2006) 54:425–33. doi: 10.1021/jf0519008
31. Annicchiarico P, Romani M, Cabassi G, Ferrari B. Diversity in a pea (*Pisum Sativum*) world collection for key agronomic traits in a rain-fed environment of southern Europe. *Euphytica.* (2017) 213:245. doi: 10.1007/s10681-017-2033-y

32. Ferrari B, Romani M, Aubert G, Boucherot K, Burstin J, Pecetti L, et al. Association of SNP markers with agronomic and quality traits of field pea in Italy. *Czech J Genet Plant Breed.* (2016) 52:83–93. doi: 10.17221/22/2016-CJGPB
33. Hood-Niefer SD, Warkentin TD, Chibbar RN, Vandenberg A, Tyler RT. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababeans. *J Sci Food Agric.* (2012) 92:141–150. doi: 10.1002/jsfa.4552
34. Ellis THN, Hofer JMI, Timmerman-Vaughan GM, Coyne CJ, Hellens RP, Mendel, 150 years on. *Trends Plant Sci.* (2011) 16:590–6. doi: 10.1016/j.tplants.2011.06.006
35. Ren Y, Setia R, Warkentin TD, Ai Y. Functionality and starch digestibility of wrinkled and round pea flours of two different particle sizes. *Food Chem.* (2021) 336:127711. doi: 10.1016/j.foodchem.2020.127711
36. Jha AB, Arganosa G, Tar'an B, Diederichsen A, Warkentin TD. Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. *Genet Resour Crop Evol.* (2013) 60:747–61. doi: 10.1007/s10722-012-9871-1
37. Lu ZX, He JF, Zhang YC, Bing DJ. Composition, physicochemical properties of pea protein and its application in functional foods. *Crit Rev Food Sci Nutr.* (2020) 60:2593–605. doi: 10.1080/10408398.2019.1651248
38. Adebiyi AP, Aluko RE. Functional properties of protein fractions obtained from commercial yellow field pea (*Pisum Sativum L.*) seed protein isolate. *Food Chem.* (2011) 128:902–8. doi: 10.1016/j.foodchem.2011.03.116
39. Robinson GHJ, Domoney C. Perspectives on the genetic improvement of health- and nutrition-related traits in pea. *Plant Physiol Biochem.* (2021) 158:353–62. doi: 10.1016/j.plaphy.2020.11.020
40. Mertens C, Dehon L, Bourgeois A, Verhaeghe-Cartryse C, Blecker C. Agronomical factors influencing the Legumin/Vicilin ratio in pea (*Pisum Sativum L.*) seeds. *J Sci Food Agric.* (2012) 92:1591–6. doi: 10.1002/jsfa.4738
41. Yang J, Lorenzetti RL, Bing D, Zhang S, Lu J, Chen L, et al. Composition, functionalities, and digestibility of proteins from high protein and normal pea (*Pisum Sativum*) genotypes. *Sustain Food Proteins.* (2023) 1:4–15. doi: 10.1002/sfp.21005
42. Yoshida H, Tomiyama Y, Saiki M, Mizushima Y. Tocopherol content and fatty acid distribution of peas (*Pisum Sativum L.*). *J Am Oil Chem Soc.* (2007) 84:1031–8. doi: 10.1007/s11746-007-1134-5
43. Padhi EMT, Liu R, Hernandez M, Tsao R, Ramdath DD. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. *J Funct Foods.* (2017) 38:602–11. doi: 10.1016/j.jff.2016.11.006
44. Alonso R, Rubio LA, Muzquiz M, Marzo F. The effect of extrusion cooking on mineral bioavailability in pea and kidney bean seed meals. *Anim Feed Sci Technol.* (2001) 94:1–13. doi: 10.1016/S0377-8401(01)00302-9
45. Jarecki W, Migut D. Comparison of yield and important seed quality traits of selected legume species. *Agronomy.* (2022) 12:2667. doi: 10.3390/agronomy12112667
46. Rochfort S, Panozzo J. Phytochemicals for health, the role of pulses. *J Agric Food Chem.* (2007) 55:7981–94. doi: 10.1021/jf071704w
47. McKeown NM, Fahey GC, Slavin J, van der Kamp J-W. Fiber intake for optimal health: how can healthcare professionals support people to reach dietary recommendations? *BMJ* (2022) 378:e054370. doi: 10.1136/bmj-2020-054370
48. Tosh SM, Yada S. Dietary fibers in pulse seeds and fractions: characterization, functional attributes, and applications. *Food Res Int.* (2010) 43:450–60. doi: 10.1016/j.foodres.2009.09.005
49. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. *J Nutr.* (2004) 134:3479S–85S. doi: 10.1093/jn/134.12.3479S
50. Chen S-K, Lin H-F, Wang X, Yuan Y, Yin J-Y, Song X-X, et al. Comprehensive analysis in the nutritional composition, phenolic species and in vitro antioxidant activities of different pea cultivars. *Food Chem X.* (2023) 17:100599. doi: 10.1016/j.fochx.2023.100599
51. Djordjević TM, Šiler-Marinković SS, Dimitrijević-Branković SI. Antioxidant activity and total phenolic content in some cereals and legumes. *Int J Food Prop.* (2011) 14:175–84. doi: 10.1080/10942910903160364
52. Landete JM. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. *Crit Rev Food Sci Nutr.* (2012) 52:936–48. doi: 10.1080/10408398.2010.513779
53. Scalbert A, Manach C, Morand C, Rémy C, Jiménez L. Dietary polyphenols and the prevention of diseases. *Crit Rev Food Sci Nutr.* (2005) 45:287–306. doi: 10.1080/1040869059096
54. Singh B, Singh JP, Shevkani K, Singh N, Kaur A. Bioactive constituents in pulses and their health benefits. *J Food Sci Technol.* (2017) 54:858–70. doi: 10.1007/s13197-016-2391-9
55. Devi J, Sanwal SK, Koley TK, Mishra GP, Karmakar P, Singh PM, et al. Variations in the total phenolics and antioxidant activities among garden pea (*Pisum Sativum L.*) genotypes differing for maturity duration. Seed and flower traits, and their association with the yield. *Sci Hortic.* (2019) 244:141–50. doi: 10.1016/j.scientia.2018.09.048
56. Troszyńska A, Ciska E. Phenolic compounds of seed coats of white and coloured varieties of pea (*Pisum Sativum L.*) and their total antioxidant activity. *Czech J Food Sci.* (2002) 20:15–22. doi: 10.17221/3504-CJFS
57. Sharma KR, Giri G. Quantification of phenolic and flavonoid content, antioxidant activity, and proximate composition of some legume seeds grown in Nepal. *Int J Food Sci.* (2022) 2022:1–8. doi: 10.1155/2022/4629290
58. González-Gallego J, García-Medavilla MV, Sánchez-Campos S, Tuñón MJ. Fruit polyphenols, immunity and inflammation. *Br J Nutr.* (2010) 104:S15–27. doi: 10.1017/S0007114510003910
59. Stephen J, Manoharan D, Radhakrishnan M. Immune boosting functional components of natural foods and their health benefits. *Food Prod Process Nutr.* (2023) 5:61. doi: 10.1186/s43014-023-00178-5
60. Koley TK, Maurya A, Tripathi A, Singh BK, Singh M, Bhutia TL, et al. Antioxidant potential of commonly consumed underutilized leguminous vegetables. *Int J Veg Sci.* (2019) 25:362–72. doi: 10.1080/19315260.2018.1519866
61. Mohamed A, Tlahig S, Moussa JY, Ben YL, Bouhamda T, Loumerem M. Biochemical characterization of rare and threatened local populations of peas (*Pisum Sativum L.*) cultivated in the arid region of southern Tunisia. *Chem Biodivers.* (2022) 19:202200595. doi: 10.1002/cbdv.202200595
62. Zhu L, Li W, Deng Z, Li H, Zhang B. The composition and antioxidant activity of bound phenolics in three legumes, and their metabolism and bioaccessibility of the gastrointestinal tract. *Foods.* (2020) 9:1816. doi: 10.3390/foods9121816
63. Zhao T, Su W, Qin Y, Wang L, Kang Y. Phenotypic diversity of pea (*Pisum Sativum L.*) varieties and the polyphenols, flavonoids, and antioxidant activity of their seeds. *Ciênc Rural.* (2020) 50. doi: 10.1590/0103-8478cr20190196
64. Dueñas M, Estrella I, Hernández T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (*Pisum Sativum L.*). *Eur Food Res Technol.* (2004) 219:116–23. doi: 10.1007/s00217-004-0938-x
65. Stanislavljević NS, Ilić MD, Matić IZ, Jovanović ŽS, Cupić T, Dabić DC, et al. Identification of phenolic compounds from seed coats of differently colored European varieties of pea (*Pisum Sativum L.*) and characterization of their antioxidant and in vitro anticancer activities. *Nutr Cancer.* (2016) 68:988–1000. doi: 10.1080/01635581.2016.1190019
66. Bangar P, Ghahri RP, Liu Y, Arganosa GC, Whiting S, Warkentin TD, et al. Iron bioavailability in field pea seeds: correlations with iron, phytate, and carotenoids. *Crop Sci.* (2017) 57:891–902. doi: 10.2135/cropsci2016.08.0682
67. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. *Oxid Med Cell Longev.* (2009) 2:270–8. doi: 10.4161/oxim.2.5.9498
68. Geil PB, Anderson JW. Nutrition and health implications of dry beans: a review. *J Am Coll Nutr.* (1994) 13:549–58. doi: 10.1080/07315724.1994.10718446
69. Cushnie TPT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. *Int J Antimicrob Agents.* (2011) 38:99–107. doi: 10.1016/j.ijantimicag.2011.02.014
70. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA, et al. Flavonoids: a review of probable mechanisms of action and potential applications. *Am J Clin Nutr.* (2001) 74:418–25. doi: 10.1093/ajcn/74.4.418
71. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K, et al. Mechanism of action of flavonoids as anti-inflammatory agents: a review. *Inflamm Allergy Drug Targets.* (2009) 8:229–35. doi: 10.2174/1875280978861029
72. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. *Med Res Rev.* (2003) 23:519–34. doi: 10.1002/med.10033
73. López-Varela S, González-Gross M, Marcos A. Functional foods and the immune system: a review. *Eur J Clin Nutr.* (2002) 56:S29–33. doi: 10.1038/sj.ejcn.1601481
74. Kabir SMR, Rahman M, Khatun A, Saha S, Roy A, Rashid AHMA, et al. Total flavonoids content and reducing power assay of twelve common Bangladeshi leafy vegetables. *Pharmacologyonline.* (2016) 3:6–14. Available online at: https://pharmacologyonline.silae.it/files/archives/2016/vol3/PhOL_2016_3_A002_2_Rezwan.pdf (Accessed May 28, 2025).
75. Gawlik-Dziki U, Jeżyna M, Świeca M, Dziki D, Baraniak B, Czyż J, et al. Effect of bioaccessibility of phenolic compounds on in vitro anticancer activity of broccoli sprouts. *Food Res Int.* (2012) 49:469–76. doi: 10.1016/j.foodres.2012.08.010
76. Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasiah U, et al. Antioxidants and human diseases. *Clin Chim Acta.* (2014) 436:332–47. doi: 10.1016/j.cca.2014.06.004
77. Świeca M, Gawlik-Dziki U. Effects of sprouting and postharvest storage under cool temperature conditions on starch content and antioxidant capacity of green pea, lentil, and young mung bean sprouts. *Food Chem.* (2015) 185:99–105. doi: 10.1016/j.foodchem.2015.03.108
78. Qin G, Xu W, Liu J, Zhao L, Chen G. Purification characterization and hypoglycemic activity of glycoproteins obtained from pea (*Pisum Sativum L.*). *Food Sci Hum Wellness.* (2021) 10:297–307. doi: 10.1016/j.fshw.2021.02.021
79. Tamokou JDD, Mbaveng AT, Kuete V. Antimicrobial activities of African medicinal spices and vegetables. In: *Medicinal Spices and Vegetables from Africa.* Amsterdam: Elsevier (2017). p. 207–37. doi: 10.1016/B978-0-12-809286-6.00008-X

80. Rungruangmaitee R, Jiraungkoorskul W. Pea, *Pisum Sativum*, and its anticancer activity. *Pharmacogn Rev.* (2017) 11:39. doi: 10.4103/phrev.phrev_57_16
81. Papanikolaou Y, Fulgoni VL. Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the national health and nutrition examination survey 1999–2002. *J Am Coll Nutr.* (2008) 27:569–76. doi: 10.1080/07315724.2008.10719740
82. Bilsborough S, Mann NA. Review of issues of dietary protein intake in humans. *Int J Sport Nutr Exerc Metab.* (2006) 16:129–52. doi: 10.1123/ijsnem.16.2.129
83. Araya H, Pak N, Vera G, Alviña M. Digestion rate of legume carbohydrates and glycemic index of legume-based meals. *Int J Food Sci Nutr.* (2003) 54:119–26. doi: 10.1080/0963748031000084061
84. Mathew S, Abraham TE. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. *Crit Rev Biotechnol.* (2004) 24:59–83. doi: 10.1080/07388550490491467
85. Guillou F, Champ MM-J. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *Br J Nutr.* (2002) 88:293–306. doi: 10.1079/BJN2002720
86. Slavin J. Fiber and prebiotics: mechanisms and health benefits. *Nutrients.* (2013) 5:1417–35. doi: 10.3390/nu5041417
87. Inagaki K, Nishimura Y, Iwara E, Manabe S, Goto M, Ogura Y, et al. Hypolipidemic effect of the autoclaved extract prepared from pea (*Pisum Sativum L.*) pods in vivo and in vitro. *J Nutr Sci Vitaminol.* (2016) 62:322–9. doi: 10.3177/jnsv.62.322
88. Mejri F, Ben Khoud H, Njim L, Baati T, Selmi S, Martins A, et al. In vitro and in vivo biological properties of pea pods (*Pisum Sativum L.*). *Food Biosci.* (2019) 32:100482. doi: 10.1016/j.fbio.2019.100482
89. Liu N, Song Z, Jin W, Yang Y, Sun S, Zhang Y, et al. Pea albumin extracted from pea (*Pisum Sativum L.*) seed protects mice from high fat diet-induced obesity by modulating lipid metabolism and gut microbiota. *J Funct Foods.* (2022) 97:105234. doi: 10.1016/j.jff.2022.105234
90. Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. *Nutrients.* (2020) 12:1909. doi: 10.3390/nu12071909
91. Guo F, Tsao R, Li C, Wang X, Zhang H, Jiang L, et al. Green pea (*Pisum Sativum L.*) hull polyphenol extracts ameliorate DSS-induced colitis through Keap1/Nrf2 pathway and gut microbiota modulation. *Foods.* (2021) 10:2765. doi: 10.3390/foods1012765
92. Anderson JW, Baird P, Davis Jr RH, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. *Nutr Rev.* (2009) 67:188–205. doi: 10.1111/j.1753-4887.2009.00189.x
93. Millar KA, Gallagher E, Burke R, McCarthy S, Barry-Ryan C. Proximate composition and anti-nutritional factors of Fava-Bean (*Vicia Faba*), green-pea and yellow-pea (*Pisum Sativum*) flour. *J Food Compos Anal.* (2019) 82:103233. doi: 10.1016/j.jfca.2019.103233
94. Aaseth JO, Finnes TE, Askim M, Alexander J. The importance of vitamin K and the combination of vitamins K and D for calcium metabolism and bone health: a review. *Nutrients.* (2024) 16:2420. doi: 10.3390/nu16152420
95. Feskanich D, Weber P, Willett WC, Rockett H, Booth SL, Colditz GA, et al. Vitamin K intake and hip fractures in women: a prospective study. *Am J Clin Nutr.* (1999) 69:74–9. doi: 10.1093/ajcn/69.1.74
96. Platonova K, Kitamura K, Watanabe Y, Takachi R, Saito T, Kabasawa K, et al. Dietary calcium and vitamin k are associated with osteoporotic fracture risk in middle-aged and elderly Japanese women, but not men: the Murakami Cohort Study. *Br J Nutr.* (2021) 125:319–28. doi: 10.1017/S0007114520001567
97. Juliano S, Poon S, Robbins J, Bui M, Wang X, De Groot L, et al. Effect of dietary sources of calcium and protein on hip fractures and falls in older adults in residential care: cluster randomised controlled trial. *BMJ.* (2021) 375:n2364. doi: 10.1136/bmj.n2364
98. Braam LAJLM, Knapen MHJ, Geusens P, Brouns F, Hamulyák K, Gerichhausen MJW, et al. Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. *Calcif Tissue Int.* (2003) 73:21–26. doi: 10.1007/s00223-002-2084-4
99. Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, Dawson-Hughes B, et al. Effect of vitamin K supplementation on bone loss in elderly men and women. *J Clin Endocrinol Metab.* (2008) 93:1217–23. doi: 10.1210/jc.2007-2490
100. Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, et al. Two-year randomized controlled trial of vitamin K1 (Phylloquinone) and vitamin D3 plus calcium on the bone health of older women. *J Bone Mineral Res.* (2007) 22:509–19. doi: 10.1359/jbmr.070116
101. Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. *Am J Clin Nutr.* (2000) 71:1201–8. doi: 10.1093/ajcn/71.5.1201
102. Binkley N, Harke J, Krueger D, Engelke J, Vallarta-Ast N, Gemar D, et al. Vitamin K Treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. *J Bone Miner Res.* (2009) 24:983–91. doi: 10.1359/jbmr.081254
103. Dakhara S, Selote V, Anajwala C. Fibrous drugs for curing various common health problems. *Pharmacogn Rev.* (2012) 6:16. doi: 10.4103/0973-7847.95853
104. Bondia-Pons I, Aura A-M, Vuorela S, Kolehmainen M, Mykkänen H, Poutanen K, et al. Rye phenolics in nutrition and health. *J Cereal Sci.* (2009) 49:323–336. doi: 10.1016/j.jcs.2009.01.007
105. Schoeny A, Jumel S, Rouault F, Le May C, Tivoli B. Assessment of airborne primary inoculum availability and modelling of disease onset of ascochyta blight in field peas. *Eur J Plant Pathol.* (2007) 119:87–97. doi: 10.1007/s10658-007-9163-3
106. Fristensky B, Riggleman RC, Waggoner W, Hadwiger LA. Gene expression in susceptible and disease resistant interactions of peas induced with *Fusarium Solani* pathogens and chitosan. *Physiol Plant Pathol.* (1985) 27:15–28. doi: 10.1016/0048-4059(85)90053-0
107. Aumiller T, Mosenthin R, Weiss E. Potential of cereal grains and grain legumes in modulating pigs' intestinal microbiota – a review. *Livest Sci.* (2015) 172:16–32. doi: 10.1016/j.livsci.2014.11.016
108. Calder PC. Omega-3 fatty acids and inflammatory processes. *Nutrients.* (2010) 2:355–74. doi: 10.3390/nu2030355
109. Cahabani A, Fakhfakh N, Balti MA, Mabrouk M, El-Hatmi H, Zouari N, et al. Microwave drying effects on drying kinetics bioactive compounds and antioxidant activity of green peas (*Pisum Sativum L.*). *Food Biosci.* (2018) 25:32–8. doi: 10.1016/j.fbio.2018.07.004
110. Loschke DC, Hadwiger LA, Waggoner W. Comparison of mRNA populations coding for phenylalanine ammonia lyase and other peptides from pea tissue treated with biotic and abiotic phytoalexin inducers. *Physiol Plant Pathol.* (1983) 23:163–73. doi: 10.1016/0048-4059(83)90043-7
111. Reddy MN, Stahmann MA. Malate dehydrogenase in the fusarial wilt disease of peas. *Physiol Plant Pathol.* (1975) 7:99–111. doi: 10.1016/0048-4059(75)90001-6
112. Natella F, Nardini M, Felice Di, Scaccini M. Benzoic and cinnamic acid derivatives as antioxidants: structure–activity relation. *J Agric Food Chem.* (1999) 47:1453–9. doi: 10.1021/jf980737w
113. Graham DY, Asaka M. Eradication of gastric cancer and more efficient gastric cancer surveillance in Japan: two peas in a pod. *J Gastroenterol.* (2010) 45:1–8. doi: 10.1007/s00535-009-0117-8
114. Solheim TS, Blum D, Fayers PM, Hjermstad MJ, Stene GB, Strasser F, et al. Weight loss, appetite loss and food intake in cancer patients with cancer cachexia: three peas in a pod? Analysis from a multicenter cross sectional study. *Acta Oncol.* (2014) 53:539–46. doi: 10.3109/0284186X.2013.823239
115. Amuta-Jimenez AO, Cisse-Egbounye N, Jacobs W, Smith GPA. Two peas in a pod? An exploratory examination into cancer-related psychosocial characteristics and health behaviors among black immigrants and African Americans. *Health Educ Behav.* (2019) 46:1035–44. doi: 10.1177/1090198119859399
116. Christensen L. Galactolipids as potential health promoting compounds in vegetable foods. *Recent Pat Food Nutr Agric.* (2009) 1:50–8. doi: 10.2147/2212798410901010050
117. Abu Risha M, Rick E-M, Plum M, Jappe U. Legume allergens pea, chickpea, lentil, lupine and beyond. *Curr Allergy Asthma Rep.* (2024) 24:527–48. doi: 10.1007/s11882-024-01165-7
118. Soetan KO, Oyewole OE. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: a review. *Afr J Food Sci.* (2009) 3:223–32.
119. Khattab RY, Arntfield SD. Nutritional quality of legume seeds as affected by some physical treatments 2. antinutritional factors. *LWT Food Sci Technol.* (2009) 42:1113–8. doi: 10.1016/j.lwt.2009.02.004
120. Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R, et al. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. *J Nutr.* (2014) 144:1681–7. doi: 10.3945/jn.114.192989
121. Hart JJ, Tako E, Glahn RP. Characterization of polyphenol effects on inhibition and promotion of iron uptake by caco-2 cells. *J Agric Food Chem.* (2017) 65:3285–94. doi: 10.1021/acs.jafc.6b05755
122. Campion B, Glahn RP, Tava A, Perrone D, Doria E, Sparvoli F, et al. Genetic reduction of antinutrients in common bean (*Phaseolus Vulgaris L.*) seed. Increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. *Field Crops Res.* (2013) 141:27–37. doi: 10.1016/j.fcr.2012.10.015
123. Liu Q-L, Xu X-H, Ren X-L, Fu H-W, Wu D-X, Shu Q-Y, et al. Generation and characterization of low phytic acid germplasm in rice (*Oryza Sativa L.*). *Theor Appl Genet.* (2007) 114:803–14. doi: 10.1007/s00122-006-0478-9
124. Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, et al. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. *Phytochemistry.* (2003) 62:691–706. doi: 10.1016/S0031-9422(02)00610-6
125. Tako E, Reed SM, Budiman J, Hart JJ, Glahn RP. Higher iron pearl millet (*Pennisetum Glaucum L.*) provides more absorbable iron that is limited by increased polyphenolic content. *Nutr J.* (2015) 14:11. doi: 10.1186/1475-2891-14-11

126. Tako E, Beebe SE, Reed S, Hart JJ, Glahn RP. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (*Phaseolus Vulgaris* L.). *Nutr J*. (2014) 13:28. doi: 10.1186/1475-2891-13-28
127. Liu X, Glahn RP, Arganosa GC, Warkentin TD. Iron bioavailability in low phytate pea. *Crop Sci*. (2015) 55:320–30. doi: 10.2135/cropsci2014.06.0412
128. Dias DM, Kolba N, Binyamin D, Ziv O, Regini Nutti M, Martino HSD, et al. Iron biofortified carioca bean (*Phaseolus Vulgaris* L)—Based Brazilian diet delivers more absorbable iron and affects the gut microbiota in vivo (*Gallus Gallus*). *Nutrients*. (2018) 10:1970. doi: 10.3390/nu10121970
129. Warkentin T, Kolba N, Tako E. Low phytate peas (*Pisum Sativum* L) improve iron status, gut microbiome, and brush border membrane functionality in vivo (*Gallus Gallus*). *Nutrients*. (2020) 12:2563. doi: 10.3390/nu12092563
130. Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. *Eur J Nutr*. (2015) 54:325–41. doi: 10.1007/s00394-015-0852-y
131. Tako E, Hoekenga OA, Kochian LV, Glahn RP. High bioavailability iron maize (*Zea Mays* L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 Model) and in vivo (*Gallus Gallus*). *Nutr J*. (2013) 12:3. doi: 10.1186/1475-2891-12-3
132. Tako E, Rutzke MA, Glahn RP. Using the domestic chicken (*Gallus Gallus*) as an in vivo model for iron bioavailability. *Poult Sci*. (2010) 89:514–21. doi: 10.3382/ps.2009-00326
133. Tako E, Bar H, Glahn R. The combined application of the Caco-2 cell bioassay coupled with in vivo (*Gallus Gallus*) feeding trial represents an effective approach to predicting Fe bioavailability in humans. *Nutrients*. (2016) 8:732. doi: 10.3390/nu8110732
134. Fekadu Gemedie H. Antinutritional factors in plant foods: potential health benefits and adverse effects. *Int J Nutr Food Sci*. (2014) 3:284. doi: 10.11648/ijnfns.20140304.18
135. Bray GA, Smith SR, de Jonge L, H Xie, Rood J, Martin CK, et al. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating. *JAMA*. (2012) 307:47. doi: 10.1001/jama.2011.1918
136. Wu G. *Amino Acids*. Boca Raton: CRC Press (2021).
137. Avilés-Gaxiola S, Chuck-Hernández C, Serna Saldivar SO. Inactivation methods of trypsin inhibitor in legumes: a review. *J Food Sci*. (2018) 83:17–29. doi: 10.1111/1750-3841.13985
138. Barać M, Stanojević S. The effect of microwave roasting on soybean protein composition and components with trypsin inhibitor activity. *Acta Aliment*. (2005) 34:23–31. doi: 10.1556/AAlim.34.2005.1.5
139. Machado FPP, Queirós JH, Oliveira MGA, Piovesan ND, Peluzio MCG, Costa NMB, et al. Effects of heating on protein quality of soybean flour devoid of kunitz inhibitor and lectin. *Food Chem*. (2008) 107:649–55. doi: 10.1016/j.foodchem.2007.08.061
140. Chen Y, Xu Z, Zhang C, Kong X, Hua Y. Heat-induced inactivation mechanisms of Kunitz Trypsin inhibitor and Bowman–Birk inhibitor in soymilk processing. *Food Chem*. (2014) 154:108–16. doi: 10.1016/j.foodchem.2013.12.092
141. Yang H-W, Hsu C-K, Yang, Y.-F. Effect of thermal treatments on anti-nutritional factors and antioxidant capabilities in yellow soybeans and green-cotyledon small black soybeans. *J Sci Food Agric*. (2014) 94:1794–801. doi: 10.1002/jsfa.6494
142. Sun Y, Liu L, Jiang L-Z, Zhang G-F, Li G-M, Wu N, et al. Preparation, identification, structure, and in vitro anti-obesity effects of protease inhibitors isolated from potato fruit juice. *Eur Food Res Technol*. (2013) 237:149–57. doi: 10.1007/s00217-013-1972-3
143. Safavi F, Rostami A. Role of serine proteases in inflammation: Bowman–Birk protease inhibitor (BBI) as a potential therapy for autoimmune Diseases. *Exp Mol Pathol*. (2012) 93:428–33. doi: 10.1016/j.yexmp.2012.09.014
144. Ashton-Rickardt PG. An emerging role for serine protease inhibitors in T lymphocyte immunity and beyond. *Immunol Lett*. (2013) 152:65–76. doi: 10.1016/j.imlet.2013.04.004
145. Jin T, Yu H, Wang D, Zhang H, Zhang B, Quezada HC, et al. Bowman–Birk inhibitor concentrate suppresses experimental autoimmune neuritis via shifting macrophages from M1 to M2 subtype. *Immunol Lett*. (2016) 171:15–25. doi: 10.1016/j.imlet.2016.01.004
146. Lunagariya NA, Patel NK, Jagtap SC, Bhutani KK. Inhibitors of pancreatic lipase: state of the art and clinical perspectives. *EXCLI J*. (2014) 13:896.
147. Ojo MA. Changes in some antinutritional components and in vitro multienzymes protein digestibility during hydrothermal processing of *Cassia Hirsutissima*. *Prev Nutr Food Sci*. (2018) 23:152–9. doi: 10.3746/pnf.2018.23.2.152
148. Luo Y, Xie W. Relative contribution of phytates, fibers and tannins to low iron in vitro solubility in faba bean (*Vicia Faba* L) flour and legume fractions. *Br Food J*. (2013) 115:975–86. doi: 10.1108/BFJ-11-2010-0204
149. Sathy A, Siddhuraju P. Effect of processing methods on compositional evaluation of underutilized legume, *Parkia Roxburghii* G. Don (Yongchak) seeds. *J Food Sci Technol*. (2015) 52:6157–69. doi: 10.1007/s13197-015-1732-4
150. Wu G, Johnson SK, Bornman JF, Bennett SJ, Singh V, Simic A, et al. Effects of genotype and growth temperature on the contents of tannin, phytate and in vitro iron availability of sorghum grains. *PLoS ONE*. (2016) 11:e0148712. doi: 10.1371/journal.pone.0148712
151. Bone K, Mills S. *Principles of Herbal Pharmacology*. 2nd edn. Edinburgh: Churchill Livingstone (2013).
152. Wang Y, McAllister TA, Acharya S. Condensed tannins in sainfoin: composition, concentration, and effects on nutritive and feeding value of sainfoin forage. *Crop Sci*. (2015) 55:13–22. doi: 10.2135/cropsci2014.07.0489
153. Gutierrez N, Torres AM. Characterization and diagnostic marker for TTG1 regulating tannin and anthocyanin biosynthesis in faba bean. *Sci Rep*. (2019) 9:16174. doi: 10.1038/s41598-019-52575-x
154. Vijayakumari K, Pugalenthhi M, Vadivel V. Effect of soaking and hydrothermal processing methods on the levels of antinutrients and in vitro protein digestibility of *Bauhinia Purpurea* L. *Seeds Food Chem*. (2007) 103:968–75. doi: 10.1016/j.foodchem.2006.07.071
155. Ojo MA, Ade-Omowaye BIO, Ngoddy PO. Processing effects of soaking and hydrothermal methods on the components and in vitro protein digestibility of *Canavalia Ensiformis*. *Int Food Res J*. (2018) 25:720–9. doi: 10.5555/2018332 8634
156. Ojo MA, Ade-Omowaye BI, Ngoddy PO. Impact of hydrothermal techniques on the chemical components of *Mallotus Subulatus*. *Pak J Nutr*. (2017) 16:813–25. doi: 10.3923/pjn.2017.813.825
157. Panacer K, Whorwell PJ. Dietary lectin exclusion: the next big food trend? *World J Gastroenterol*. (2019) 25:2973–6. doi: 10.3748/wjg.v25.i24.2973
158. Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. *Food Prod Process Nutr*. (2020) 2:6. doi: 10.1186/s43014-020-00020-5
159. Natesh NH, Abbey L, Aseidu SK. An overview of nutritional and anti nutritional factors in green leafy vegetables. *Hortic Int J*. (2017) 1:58–65. doi: 10.15406/hij.2017.01.00011
160. Fleck JD, Betti AH, da Silva P, Troian EA, Olivaro C, Ferreira F, et al. Saponins from *Quillaja saponaria* and *Quillaja brasiliensis*: particular chemical characteristics and biological activities. *Molecules*. (2019) 24:171. doi: 10.3390/molecules24010171
161. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G. An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. *Biotechnol Bioeng*. (2008) 99:686–99. doi: 10.1002/bit.21632
162. Faizal FA, Ahmad NH, Yaacob JS, Abdul Halim Lim S, Abd Rahim MH. Food processing to reduce antinutrients in plant-based foods. *Int Food Res J*. (2023) 30:25–45. doi: 10.47836/ifrj.30.1.020
163. Lee SS, Mohd Esa N, Loh SP. In vitro inhibitory activity of selected legumes against pancreatic lipase. *J Food Biochem*. (2015) 39:485–90. doi: 10.1111/jfbc.12150
164. Ercan P, El SN. Inhibitory Effects of chickpea and *Tribulus Terrestris* on lipase, α -amylase and α -glucosidase. *Food Chem*. (2016) 205:163–9. doi: 10.1016/j.foodchem.2016.03.012
165. Kriegel D, Berlowska J, Witomska I, Antolak H, Proestos C, Babic M, et al. Saponin-Based, biological-active surfactants from plants. In: *Application and Characterization of Surfactants*. London: InTech (2017).
166. Arribas C, Cabellos B, Cuadrado C, Guillamón E, Pedrosa MM. The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. *Innov Food Sci Emerg Technol*. (2019) 52:100–7. doi: 10.1016/j.ifset.2018.12.003
167. Arribas C, Cabellos B, Cuadrado C, Guillamón E, Pedrosa M, Bioactive Compounds M, et al. Antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. *Foods*. (2019) 8:381. doi: 10.3390/foods8090381
168. Stone A, Waelchli K, Çabuk B, McIntosh T, Wanasundara J, Arntfield S, et al. The levels of bioactive compounds found in raw and cooked Canadian pulses. *Food Sci Technol Int*. (2021) 27:528–38. doi: 10.1177/1082013220973804
169. Shi L, Arntfield SD, Nickerson M. Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. *Food Res Int*. (2018) 107:660–8. doi: 10.1016/j.foodres.2018.02.056
170. Zhang L, Wang X, Hu Y, Abiola Fakayode O, Ma H, Zhou C, et al. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein. *Ultrason Sonochem*. (2021) 80:105803. doi: 10.1016/j.ultsonch.2021.105803
171. Mulescu M, Culetu A, Susman IE. Screening of the nutritional properties, bioactive components, and antioxidant properties in legumes. *Foods*. (2024) 13:3528. doi: 10.3390/foods13223528
172. Grela ER, Kiczorowska B, Samolińska W, Matras J, Kiczorowski P, Rybiński W, et al. Chemical composition of leguminous seeds: part I—content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. *Eur Food Res Technol*. (2017) 243:1385–95. doi: 10.1007/s00217-017-2849-7
173. Xu BJ, Yuan SH, Chang SKC. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected

- food legumes. *J Food Sci.* (2007) 72:S167–77. doi: 10.1111/j.1750-3841.2006.00261.x
174. Kent G, Kehoe L, Flynn A, Walton J. Plant-based diets: a review of the definitions and nutritional role in the adult diet. *Proc Nutr Soc.* (2022) 81:62–74. doi: 10.1017/S0029665121003839
175. Farshi P, Mirmohammadal SN, Rajpurohit B, Smith JS, Li Y. Pea protein and starch: functional properties and applications in edible films. *J Agric Food Res.* (2024) 15:100927. doi: 10.1016/j.jafr.2023.100927
176. Kumar S, Gopinath KA, Sheoran S, Meena RS, Srinivasarao C, Bedwal S, et al. Pulse-based cropping systems for soil health restoration, resources conservation, and nutritional and environmental security in rainfed agroecosystems. *Front Microbiol.* (2023) 13:1041124. doi: 10.3389/fmicb.2022.1041124
177. Hadidi M, Boostani S, Jafari SM. Pea proteins as emerging biopolymers for the emulsification and encapsulation of food bioactives. *Food Hydrocoll.* (2022) 126:107474. doi: 10.1016/j.foodhyd.2021.107474
178. Urbano G, Aranda P, Vilchez A, Aeanda C, Cabrera L, Porres J, et al. Effects of germination on the composition and nutritive value of proteins in *Pisum sativum* L. *Food Chem.* (2005) 93:671–9. doi: 10.1016/j.foodchem.2004.10.045
179. Rockström J, Thilsted SH, Willett WC, Gordon LJ, Herrero M, Hicks CC, et al. The EAT–lancet commission on healthy, sustainable, and just food systems. *Lancet.* (2025) 406:1625–700. doi: 10.1016/S0140-6736(25)01201-2
180. Faligowska A, Kalembska S, Kalembska D, Panasiewicz K, Szymbańska G, Ratajczak K, et al. The nitrogen fixation and yielding of pea in different soil tillage systems. *Agronomy.* (2022) 12:352. doi: 10.3390/agronomy12020352
181. Svanes E, Waalen W, Uhlen AK. Environmental impacts of field peas and faba beans grown in norway and derived products, compared to other food protein sources. *Sustain Prod Consum.* (2022) 33:756–66. doi: 10.1016/j.spc.2022.07.020
182. Bernas J, Bernasová T, Kaul H-P, Wagentristl H, Moitzi G, Neugschwandner RW, et al. Sustainability estimation of oat: pea intercrops from the agricultural life cycle assessment perspective. *Agronomy.* (2021) 11:2433. doi: 10.3390/agronomy11122433
183. Richardson D, Felgate H, Watmough N, Thomson A, Baggs E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—could enzymic regulation hold the key? *Trends Biotechnol.* (2009) 27:388–97. doi: 10.1016/j.tibtech.2009.03.009
184. Peoples MB, Hauggaard-Nielsen H, Huguenin-Elie O, Jensen ES, Justes E, Williams, M., et al. The contributions of legumes to reducing the environmental risk of agricultural production. In: *Agroecosystem Diversity*. Amsterdam: Elsevier (2019) 123–143. doi: 10.1016/B978-0-12-811050-8.00008-X
185. Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, et al. Pea (*Pisum Sativum* L.) in the genomic era. *Agronomy.* (2012) 2:74–115. doi: 10.3390/agronomy2020074
186. Ansabayeva A. Cultivation of peas, *Pisum Sativum* L. in organic farming. *Casp J Environ Sci.* (2023) 21:911–9. doi: 10.22124/CJES.2023.7149
187. Powers SE, Thavarajah D. Checking agriculture's pulse: field pea (*Pisum Sativum* L.), sustainability, and phosphorus use efficiency. *Front Plant Sci.* (2019) 10:1489. doi: 10.3389/fpls.2019.01489
188. Hu F, Tan Y, Yu A, Zhao C, Coulter JA, Fan Z, et al. Low N fertilizer application and intercropping increases N concentration in pea (*Pisum Sativum* L.) grains. *Front Plant Sci.* (2018) 9:1763. doi: 10.3389/fpls.2018.01763
189. Ponisio LC, McGonigle LK, Mace KC, Palomino J, de Valpine P, Kremen C. Diversification practices reduce organic to conventional yield gap. *Proc Royal Soc B: Biol Sci.* (2015) 282:20141396. doi: 10.1098/rspb.2014.1396
190. Everwand G, Cass S, Dauber J, Williams M, Stout J. *Legume Crops and Biodiversity. in Legumes in Cropping Systems*. Wallingford: CABI (2017). p. 55–69. doi: 10.1079/9781780644981.0055
191. van de Wiel CCM, van der Linden CG, Scholten OE. Improving phosphorus use efficiency in agriculture: opportunities for breeding. *Euphytica.* (2016) 207:1–22. doi: 10.1007/s10681-015-1572-3
192. Foyer CH, Lam H-M, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, et al. Neglecting legumes has compromised human health and sustainable food production. *Nat Plants.* (2016) 2:16112. doi: 10.1038/nplants.2016.112
193. Stagnari F, Maggio A, Galieni A, Pisante M. Multiple benefits of legumes for agriculture sustainability: an overview. *Chem Biol Technol Agric.* (2017) 4:2. doi: 10.1186/s40538-016-0085-1
194. Nijdam D, Rood T, Westhoek H. The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. *Food Policy.* (2012) 37:760–70. doi: 10.1016/j.foodpol.2012.08.002
195. Davis J, Sonesson U, Baumgartner DU, Nemecek T. Environmental impact of four meals with different protein sources: case studies in Spain and Sweden. *Food Res International.* (2010) 43:1874–84. doi: 10.1016/j.foodres.2009.08.017
196. Ufitikirezi JdeDM, Filip M, Ghorbani M, Zoubek T, Olšan P, Bumbálek R, et al. Agricultural waste valorization: exploring environmentally friendly approaches to bioenergy conversion. *Sustainability.* (2024) 16:3617. doi: 10.3390/su16093617
197. Lata M, Mondal BC. Green pea pod residue-as an alternative feed for dairy animals: a review. *Agric Rev.* (2022) 45:137–41. doi: 10.18805/ag.R-2377
198. Hanan E, Rudra SG, Sagar VR, Sharma V. Utilization of pea pod powder for formulation of instant pea soup powder. *J Food Process Preserv.* (2020) 44:14888. doi: 10.1111/jfpp.14888
199. Nasir G, Zaidi S, Siddiqui A, Sirohi R. Characterization of pea processing by-product for possible food industry applications. *J Food Sci Technol.* (2023) 60:1782–92. doi: 10.1007/s13197-023-05718-y
200. Sik B, Takács G, Lakatos E, Ajtány Z, Székelyhidi R. Valorization of pea pod (*Pisum Sativum* L.) waste: application as a functional ingredient in flatbreads. *Legume Sci.* (2024) 6. doi: 10.1002/leg3.70017
201. Mousa MMH, El-Magd MA, Ghamry HI, Alshahrani MY, El-Wakeil NHM, Hammad EM, et al. Pea peels as a value-added food ingredient for snack crackers and dry soup. *Sci Rep.* (2021) 11:22747. doi: 10.1038/s41598-021-02202-5
202. Rudra SG, Hanan E, Sagar VR, Bhardwaj R, Basu S, Sharma V, et al. Manufacturing of mayonnaise with pea pod powder as a functional ingredient. *J Food Meas Charact.* (2020) 14:2402–13. doi: 10.1007/s11694-020-00487-0
203. Stella Mary G, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S, et al. Production, characterization and evaluation of biochar from pod (*Pisum Sativum*), leaf (*Brassica Oleracea*) and peel (*Citrus Sinensis*) wastes. *Int J Recycl Org Waste Agric.* (2016) 5:43–53. doi: 10.1007/s40093-016-0116-8
204. Upendra RS, Pratima K, Priyanka S, Jagadish ML, Nandhini NJ. Production of bioethanol from hitherto underutilized agro waste (field beans/green pea pods waste), incorporating zero waste generation technique. *Int J Innov Res Sci Eng Technol.* (2013) 2:5574–9.
205. FAO. *Pea Crop Information and Statistics*. Available online at: <https://www.fao.org/land-water/databases-and-software/crop-information/pea/en/> (Accessed October 30, 2025).
206. Buenavista RM, Chakraborty S, Siliveru K. Advancing global pulse protein production: harnessing emerging technologies for sustainable cultivation and fractionation of high-protein pulse crops. *Sustain Food Proteins.* (2025) 3:e70023. doi: 10.1002/sfp2.70023
207. Drewnowski A, Conrad Z. Pulse crops: nutrient density, affordability, and environmental impact. *Front Nutr.* (2024) 11:1–10. doi: 10.3389/fnut.2024.1438369
208. Agriculture and Agri-Food Canada. *Agriculture and Agri-Food Canada Canada Outlook for Principal Field Crops.* (2024). Ottawa: Market Analysis Group. Available online at: <https://agriculture.canada.ca/> (Accessed October 30, 2025).
209. FAO. *OECD-FAO Agricultural Outlook 2025–2034*. Paris: OECD Publishing (2025).
210. Pilorgé E, Kezeya B, Stauss W, Muel F, Mergenthaler M. Pea and rapeseed acreage and land use for plant-based meat alternatives in the EU. *OCL.* (2021) 28:54. doi: 10.1051/ocl/2021037
211. European Commission. Farm to fork strategy: for a fair, healthy and environmentally-friendly food system. In: *Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions*. Brussels: European Commission (2020). p. 1–9.
212. Asen ND, Aluko RE, Martynenko A, Utioh A, Bhowmik P. Yellow field pea protein (*Pisum Sativum* L): extraction technologies, functionalities, and applications. *Foods.* (2023) 12:3978. doi: 10.3390/foods12213978
213. Rivera J, Siliveru K, Li YA. Comprehensive review on pulse protein fractionation and extraction: processes, functionality, and food applications. *Crit Rev Food Sci Nutr.* (2024) 64:4179–201. doi: 10.1080/10408398.2022.2139223
214. Hara P, Piekutowska M, Niedbala G. Prediction of protein content in pea (*Pisum Sativum* L.) seeds using artificial neural networks. *Agriculture.* (2022) 13:29. doi: 10.3390/agriculture13010029
215. Abi-Melhem R, Hassoun Y. Is pea our hidden allergen? An American pediatric case series. *J Allergy Clin Immunol Glob.* (2023) 2:100090. doi: 10.1016/j.jacig.2023.100090
216. Hugman J, Wang LF, Beltranena E, Htoo JK, Zijlstra RT. Nutrient digestibility of heat-processed field pea in weaned pigs. *Anim Feed Sci Technol.* (2021) 274:114891. doi: 10.1016/j.anifeedsci.2021.114891
217. FAO. *FAOSTAT: Pea production statistics*. Food and Agriculture Organization of the United Nations (2025). Available online at: <https://www.fao.org/faostat> (Accessed October 28, 2025).
218. FAO. *Celebrating the dry seeds of life: Pulses in Europe and Central Asia*. Food and Agriculture Organization of the United Nations (2023). Available online at: <https://www.fao.org/publications/card/en/c/CC1501EN/> (Accessed October 28, 2025).
219. FAO. *Nutritional Value of Pulses*. FAO Open Knowledge Repository (2023). Available online at: <https://www.fao.org/3/i2490e/i2490e.pdf> (Accessed October 28, 2025).
220. Belghith-Fendri I, Chaari F, Kallel F, Zouari-Ellouzi S, Ghorbel R, Besbes S, et al. Pea and broad bean pods as a natural source of dietary fiber: the impact on texture and sensory properties of cake. *J Food Sci.* (2016) 81:C2360–C2366. doi: 10.1111/1750-3841.13448