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Abstract

The assessment of buildings’ energy performance plays a critical role in achieving global
sustainability goals, particularly in reducing carbon emissions and improving energy ef-
ficiency. In this context, various modelling approaches have been developed to evaluate
building energy performance. Among them, data-driven models, such as machine learning
(ML) algorithms, have gained significant attention in recent years due to their scalability,
fast development process, and high predictive accuracy. However, a key limitation of
these models is their limited interpretability, which can negatively affect their application
particularly in decision-making and retrofit planning processes. To address this issue, SHap-
ley Additive exPlanations (SHAP) has emerged as a promising approach for interpreting
complex ML models by quantifying the contribution of each input feature to the model’s
predictions. As a result, this study developed an XGBoost ML model that predicts energy
performance of residential buildings in the UK with an R? value of more than 0.98. After
that, SHAP method was applied to explore and explain the effect of individual features on
model outcomes, which highlighted that SHAP framework can be a strong complementary
approach for enhancing the interpretability and practical applicability of black-box models
in building energy performance analysis.

Keywords: buildings; energy efficiency; energy performance assessment; machine learning;
interpretability; SHAP

1. Introduction

More than one-third of global final energy demand and carbon emissions in the energy
systems is related to the building sector [1,2]. In response, many frameworks, energy
performance standards, and building energy codes have developed worldwide to reduce
acceleration of this process. Among these, GlobalABC is a global platform for increasing
action towards a zero-emission, efficient and resilient buildings, and construction sector [3].

In particular, residential buildings in the UK account for 26% of final energy consump-
tion and 24% of CO, emissions in the country, of which 78% is related to space heating
and DHW systems [4]. Additionally, English Housing Survey data (DHLUC) show that
majority of the existing building stock in the UK is more than 60 years old, and around 20%
of properties are over 100 years old [5]. Therefore, the implementation of energy efficiency
measures such as the UK energy performance certification schemes (EPCs and DECs) which
ensure minimum energy efficiency standards across different building types can be one of
the most effective sustainable solutions to support the UK in achieving its energy efficiency
and net-zero goals.
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However, the most important prerequisite for implementing these regulations and
energy conservation plans is accurate assessment of buildings’ energy performance under
different conditions. In general, energy modelling techniques be classified into white-box,
grey-box, and black-box approaches. White-box modelling approaches, such as dynamic
thermal simulation, rely on thermodynamic and heat transfer principles to simulate a
building’s energy flow [6]. While they provide high interpretability, their extensive data re-
quirements and computational complexity limit their scalability for large-scale applications.

Conversely, black-box models, which attracted attention in the past few years, utilise
historical data and ML algorithms such as artificial neural network or tree-based models
to predict energy consumption pattern. Many studies have been conducted to highlight
their pros and cons; however, their main strength is their relatively high accuracy and
fast development time, without requiring a deep understanding of the physical process.
Nevertheless, their lack of interpretability remains one of the main challenges that limits
their application in the field.

To address this issue, researchers have recently developed a new field of study named
explainable artificial intelligence (XAI) to clarify the process of deriving models” outputs
by analysing the training and prediction procedure of the black-box models, including Al
system and particularly ML models [7]. The XAI process aims to (1) improve ML models
performance by analysing features used for training, (2) model stabilisation with investi-
gating how changing feature values affects prediction results and facilitating designing
flexible models which is stable to environments (3) to trust guarantees, particularly in the
fields related to human safety [8].

Thus, various approaches have been proposed under the XAI framework, including
model-specific interpretation techniques and model-agnostic methods that can be applied to
any learning algorithm. Among these, feature attribution methods have gained significant
attention for their ability to quantify the influence of each feature on the model’s prediction,
which provides quantitative insights into model behaviour [9,10]. One of the most widely
used feature attribution techniques is SHapley Additive exPlanations (SHAP), which is an
effective tool for determining the effects of various input variables on model predictions.

Unlike traditional feature importance methods which provide only a global estimate
for the influence of input variables on ML model outputs, SHAP provides detailed local ex-
planations of the most influential parameters for each model predictions. This is particularly
valuable when ML models are designed for building energy retrofit planning purposes.

The degree of influence of each feature on the output value can be calculated by the
SHAP values which was first proposed by Lundberg and Lee as a unified measure of
feature importance [8,11]. SHAP values offer both global and local interpretability by
assigning an importance value to each feature for individual predictions. This technique
can bridge between white-box and black-box modelling approaches by providing clear and
quantified explanations for complex model outputs.

So, in this study, an ML model was developed to predict the annual energy consump-
tion of residential buildings in the UK based on their characteristics, including building
envelope and energy system parameters. In addition, the developed model was analysed
using the SHAP framework to assess the local and global influence of different input
features in the model. This interpretability analysis provides insights into optimal strate-
gies for energy-efficiency retrofits and highlights potential areas for improvement in the
developed model.

As mentioned earlier, there are various approaches for buildings’ energy modelling.
In this context, Yu et al. [12] conducted a comprehensive review of the methodologies
employed in white-box, black-box, and grey-box approaches for predicting building energy
performance. They also analysed the sources of uncertainty associated with these predic-
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tion methods, considering factors such as occupant behaviour, building characteristics, and
weather conditions. In particular, they concluded that with the growing availability of
building energy consumption datasets and reduced dependency on detailed building pa-
rameter inputs, black-box modelling approaches such as ML, deep learning, and statistical
analysis methods have emerged as an effective way for energy consumption prediction.

Research conducted by Ardabili et al. [13] focused on black-box approaches for energy
consumption estimation and load prediction. The findings of this study ranked differ-
ent approaches based on robustness, including ensemble methods, deep learning (DL)
methods, linear regression methods, SVM-based methods, ANN methods, and hybrid
approaches. Ensemble and deep learning methods were found to demonstrate the high-
est robustness, whereas SVM-based and linear regression models showed comparatively
lower performance.

Similarly, Villano et al. [14] classified the most frequent ML and DL models used in this
field and highlighted the advantages and limitations of each one. The reviewed ML models
are including decision trees, random forest, naive Bayes, and SVM, and for DL approach
they considered convolutional and recursive neural networks, long short-term memory,
and gated recurrent units. More on ML models for buildings’ load forecast, Mohammed
et al. [15] applied various models including XGBoost, random forest, classification and
regression tree, and M5 tree model to predict heating load and cooling load of residential
buildings. Results of this study highlighted a more accurate performance of XGBoost
model in which R? values for predicting both heating load and cooling load recorded more
than 0.97.

Recent studies have also highlighted the importance of uncertainty quantification in
ML models, particularly for applications where predictions involve risk and long-term
impacts. To address this, several approaches have been proposed that combine ML models
with probabilistic or stochastic frameworks to estimate prediction uncertainty alongside ML
model output. For instance, Mahajan et al. [16] proposed a Bayesian Neural Network (BNN)
approach for probabilistic prediction of building energy demand to quantify prediction
uncertainty alongside the raw predictions. This study compared BNN with LSTM-based
models in terms of uncertainty quantification and prediction accuracy, which showed that
BNN outperformed LSTM in uncertainty quantification as well as prediction accuracy.
Furthermore, Xu et al. [17] provided a systematic review of uncertainty quantification
methods in ML-based building energy modelling. They discussed sources of uncertainty
and surveyed techniques used to assess and incorporate uncertainty in ML models for
building energy prediction. While uncertainty quantification is beyond the scope of the
present study; it represents an important direction for future work to further enhance the
reliability of data-driven building energy models.

However, one of the key issues of the black-box modelling approach (particularly
in the context of buildings’ energy modelling) is its lack of interpretability, meaning that
the underlying relationships and contribution of each input variable trained in the model
cannot be quantified. Although there are some metrics, such as “feature importance”, that
calculate an index for different features to show their relative influence on the model’s
output, they do not explain how individual features contribute to the prediction of each
specific data point or case study, which limits their usefulness for detailed analysis in
buildings” energy modelling. In response, Lundberg and Lee [11] presented a unified
framework for interpreting black-box models’ output called SHAP, which assigns each
input feature an importance value for a particular prediction.

As a result, many studies have been conducted to utilise this framework for interpre-
tation of data-driven models in different fields. Cui et al. [18] developed three different ML
models to predict energy use intensity (EUI) in two common U.S. residential building types.
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In addition, they applied SHAP framework to analyse the impact of different features on
ML models’ output and provided insights into its influence on EUI from global and local
points of view. Based on the SHAP feature analysis on the most accurate models, the study
suggested both general and building-specific strategies for improving energy efficiency in
the case study buildings.

In a similar research, Zhou et al. [19] integrated ML models with SHAP analysis to ex-
plore how different energy-related factors influence carbon emissions in office buildings in
China. Their approach involved training ML models to estimate building carbon emissions,
photovoltaic (PV) carbon offsets, and overall net carbon emissions using more than twenty
input variables. SHAP was then applied to interpret the model outputs at both global and
local levels to provide a detailed analysis of features influence. The findings highlighted
that the window-to-wall ratio and PV installation area play the most significant roles in
determining carbon emissions and PV carbon offsets.

SHAP techniques have been utilised in various fields; one example is the research
conducted by Cakiroglu et al. [20], which focused on improving the interpretability of ML
models for wind turbine power predictions. This work estimated the power produced
in a wind turbine using six different regression algorithms-based input features such as
humidity, pressure, air density, and wind speed data. Utilising SHAP revealed that the
wind speed is the most significant input feature that impact on the model predictions.
Utilisation of SHAP is not limited to only engineering purposes in which it can be pointed
to research conducted by Prending et al. [21] which utilised this method for interpreting
black-box models developed for blood glucose prediction.

2. Materials and Methods

This chapter presents the overall research design adopted in the study which details
the methods and techniques that were applied to achieve the research objectives, as it
can observed in Figure 1. So, the selection and implementation of ML algorithms, the
dataset selection and preprocessing, and the procedures followed for model training and
evaluation will be discussed. Additionally, the methodology employed for interpreting
model behaviour, particularly through SHAP-based explainability analysis, is described.

Figure 1. Summary of the research framework.
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2.1. Dataset and Data Pre-Processing

The dataset utilised in this study is a synthetic, novel dataset generated through an
automated parametric simulation workflow designed to represent the different types of
residential buildings in the UK. The building archetypes were selected based on the cate-
gories defined in the Standard Assessment Procedure (SAP) for the UK housing stock [22],
including detached, terraced, and mid-terraced layouts. For each archetype, a wide range
of building characteristics was considered to capture different variations in the case study
buildings. These parameters included envelope-related features such as wall, roof, and floor
material, and insulation levels, along with energy system-related features such as heating
system types (e.g., electric radiators, air-source heat pumps, and gas-fired combi boilers).

Furthermore, some detailed variables related to occupants” consumption behaviour
were assumed based on the UK National Calculation Methodology (NCM). This utilises
typical values for detailed parameters in building energy simulations, such as occupancy
pattern, interior lighting density, and internal heat gains. Analysing effect of these variables
were either negligible on EUI or requires stochastic modelling approach which were beyond
the context of this paper. Further details about the most important variables utilised in the
dataset can be found in Table 1.

Table 1. List of the most important considered features for dataset development.

General Details Building Envelop Energy System NCM Pre-Defined
Location External wall U-value DHW system Lighting power density
Building type Floor U-Value Heating system Heat gains from equipment and occupants
Building layout Roof U-value Type of ventilation =~ Occupancy density and schedule
Adjacency Glazing system

infiltration

To generate the dataset, the different parameters were simulated using JEPlus-
EnergyPlus co-simulation. As it was not feasible to simulate every possible combination
of the input features (more than 100 million of simulation is required), Latin Hypercube
Sampling (LHS) was employed to ensure an efficient and well-distributed exploration of
the parameter space. This sampling strategy enabled balanced representation across the
different classes within each feature category and also optimised the number of simula-
tions required. The simulation process also incorporated a wide geographic range, with
representative locations distributed from London in the south to Aberdeen in the north of
the UK, which ensures that climatic variation was reflected in the dataset. In total, more
than 8000 unique building samples were simulated, which provides a comprehensive set of
energy performance outputs to be further utilised for model development.

Following the simulation stage, the dataset was organised, encoded, and scaled using
different libraries in python. The available samples were also divided into training and
testing subsets for the development and validation of the ML model.

2.2. Model Selection and Validation

For ML model selection, the XGBoost model is chosen since it has been widely used
in the literature for building energy performance predictions, as well as its efficiency and
ability to handle dataset with combination of categorical and numerical features [23-25].
XGBoost builds an ensemble of decision trees sequentially, where each new tree aims
to correct the errors made by the previous ensemble by minimising a differentiable loss
function. What makes XGBoost algorithm outstanding among other ML models is its ability
to reduce overfitting by integration of a regularisation term into the model. In addition, its
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parallel and distributed computing system allows for faster training time, which leads to a
more efficient modelling process [26].

Furthermore, there are many approaches for assessing the accuracy of a trained ML
model. They can analyse an ML model from different aspects including difference between
actual and predicted values, overfitting, outliers, etc. In this context, this paper has utilised
k-fold cross validation with k = 5 for model performance assessment and investigating risk
of overfitting and model bias. In this approach, the available dataset will be divided into k
equally sized subsets, where the model will be iteratively trained on k-1 folds and assessed
on the remaining fold to ensure that each subset was used once for validation.

In terms of performance metrics R? has been utilised to quantify the proportion of
variance in the target variable explained by the model as it can be observed in Equation (1).
Also, root mean square error (RMSE) and mean absolute error (MAE) have been utilised
to highlight larger prediction error (outliers) and show the average of prediction error as
shown in Equations (2) and (3).

n Y
R2 —1— :l:l(yl zl)z (1)
i1 (vi — 7))
1 n N2
RMSE = \/n Yo yi— %) 2)
1 n
MAE = — Y lyi — 9il 3)
i=1

where 7 is the number of test cases, y; is the true value, and §; is the predicted value.

2.3. SHAP Methodology

SHAP is an XAI method based on the concept of Shapley values from game theory. In
game theory, Shapley values provide a fair way to distribute total rewards among players
based on their individual contributions. Figure 2 briefly shows how SHAP concept applies
this idea to ML models which treats each feature as a “player” that contributes to the
model’s prediction. On this context, the Shapley value ¢; for feature i can be obtained from
Equation (4) [19].

pi= Y BEINIZISIZ Dt g iy — o(s)) @
scN IN|!

where ¢; is the Shapley value that shows the effect of variable i on a single prediction
compared with the average of all predictions, N is the set of all features, S; is the set of
possible variable orderings, and v(s) represents the optimum value that can be gained by
coalition S. As stated before, in ML models, SHAP values are derived from the concept of
Shapley values, which rely on conditional expectations to simplify how each input feature
contributes to the model’s predictions [8].

Since calculating the exact SHAP values requires a lot of computation resources, the
SHAP framework offers different approximation methods specific to each model type. For
example, Kernel SHAP can be applied to any ML model, Deep SHAP is designed for deep
learning models, and Tree SHAP is used for tree-based models. In Tree SHAP, the value of
the final node in the tree represents the conditional expected value [27]. Since this study
utilises XGBoost algorithm for ML model development, Tree SHAP has been applied for
model interpretation.
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Figure 2. Simplified explanation of SHAP framework, adapted from [11,18].

3. Results

This section describes the accuracy of the developed ML model for predicting annual
EUI and how this black-box model can be interpreted using SHAP method. First of all,
Figure 3 shows predictive performance of the XGBoost model for more than 1500 test cases
with scatter and kernel density estimation (KDE) plots. High coefficient of determination
(R? obtained more than 0.98) shows the predicted EUI values closely tracking the actual
values, which confirms the model’s high accuracy.
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Figure 3. Developed ML model performance evaluation in (A) scatter plot and (B) KDE plot.

In particular, the scatter plot (A) shows that data points are concentrated around the
diagonal line, which indicates the model consistently captures energy use behaviour across
all building types. While high accuracy between actual and predicted values is observed
over most of the EUI range, a slight increase in dispersion can be found for test cases with
very high EUI values (which are relatively rare in practice) where the predicted values tend
to deviate from the actual values, as it can be observed in the scatter plot. Finally, the KDE
plot (B) also shows the highest concentration of test cases are around 100-120 kwh/ mz.year.

Also, Table 2 shows the model performance results summary of the developed ML
model across five folds for predicting EUI using RMSE, MAE, and R? metrics. The consistent
results across folds particularly indicate limited sensitivity to the training data and no sign

of overfitting.
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Table 2. Accuracy of developed ML model across 5 training and test folds.

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
R? 0.981 0.984 0.984 0.986 0.985
RMSE 6.91 7.14 6.86 6.51 6.93
MAE 497 4.96 4.84 4.67 495

Moreover, as the research focuses on the interpretability of data-driven models, four
case study buildings were selected; they represent a diverse range of typical residential
building features summarised in Table 3. The test cases differ in location, layout, envelop,
heating system, etc., which allows the behaviour of the ML model to be interpreted across
a diverse spectrum of the UK residential buildings.

Table 3. Summary of the characteristics of the test case study buildings.

s s . . . . External
. Building Building Infiltration = Heating Glazing Floor Roof . DHW
Case Location Type Layout (ACH) Setpoint U-Value  U-Value U-Value UY\VIﬂLe Heating System System

A Glasgow Flat End-terraced 1 23 3.0 2.02 0.558 0.212 Electricradiator  instantaneous

B Norwich Flat Enclosed 04 2 25 0.25 0.667 0.251 ASHP ASHP
mid-terraced

c London  Maisonette Enclosed 12 18 1.0 1.005 1.097 0.677 Gas boiler Gas boiler
mid-terraced

D Birmingham House Semi-detached 0.7 23 2.0 1.005 1.452 0.251 Electricradiator  instantaneous

Case A is a flat in Glasgow with an end-terraced layout, heated with electric radiators,
relatively high infiltration (1 ACH), a high heating setpoint of 23 °C, and relatively poor
glazing and floor U-values. Case B is a flat in Norwich with a more sheltered enclosed mid-
terraced layout, a lower infiltration rate of 0.4 ACH, and improved envelope performance
compared to Case A, while being equipped with an air-source heat pump system. Case C
is a maisonette in London with the highest infiltration (1.2 ACH) among the four cases but
with significantly better glazing U-values, a combi gas boiler, and a lower heating setpoint
of 18 °C. Case D, located in Birmingham, represents a semi-detached house with electric
radiators and water instantaneous for DHW system. Across all cases, the predicted EUI is
compared against the model-wide mean EUI of approximately 132 kWh/m?.year, which
forms the baseline from which SHAP values quantify positive or negative deviations.

The SHAP waterfall plots in Figure 4A-D illustrate how the model reaches at the final
EUI prediction for each case by decomposing the output into additive contributions from
individual features. In Figure 4A, corresponding to Case A in Table 3, the predicted EUI is
substantially higher than the dataset average, reaching approximately 189 kWh/m?.year.
The plot shows that the heating setpoint of 23 °C is the dominant contributor to this increase,
adding more than 26 kWh/m?.year to the baseline. The high glazing and floor U-values
indicate significant thermal losses that also push the prediction upward. Glasgow’s climatic
conditions also add a positive contribution, which is in line with the colder weather and
higher heating demand typical of the region. On the other hand, some features, such as the
low external wall U-value, produce negative contributions to shift predicted EUI towards
lower values. As a result, Case A shows the highest EUI among the analysed buildings,
primarily driven by high setpoint temperature, inefficient heating technology (compared to
ASHP), and weak envelope components.
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Figure 4. SHAP waterfall plot analysis of the model-predicted EUI for case studies (A-D).

Figure 4B, associated with Case B in Table 3, shows a significantly lower predicted
EUI of around 71 kWh/m?.year in the case study, mainly due to utilising ASHP for heating
and DHW system and lower infiltration rate (0.4 ACH) based on SHAP interpretation
framework. High insulation level in external wall as well as enclosed layout of the building
also contribute to the high energy-efficiency of this test case.

Furthermore, in Figure 4C, corresponding to Case C in Table 3, the model predicts an
EUI of approximately 112 kWh/m?.year. The SHAP waterfall breakdown shows that the
low heating setpoint of 18 °C is the largest contributor which decreases the EUI prediction
by over 45 kWh/m?.year, which aligns with the significant impact that thermostat setpoint
has on heating demand. The enclosed layout of the building and the low glazing U-value
also reduce energy use. However, other factors, particularly the high infiltration rate of
1.2 ACH, the roof U-value, and utilising gas boiler instead of ASHP have dragged the EUI
curve toward higher amounts. London’s warmer climate provides a slight downward
adjustment, but the SHAP plot makes it evident that the interplay between a low thermostat
setting and a relatively leaky envelope results in Case C falling near but below the mean EUL
The model effectively interprets this case as one where behavioural parameters (setpoint
temperature) compensate for some of the deficiencies in the envelope and infiltration.

Finally, Figure 4D presents the SHAP explanation for Case D in Table 3, a semi-
detached house in Birmingham with a predicted EUI of approximately 115 kWh/m?.year.
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This prediction lies close to the dataset average, and the SHAP contributions are more
balanced here than in the previous cases. The heating system and the heating setpoint of
23 °C again exerts a noticeable positive contribution. The roof U-value, at 1.452 W/m?K, is
the highest among the four cases and therefore also adds significantly to energy use. On
the other hand, the low external wall U-value and the building layout reduced the EUI to
below the average.

While SHAP waterfall plots provide clear local explanations for the model EUI output,
they implicitly assume that features act independently. However, in building energy
systems, many input variables are physically and operationally interdependent, such as
infiltration rate and envelope insulation level, or heating system and location. To address
this limitation and to avoid potentially misleading interpretations based on only waterfall
plots, SHAP interaction values were further explored in Figure 5. SHAP interaction values
quantify pairwise feature interactions for individual predictions; therefore, they facilitate
local insights into how combinations of different building characteristics influence the
predicted EUI This capability is particularly valuable in residential retrofit planning, where
energy performance outcomes often result from the interaction between envelope, system,
and operational parameters rather than from single factors.
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Figure 5. Top interaction values for buildings features in cases studies (A-D) (corresponding to

Figure 4A-D).
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As it can observed in Figure 5, the local SHAP interaction plots presented for the
selected case study buildings demonstrate that the developed ML model is able to quantify
non-linear and co-dependant relationships between key variables, such as the interaction
between infiltration and building envelop, or between heating system type and heating
setpoint. These interactions help explain why similar changes in a single feature may result
in different EUI outcomes across buildings with different characteristics. At the same time,
it should be noted that SHAP interaction values remain limited to pairwise effects and do
not fully resolve higher order dependencies among multiple correlated features.

A SHAP summary plot is also shown in Figure 6 to illustrate the overall influence
of each input feature on the model output by aggregating their contributions across the
entire dataset. In this figure, features are ordered by their mean absolute SHAP values
which enable the identification of the most influential predictors of EUI The plot shows
that infiltration rate, heating setpoint, and heating system type (particularly ASHP and
gas boiler) impose the largest impact on the predicted EUI Higher infiltration rates and
higher setpoints consistently shift the predictions upward, whereas the presence of ASHP
systems is strongly associated with reductions in EUI. Envelope-related features such as
roof, external wall, glazing, and floor U-values also demonstrate significant contributions,
with higher U-values generally pushing EUI upward due to increased heat losses. Location
and building layout variables showed smaller yet non-negligible effects, which reflects
regional climatic variations and differences in exposed surface area. Overall, the summary
plot provides a global interpretability view which completes the case-specific waterfall
plots by revealing how each feature drives the model’s predictions across the entire dataset.
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Figure 6. SHAP summary plot for identifying key input features affecting the EUL

Similarly, the SHAP box plot is shown in Figure 7 to illustrate the statistical variance
of SHAP values for the most influential features. Features such as infiltration rate, heating
setpoint, and heating system type show both high median values and large variance which
shows their impact on EUI differs substantially between case study buildings (data points).
In contrast, envelope-related features such as glazing and wall U-values show smaller
variance which represent generally lower contribution to EUL

https:/ /doi.org/10.3390/su18010457


https://doi.org/10.3390/su18010457

Sustainability 2026, 18, 457 12 of 17

infiltration -

heating setpoint

heating system_ASHP -

roof u-value -

external wall u-value 4
heating system_gas boiler 1
glazing u-value -
city_aberdeen -
city_glasgow -

building layout_house-d
building layout_flat-et
building layout_flat-emt 4
building layout_house-mt 4

floor u-value -

heating system_electric radiator

T T T T T

-60 ~40 -20 0 20 40 60 80

Figure 7. SHAP values box plot to represent top influential features on EUL

Finally, the SHAP heatmap plot in Figure 8 illustrates how the most influential input
features affect the model output across 1500 test cases. In this figure, red colours represent
positive contributions while blue colours represent negative contributions which indicates
that the feature acts to reduce the EUI Brighter shades of red or blue reflect stronger
impacts, up to approximately +58 kWh/m?.year. Conversely, lighter or faded colours
denote weaker influences on the model’s prediction. It can be observed that infiltration
and heating setpoint show the strongest and most consistent effects across the test cases, as
bright red and blue bars spanning in numerous samples.
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Figure 8. SHAP heatmap plot for 10 most influential input features.

In contrast, although other features such as the glazing U-value still contribute mean-
ingfully to the model output, yet the relatively light shades of red and blue associated
with them indicate that their influence typically remains within a narrower range, often
around 10 kWh/m?.year. The heatmap effectively reveals not only the magnitude of
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each feature’s contribution but also the heterogeneity of these effects across different case
study buildings.

All in all, the global representation of SHAP results in Figure 8 may indicate that
retrofit strategies prioritising air-tightness improvements and heating system upgrades
may achieve more substantial EUI reductions than minor changes to envelope U-values
across a wide range of cases in this study.

4. Discussion

The results of this study showed that the developed XGBoost ML model provides
highly accurate predictions of buildings EUI with an R? value exceeding 0.98, which
highlights its robustness for large-scale energy performance assessment. This aligns with
previous findings by Cui et al. [18], Mohammed et al. [15], and Osei-Owusu et al. [28], who
also identified XGBoost as one of the most accurate models for predicting different types of
buildings’ energy load. It should also be noted that the higher accuracy achieved in this
study, compared to the results reported by Seraj et al. [1], who trained their model using the
UK EPC dataset and obtained an R? value of around 0.82, reflects the greater consistency
and reliability of the novel dataset developed here. Unlike the EPC dataset, which has been
shown in several reports [4] and studies [29] to contain inconsistencies across different
records and case studies, the synthetic dataset used in this research was generated under
controlled conditions to ensure the accuracy and uniformity of data points used for ML
model training.

Among different XAl interpretability methods, SHAP and LIME are two of the most
widely used techniques for explaining black-box machine learning models. LIME provides
local explanations by fitting a locally weighted linear surrogate model around an individual
prediction to approximate the behaviour of the main model. On the other hand, SHAP
provides both local and global interpretability within a single framework and is able to
detect non-linear associations in the used model. In addition, an analysis of public GitHub
repositories shows that SHAP has become the preferred XAI method among developers in
recent years (utilised almost twice as much as LIME) [7].

So, the study showed that how the application of the SHAP framework enhances
the interpretability of the developed model by quantifying the contribution of each input
feature to the predicted EUIL. The SHAP summary and heatmaps plots illustrated that infil-
tration rate, heating setpoint, and heating system type were the most influential parameters
across different case studies” EUI These findings are consistent with the results reported by
Cui et al. [18] and Zhou et al. [19], who observed similar dominant influences of operational
parameters and heating systems on building energy consumption and carbon emissions.

From an interpretability point of view, SHAP analysis bridges the gap between tradi-
tional physics-based models and data-driven “black-box” approaches. While white-box
simulations model energy systems through thermodynamic equations, they are computa-
tionally complex and unsuitable for large-scale applications. On the other hand, black-box
models are efficient but vague. So, SHAP provides feature-level explanations of predic-
tions to enable decision-makers understand black-box models” prediction pattern. This
interpretability is particularly relevant for retrofit planning, where identifying the most
impactful parameters, such as infiltration or envelope insulation, can directly impact on
cost-effective retrofit strategies.

A practical example of how SHAP-based interpretability can support large-scale
retrofit planning can be observed in an ongoing UK retrofit programme, Energy Company
Obligation (ECO) scheme, which requires major energy suppliers to fund energy efficiency
improvements in residential buildings. By the end of September 2025, approximately
4.4 million retrofit measures had been installed across 2.6 million households under this
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programme. As shown in Figure 9, the majority of these retrofits have focused on build-
ing envelope upgrades, with more than 52% of installed measures related to insulation
improvements [30].

= Cavity Wall Insulation
= Loft Insulation
Solid Wall Insulation
Other Insulation
= Boiler
Other Heating

= Micro-Generation

Figure 9. Share of ECO retrofit measures installed by measure type [30].

While insulation upgrades are one of the most important retrofit strategies, the SHAP
analysis conducted in this study across more than 1500 test cases with diverse building
characteristics and locations (Figure 8) suggests that, in many cases, improving building
airtightness may offer comparable or even greater reductions in EUI Interventions such
as identifying thermal bridges, sealing unintended air leakage paths, and improving
construction detailing can often be implemented at lower cost and with less disruption
than deep envelope insulation retrofits. However, it should be noted that much more
consideration should be taken into account in large-scale projects, but it was a brief example
of how such models can contribute to large-scale energy retrofit planning.

Despite the model’s strong performance, several limitations should be noted. First,
the dataset was synthetically generated and may not capture real-world variability such
as occupant behaviour dynamics, maintenance quality, or system degradation. Future
research could integrate measured energy data from buildings to validate and calibrate
model predictions. Second, although SHAP effectively explained feature contributions, its
computational cost increases with larger and more complex datasets. Developing more
efficient approximation methods or combining SHAP with surrogate modelling could
enhance scalability of the developed AI model.

5. Conclusions

This research aimed to address one of the key challenges in applying data-driven
models for building energy performance prediction: the interpretability of black-box
algorithms. To investigate this issue, a synthetic dataset was generated using an automated
energy simulation process. This process generated over 8000 case-study buildings with a
wide range of characteristics, such as different locations, building envelopes, and heating
systems. This dataset was then used to train an XGBoost model, which was selected due
to its efficiency and its capability to handle both numerical and categorical features. The
trained model achieved an R? value of 0.982, which indicates strong predictive performance.

After developing the predictive model, a recently developed XAI method based on
game theory, known as SHAP, was applied to interpret the model’s outputs. SHAP values
were calculated to quantify the local and global contribution of each input feature to EUI
predictions. Several SHAP-based visualisation tools, including summary plots, heatmaps,
and waterfall plots, were utilised to analyse these effects.
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The model interpretation results showed that infiltration, heating system type, and
heating setpoint were the most influential features across the test cases, where their effect
was observed more than 50-60 Kwh/m?.year in some cases. In comparison, envelope-
related features such as roof, wall, floor, and glazing U-values had smaller effects, usually
within 10 to 20 kWh/m?.year. The SHAP results suggest that building operation features
can have a greater influence on EUI than minor changes in envelope U-value.

From a practical point of view, these findings suggest that retrofit strategies which
focus on airtightness improvements, heating system upgrades, and heating control settings
such as thermostat setpoints may result in greater energy savings than improving envelope
U-value. The work also highlights the potential of interpretable ML models not only to
predict energy performance but also to support retrofit planning by identifying case study
specific drivers of energy consumption, rather than relying on generic assumptions or
average trends.
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Nomenclature

ASHP  Air Source Heat Pump

DHW  Domestic Hot Water

ET End-Terraced

EET Enclosed End-Terraced

EMT Enclosed Mid-Terraced

EUI Energy Use Intensity

LHS Latin Hypercube Sampling

ML Machine Learning

MT Mid-Terraced

SHAP SHapley Additive exPlanations
SD Semi-Detached

XAI Explainable Artificial Intelligence
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