
UWL REPOSITORY

repository.uwl.ac.uk

Resolving ambiguity in Hedge detection by Automatic Generation of linguistic

rules

Goodluck Constance, Tracy, Bajaj, Nikesh, Wall, Julie ORCID logoORCID: https://orcid.org/0000-

0001-6714-4867, Moniri, Mansour, Woodruff, Chris, Laird, Thea, Laird, James, Glackin, Cornelius 

and Cannings, Nigel (2021) Resolving ambiguity in Hedge detection by Automatic Generation of 

linguistic rules. In: Artificial Neural Networks and Machine Learning – ICANN 2021, September 14-

17, Bratislava, Slovakia. 

https://doi.org/10.1007/978-3-030-86383-8_30

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/14287/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Resolving Ambiguity in Hedge Detection by
Automatic Generation of Linguistic Rules?

Tracy Goodluck Constance1[0000−0002−7172−2735], Nikesh
Bajaj1[0000−0002−3361−0118], Marvin Rajwadi1[2222−−3333−4444−5555], Julie
Wall1[0000−0001−6714−4867], Mansour Moniri1[0000−0002−5564−0692], Chris

Woodruff2, Thea Laird2, James Laird2, Cornelius Glackin3[0000−0001−5114−6403],
and Nigel Cannings3

1 University of East London, UK
2 Strenuus Ltd., London, UK

3 Intelligent Voice Ltd., London, UK
T.GoodluckConstance@uel.ac.uk

Abstract. An understanding of natural language is key in order to ro-
bustly extract the linguistic features indicative of deceptive speech. Hedg-
ing is a key indicator of deceptive speech as it can indicate a speaker’s
lack of commitment in a conversation. Hedging is characterised by words
and phrases that display a sense of vagueness or that lack preciseness,
such as “I guess, maybe, kind of, about, may, sort of”. The identification
of hedging terms in speech is a challenging task, due to the ambiguity
of natural language, as a phrase can have multiple meanings. This paper
proposes to automate the process of generating rules for hedge detection
in transcripts produced by an automatic speech recognition system using
explainable decision tree models trained on syntactic features. We have
extracted syntactic features through dependency parsing to capture the
grammatical relationship between hedging terms and their surrounding
words. We tested the effectiveness of our model on a dataset of conver-
sational speech, for 75 different hedging terms, and achieved an F1 score
of 0.88. The result of our automated process is comparable to existing
solutions for hedge detection.

Keywords: Hedge Detection · Resolving Ambiguity · Linguistic Indica-
tors · Linguistic Cues

1 Introduction

There is a real need for the use of decision support systems to help assess the
credibility of speech, for example in insurance claims. The UK insurance market
has felt the impact of a year-on-year surge in insurance fraud, with an increase

? Supported by Innovate UK National Project: ’Automation and Transparency across
Financial and Legal Services: Mitigating Risk, Enhancing Efficiency and Promoting
Customer Retention through the Application of Voice and Emotional AI’, Grant no.
104817.



2 T. Goodluck Constance et al.

in the volume of under investigation. There has been an estimated 3.8 million
incidents of insurance fraud in the year ending March 2019, resulting in an
increase of 17% from the previous year [2]. The use of decision support systems
that can reliably identify the deceptive cues in speech to assist contact centre
agents is needed [1]. A credible insurance claim applicant would be expected
to respond with a smooth flow of information when answering a query. Any
deviation from the expected denotes linguistic sensitivity in the narrative, and
certain linguistic features can reveal deceptive traits.

The main challenge for hedge detection is to optimise the effectiveness of
keyword spotting by eliminating ambiguous terms. It can be misleading to simply
identify all hedging terms in a phrase without correctly considering their use in
context. For instance, in the first phrase below, ‘about’ should be identified as
a hedging term, but not in the second phrase.

Sentence 1: We expect about five people to participate in the event.

Sentence 2: The questions will be about how they are getting on at work.

There is currently no publicly-available corpus for conversational language.
As hedge detection is domain dependent, using an existing out-of-domain corpus
will not produce significant results [3]. Therefore, as part of this research, we
have created a Conversational Dataset to detect Linguistic Markers, namely
the CDLM corpus, from movie and TV scripts sourced online and labelled by
linguistic experts for both True and False hedging. Annotation of this corpus is
an on-going process with a range of different linguistic markers, of which hedging
is one of them. The 75 hedging terms used in this paper are a subset of a broad
list of hedging terms that were determined by linguistic experts, from which they
were able to annotate enough data for 75 hedging terms.

In this study, we propose an automated approach to hedge detection in speech
transcripts by performing disambiguation to filter out irrelevant hedge terms
in the conversation. We trained syntactic features with decision trees to auto-
mate the process of generating the rules for hedge detection in order to derive
contextual information. Syntactic features are extracted through parsing, also
known as syntactic analysis. Parsing exposes the grammatical structure of sen-
tences and how words are related in a sentence, using the knowledge given by
the part-of-speech (POS) tag of a word, whether it is a noun, verb, adjective,
etc. The sentence “The dog crossed the road.” is grammatically correct. But
if it was reversed it would be in this form: “The road crossed the dog”, which
is grammatically correct but semantically incorrect. Specific syntactic features
have been extracted from the CDLM corpus and fed into a decision tree classi-
fier to determine the essential features to select for optimising hedge detection.
Decision trees are adaptable for problem-solving due to their transparency in
decision-making and specificity in assigning values to an outcome [4].

The rest of this paper is structured as follows: In Section 2 we provide a
literature review on the state of the art; in Section 3 we describe the annotated
corpus used in this work and give a detailed description of the methodologies
employed; in Section 4, we present and discuss the results; finally, we outline our
conclusions and plans for future work in Section 5.



Title Suppressed Due to Excessive Length 3

2 Literature Review

Hedge detection has inspired much work during the last decade. However the
work that has been conducted in this field have mostly adopted techniques that
are not explainable or constructed using manually crafted rules. The work has
principally been undertaken within the Biomedical field using the Computational
Natural Language (CoNLL) 2010 framework, which represents a shared task of
identifying hedging terms and their linguistic scope in natural language [6]. The
shared task tackles it as a sentence labelling classification problem or as a word by
word token classification problem which follows an IOB format (Inside, Outside,
Beginning) for tagging the scope of the hedging term [7].

The BioScope corpus provided in the framework contains biomedical ab-
stracts and articles annotated with hedging information [8]. Most of the best
performing solutions within the CoNLL 2010 shared task framework adopted
a sentence labelling approach based on Conditional Random Fields (CRFs) or
Support Vector Machine (SVM)-based Hidden Markov Models (HMMs) using
the biomedical corpus [7]. The top ranked system for the sentence labelling clas-
sification problem adopted commonly used features such as (words, lemmas,
POS, and chunks of neighbouring words) and machine learning techniques [7].
A comparative empirical study was completed of four different machine learn-
ing approaches to the problem, selecting CRFs, SVMs, K-Nearest Neighbours
(KNNs) and Decision Trees. The addition of classification labels for previous
words resulted in the SVM classifier yielding the best performance with an F-
measure of 0.8682. SVM-based classifiers were employed to tackle the task as a
disambiguation problem [9], by using syntactic features to identify hedge terms
in and out of context in a sentence, achieving an F-measure of 0.8664, which
indicates an improvement of 1.23% in comparison to their initial version of a
hedge detection system implemented with a maximum entropy (MaxEnt) classi-
fier [10]. An incremental approach combining the results of a CRF and an SVM-
based HMM achieved an F-measure of 0.8636 [11]. A CRF-based and syntactic
pattern-based system was also iimplemented [12], by exploiting the synonym fea-
tures from WordNet with an F-measure of 0.8632. Using CRFs, a greedy-forward
feature selection approach was adopted to boost performance and obtained an
F-measure of 0.8589 [13] .

Some recent work in hedge detection uses informal language corpora for hedge
detection. For example, the first social-media corpus of 326,747 posts was collated
from Twitter’s API relating to the 2011 London Riots was [3]. They achieved an
F-measure of 0.8212 by employing SVMs to explore the effectiveness of using dif-
ferent features such as n-grams, content-based (regrouping similar information,
e.g the geo-location of users in a tweet), user-based (user profiles and followers
distributions) and features specific to Twitter. N-grams are a combination of
co-occurring words within a phase, for example: “The boy is kind”

– Unigrams are the unique words in a phrase e.g “The”, “boy”, “is”, “kind”
– Bigram is the combination of two words e.g “The boy”, “boy is”, “is kind”
– Trigram is the combination of three words e.g “The boy is”, “boy is kind”.



4 T. Goodluck Constance et al.

Unfortunately, this annotated corpus is not publicly accessible. Similarly, Ama-
zon’s Mechanical Turk was used to annotate a corpus of forum posts from the
2014 Deft Committed Belief Corpora [14]. They annotated the corpus with hedge
information and intend in the future to make it publicly available through the
Linguistic Data Consortium. They tackled the hedge detection approach as a
disambiguation problem, but used a rule-based approach instead of machine
learning to manually construct a set of rules to disambiguate potential hedging
terms. They adopted hedge detection as a pre-processing technique to extract
non-ambiguous hedging features to improve the performance of a committed
belief tagging task, another area of research that is closely related to hedging
but focuses on the extraction of propositions in the text to determine what the
speaker believes [15]. They achieved an F-measure of 0.7270 using the features
extracted from their rule-based hedge detection.

3 Methodology

The CDLM corpus was annotated by two behavioural linguistic experts, who
manually labeled each spoken utterance with target labels for the identification
of hedging terms, both in (True) and out of (False) context. The agreement
between the linguistic experts was calculated using Cohen’s kappa coefficient,
we achieved a substantial inter-annotator agreement of 0.8055. After the ex-
perts reviewed the data independently, they came together to re-examine the
discrepancies and provided a final decision. The corpus consists of 9,011 spoken
utterances, and each utterance consists of one or more hedging terms from a set
of 75 unique hedging terms; 59% of the utterances are True hedging, and 41%
are False hedging. It is worth mentioning that an utterance labelled as False
hedging still contains a hedging keyword, but it is not spoken in the context
of hedging. The corpus was split into 70% for the training set and 30% for the
testing set, evenly distributed across the sample size of hedging terms.

The proposed approach is initially based on work by [14], who manually
constructed a set of rules for detecting ten hedging terms. In our approach,
we implemented a machine learning model using Decision Trees, that leverages
context to resolve ambiguities for hedge detection in spoken utterances, i.e. it
will automatically detect True hedging in speech. Syntactic features capture the
context of the utterance through dependency parsing. Using the CDLM corpus
and the corresponding expert labels, a Decision Tree model was trained for each
of the 75 hedging terms to generate the rules. The architecture of the Hedge
Detection Model in this work can be seen in Figure 1.

3.1 Pre-Processing and Feature Extraction

spaCy’s English language model was employed for pre-processing and extract-
ing features from the corpus [16]. Punctuation was removed and the spoken
utterances were converted to lower-case to simulate the output produced by an



Title Suppressed Due to Excessive Length 5

Fig. 1. Architecture of the Hedge Detection Model

automatic speech recognition system before inputting into our Machine Learn-
ing model. Each utterance iterates through spaCy’s NLP (Natural Language
Processing) function, which tokenises the text to generate a Doc object, making
it accessible for different tasks downstream in the pipeline. The pipeline holds
all the information about the tokens, their linguistic features and their relation-
ships. The Doc object then segments individual sentences and creates a sentence
collection called a generator object.

Lemmatisation captures the different variants of the hedge terms in the spo-
ken utterances, regardless of tense, e.g. appear, appears, appeared, appearing, all
come under the root form of “appear”. It converts a word to its root form by con-
sidering the context of the word before transforming it through a prior knowledge
POS. spaCy determines the POS tag beforehand and assigns the corresponding
lemma, e.g. identifying the base form of “running” to “run”. The index location
of the hedging term was retrieved in each spoken utterance, facilitating the task
of feature extraction and context-based analysis. Dependency parsing was used
to extract POS and syntactic dependency tags, explained further in the next
section. Three different window sizes (2, 3 and 4) were used, based on the loca-
tion of the hedging term in the spoken utterance, i.e. neighbouring words that
precede and proceed the hedging term. Ultimately, the extracted features are
split into training and testing sets to enable the Decision Tree model to learn to
select the essential features for automating the rules for hedge detection.

POS tagging assigns tokens in a sentence with their grammatical word cat-
egories as POS tags, such as verbs, noun, adjectives, adverbs. The context of a
word is determined based on the POS tag. For example, if hedging analysis was
based on a Bag of Words approach, the model would not be able to determine
the context where ‘like’ is a verb in the sentence: ‘He likes you’, and where it is
a preposition in the sentence: ‘He stood like a statue’.

A sentence labelled with POS tags, such as: ‘Tom tended plants on the roof.’
will return: (‘Tom’, ‘PROPN’), (‘tended’, ‘VERB’), (‘plants’, ‘NOUN’),(‘on’,



6 T. Goodluck Constance et al.

‘ADP’), (‘the’, ‘DET’), (‘roof’, ‘NOUN’), (‘.’, ‘PUNCT’) where PROPN is a
pronoun, DET a determiner, ADP an adposition and PUNCT is punctuation.

Dependency parsing is a way of generating the syntactic structure of a sen-
tence, also known as syntactic parsing. It generates a parse tree that can capture
the relationship between the words in a sentence [17]. Each dependency is com-
prised of a headword (governor) and its child word (dependent). POS tagging is
a precondition for dependency parsing to limit errors. An example of a depen-
dency tree for a spoken utterance that contains the hedging term ‘assume’: ‘I
assume his train was late’ can be seen in Figure 2, where the arc connects the
headword (‘assume’) to its’ dependent words (‘I’, ‘was’). The arc labels (depen-
dency attributes) describe the syntactic relationship between the hedging term
and the words that impact its’ context (‘nsubj’, ‘ccomp’).

Fig. 2. A dependency tree for a TRUE hedging utterance, hedging term: ‘assume’

A set of features were extracted by tagging the location of the hedging term.
Hedging terms, both in and out of context, were tagged in order to train the
Decision Tree to recognise both True and False hedging. We extracted contextual
features, such as POS tags and dependency relation tags concerning the term
and its’ surrounding words within the range of specific window sizes, determined
based on the location (before and after the hedging term).

3.2 Decision Tree Classifier

Decision trees were chosen in this work because of their numerous advantages.
They are useful in selecting essential features for making rules and the decisions
made by the classifier are easy to understand, interpret and visualise [4]. Focusing
on the explainability of the model was one of our core objectives, as a sound
decision support system enables an organisation to promote transparency and
accountability [?]. The ability to enhance and facilitate the process of providing
an audit trail of the overall decision of the system, leads to a model being adopted
and trusted, which enables organisations to be consistent and fair. A system
with in-built explainablility will be able to verify predictions, identify flaws and



Title Suppressed Due to Excessive Length 7

biases in the model, fully understand the original problem, and ensure legislation
compliance [18]. When we understand how a model works and can visualise how
the input features impact the prediction of a specific class in the model, it makes
it possible to investigate why the model makes its prediction and repair flaws
[19]. Decision trees provide all these benefits as the information flow of the model
is visible, and resolving issues causing errors and biases will be less complicated.
A significant disadvantage of Decision Trees is that bias can be introduced into
the model. If the model has been trained on an imbalanced dataset, one class
will tend to dominate the other. However, this is a common challenge with all
machine learning techniques.

We used the SpKit Signal Processing Toolkit to build our Decision Tree model
[20]. The main benefit of SpKit is that for text classification it takes string values
as input without having to transform the text into a numerical representation in
the form of a vector. The Decision Tree model developed here uses the syntactic
features to detect the context of the hedging terms in conversational utterances.
The input receives these features, and the model produces a classification output
of TRUE or FALSE (whether the detected hedging term in each utterance is
‘True’ hedging or not).

A Decision Tree uses the Iterative Dichotomiser 3 (ID3) algorithm [4], which
constructs a tree representation in response to a given classification question.
ID3 uses a top-down greedy approach to build a Decision Tree; it determines
the best features to split the data by selecting instances with similar values. A
Decision Tree comprises a root node, internal nodes, and leaf nodes, representing
the different hierarchies of the tree. The decision is made at the leaf node, which
is the last level. ID3 uses entropy and information gain to build a Decision Tree.
Entropy represents how the data is split based on the homogeneity of a sample
(the entropy is zero if the samples are entirely the same and the entropy is one
when the samples are equally divided). Information gain depends on the decrease
in entropy after a particular feature has split the data, and Decision Trees use
the highest information gain to split or construct a tree.

Figure 3 provides an example of a Decision Tree for the hedging term ‘about’
which illustrates the different branches of the nodes. The features selected to
generate the rule are visualised. This rule validates by navigating from the top-
right node to check if a condition is True. If True, navigation continues, otherwise
it checks the next node and repeats the same approach. For this specific case,
the rule has two options to identify a true hedging term. Firstly, if the POS tag
of the head of a hedging term is a VERB, and the word that follows the term
has a “det” (determiner) dependent, then the term is true hedging, otherwise it
is not. Secondly, if the POS tag of the head of a hedging terms is not a VERB,
it will navigate to the left and go to the next node to check if the POS tag of
the head of a hedging term is “NUM” (numeric). If true, then the term is true
hedging, otherwise it is not. Figure 3 also visualises the rule generated for the
hedging term ‘assume’. In this case, the tag features were more important for
identifying a hedging term. The rule checks if the tag of a term is a ‘VBP’ (verb,



8 T. Goodluck Constance et al.

non-3rd person singular present) and if true, then the term is True hedging,
otherwise it is not.

Fig. 3. Example of features selected by a Decision Tree when creating a rule for the
hedging terms ‘about’ and ‘assume’

3.3 XGBoost Classifier

We experimented with XGBoost to investigate its renowned model speed and
performance. XGBoost is a popular machine learning method; frequently used on
Kaggle for winning competitions as it has outperformed many other gradient tree
boosting approaches. XGBoost stands for Extreme Gradient Boosting, and it is
a Decision Tree-based ensemble method that uses the gradient descent algorithm
for minimising errors in sequential models [21]. This approach performs very well
because it boosts weak learners by correcting the residual errors in the sequence.

The performance of the model in this paper can be improved through the
many advanced features XGBoost offers for fine-tuning the model. XGBoost only
takes numerical values as input, so we had to encode our labels for classification.
For this, we used one-hot encoding to transform our features into categorical
input variables. Transforming data to one-hot encoding causes data sparsity;
however, this was dealt with by an algorithm that XGBoost implements, to
handle different types of sparsity patterns in the data. XGBoost produces a
final prediction through the output of many trees as it sequentially sums up the
predictions of each tree to improve its performance. When training the XGBoost
model, we used the configuration recommendation for parameters given by scikit-
learn [21]: learning rate = 0.1, n estimators = 100 (number of trees), max depth
= 3 (maximum depth of a tree), min samples split = 2 (minimum number of
samples required to split an internal node), min samples leaf = 1 (minimum
number of samples required to be at a leaf node), subsample = 1.0 (fraction of
features to be randomly sampled for each tree).



Title Suppressed Due to Excessive Length 9

4 Results

We carried out two experiments on our Decision Tree classifiers trained on the
CDLM corpus. First, we conducted a baseline experiment to compare the effec-
tiveness of the manually constructed rules developed by [14] and our automated
rules generated by Decision Trees, for a subset of the CDLM corpus. We then
used the full corpus for the second experiment, to compare the performance of
the Decision Tree and XGBoost approaches.

For the baseline experiment, we compared our automated approach against
the manual rules from [14], for nine out of their ten hedging rules. The reason
for only comparing against nine rules, is that we did not have labelled data for
the tenth one. Both approaches were evaluated on a test set of 957 sentences
in total from the CDLM corpus. Table 1 shows the number of samples for each
hedge term, the manually constructed rules, and the accuracy (%) achieved by
both approaches against this test set.

Hedging Sample Manually Constructed Rules Manual DT
terms size [14] % %

About 218 If token t has part-of-speech IN , t is 75 89
non-hedge. Otherwise, hedge.

Likely 58 If token t has relation amod with its head h, 41 92
and h has part-of-speech N∗, t is non-hedge.
Otherwise, hedge.

Rather 100 If token t is followed by token ‘than’, 85 80
t is non-hedge. Otherwise, hedge

Assume 57 If token t has ccomp dependent, t is hedge. 79 89
Otherwise, non-hedge.

Tend 82 If token t has xcomp dependent, t is hedge. 77 80
Otherwise, non-hedge.

Appear 38 If token t has xcomp or ccomp dependent, 58 67
t is hedge. Otherwise, nonhedge.

Completely 18 If the head of token t has neg dependent, 89 100
t is hedge. Otherwise, nonhedge.

Suppose 297 If token t has xcomp dependent d 47 93
and d has mark dependent ‘to’, t is
non-hedge. Otherwise, hedge.

Should 89 If token t has relation aux with its head h, 38 89
and h has dependent ‘have’, t is non-hedge.
Otherwise, hedge.

Table 1. Classification accuracy (%) for both approaches (Note: IN is the POS tag
for preposition)

The results show an overall accuracy of 61.85% for the manually constructed
rules and 85.31% for the automated rules generated by our Decision Trees. The
accuracy of the Decision Trees outperformed the manually constructed rules by



10 T. Goodluck Constance et al.

23.45%. We observe there is a significant increase in accuracy for each of the
hedging terms, except for the term ‘rather’ where the manual rule outperforms
the Decision Tree by 5%. The reason for this could be that it is a simple rule that
requires a Regular Expression approach to find a specific pattern, whereas the
Decision Tree was trying to learn something more complicated. The rules created
manually did not generalise well with the CDLM corpus; the reason could be
the depth of the syntactic structure of some sentences. Our Decision Trees were
trained on both short and long spoken utterances, which gave them the ability
to extract grammatical relationships between words in longer utterances. Also,
machine learning approaches can learn new rules and adapt to changes, unlike
a manual, limited, approach.

For our second experiment, we used the full CDLM corpus of 9,011 sentences
and 75 hedging terms to compare the performance of the Decision Trees and the
XGBoost classifier for True hedge detection, see Table 2. The best window size for
the Decision Tree model was two words before and after the hedging term (±2)
with an F1 score of 0.8896. In comparison, the best window size for the XGBoost
model was three words before and after the hedging term with an F1 score of
0.8953. Evaluating a range of window sizes contributed to the improvement in
both models, indicating that the surrounding words in the spoken utterance give
contextual information to the hedging term. XGBoost slightly outperformed the
Decision Tree model by 0.0057, even with only limited fine-tuning of the model
parameters. Its’ strength is due to the boosting algorithm it uses to strengthen
weak learners.

Decision Tree XGBoost
Window size Precision Recall F1 Precision Recall F1

5 (±2) 0.8917 0.901 0.8896 0.8909 0.8998 0.8895
7 (±3) 0.8905 0.9 0.8884 0.8937 0.9064 0.8953
9 (±4) 0.8908 0.8994 0.8885 0.8881 0.9013 0.8901

Table 2. Classification results of the Decision Tree and XGBoost models

Our results seem very promising compared to other hedge detection solutions
available in different domains. Although it is hard to benchmark hedge detection
against similar work due to the lack of publicly available informal language
corpora annotated with hedging information. The two closest comparable results
are from [14] who achieved an F1 score of 0.727 on their annotated corpus of
forum posts, and from [3] who achieved an F1 score of 0.8215 on their annotated
corpus based on social media data. Having access to publicly available corpora
will provide a stable ground for a fair comparison between different solutions
and techniques for hedge detection.

Our approach shows that the performance can be improved by employing
more labelled and balanced data, a common theme for machine learning tech-
niques. We employed contextual and positional features to boost the performance



Title Suppressed Due to Excessive Length 11

of the models, similar to [7, 11]. We also followed the approach of performing dis-
ambiguation [9], which [14] also adopted to construct their manual rules by fil-
tering ambiguous hedging terms. Decision trees are a successful solution for this
automatic generation of rules, as they simulate the human approach of creating
rules for decision making and are easy to interpret.

5 Conclusions

Our findings in relation to the automation of generating rules for hedge de-
tection indicate that we can tackle the problem related to ambiguities when
detecting linguistic features in conversational language. Extracting the relation-
ship between potential hedging words or phrases and their surrounding words
in a spoken utterance provides the context of whether the term is truly hedging
or not. We performed dependency parsing to extract these relationships from
utterances, which we used as syntactic features to train our models. The core
contribution of this work was using the explainable Decision Tree model to au-
tomate the process of generating rules for hedge detection disambiguation. We
evaluated the effectiveness of our model on a dataset of conversational speech,
with decision models for 75 different hedging terms, achieving an F1 score of
0.88, a comparable result to existing solutions for hedge detection.

In future, we will explore this technique by using word embeddings. Our
technique can also be applied to the automatic generation of rules for other types
of linguistic markers indicative of deception such as unnecessary explanations
(explainers) and memory loss.

References

1. N.Bajaj et al., “Fraud detection in telephone conversations for financial services us-
ing linguistic features,” 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019), AI for Social Good Workshop, Vancouver, Canada.

2. ONS, “Nature of fraud and computer misuse in England and Wales”, [Online].
Available: https://www.ons.gov.uk/aboutus/transparencyandgovernance

3. W. Zhongyu et al., “An Empirical Study on Uncertainty Identification in Social
Media Context”, ACL, vol. 2, pp. 58-62, 2013.

4. J.R. Quinlan, “Decision trees and decision-making”, IEEE Trans. Systems, Man,
and Cybernetics, vol. 20(2), pp. 339-346, 1990.

5. M. Rajwadi et al., “Explaining Sentiment Classification, INTERSPEECH, 2019.
6. R. Farkas et al., “The CoNLL-2010 shared task: learning to detect hedges and

their scope in natural language text”, ACL Conf. Computational Natural Language
Learning - Shared Task, pp. 1-12, 2010.

7. S-J. Kang, I-S. King, S-H. Na, “A Comparison of Classifiers for Detecting Hedges”,
Int. Conf. U-and E-Service, Science and Technology, pp. 251-257, 2011.

8. V. Vincze et al., “The BioScope corpus: Biomedical texts annotated for uncertainty,
negation and their scopes”, BMC bioinformatics, vol. 9(11), pp. 1-9, 2008.

9. E. Velldal, “Predicting speculation: A simple disambiguation approach to hedge
detection in biomedical literature”, J Biomedical Semantics, vol. 2(55), pp. 57, 2001.



12 T. Goodluck Constance et al.

10. E. Velldal, L. Øvrelid, S. Oepen, “Resolving speculation: MaxEnt cue classifica-
tion and dependency-based scope rules”, Conf. Computational Natural Language
Learning - Shared Task, pp. 48-55, 2010.

11. B. Tang et al., “A cascade method for detecting hedges and their scope in natural
language text”, ACL Conf. Computational Natural Language Learning - Shared
Task, pp. 13-17, 2010.

12. Z, Huiwei et al., “Exploiting multi-features to detect hedges and their scope in
biomedical texts”, ACL Conf. Computational Natural Language Learning - Shared
Task, pp. 106 - 113, 2010.

13. X. Li et al., “Exploiting rich features for detecting hedges and their scope”, Conf.
Computational Natural Language Learning - Shared Task, pp. 78-83, 2010.

14. M. Ulinski et al., “Using hedge detection to improve committed belief tagging”,
W. Computational Semantics beyond Events and Roles, pp. 1-5, 2018.

15. V. Prabhakaran, O. Rambow, M. Diab, “Automatic committed belief tagging”,
Coling 2010: Posters, pp. 1014-1022, 2010.

16. B. Srinivasa-Desikan, “Natural Language Processing and Computational Linguis-
tics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras”,
Packt Publishing Ltd., 2018.

17. V. Teller, “Speech and language processing: An introduction to natural language
processing, computational linguistics, and speech recognition”, Computational Lin-
guistics, vol. 26(4), pp. 638-641, 2000.

18. S. Wachter, B. Mittelstadt, L. Floridi, “Transparent, explainable, and accountable
AI for robotics”, Science Robotics 2, vol. 6, 2017.

19. PwC, “Explainable AI Driving business value through greater
understanding”, [Online]. Available: https://www.pwc.co.uk/audit-
assurance/assets/pdf/explainable-artificial-intelligence-xai.pdf

20. N.Bajaj et al., “SpKit: Signal Processing Toolkit,”, python library,
https://spkit.github.io, 2019.

21. J.Brownlee, “XGBoost With Python: Gradient Boosted Trees with XGBoost and
scikit-learn,” 2019.




