
UWL REPOSITORY

repository.uwl.ac.uk

Share price dynamics of listed companies on the Dhaka stock exchange using

geometric Brownian motion

Miah, Shihan (2025) Share price dynamics of listed companies on the Dhaka stock exchange using 

geometric Brownian motion. Annals of Mathematics and Computer Science, 26 (15). pp. 105-119. 

https://doi.org/10.56947/amcs.v26.450

This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/14187/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Annals of Mathematics and Computer Science ISSN: 2789-7206

Vol 26 (2025) 105-119 https://doi.org/10.56947/amcs.v26.450

SHARE PRICE DYNAMICS OF LISTED COMPANIES ON THE
DHAKA STOCK EXCHANGE USING GEOMETRIC

BROWNIAN MOTION

SHIHAN MIAH1

Abstract. The stock prices of publicly traded companies exhibit continuous
and random fluctuations over time, necessitating the inclusion of a stochastic
term in dynamic models to accurately capture this behavior. This study applies
the geometric Brownian motion (GBM) model to analyse the stock prices of 20
randomly selected companies listed on the Dhaka Stock Exchange (DSE). The
GBM model was resolved through Monte Carlo simulation to forecast stock
prices over a trading horizon of approximately 30 to 35 days. Using histori-
cal data from the first four months of 2024, we predicted the share prices for
the subsequent one-and-a-half months. The comparison between forecast and
actual prices demonstrated a high level of concordance, with a mean absolute
percentage error (MAPE) of less than 8%. These findings underscore the effi-
cacy of the model in providing robust predictions of share prices for selected
companies.

1. Introduction

The dynamic behavior of stock prices has had a profound impact on numerous
economies, particularly within emerging markets in Africa, Asia, and the Ameri-
cas. These markets have attracted considerable attention because of their unique
performance characteristics, piquing the interest of traders, exchange officials, and
academics alike. Consequently, the existing literature on predictive analysis has
been predominantly concentrated on these burgeoning markets. Predictive mod-
eling, a commonly used method for mathematically forecasting market trends,
finds extensive applications in various disciplines, including social sciences, eco-
nomics, and finance. In economics, it is used primarily to predict stock prices.

Bachelier [5] was a pioneer in utilizing stochastic processes to forecast stock
price behavior. He developed the first mathematical model for predicting stock
prices, which he validated using future prices and options. According to Bachelier
[5], stock price dynamics adhere to a Brownian motion framework that does not
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account for the time value of money. This model was subsequently refined to en-
sure that stock prices followed a log-normal distribution [13, 22, 23]. Samuelson’s
refinement is now recognised as the Geometric Brownian Motion (GBM) model.

Fama [8] characterized stock price behavior as a random walk, asserting that
stock prices inherently reflect business-related information. Positive information
enhances investor confidence, thereby increasing stock demand and prices, while
negative information diminishes confidence, reducing demand and prices. Since
information arrives randomly, stock prices change in a random fashion, supporting
the random walk hypothesis. Moreover, the continuous flow of information im-
plies immediate impacts on stock prices, suggesting that tomorrow’s price changes
are contingent on new information, independent of today’s data [8]. He proposed
that information is assimilated at three levels in an efficient market. He defined
an efficient market as one comprising numerous profit-maximizing competitors
striving to predict future security values, utilizing readily available current in-
formation accessible to all. Fama [8] delineated three levels of market efficiency:
the weak form, semi-strong form, and strong form, collectively known as the Ef-
ficient Market Hypothesis (EMH). Fama [9] empirically tested these three forms
of EMH. First, he assessed the weak form, concluding that price adjustments are
based on historical stock price information. Next, he examined the semi-strong
form, evaluating whether prices are influenced by publicly available information,
such as annual earnings announcements, takeovers, and stock splits. Finally, he
tested the strong form, investigating whether prices are affected by groups with
exclusive access to pertinent information. Fama’s empirical analysis led to the
conclusion that stock market prices adhere to a random walk.

According to Meyler et al. [19], the Autoregressive Integrated Moving Av-
erage (ARIMA) model is a well-known statistical method for forecasting based
on historical data. Despite its popularity, ARIMA faces limitations, particularly
concerning non-stationarity and seasonality, as noted by Tambi [27]. In contrast,
artificial neural networks (ANNs) have emerged as highly accurate models for
forecasting, pattern recognition, and image processing [14, 15, 16]. These mod-
els, part of machine learning or soft computing methods, have gained significant
traction in economics, finance, and economic forecasting over the past decade due
to their data-driven, self-adaptive nature and ability to function as universal ap-
proximators [14]. Once trained, ANNs can generalize and make predictions even
with inconsistent input data. White [28] conducted a seminal study on neural
network models and stock price predictions for IBM common stock, demonstrat-
ing highly optimistic predictions. According to Hassan et al. [11], a fusion model
combining hidden Markov models (HMMs), genetic algorithms (GAs), and artifi-
cial neural networks (ANNs) can effectively predict financial market movements.
Hassan and Nath [12] concluded that this fusion tool outperforms a single HMM
model and is comparable to the ARIMA model. Merh et al. [18] developed a
neural network model with a three-layer feedforward architecture and autore-
gression to predict future stock price valuations, revealing that ARIMA models
outperform ANN models.

Geometric Brownian Motion (GBM) is another prevalent method for predicting
stock prices in stochastic modeling. The GBM model posits that the returns of
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a particular stock are independent and normally distributed over a given period
[6], accounting for specific levels of volatility and drift. However, Estember [7]
points out that the assumption of constant variability and drift in GBM does not
always hold in real-world scenarios. Agustini et al. [10] developed a Brownian
motion-based forecasting model using the Jakarta Corporate stock price index,
achieving a mean absolute percentage error rate of 20%, indicating high forecast
accuracy. Rathnayaka et al. [21] created a forecasting model based on GBM
and compared its forecasts with those of a traditional ARIMA model. Using
data from the Colombo Stock Exchange in Sri Lanka, they found that the GMB
model’s predictions were more accurate and effective than those of the traditional
model.

The literature reveals diverse opinions regarding the performance of different
forecasting models. Hence, further comparative studies on stochastic modeling
are necessary to establish consistency in stock price prediction methodologies.
This paper analyses stock price behavior and develops a stochastic model for fore-
casting. Ten randomly selected companies listed on the Dhaka Stock Exchange
(DSE) were studied to develop a stochastic model for stock price estimation and
prediction. The study integrates insights from mathematics researchers, finan-
cial engineers, and economists, demonstrating the efficacy of stochastic models in
predicting share prices. It also enhances risk control and investment profitability.
By developing and testing a model on the DSE, the study proves the effectiveness
of stochastic models in forecasting share prices.

2. Model Formulation

The Brownian motion stochastic process emerged in the 18th century as an
effort to describe the irregular motions of microscopic pollen grains suspended
in a drop of water. Today, the Brownian motion process and its many general-
izations and extensions are prevalent in numerous and diverse areas of pure and
applied science. These areas include economics, communication theory, biology,
management science, mathematical finance, and statistics.

2.1. Brownian Motion. The Brownian motion, denoted by B(t) is a stochastic
process used to describe the random behaviour of a stochastic process and has
the following properties [2].

(1) Independence of increments: B (t) − B (s) , t ≥ s is independent of
the past values B(u) for u ≤ s.

(2) Normal increments: B (t) − B (s) has Normal distribution with mean
0 and variance t− s, that is, B (t)− B (s) ∼ N (0, t− s).

(3) Continuity of paths: B (t) , t ≥ 0 are continuous functions of t.

Louis Bachelier [4] used the arithmetic Brownian motion as the first model of
stock prices. He assumed that the discount rate in the stock price S(t) satisfies
the following differential equation:

dS (t) = µdt+ σdB(t) (2.1)
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Where B (t) is the standard Brownian motion or Wiener process, µ is the
return on the stock price, σ is the volatility of the stock price. Equation (2.1)
is called arithmetic Brownian motion. This model laid the foundation for later
developments in the stochastic modeling of financial markets.

The solution to Equation (2.1) is

S (t) = S (0) + µt+ σB(t) (2.2)

The solution to the arithmetic Brownian motion model can lead to a negative
stock price with positive probability, which is not realistic in practice. To ad-
dress this issue, the model was redefined by Osborne [23], who stated that the
return of the stock follows a log-normal distribution. This redefinition led to the
introduction of the geometric Brownian motion (GBM) model by Samuelson [24].

2.2. Geometric Brownian Motion (GMB). Consider the dynamics of the
share price process of a company denoted by S(t), the return of the share price
by µ, then the return of the share price of a company defined by

Return =
change in price

original price
(2.3)

Consider a small subsequent time interval (t, t+ ∆t) during which S (t) be-
comes S (t+ ∆t) = S (t) + ∆S (t)). The return on the energy price between time
t and (t+ ∆t) is given by

Return =
S (t+ ∆t)− S (t)

S (t)
=

∆S (t)

S (t)

It represents the daily return on a company’s stock price. Stock returns can be
modeled as a two-asset portfolio consisting of a risk-free asset, such as a bond,
and a risky asset, such as a derivative. If the return on the risk-free asset is µ,
then its return over a very short time horizon dt will be µdt. However, the return
on the risky asset is uncertain, and this uncertainty or randomness is captured
by the Brownian motion B(t).

∆S (t)

S (t)
= µ∆t+ σdB(t) (2.4)

dS (t)

S (t)
= µ∆t+ σdB(t)

or

dS (t) = µS(t)dt+ σS(t)dB(t) (2.5)

where σ is the standard deviation of stock returns and depends on random
changes in asset prices due to external influences such as unexpected news. Equa-
tion (2.5) is called geometric Brownian motion. In integral form
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S (t) = σ

∫ t

0

S(u)du+ σ

∫ t

0

S(u)dB(u) (2.6)

S(t) is said to be an Ito process.

2.3. Analytic Solution to GBM. To solve the Equation (2.5) analytically, we
proceed as follows: Let

f(t) = lnS (t) , then f
′
=

1

S(t)
and f

′′
(S(t)) =

1

S(t)2

By Ito formula for Ito process

d(lnS(t)) = f
′
dS(t) +

1

2
f

′′
σ2(t)dt

Hence,

d(lnS(t)) =
1

S(t)
dS(t) +

1

2

(
− 1

S(t)2

)
σ2(t)S(t)2dt

d(lnS(t)) =
1

S(t)
(µS(t)dt+ σS(t)dB(t))− 1

2
σ2dt

d(lnS(t)) =

(
µ− 1

2
σ2

)
dt+ σdB(t)

Integrating both sides gives solution can be found as

S(t) = S(0)exp

(
(µ− 1

2
σ2)t+ σB(t)

)
(2.7)

Equation (2.7), clearly shows that the value of S(t) is always positive and
hence it is a suitable to model the share price of energy or any other financial
derivatives.

2.4. Simulation Procedure. As described earlier in the properties of Brow-
nian motion, the increment in Brownian motion B (t+ 1) − B (t) is normally
distributed with mean 0 and variance 1. Hence it follows that the probability
distribution of the change in the value of share price from now to the coming
year is standard normally distributed with mean 0 and variance 1:

B(t+ 1)− B(t) ∼ N(0, 1)

Similarly, the probability distribution of the change in the value of share price
between year 1 and year 2 is also normally distributed with mean 0 and variance
1:

B(t+ 2)− B(t+ 1) ∼ N(0, 1)

Thus, the probability distribution of change in the value of share price in two
years is the sum of the two normal distributions each with mean 0 and variance
1. This means that in two years the probability distribution of change in the value
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of energy price is normally distributed with mean µ = 0 + 0 = 0 and variance
σ2 = 1 + 1 = 2 :

B(t+ 2)− B(t) ∼ N(0, 2)

Hence in two years the probability distribution of the change in S(t) is normally
distributed with mean 0 and standard deviation

√
2. That is,

S(t)− S(0) ∼ N(0,
√

2)

. More generally, over T years, the probability distribution of the share price
change is

S(t)− S(0) ∼ N(0,
√
T )

. In a short time period ∆t, the change in the value of the stock price is normally
distributed with mean 0 and standard deviation . Thus

S(t)− S(0) ∼ N(0,
√

∆t)

Let ξ(t) denote the randomness captured by the Brownian motion B(t).ξ(t) is
known as the White Noise process and is defined as the derivative of the Brownian
motion B(t) such that

ξ(t) =
dB(t)

dt
= B′(t) (2.8)

Therefore, from Equation (2.5), we can express the change in stock price S(t)
in terms of ξ(t):

dS(t) = µS(t)dt+ σS(t)ξ(t)dt (2.9)

In discrete form, in the short time period ∆t, Equation (2.9) can be written as

∆S(t) = µS(t)∆t+ σS(t)ξ(t)
√

∆t (2.10)

We will use Equation (2.10) to simulate future share prices of companies listed
on DSE. A Monte Carlo simulation of the share price will be based on sampling
random outcomes for the process. A price path for the share price can be simu-
lated by sampling repeatedly for ξ(t) from N(0,1) and substituting in Equation
(2.10). We use Excel to produce a random sample between 0 and 1.

2.5. Parameter Estimation (Volatility σ and Drift µ). To develop the al-
gorithm for the simulation process, we need to estimate two parameters: the
volatility (σ ) and the drift (µ) of the share price for the selected companies.
Both parameters will be calculated using daily time units. The daily closing
prices for the first four months of 2024, sourced from Investing.com, will be used
to compute the daily returns of share prices for ten selected companies on the
DSE. From this data, the average daily return (µ) will be determined. Addition-
ally, the standard deviation of the daily returns (volatility, σ) will be computed.
With µ and σ known, we can simulate the daily price paths of individual compa-
nies for the next one and a half months. Assuming no price changes from the last
trading day of April 2024 to the first trading day of May 2024, the initial stock
price S(0) for the simulation is the closing price on the last trading day of April
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2024. The procedure for the Monte Carlo simulation process is summarized as
follows:

(1) Compute the daily returns of stock for the first four months of 2024 as
follows

µi = ln

(
s (ti)

S (ti−1)

)
(2.11)

and mean stock price return as

µ̂i =
1

n

n∑
i=1

ln

(
S (ti)

S (ti−1)

)
(2.12)

(2) Compute the standard deviation (volatility , σ) of daily returns

S(t) =

√√√√ 1

n− 1

n∑
i=1

µ2
i −

1

n(n− 1)

(
n∑
i=1

µi

)2

(2.13)

(3) Determine the time interval ∆t, where ∆t = 1
trading days

(4) Simulate the price path using the equation

ln ∆S(t) = µS(t)∆t+ σS(t)ξ(t)
√

∆t (2.14)

For each company, several price paths are simulated by generating different sets of
random numbers. This approach captures various realizations of price paths, from
which the mean is taken as the realized price path for each individual company.
By the Central Limit Theorem, it follows that this mean path approximates the
true price path of the company.

3. Results

The average daily returns and volatilities for the selected 20 companies listed
on the DSE are presented in Table 1. These values, calculated from the first four
months of 2024, are used to predict prices for the next 30 to 35 trading days. Price
paths for all companies were generated using Monte Carlo simulation in Excel and
then compared with actual prices. The comparison between simulated and actual
prices for the 20 companies is shown in Figure 1-2. The figures demonstrate that
the simulated prices closely matched the actual prices.

To evaluate the accuracy of the predictions, we calculated the mean absolute
percentage error (MAPE) between the simulated and actual prices. The MAPE
value is computed using the formula:

MAPE =
1

N

n∑
i=1

∣∣∣∣∣Ai − FiAi

∣∣∣∣∣
where Ai is the actual price, Fi is the simulated price and N is the number
of prediction. To assess the MAPE value, we referred to the scale provided by
Abidin and Jaffar [1], shown in Table 2. According to this scale, Table 1 indicates
that the forecasting accuracy for all companies are very good.
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(a) Bangladesh Finance & Investment (b) Beximco Pharmaceuticals Ltd

(c) Islami Bank Bangladesh Ltd DH (d) Singer Bangladesh Ltd

(e) Walton Hi-Tech Industries Ltd (f) British American Tobacco

(g) Bangladesh Autocars Ltd (h) Bangladesh General Insurance

(i) Heidelberg Cement Bangladesh Ltd (j) LafargeHolcim Bangladesh Ltd

Figure 1. Comparison of actual and simulated prices for selected
companies.
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(a) Rak Ceramics Bangladesh Ltd. (b) MJL Bangladesh Ltd.

(c) Marico Bangladesh Ltd. (d) Linde Bangladesh Ltd.

(e) Bangladesh Shipping Co Ltd. (f) Bangladesh Lamps Ltd.

(g) Bangladesh Submarine Cable
Company Ltd.

(h) Bangladesh Welding Electrodes
Ltd.

(i) Atlas Bangladesh Ltd. (j) Lubrref Bangladesh Ltd

Figure 2. Comparison of actual and simulated prices for selected
companies.
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Table 1. Mean returns and volatilities of traded shares of chosen
companies on DSE.

Name BDFN BXPH IBBD SGBD WALT

Mean (µ) 0.009111835 -0.002639129 -0.001977856 -0.002122208 -0.007396034
Std (σ) 0.051852842 0.017955661 0.035616794 0.010686313 0.025145436
MAPE (%) 0.39 2.37 3.64 3.56 2.42

Name BATC BDAT BGIC HEID LFAR

Mean (µ) -0.004461228 -0.002432935 -0.002580914 -0.0008908 -0.000850619
Std (σ) 0.018917942 0.020948443 0.016800702 0.022727335 0.012610597
MAPE (%) 3.64 4.28 0.15 4.22 2.88

Name RAKC MJLB MARI LIND BSCD

Mean (µ) 0.004002438 0.000801245 -0.000649371 0.002983313 -0.003943925
Std (σ) 0.03289209 0.006884197 0.00602797 0.016532554 0.026862725
MAPE (%) 5.05 2.67 6.02 3.17 4.63

Name BGLA BANA BDWE ATBG LUBR

Mean (µ) 0.011165183 0.009894255 0.001714192 0.00854821 0.007796469
Std (σ) 0.038265366 0.03044912 0.029583361 0.02622094 0.029959547
MAPE (%) 7.13 7.78 6.08 7.78 7.16

4. Discussion

The geometric Brownian motion described by the linear stochastic differential
equation (SDE) (2.9) is a continuous-time stochastic process. It is termed a linear
SDE because the drift and volatility terms are linear functions of S [17]. Geo-
metric Brownian Motion assumes that the share price is log-normally distributed,
meaning that the logarithm of the share price at time t follows a normal distribu-
tion with a mean of µt and a variance of σ2t. The mathematical details based on
the Ito formula are essential and should be thoroughly explored. Let us consider
that the share price process adheres to the GBM model:

dS(t) = µS(t)dt+ σS(t)ξ(t)dB(t) (4.1)

The first term of the above equation represents the drift, which is the average
movement of the share price over each time increment. The second term repre-
sents the volatility, which introduces a random component affecting the stock’s
price. This volatility is responsible for the noise observed in the price curve.
Using Ito formula the solution of Equation (4.1) can be written as

d (InS(t)) =

(
µ− 1

2
σ2

)
dt+ σdB(t) (4.2)
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Table 2. MAPE accuracy rating scale

MAPE Value Forecasting Accuracy

< 10% Very good
11%− 20% Good
21%− 50% Within reasonable limit
> 51% Inaccurate

Equation (4.2) indicates that lnS(t) follows an Ito process with mean rate(
µ− 1

2
σ2
)

and variance σ2. Thus, the change in share price between two future

times s and t, s < t is normally distributed with mean rate
(
µ− 1

2
σ2
)

(t− s) and
variance σ2(t− s). If the initial time is 0 and the future time is T , then we can
write

InS(T )− InS(0) ∼ N

((
µ− 1

2
σ2

)
T, σ
√
T

)
or

InS(T ) ∼ N

(
InS(0) +

(
µ− 1

2
σ2

)
T, σ

√
T

)
Now, if the share prices follow a log-normal distribution and the mean µ and

volatility σ are known, the distribution of the share prices and their density func-
tion can be derived. This allows for a detailed description of the future behavior
of the share prices.

Consider for example BDFN (Bangladesh Finance and Investment Company
Ltd) with initial price S(0) = 20.20, with an annual return of µ = 0.009111835
and volatility σ = 0.051852842. The price behaviour of the BDFN in the next
month can be established using the equation

InS(T ) ∼ N

(
InS(0) +

(
µ− 1

2
σ2

)
T, σ
√
T

)
That is

InS(T ) ∼ N

(
ln 20.20 +

(
0.009111835− 1

2
(0.051852842)2

)
× 1

12
, 0.051852842

√
1

12

)
lnS(T ) ∼ N(3.006329894, 0.01496862614)

A 95% confidence interval for the distribution of lnS(T ) in the next month can
be given as

µ− 1.96σ < lnS(T ) < µ+ 1.96σ

eµ−1.9σ < S(T ) < eµ+1.9σ

0.9116312195 < S(T ) < 1.117108226
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Thus there is 95% confidence that in the next month, the BDFN share price
return will lie between 0.9116312195 and 1.117108226. that is

P (1.117108226 < S(T ) < 1.117108226) = 0.95

Now if a random variable is lognormally distributed then its density is given by

f(x) =
1

xσ
√

2π
e−(lnx−µ)

2

, x ≥ 0

and the cumulative distribution function

F (X) =

∫ ∞
−∞

1

xσ
√

2π
e−(lnx−µ)

2

dx

If the random variable X represents the BDFN share price S(t) then we can write

f(S(t)) =
1

S(t)σ
√

2π
e−(lnS(t)−µ)

2

, s ≥ 0

For Brent oil with µ = 0.009111835 and standard deviation σ = 0.051852842
and so its density function is given as

f(S(t)) =
1

0.051852842S(t)
√

2π
e−(ln(S(t))−0.009111835)

2

The cumulative distribution function is given by

F (S(t)) =

∫ t

0

1

0.051852842
√

2π
e−(lnS(s)−0.009111835)

2

ds

To rigorously assess the accuracy of the proposed model, simulated stock prices
were compared with actual stock prices. This evaluation involved testing for sig-
nificant differences at a 5% significance level (α = 0.05) between the mean share
prices predicted by the model and the observed share prices. The results, summa-
rized in Table 3, demonstrate that the model accurately captures price behavior
for 80% of the selected companies.

Additionally, stock prices for a limited number of companies listed on the DSE
have been predicted using machine learning and hidden Markov models [26, 25].
These studies report Mean Absolute Percentage Error (MAPE) values compara-
ble to those observed in this study, further corroborating the reliability of the
predictive framework.

Table 3 demonstrates that the model’s predicted average returns align closely
with the actual average returns for 16 out of 20 traded stocks, representing an
80% success rate. However, certain assumptions inherent to the model may have
contributed to deviations in specific cases. For instance, the model assumes
that the initial price for the prediction period is equivalent to the closing price
from the final trading day in the historical dataset, an assumption that may not
consistently reflect actual market conditions. Future studies could explore al-
ternative methods for determining the initial stock price, potentially improving
the robustness and accuracy of the model’s predictions. Volatility estimates in
this study were derived from the historical stock prices of the preceding three
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months. However, the accuracy of these estimates could be improved by em-
ploying more advanced methodologies, such as Exponentially Weighted Moving
Average (EWMA), ARCH, GARCH, implied volatility, or machine learning tech-
niques [15]. Another potential limitation arises from the use of trading days
as time intervals rather than calendar days, implicitly assuming that volatility
evolves solely during market operation hours. This simplification may introduce
minor inaccuracies in reflecting true market dynamics. Nonetheless, the model
demonstrates robust predictive performance and provides meaningful insights for
investors, financial analysts, and researchers.

Table 3. Hypothesis test between the mean for actual and simu-
lated prices with (α = 5%) Significance

Company BDFN BXPH IBBD SGBD WALT

p-value 0.311 0.031 < 0.001 < 0.001 0.058
Decision Significant Significant Significant Significant not significant

Company BATC BDAT BGIC HEID LFAR

p-value < 0.01 0.037 0.586 0.004 < 0.001
Decision Significant Significant not Significant Significant Significant

Company RAKC MJLB MARI LIND BSCD

p-value < 0.01 < 0.01 0.44 0.003 < 0.001
Decision Significant Significant not Significant Significant Significant

Company BGLA BANA BDWE ATBG LUBR

p-value < 0.01 < 0.001 < 0.001 0.94 < 0.001
Decision Significant Significant Significant not Significant Significant

5. Conclusion

A robust stochastic model has been systematically developed to predict the share
price dynamics of companies listed on the Dhaka Stock Exchange. Simulated
price trajectories for ten leading companies were rigorously evaluated against
actual market prices, demonstrating a high degree of alignment. Additionally,
a detailed framework for the mathematical analysis of stock price probability
distributions was presented. This research offers significant value to investors
and stakeholders, particularly within the Dhaka Stock Exchange, by providing a
scientifically grounded basis for informed decision-making in stock trading.
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