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Abstract

The aim of the study was to develop a method to assess loading rate in the frequency domain
using accelerometry, and to examine how the frequency-domain loading rate changes with
body location and relates to time-domain loading rate during walking. A method was
developed to calculate loading rate from acceleration signal by decomposing active motion
and impact loading components in the signal into different frequency bands. The method was
used to analyse an open access dataset consisting of acceleration and ground reaction force
data of human walking. Acceleration data measured at pelvis, thigh, shanks, and feet during
walking were used to obtain loading rate at four frequency bands: 0 - 3,3 - 6, 6 - 10, and 10 -
15 Hz. Ground reaction forces were analysed to obtain time-domain loading rate
measurements, including Average Loading Rate (ALR) and Instantaneous Loading Rate
(ILR). Loading rate at all four frequency bands was attenuated significantly from foot to
pelvis (P<0.001). However, the pattern of attenuation was different at low frequency bands
(below 10 Hz) compared to high frequency bands (above 10 Hz). Loading rate measured at
body segments in the frequency domain was significantly correlated with ALR and ILR (R?
from 0.44 to 0.56). However, the strength of correlation was higher in low frequency bands
(below 10 Hz) than high frequency bands (above 10 Hz). The study suggests that assessing
loading rate in the frequency domain can provide additional insights into the load

experienced by specific body segments in human locomotion.

Key words: gait, acceleration, ground reaction force, musculoskeletal load, body segments

Word count: 3,880
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Introduction

Appropriate levels of mechanical load are crucial for musculoskeletal health. Lack of
loading may lead to diseases such as osteoporosis and sarcopenia, while excessive
mechanical loading is associated with injuries and osteoarthritis. It is thus important to assess
and monitor musculoskeletal load in real time and in natural environments. To this end,
innovative technologies of wearable sensors have been developed by previous research to

assess musculoskeletal load .

Biomechanical parameters are often used as biomarkers to quantify musculoskeletal
load. Among them, loading rate is an important biomarker that measures how fast a load
changes with time. Previous research found that loading rate was directly linked to biological
responses of musculoskeletal tissues. Animal experiments showed that bone formation rate

was proportional to strain rate of dynamic loading 2, while observational studies on human
indicated that loading rate was associated with tibia stress fracture *, knee osteoarthritis 4,

and recovery progress from hip fracture °.

To date, loading rate is mainly assessed in the time domain based on the measurement

of ground reaction force °. However, time-domain analysis may not provide comprehensive
information as the biological effect of loading rate varies at different frequency bands 2. For

example, the osteogenic response of cortical bone to loading rate was non-linear over a

frequency range between 1 and 30 Hz, with the highest response at 5-10 Hz 7 °. On the other
hand, loading rate above 10 Hz was found to be associated with running-related injury risk ™.

Although loading frequency has been used as a key parameter for quantifying

musculoskeletal load ™ "2, the separation of its effect into specific frequency bands might be

able to provide more clinically relevant information '3°,
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It was found that ground reaction force (GRF) of human locomotion consists of two
main frequency components, a low frequency one below 10 Hz and a high frequency one
greater than 10 Hz. The low frequency component was associated with active force during
stance phase, while the high frequency component was associated with impact loading during
stance phase '*. As the two components occur simultaneously, their effects on loading could
not be assessed separately using time domain analysis. However, the two components
propagate differently through the body and therefore may induce different eftfects on body
segments 4. The separation of these components is therefore beneficial to understand how
active force and impact loading in human locomotion could have their specific effects on
performance and risk of injury . The analysis of loading rate in the frequency domain may
provide a way to disentangle these components and shed more insight on musculoskeletal
loading. Further analysis can be conducted using wavelet transformation to examine how the

frequency components change at specific time points during gait cycles '°.

The human body is a complex mechanical system. Although external load is mainly
applied through the contact between feet and ground during human locomotion, it has to be
transmitted through the body, which could cause amplification or attenuation of the load
signal through passive mechanisms via bone and soft tissues '’ and active mechanisms due to
muscle contraction and limb motion 8. The amplification or attenuation of GRF signal may
be different for active force component and impact loading component as the aforementioned
mechanisms work most effectively at different frequency ranges . Because of this, loading
rate assessed from ground reaction force is not necessarily an accurate predictor of loading
rate at other parts of the body '°. Therefore, it would be beneficial to assess loading rate at

specific body segments using accelerometry.
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The first aim of the current study was to develop a method to assess loading rate at
frequency bands corresponding to active motion and impact loading components using
accelerometry during walking. Secondly, we aimed to examine how the frequency-domain
loading rate measurements changed with body locations during walking. Our third aim was to
correlate the frequency-domain loading rate measurements with the time-domain loading rate
measurements. We hypothesized that loading rate changes with body location during human

locomotion, and the pattern of change would be different for different frequency bands.

Methods
Analysis of loading rate in the frequency domain by accelerometry

A time-domain acceleration signal A(t) satisfying Dirichlet conditions can be
expressed by discrete Fourier transformation (DFT) as the sum of a finite number of sine and

cosine components:

N/2
A(t) = ap + Z(an cos(nwt) + b, sin(nwt)) (D

where N is the total number of points for A(t), n represents the n” harmonic; a, and b,, are
harmonic coefficients, w represents the fundamental frequency of the signal, and t is the

time. The magnitude of each harmonic for A(t) is defined as

A, = /a2 + b2 (2)
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The rate of change of the acceleration signal A(t) can be obtained by differentiation of

equation (1) with respectto t ,

N/2
A(t) = Z (—nwa, sin(nwt) +nwb,, cos(nwt)) 3)

n=1

where A(t) represents the rate of change. The magnitude of each harmonic for A(t) can be

expressed as

DA, = nw+/a3 + bz = nwA, 4)

where DA,, is the magnitude of #n” harmonic of A(t), which equals the magnitude (4,) of the
harmonic of A(t) multiplied by its frequency (nw). This provides a way to assess loading
rate in the frequency domain without the need to conduct numerical differentiation of the
original acceleration signal. The following equation can then be used to examine loading rate

over a particular frequency band

j
LR = ZAn x f, (5)

where LR (BW/s) represents the loading rate over a frequency band from i” to j# harmonics,

A, is the acceleration (g) at the n harmonic, and f,, is the n” harmonic frequency (Hz).

Dataset

An open access dataset 2° was used for this study. The dataset was from an experiment
of 17 healthy participants (all male; age: 23.2 + 1.1; height: 1.76 £ 0.06m; mass: 67.3 + 8.3

kg; BMI: 21.5 + 2.1 kg/m?). The procedure of the experiment is shown in Figure 1. Firstly,
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eight IMU sensors (SageMotion, Kalispell, MT, USA) to measure acceleration at sampling
frequency of 100 Hz were attached to trunk at midway between sternum jugular notch and
sternum xiphisternal joint, to pelvis at midway between left and right anterior superior iliac
spine, to both thighs at midway between anterior superior iliac spine and femur medial
epicondyle, to both shanks at midway between femur medial epicondyle and tibia apex of
medial malleolus, and to both feet at second metatarsal. The z-axes of the IMU sensors were
aligned with the segment surface normal, y-axes were pointing upwards, and x-axes were
perpendicular to the y- and z-axes by the right-hand rule. An instrumented treadmill with two
split belts (Bertec Corp., Worthington, OH, USA) was set up to measure ground reaction
force at sampling frequency of 1,000 Hz. Subjects then conducted a normal walking trial on
the treadmill with self-selected speeds (1.16 = 0.04 m/s) to determine baseline progression
angle and step width for three subsequent trails that were conducted in random order (Figure
1). In progression angle trial, subjects were asked to walk with the combination of three
speeds (self-selected, self-selected minus 0.2 m/s, and self-selected plus 0.2 m/s) and three
foot progression angles (baseline, baseline minus 15°, and baseline plus 15°). In step width
trial, participants were asked to walk with the combination of the same three speeds and three
step width (baseline, baseline minus 0.054 m, and baseline plus 0.070 m). In trunk sway trial,
participants were asked to walk with the combination of the same speeds and three trunk
sway angles (4°, 8°, 12°). Each combination lasted for 30 seconds, and was conducted in
random order in each trial that lasted for 4.5 minutes (30 seconds x 9 combinations). As
participants walked for various number of steps ranging from 600 to 900, the data for the first
600 steps were analysed for each participant. In this study we used the acceleration data
measured on the pelvis, right thigh, right shank, and right foot, and the ground reaction force
measured on the right leg in each step. Ground reaction force data were low-pass filtered at

15 Hz after collection.
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Data analysis and reduction

Ground reaction force and acceleration data in stance phase were analysed.

Acceleration data at x.y, and z axis of each stance phase was low-pass filtered at 15 Hz using

a 4™ order Butterworth filter to match with the filtering of ground reaction force data. To

improve the frequency resolution of DFT, acceleration data from 10 consecutive stance
phases were concatenated at each axis. The length of the concatenated signal ranged from
5.04 to 7.97 seconds. As the result of concatenation, 600 steps of data were divided into 60

step groups.

Resultant acceleration (g) was calculated at each of the four sensor locations (i.e.
pelvis, thigh, shank, and foot) for the 10 concatenated stance phases. Fourier transformation
was then performed on the concatenated acceleration data (Figure 2). Frequency-domain
loading rate was then calculated using equation (5) over four frequency bands: 0 to 3 Hz as
LR Bl,3to6 Hzas LR B2,6to 10 Hzas LR B3, and 10 to 15 Hz as LR_B4. These
frequency bands were chosen based on previous findings that acceleration during walking is
composed of a low frequency component (below 10 Hz) resulting from active motion, and a
high frequency component (between 10 and 20 Hz) resulting from impacts . LR_B4 (10-15
Hz) reflects the loading rate related to the impact component, while the active component
was further divided into LR _B1 (0 to 3 Hz), LI B2 (3 to 6 Hz), and LR B3 (6-10 Hz) as the

main frequency content of kinematic data for walking was found to be below 3 Hz 2"

Frequency-domain loading rate was also calculated using a conventional time-domain
approach??, Acceleration data in each stance phase was band-pass filtered at four frequency
bands: 0 to 3 Hz, 3 to 6 Hz, 6 to 10 Hz, and 10 to 15 Hz. Numerical differentiation was then

applied to the filtered acceleration data. The differentiation values across the 10 stance phases
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were averaged to obtain loading rate at the four frequency bands: LR _B1 T (0 to 3 Hz),

LI B2 T(3to 6 Hz), LR B3 T (6-10 Hz), and LR_B4 T (10-15 Hz).

Resultant ground reaction force (rGRF) was normalised to body weight (BW).
Average Loading Rate (ALR) was calculated as the slope of the line connecting the 20% and
80% points of peak rGRF from heel strike to impact peak. Instantaneous Loading Rate (ILR)
was calculated as the highest first derivative of rGRF in the region between 20% to 80% of
peak rGRF from heel strike to impact peak © . Time-domain loading rate measurements (i.e.
ALR and ILR) were calculated for individual stance phase, and were then averaged across the

10 concatenated stance phases to obtain ALR and ILR for a step group.

Frequency-domain loading rate was also calculated on the concatenated rGRF data by
using equation 5, which resulted in GRF based loading rates at four frequency bands:
LI Bl GRF (0-3 Hz), LI B2 GRF (3-6 Hz), LI B3 GRF (6-10Hz), and LI B4 GRF (10-15

Hz).

Statistical analysis

As the experimental data involve repeated measurements of GRF and acceleration at
four sensor locations and longitudinal measurements of 60 step groups for each participant,
General Estimating Equations (GEE) in SPSS (v28.0, Microsoft, USA) was employed to
examine how sensor location affects loading rate at each frequency band. Linear model was
selected for the analysis. The dependent variable was set as LR B1, LR B2, LR B3, or
LR B4, while the within-subject variables included sensor location set as the factor and step
group set as the covariate. If a significant effect of location was found, pairwise comparisons
with Bonferroni correction were used to examine the difference between specific sensor

locations.
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As each participant was measured at 60 step groups on GRF and acceleration, fixed
effect regression for repeated measures was employed to examine the correlation between
time-domain loading rate parameter (i.e. ALR or ILR) as the dependent variable and
frequency-domain loading rate parameters based on acceleration (i.e. LR B1, LR B2,

LR B3, and LR _B4) or based on ground reaction force (i.e. LR B1 GRF, LR B2 GREF,

LR B3 GRF, and LR B4 GRF) as the independent variables. Hierarchical regression
analysis was employed, with regression model 1 includes participant as the independent
variable, while regression model 2 includes both participant and frequency-domain loading
rate parameters as the independent variables. The change in R-squared from model 1 to
model 2 reflects the increment in R-squared for frequency-domain loading rate parameters
after accounting for all between-subject variation as well as other unmeasured variables that
may be associated with dependent variable. A squared multiple partial R was calculated using
the following equation to determine the percentage of the remaining unexplained variations in
the dependent variable that is accounted for by frequency-domain loading rate parameters

after residualizing for the between-subject variation 2* 4.

R?rwdelz _R?rwdell (6)

2
1-Riodelr

Multiple R} 4y 1iq; =

Repeated measures correlation analysis were conducted to examine the relationship
between loading rate calculated using equation 5 (i.e. LR B1, LR B2, LR B3, and LR B4)
and that using the conventional time-domain approach (i.e. LR B1 T,LR B2 T,LR B3 T,

and LR B4 T).

Significance was accepted at P < 0.05. Statistical analysis was performed using SPSS

(v28.0, Microsoft, USA) and Python (version 3.11.8).
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Results

The mean average loading rate (ALR) calculated from the 600 steps of 17 participants
was 9.14 BW/s (SD: 3.62), while the mean instantaneous loading rate (ILR) was 16.17 BW/s

(SD: 4.85).

Loading rate at each frequency band changed significantly with sensor locations
(P<0.001). LR _BI and LR_B2 were the highest at the foot (Table 1). Both decreased
significantly at the shank and thigh, and then further decreased significantly at the pelvis
(P<0.05). LR_B2 was not significantly different between the shank and the thigh (P>0.05).
Similarly, LR B3 and LR B4 were the lowest at the pelvis. However, LR B3 and LR B4 at
the thigh were not significantly decreased from the foot (P>0.05). LR B3 and LR B4 at the
thigh were also significantly higher than shank (P<0.05). These results indicate that the
transmission of loading rate from foot to pelvis has different patterns between low frequency
bands (i.e. 0 to 3 Hz and 3 to 6 Hz) and high frequency bands (i.e. 6 to 10 Hz and 10 to 15

Hz).

Frequency-domain loading rate parameters calculated using equation 5 was
significantly correlated with that calculated using the conventional time-domain approach

(P<0.001) (Table 2).

Frequency-domain loading rate parameters were significantly correlated with time-
domain loading rate parameters obtained from GRF (i.e. ALR and ILR), with the squared
multiple partial R ranging from 0.436 to 0.558 (Table 3 and 4). Among the four frequence-
domain loading rate parameters, LR B1 and LR B4 consistently showed positive and
significant correlations with ALR and ILR at the four sensor locations, except at the foot
where LR B2 had significant and positive correlation (P<0.01). In general, the standardised

beta was the highest for LR B1, followed by LR B4, indicating that loading rate at these two
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frequency bands (i.e. 0-3 Hz and 10-15 Hz) had the strongest correlation with time-domain

loading rate parameters ALR and ILR.

GREF based loading rate (i.e. LR_B1 GRF, LR B2 GRF, LR B3 GREF, and
LR B4 GRF) were significantly correlated with ALR and ILR (Table 5). The pattern of
correlation was similar as the acceleration based loading rate measured at foot (Table 3 and
4), as both LR B2 and LR_B2 GREF had strong correlation with ALR and ILR. On the other
hand, this pattern was different from that measured at shank, thigh, and pelvis where LR _B1,

instead of LR B2, had the strongest correlation with ALR and ILR.

Discussion

The current study developed a method to assess loading rate in the frequency domain
at different body locations by accelerometry. We found that loading rate was attenuated when
transmitted from foot to pelvis, but the pattern of attenuation was different at different
frequency bands. We also found that loading rate measurements in the frequency domain by
accelerometry were significantly correlated with time-domain loading rate measurements by
ground reaction force during walking, but the strength of correlation also depends on
frequency bands. Our findings highlight the importance of assessing loading rate in the

frequency domain and at different body locations using accelerometry.

Our method of assessing loading rate has several strengths. Firstly, it enables the
decomposition of the effects of active motion and impact loading components on loading
rate, which could not be revealed by the time domain analysis. This facilitates more clinically
relevant assessments of human performance and risk of injury in various activities of human

locomotion. The proposed method appears to be valid as the loading rates calculated using
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our method correlate significantly with those calculated from a conventional time domain
approach using bandpass filter and digital differentiation. However, our method may be more
convenient to implement due to the simplicity in data processing, as it does not require the
detection of acceleration peaks during gait cycle or the use of bandpass filter and digital
differentiation to calculate loading rate, making it an attractive method to be used in natural
environment for short term or long term monitoring of musculoskeletal load.

Previous studies have used accelerometers to measure loading rate in the time domain
at different body locations. Most of these studies used peak acceleration to quantify loading
rate. Their findings showed that peak acceleration measured at the foot and the distal tibia
had moderate to excellent positive correlations with ALR and ILR, with correlation
coefficients ranging from 0.33 to 0.94 2°2¢2/_ A recent study calculated loading rate from
acceleration using numerical differentiation at different body locations such as shoulder,
wrist, and hip ?>. Moderate correlation was found between loading rate measured from
accelerometers and from a force plate, with R-squared values ranging from 0.21 to 0.50 when
between-subject variation was not considered. Comparable to the previous studies, our study
also found that loading rate measured by accelerometers had significant correlation with ALR
and ILR, with the squared multiple partial R ranging from 0.436 to 0.558. However, a major
difference of our study is the assessment of loading rate in the frequency domain, which may
provide more insights of musculoskeletal load at different body locations in locomotion.

The analysis of ground reaction force in the frequency domain has revealed that more
than 95% of GRF signal amplitude in walking is contained within the frequency range below
20 Hz 2%, which consists of two main components, a low frequency one below 10 Hz
associated with active motion and a high frequency one greater than 10 Hz associated with
impact loading during stance phase . Time-domain loading rate measurements such as ALR

and IVR reflect the combined effect of both components. This can explain our results that
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ALR and ILR had significant correlations with loading rate measured both below 10 Hz and

above 10 Hz.

Similar to ground reaction force, acceleration signal measured on human body during
walking was also composed of two main frequency components, i.e. a low frequency one
below 10 Hz associated with the active motion and a high frequency one above 10 Hz
associated with impact ' 2° 3°, The two components in acceleration are results of the
transmission of the two frequency components in ground reaction force through human body.
However, previous research found that the transmission characteristics were different for the
two components, with the magnitude of the high frequency component of acceleration being
attenuated more than the low frequency component during running ' . Our results also
showed that the attenuation of loading rate from foot to pelvis had different patterns at low
frequency bands (i.e. LI B1 and LI B2) compared to high frequency bands (i.e. LI B3 and
LI B4), but the pattern was different from previous research. For example, there was no
significant attenuation of loading rate at thigh at high frequency bands, while significant
attenuation was found in low frequency bands. This may be due to the reason that loading

rate is different from loading magnitude that was assessed in previous research ' '8,

The current study also found that AVR and ILR were significantly correlated with
loading rate at the low frequency band (i.e. LI B1) measured at body segments, but had
weaker correlation with loading rate at high frequency band (i.e. LI B4). This can be
explained by the fact that ground reaction force reflects the vector sum of the accelerations of
all the body’s segments. The low frequency component of ground reaction force is associated
with active motion of the body segments, while the high frequency component is associated

with impact loading *'. Due to the different transmission characteristics of these frequency

components through the body, ground reaction force measurement may not be able to provide
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an accurate estimation of loading rate at different frequency bands for body segments. This
argument is supported by our results that the GRF based loading rates (i.e. LR B1 GREF,

LR B2 GRF, LR B3 GRF, and LR B4 GRF) correlated with ALR and ILR in a similar
pattern as acceleration based loading rate (i.e. LR B1, LR B2, LR B3, and LR _B4)
measured at foot, but in a different pattern from shank, thigh, and pelvis. These results
demonstrated that the frequency content of mechanical loads changes during its transmission
from the point of contact at foot-ground interface through the body. Our findings suggest that
loading rate at specific body segments depends on the different transmission characteristics of
the low frequency and high frequency components through the body, which could be revealed
by assessing loading rate in the frequency domain using accelerometry to provide additional

insight into the understanding of musculoskeletal load in human locomotion.

There are some limitations in this study. Firstly, the ground reaction force data in the
open access dataset had been low-pass filtered at 15 Hz. This might have caused some loss of
ground reaction force signal, as 95% of GRF amplitude during walking was represented
within the frequency range up to around 20 Hz 22. We only analysed the acceleration data
during the stance phase, as we were interested in how loading rate changed when it
transmitted from the point of ground contact through the body. However, this does not
represent the situation in real life where body segments are loaded during both stance phase
and swing phase. Loading rate should be measured and analysed continuously with both
stance phases and swing phases in natural environment, while ground reaction force can only
measure loads in stance phase.

The method developed in the current study could have a wide range of applications in
areas such as human space exploration, military, healthcare, and sports where assessing
loading rate is important for preventing injury, maintaining skeletal health, monitoring

disease progression, and rehabilitating patients after surgery. Our future research will
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examine how musculoskeletal health is associated with loading rate in the frequency domain

assessed in natural environment.

Conclusions

The current study has developed a method to assess loading rate in the frequency domain
using accelerometry. Loading rate during walking was assessed at four frequency bands (0 to
3,3t06,6to0 10, and 10 to 15 Hz) and at four body locations (foot, shank, thigh, and pelvis).
Loading rate changes significantly when transmitted from foot to pelvis, but the pattern of
change was different between low frequency bands (below 10 Hz) and high frequency bands
(above 10 Hz). Frequency-domain loading rate measurements at different body locations
were significantly correlated with time-domain loading rate measurements from ground
reaction force. However, the strength of correlation was higher in the low frequency bands
(below 10 Hz) than the high frequency bands (above 10 Hz). Our findings suggest that
assessing loading rate in the frequency domain can provide additional insights into the load

experienced by specific body segments in human locomotion.
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Figure captions

Figure 1 Experiment procedure

Figure 2 Concatenated acceleration signal of 10 stance phases measured at foot (A) and its
FFT spectrum (B)




Table 1 Frequency-domain loading rate parameters (BW/s) measured at different sensor locations (mean + SE)

Foot Shank Thigh Pelvis
LR BI 3.19+0.06 2.66+0.04° 2.45+0.05% 2.09+0.032b¢
LR B2 7.08+0.25 3.80+0.08" 3.39+0.18° 2.79+0.082b¢
LR B3 9.89+0.26 5.55+0.15° 9.02+0.41° 5.46+0.32%
LR B4 14.83+0.54 8.58+0.33* 17.64+1.09° 4.59+0.197¢

Note: LR _B1: loading rate at frequency band of 0 to 3 Hz; LR_B2: loading rate at frequency band of 3 to 6 Hz; LR B3: loading rate at frequency band of 6 to 10 Hz; LR _B4:
loading rate at frequency band of 10 to 15 Hz; BW: body weight; a: significantly different compared with foot (P<0.05); b: significantly different compared with shank
(P<0.05); c: significantly different compared with thigh (P<0.05);



Table 2 Correlation coefficients () between frequency-domain loading rate parameters calculated using equation 5 and that using the conventional time-
domain approach

»(LR Blvs.LR BI T) |r(LR B2vs.LR B2 T) | (LR B3vs.LR B3 T) |r(LR B4vs.LR B4 T)
Foot 0.478%%* 0.405% 0.329%%* 0.419%%*
Shank 0.715%** 0.455%% 0.605%** 0.584%**
Thigh 0.698*** 0.561%%* 0.529%%* 0.764%%*
Pelvis 0.853%%* 0.613%** 0.751%%* 0.755%**

Note: LR B1, LR B2, LR B3, LR B4: loading rate at four frequency bands calculated using equation 5; LR Bl T,LR B2 T,LR B3 T, LR B4 T: loading rate at four
frequency bands calculated using the conventional time-domain approach; ***: P<0.001



Table 3 Regression coefficients (standardised beta) and R-squared values for regression between ALR and frequency-domain loading rate parameters at
different sensor locations

LR Bl (BW/s) |[LR B2(BW/s) |LR B3 (BW/s) |LR B4(BW/S) | RZpqerr — Raodenn | Multiple R2gpiay
Foot -0.060* 0.667** -0.101%* 0.151%* 0.226** 0.436
Shank 0.437** 0.084* 0.008 0.089%* 0.228** 0.440
Thigh 0.531+* -0.026 -0.187%* 0.222%% 0.240** 0.463
Pelvis 0.397** -0.080* -0.002 0.318%* 0.248%* 0.479

Note: ALR: average loading rate; LR_B1: loading rate at frequency band of 0 to 3 Hz; LR_B2: loading rate at frequency band of 3 to 6 Hz; LR _B3: loading rate at frequency
band of 6 to 10 Hz; LR_B4: loading rate at frequency band of 10 to 15 Hz; BW: body weight; *: P<0.05; **: P<0.01

Table 4 Regression coefficients (standardised beta) and R-squared values for regression between ILR and frequency-domain loading rate parameters at
different sensor locations

LR Bl (BW/s) |[LR B2(BW/s) |LR B3 (BW/s) |LR B4(BW/S) | RZpqerz — Raodenn | Multiple R2gpiay
Foot -0.128%* 0.770%* -0.022 0.101%* 0.290%* 0.506
Shank 0.381%* 0.142%* 0.064* 0.153%* 0.267** 0.466
Thigh 0.495%* -0.005 -0.143%* 0.398** 0.300%* 0.524
Pelvis 0.427%* -0.081%* 0.153** 0.338** 0.320%* 0.558

Note: ILR: instantaneous loading rate; LR _B1: loading rate at frequency band of 0 to 3 Hz; LR B2: loading rate at frequency band of 3 to 6 Hz; LR_B3: loading rate at
frequency band of 6 to 10 Hz; LR _B4: loading rate at frequency band of 10 to 15 Hz; BW: body weight; *: P<0.05; **: P<(.01



Table 5 Regression coefficients (standardised beta) and R-squared values for regression between ALR and ILR and frequency-domain loading rate

parameters calculated from GRF

LR Bl _GRF LR B2 _GRF LR B3 GRF LR B4 GRF RZy0de12 = Rzodens | Multiple RZqpvia
(BW/s) (BW/s) (BW/s) (BW/s)

ALR ~0.164%* 0.410%* -0.008 0.309%* 0.323%* 0.624

ILR “0.181%* 0.247%* 0.067%* 0.554%% 0.471%* 0.822

Note: ALR: average loading rate; LR B1 GRF: loading rate at frequency band of 0 to 3 Hz; LR_B2 GRF: loading rate at frequency band of 3 to 6 Hz; LR B3 GREF:

loading rate at frequency band of 6 to 10 Hz; LR_B4 GRF: loading rate at frequency band of 10 to 15 Hz; BW: body weight; *: P<0.05; **: P<0.01




