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ABSTRACT
In today's modern world, people spend most of their time indoors, making indoor air quality (IAQ) a critical concern,

particularly in educational buildings, where densely occupied classrooms demand clean and healthy environments. This study

enhances the IAQ of an existing college building in West London by aiming to reduce carbon dioxide (CO2) concentrations and

SARS‐CoV‐2 infection risk, while maintaining or improving energy efficiency and thermal comfort, assessed using the predicted

percentage of dissatisfied (PPD). A multi‐objective optimisation was conducted using the Non‐dominated Sorting Genetic

Algorithm II (NSGA‐II). A novel approach combining optimisation with EnergyPlus and CONTAM co‐simulation was proposed

to obtain the final results. Various scenarios were developed, reflecting different priorities. Energy‐saving scenarios increased

PPD by 15.3% to 17.9%, while IAQ‐ and comfort‐focused scenarios raised energy consumption by 26.95% to 53.91% but

maintained or improved comfort. EC45 as a mixed‐priority scenario, along with IAQ‐priority scenarios, achieved the lowest

average SARS‐CoV‐2 infection risks (9.6%–10.7%). Meanwhile, other mixed‐priority (EP45‐ECP33) scenarios reduced PPD by

13.9% and maintained a 17% infection risk with only a 29% increase in energy use. This comprehensive approach demonstrates

the potential for achieving healthier indoor environments in educational buildings without excessively compromising energy

efficiency or occupant comfort.

1 | Introduction

In the context of designing built environments, energy
efficiency and indoor air quality (IAQ) are among the most
important factors that should be considered. In particular,
IAQ and thermal comfort, which are two key components of
the broader concept of indoor environmental quality (IEQ),
play a vital role in ensuring occupant satisfaction, health

and safety. Maintaining high IEQ standards is essential for
creating healthy, comfortable and productive indoor en-
vironments. These factors become even more essential for
educational buildings (which have a high level of occupant
density) as thermal discomfort and low‐quality indoor en-
vironment can adversely impact the students' learning
ability [1] and productivity, as well as staff performance and
behaviour [2].
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In fact, the lack of indoor fresh air in educational buildings can
exacerbate different respiratory [3, 4] and cardiovascular dis-
eases [5], especially in the younger generation, as they spend
most of their time at schools and universities. Moreover, the
COVID‐19 pandemic attracted more attention to the impor-
tance of IAQ [6], and it is a fact that the probability of infection
in the poorly ventilated places can increase greatly [7, 8].

Furthermore, educational buildings; energy consumption is sig-
nificant for the nonindustrial sector [9]. According to data pro-
vided by the Higher Education Statistics Agency (HESA) [10],
higher education (HE) buildings in the UK consumed about
53,000 MWh of energy on average, produced mainly by natural
gas and electricity, in the 2020/2021 academic year. This amount
of energy consumption has led to nearly 10.8 million kgCO2

emissions. Among the UK universities whose data are available
on the HESA, the University of Edinburgh consumed the highest
amount of energy and the highest CO2 emissions during 2020/
2021, which were 284,000 MWh and 64.5 million kgCO2,
respectively.

Considering these statistics, improving the energy performance
of the HE sector can play a major role in reducing the carbon
footprint and greenhouse gas emissions [11]. In this case, en-
ergy efficiency measures are important to study to find a proper
solution for enhancement of the building's energy performance.
One of the methods to decrease the energy consumption is
adding insulation to the external walls or filling the cavity walls
with insulation materials [12, 13].

Ventilation is an effective strategy for enhancing IAQ [14] and
can be achieved through natural, mechanical, or hybrid systems
(a combination of natural and mechanical ventilation). Conse-
quently, the recommended methods for controlling contami-
nant spread within a building vary based on the ventilation type
present. For example, in naturally or hybrid‐ventilated rooms,
occupants can enhance IAQ by opening windows to maintain
CO2 levels below 1000 ppm, indicating adequate ventilation. On
the other hand, in mechanically ventilated spaces, the supply
and return airflows can be exactly set to maintain the required
IAQ level without any intervention from the occupants [4].

Several research studies have analysed the role of opening the
windows and the ways to set, control and design their opening
and airflow using building simulation and Non‐dominated
Sorting Genetic Algorithm II (NSGA‐II) optimisation [15, 16].
In this regard, Nateghi and Kaczmarczyk [17] used jEPlus + EA
software, which is also used in multiple studies, for multi‐
objective NSGA‐II optimisation of both opening the window
and setting the thermostat temperature in a classroom in two
contrasting climates to improve the IAQ, energy consumption,
and thermal comfort. The results showed that in more than 50%
of the time, all objectives were controlled at the desired level by
performing the optimisation.

Optimisation of energy consumption along with thermal and
visual comforts (predicted percentage of dissatisfied [PPD] and
discomfort glare index [DGI]) was the focus of a study by
Naderi et al. [18]. They employed the same software tool to
perform an optimisation on an office building, defining vari-
ables such as shading control strategy, various slat dimensions

and characteristics, and temperature setpoints. Their findings
indicated that all three objectives could be simultaneously im-
proved through the careful selection of design variable
combinations.

Another study by Chen et al. [19] explored the optimisation of
IEQ using EnergyPlus and jEPlus, focusing on a residential
building in Hong Kong. Their objectives included daylighting,
natural ventilation and thermal comfort, aiming to minimise
the duration during which local green building guidelines for
qualified IEQ were not met. The optimisation process resulted
in an 11.2% reduction in unmet time compared to the baseline
case, with a 31.95% improvement in thermal comfort. Fur-
thermore, Aghamolaei and Ghaani [20] addressed the challenge
of optimising building retrofitting to improve energy efficiency
while preserving indoor thermal comfort, focusing on a resi-
dential building. This study introduced a methodology that
integrates Parametric Sensitivity Analysis (PSA) with a multi‐
objective optimisation (MOO) approach, aiming to simplify the
process of selecting the most effective retrofit measures.

Baghoolizadeh et al. [13] conducted a similar approach to op-
timise CO2 levels, pollutant concentrations and thermal comfort
in six residential buildings across various climates. The study
used a genetic algorithm to adjust 39 design variables, including
heating, ventilation and air conditioning (HVAC) setpoints,
clothing insulation levels, and building envelope characteristics.
Results showed significant improvements as CO2 concentration
decreased by 17%–30%, pollutant levels by 15%–37%, and ther-
mal comfort by 52%–80%. In another study, Grygierek et al. [15]
focused on optimising natural ventilation in classrooms using
smart window control systems to improve thermal comfort,
IAQ and minimise infection risks. The study performed detailed
evaluations of different ventilation strategies, including the
impact of smart window systems on indoor environment
quality.

Despite these advances, most optimisation studies that include
IAQ as one of their objectives rely only on EnergyPlus or other
energy performance simulation tools, often without incorpo-
rating a dedicated IAQ analysis tool, and typically focus on only
CO2 as the IAQ single indicator, while neglecting other pollu-
tants [12–16]. This study addresses this gap by integrating
CONTAM modelling with optimisation through an innovative
approach, which enables the inclusion of SARS‐CoV‐2 trans-
mission risks or unlimited types of indoor contaminants such as
particulate matter (PM2.5) and Total volatile organic compounds
(tVOC) alongside energy performance and thermal comfort
optimisation.

In this study, the goal is to optimise energy consumption, IAQ
levels and thermal comfort in a college building by considering
four variables: indoor temperature, different combinations of
hybrid ventilation including various mechanical ventilation
rates and window opening, and external wall insulation.

The following sections of the study will detail the research
methodology, including the building description, modelling
approach, simulation tools, model validation and key concep-
tual frameworks. The optimisation results will then be pre-
sented, followed by an analysis of the findings, evaluation of
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performance trade‐offs, and a discussion of the final decision‐
making process. Finally, the conclusions section will summarise
the key findings, outline the study's limitations and provide
recommendations for future research and practical applications.

2 | Methodology

To achieve the research objective, a novel method is used which
combines the optimisation using jEPlus + EA with EnergyPlus
and CONTAM co‐simulation. The whole process is illustrated
in Figure 1.

In this study, EnergyPlus is used to simulate energy consumption
and thermal comfort, CONTAM to model multi‐zone airflow,
contaminant dispersion and infection risk, and jEPlus + EA to
conduct NSGA‐II multi‐objective optimisation. While each tool
offers powerful modelling capabilities, they also have limitations.
EnergyPlus lacks the ability to simulate detailed interzonal air-
flow, aerosol transport, or multiple indoor contaminants, which
CONTAM addresses effectively. On the other hand, CONTAM
does not support thermal comfort or energy performance anal-
ysis, which EnergyPlus provides. CONTAM allows for detailed
assessment of ventilation strategies and IAQ, including the def-
inition and simulation of an unlimited number of pollutants.
Additionally, jEPlus+EA facilitates automated optimisation
directly using EnergyPlus outputs and eliminating the need for
custom Python scripting or external integration.

This method, therefore, addresses the limitations of using En-
ergyPlus alone for multi‐zone contaminant modelling.
Although EnergyPlus includes an “internal network” for ven-
tilation load calculations, it is not capable of modelling the

spread of pollutants or viruses within a building's zones [21]. By
integrating CONTAM, which enables precise modelling of
various contaminants, the methodology fills this gap.

Moreover, unlike most optimisation studies that focus only on
CO2 as an IAQ indicator, this study expands the scope by
incorporating viral transmission risks, such as SARS‐CoV‐2,
through the innovative co‐simulation and optimisation inte-
gration approach. To support decision‐making, the simple
additive weighting (SAW) method is then applied to the Pareto
fronts to select final solutions based on user priorities and dif-
ferent weights assigned to each objective. This comprehensive
method offers a more holistic framework, enabling the simul-
taneous evaluation of IAQ considering an unlimited type of
contaminants, energy use, thermal comfort and public health
concerns.

2.1 | Building Overview

This study selected a three‐story college building located in the
Hounslow borough of London, consisting of classrooms, labo-
ratories, offices, etc, chosen as the case study for whole‐building
modelling (shown in Figure 2). The height of each level,
including the plenum, is 3.6 m (plenum excluded height is
2.8 m), and the total floor area is 2500m2. The building's ven-
tilation is provided by an air handling unit (AHU) with a dif-
ferent number of supply and return diffusers in each room,
where each of the supply diffusers has a rate of approximately
0.011m3/s.

The modelled building includes 11 classrooms and six labora-
tories. This study primarily focuses on improving IAQ in the

FIGURE 1 | Summary of research methodology.
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classrooms and laboratories, where high occupant density and
extended occupancy periods are common. However, the entire
building is modelled to accurately assess airflow and contami-
nant spread between zones and floors, as well as to calculate
total energy consumption under various scenarios.

All the windows are kept fixed in the building, and the only way
of ventilating the rooms is by the AHU. However, the option of
windows opening is considered in the optimisation process of
the present study. Furthermore, the external walls of the
building are cavity walls without any insulation, which leads to
higher energy loss. Therefore, adding insulation is considered a
method of enhancing the energy performance of the building.
Figure 3 shows the supply diffusers installed on the ceiling of
rooms and the window shape of the building. The windows' size
in all the buildings is 1.35 × 0.96 m.

To be accurate in determining the IAQ in the building, the real
timetable of the college for 2023 was used to define the
schedules. Furthermore, the maximum capacity of each class-
room for the number of people was considered for modelling
and presenting the results (as shown in Table 1). Although not
always are the classes fully occupied.

For the weather file, the London Test Reference Year (TRY)
weather file from The Chartered Institution of Building Services
Engineers (CIBSE) is used in the simulation. Figure 4 shows the

weather conditions of the case study, including its temperature
and humidity ratio.

2.2 | Building Co‐Simulation Process

The building was modelled using two software tools, each
addressing different aspects of performance. EnergyPlus was
used to simulate energy use and thermal comfort, while CON-
TAM analysed airflow, contaminant dispersion and IAQ. The
CONTAM project file (PRJ) and EnergyPlus IDF were linked
via the Contam3DExporter tool, which merges both models into
a new IDF for co‐simulation.

In this process, the PRJ file is converted into a variable ex-
change file and XML file, which are packaged into an functional
mock‐up unit (FMU) along with the CONTAM model. The
FMU enables EnergyPlus to co‐simulate with other programs,
exchanging data such as schedules, airflow rates, output vari-
ables, zone temperatures and outdoor conditions. This
CONTAM‐EnergyPlus co‐simulation allows a detailed assess-
ment of how IAQ improvements affect energy performance and
thermal comfort, ensuring a comprehensive indoor environ-
ment analysis.

2.3 | Defining Contaminants in CONTAM

CONTAM is a useful tool for IAQ analysis as an unlimited
number of indoor and outdoor contaminants can be defined in
it. By modelling the building in CONTAM, the airflow and
dispersion of contaminants between the zones, floors and walls
can be simulated. Therefore, in this study, CONTAM was used
for an accurate analysis of the IAQ in the optimised cases.
Table 2 summarises the key input parameters used for analys-
ing the IAQ in the case study.

CO2 level is widely recognised as an indicator of IAQ and a mea-
sure of the ventilation system's effectiveness in a particular zone.
The outdoor CO2 concentration, as well as its initial level in all
zones, is considered to be 400 ppm [24]. Since occupants exhaleFIGURE 2 | The case study building located in Hounslow, London.

FIGURE 3 | Window and supply diffuser in the building.
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CO2, they are considered the main CO2 generation source in indoor
environments. Various factors, such as activity level, gender and
age, influence the CO2 generation rate. For this study, an average
generation rate of 0.0042 L/s, based on typical activity levels across
different zones, has been adopted [23].

Furthermore, data from previous research is used to model the
SARS‐CoV‐2 virus in CONTAM. In this regard, a generation
rate of 65 quanta/h [21, 25], along with deposition and
deactivation rates of 0.24 h−1 [27] and 0.63 h−1 [28], respec-
tively, are considered. To evaluate the risk of SARS‐CoV‐2
transmission in indoor spaces, the Wells–Riley equation, as a

widely used model in previous studies, shown in Equations (1)
and (2), is employed [21, 29].

P N N Iqpt Q n= / = 1 − exp(− / ) = 1 − exp(− )qI C S

(1)

n p M F C t dt= (1 − × ) ( )q

t

inh m
t1

2

(2)

where PI is the probability of infection, NC is the number of
infection cases, NS is the number of susceptibles, I is the

TABLE 1 | Characteristics of the most occupied rooms in the building during the summer semester.

Zones Floor Volume (m3)
Max. number of

occupants
Number of occupied days

per week

Classrooms G11C GF 304 30 1

108C 1st 202 20 2

112C 1st 205 20 5

115C 1st 181 20 4

117C 1st 169 20 2

201C 2nd 231 30 1

208C 2nd 215 20 2

212C 2nd 183 20 3

213C 2nd 137 15 3

214C 2nd 220 20 1

Laboratories Computer lab
(110CL)

1st 151 15 4

Electronics lab
(210EL)

2nd 153 15 1

Biology lab (102BL) 1st 78 10 1

(a) dry bulb temperature (b) humidity ratio
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FIGURE 4 | Weather condition of the case study from London TRY weather file: (a) dry bulb temperature and (b) humidity ratio.
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number of infectious sources (infectors), p is the pulmonary
ventilation rate of a person (breathing rate) per hour, q is the
quanta generation rate per hour, t is the exposure time to the
certain microorganism (in hours), Q is the room ventilation
rate, and nq is the number of quanta that have been inhaled. In
Equation (2), Minh is the mask inhalation efficiency, Fm is the
percentage of mask‐wearing and C is the concentration of
quanta (quanta/m3). In this study, considering a light activity
(whispering and speaking) level for occupants, p is assumed to
be 0.75 m3/h [26].

2.4 | Thermal Comfort (TC) Calculation

Thermal comfort reflects occupants' satisfaction with their
surrounding environment [30, 31] and is crucial in building
design due to its impact on well‐being and productivity. The
widely used Fanger model, developed in 1970 [32], evaluates
thermal comfort based on six parameters, including air tem-
perature, mean radiant temperature (MRT), relative humidity,
air velocity, clothing insulation and metabolic rate [33]. It cal-
culates the predicted mean vote (PMV) and the predicted per-
centage of dissatisfied (PPD), which estimates the proportion of
occupants likely to feel uncomfortable. PMV ranges from cold
(−3) to hot (+3), with 0 being neutral. A PMV between −0.5
and +0.5 corresponds to a PPD below 10%, meaning fewer than
10% of occupants are dissatisfied [31, 33]. Equation (3) dem-
onstrates the relationship between PMV and PPD.

PPD = 100 − 95 × exp(−0.03353×PMV −0.2179×PMV )4 2 (3)

This equation shows that as the PMV deviates further from
zero, the PPD increases, indicating a higher percentage of
occupants are likely to feel uncomfortable. EnergyPlus allows
users to input the necessary parameters to calculate PMV and
PPD based on the Fanger model. In the present study, PPD is
calculated in EnergyPlus using the following inputs and as-
sumptions derived from ASHRAE handbook of fundamentals
and ASHRAE 55 [31, 34]: (1) metabolic rates for different zones
range from 1.0, 1.1 and 1.2 met for classrooms, offices and
laboratories, respectively, (2) air velocity is considered 0.1 m/s,
(3) clothing level ranges from 1 clo for the coldest months
where typical winter indoor clothing is considered to 0.5 clo for
the warmest months as the typical summer indoor clothing,
(4) air relative humidity and temperature are derived from
EnergyPlus results and (5) MRT is calculated using “zone
averaged” method of EnergyPlus.

2.5 | Model Validation

2.5.1 | IAQ Model

To validate the accuracy of the CONTAM simulation results,
CO2 concentrations were monitored using two types of IAQ
data loggers. Three Netatmo data loggers and three Temtop
M2000 2nd data loggers were installed in various locations:
classrooms 112C and 214C, the electronic lab 210EL, an office
on the ground floor, and the canteen near the kitchen.

The Temtop M2000 2nd is equipped with a nondispersive infra‐
red (NDIR) sensor for CO2 measurement, offering a range of
0–5000 ppm, with an accuracy of ±50 ppm ±5%. Calibration
was performed according to the manufacturer's instructions,
which involved placing the device in a well‐ventilated outdoor
area for several minutes and then initiating the zero‐calibration
process through the device's menu interface to establish a
baseline CO2 concentration. The Netatmo monitors also use
NDIR sensors with a measurement range of 0–5000 ppm and
are equipped with automatic calibration, which was enabled
during the monitoring period.

TABLE 2 | Key variables in building IAQ assessment.

Input parameter Value

Building model

Type College building

Types of most occupied
rooms

Classroom—Laboratory

Occupancy schedules Provided based on college's
annual time table for 2023

Number of floors 3

Total floor area 2500m2

Floor height (excluding
plenum)

2.8 m

Location and
weather file

London—TRY weather file
from CIBSE

Ventilation system Air handling unit

Total ventilation rate 5289 m3/h—calculated and
validated in previous

study [22]

ACH 0.8–1.0 h−1 [22]
External wall/floor
leakage area

2.2 cm2/m2 (@4 Pa)

Outdoor air 100%

Recirculating air 0%

CO2 model

Source Respiration

Generation rate 0.0042 L/s [23]

Initial concentration 400 ppm [24]

Deposition rate 0 h−1

Deactivation rate 0 h−1

SARS‐CoV‐2 model

Source Infected person

Generation rate 65 quanta/h [21, 25]

Breathing rate 0.75 m3/h—light activity
(whispering and
speaking) [26]

Deposition rate 0.24 h−1 [27]

Deactivation rate 0.63 h−1 [28]

Initial concentration 0 quanta

6 Energy Science & Engineering, 2025

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



The CONTAM model of the building was developed, incorpo-
rating factors such as room volumes, occupancy profiles, ven-
tilation rates and other parameters influencing IAQ. This
allowed the simulation to run under similar conditions to those
present during the data collection period. The validation pro-
cess involved comparing the simulated CO2 concentrations
from the CONTAM model with the measured values obtained
from the IAQ sensors. Two key statistical metrics were em-
ployed to evaluate the accuracy of the simulation: the mean
relative error (MRE) and the correlation coefficient (r).

2.5.2 | Thermal Performance Model

To model the building's energy consumption and thermal
comfort in EnergyPlus, a 3D model was created in SketchUp
and exported to OpenStudio to define materials and construc-
tion. The geometry was built by accurately specifying properties
of walls, windows, floors and the roof. Figure 5 shows the
SketchUp schematic of the college.

The simulation model was validated by comparing EnergyPlus‐
predicted energy use with actual consumption data to ensure
realistic performance and to compare the tools used. This
comparison helped in calibrating the model, making necessary
adjustments to input parameters such as occupancy patterns,
equipment efficiency and weather conditions to align the sim-
ulation closer to actual performance. The Actual energy data,
including gas and electricity bills from 2017 to 2022, was pro-
vided by building management, and the average usage over
these years was used for comparison.

2.6 | NSGA‐II Multi‐Objective
Optimisation (MOO)

In this study, the NSGA‐II multi‐objective optimisation (MOO)
algorithm was used to optimise three conflicting objectives:
annual energy consumption (t1), CO2 concentration as an IAQ
indicator (t2) and PPD as a thermal comfort indicator (t3). Since
improving one objective often worsens another, NSGA‐II
effectively identifies optimal trade‐offs, known as Pareto
fronts, which represent non‐dominated solutions where no
single solution excels in all objectives [35].

The optimisation was performed using jEPlus and jEPlus+EA
software developed by Yi Zhang [36]. Evolutionary Algorithms
(EAs) start with a random population of solutions, iteratively
evaluate and select better ones, and generate new variants until
sufficient solutions are found or a time limit is reached [36].
Figure 6 shows the EA optimisation flowchart.

In this regard, the design variables and objectives were defined
in the jEPlus, and then optimisation control parameters,
including population size, crossover rate, mutation rate and
maximum generation, were determined in the jEPlus + EA,
which were set to 20, 100%, 20% and 200, respectively. Addi-
tionally, three constraints for each objective were defined to
ensure that the resulting Pareto fronts represent solutions that
are not only optimised but also feasible in real‐world scenarios.
These constraints, detailed in Table 3, were important in
shaping the Pareto fronts to reflect more practical and appli-

FIGURE 5 | Sketchup model of the building.

FIGURE 6 | Flowchart of optimisation process using EA [36].

TABLE 3 | Constraints set for the optimisation.

Objectives Constraint

Energy consumption < 500,000 kWh

CO2 concentration < 1000 ppm

PPD < 50%
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cable outcomes. The optimisation was then carried out in jE-
Plus + EA and the Pareto front was created.

2.6.1 | Design Variables

Four parameters were considered as variables in the optimisa-
tion: heating setpoint, fraction of window opening, external
wall insulation thickness and ventilation rate. Table 4 presents
the list of variables and their respective ranges. The heating
setpoint was varied from 20°C to 24°C, with the baseline set at
21°C. According to the guidelines for energy efficiency in
educational buildings published by the UK government [37],
the 21°C is suitable setpoint for rooms where occupants are
inactive or sick and overall 20°C is typically ideal for a school.

The fraction of window opening ranged from fully closed (0) to
fully open (1) in 10% intervals. EPS insulation (Expanded
Polystyrene) was added to the external walls, with thickness
varying from 0.01 to 0.15m in 0.02m intervals.

Finally, the ventilation rate is set based on the number of people
in the room, rather than being a constant amount as it currently
is in the building. The rate can be adjusted from a minimum of
0.005m³/s.p (per person), based on ASHRAE recommendations
[38], to a maximum of 0.02m³/s.p, in intervals of 0.001 m³/s.p.
It should be noted that the CIBSE recommendation is
0.01 m³/s.p [39], and the Building Bulletin 101 guidelines rec-
ommend 0.008m³/s.p [40], both of which fall within this range.
Furthermore, cases with the building's actual ventilation rate
are also considered in the optimisation to determine whether
changing the ventilation rate is necessary when other variables
change, assuming the ventilation rate is at its baseline level.

2.6.2 | Method of Selecting the Final Cases

The optimisation will result in several Pareto fronts, each
acceptable in different cases depending on the priorities of the
objectives. In other words, selecting the most favourable point
in the optimisation results depends on the preferences of the
decision maker. Therefore, the SAW method, a well‐known
multi‐criteria decision‐making (MCDM) approach, was used to
find the final optimum solution. In optimisation studies, SAW
has proven to be one of the most effective methods in selecting
representative Pareto‐optimal solutions [41, 42].

The SAW method involves three key steps [43]. First, the
decision matrix (three objective amounts from Pareto fronts) is
normalised to a common scale (0 to 1) using Equation (4). This

equation is applied when the objectives should be minimised,
assigning higher normalised values to lower amounts (the
minimum amount will have a value of 1, and the maximum
amount will be 0).

f x
f x f x

f x f x
( ) =

max( ( )) − ( )

max( ( )) − min( ( ))i
i i

i i
norm, (4)

where f x( )inorm, is the normalised value of each objective,
f xmax( ( ))i and f xmin( ( ))i are the maximum and minimum

values among all the Pareto fronts, and f x( )i is each objective's
value in each case of Pareto fronts.

Second, various weights were assigned to the three objectives of
the study, with the sum of the weights equal to 1. These weights
reflect the relative importance of each objective and are mul-
tiplied by the normalised values to obtain weighted normalised
values. In each case, one of the objectives has more or equal
importance than the other two to include different preferences
in the real world. Third, the weighted values for each alterna-
tive were aggregated to calculate a final score, ranking the al-
ternatives based on these scores to determine the best option.
Equation (5) illustrates the second and third steps of the SAW
method.

W f x W f x

W f x

SAW score = × ( ) + × ( )

+ × ( )

E norm,E IAQ norm,IAQ

PPD norm,PPD

(5)

where WE, WIAQ and WPPD are the assigned weights for each
objective, including energy consumption, CO2 concentration
and PPD, respectively. Figure 7 illustrates the assigned values of
W in the SAW method.

The scenarios are divided into 13 cases based on different
weight distributions for energy consumption, CO2 concentra-
tion and PPD. In scenarios E70, E60, and E50, energy con-
sumption has the highest priority (70%, 60% and 50%,
respectively). Similarly, C70, C60, and C50 prioritise CO2 con-
centration, while P70, P60 and P50 prioritise PPD with the same
respective weights. Scenarios EC45, EP45 and CP45 assign 45%
weight to two objectives and 10% to the third, while ECP33
assigns equal weight (around 33%) to all three.

Cases with the highest SAW scores were applied to the
EnergyPlus‐CONTAM co‐simulated model to compare CO2 con-
centration and SARS‐CoV‐2 infection risk (as the selected con-
taminant) using CONTAM, while EnergyPlus provided energy
consumption and PPD values. Since airflow data (infiltration,

TABLE 4 | Design variables defined for the optimisation.

Parameters Variables Range Impacting objective Interval Unit

P0 Windows opening area fraction 0–100 IAQ–TC energy use 10 %

P1 Heating setpoint 20–24 TC energy use 1 °C

P2 Air flow rate per person 0.005–0.02 IAQ–TC energy use 0.001 m3/s

P3 External wall insulation thickness 0 and 0.01–0.15 TC energy use 0.02 m

8 Energy Science & Engineering, 2025
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exfiltration and mixing) came from CONTAM, the results were
more accurate than using EnergyPlus alone.

3 | Results

3.1 | Validation Results

To perform the IAQ model's validation, data from the IAQ
sensors and simulation outputs were synchronised over three
periods for each room, which allowed for a point‐by‐point
comparison. Any incomplete or erroneous sensor data, such as
periods where sensors failed to log values correctly, were ex-
cluded from the analysis to ensure that only valid data points
were used in the validation process. Table 5 presents a com-
parison between simulated and measured CO2 levels across
different zones, classified by room types and over three different
time periods.

Furthermore, Figure 8 illustrates a comparison of the data from
data loggers and simulation results for three zones in various
time periods. Based on Evans' classification [44, 45], the cor-
relation coefficient (r) is classified into different ranges to

describe the strength of the relationship between two sets of
data. The classifications are as follows: very weak (0.00–0.19),
weak (0.20–0.39), moderate (0.40–0.59), strong (0.60–0.79) and
very strong (0.80–1.00).

Data in Table 5 shows that for classrooms like 112C and 214C,
the correlation coefficients are consistently very high across all
time periods, falling between 0.84 and 0.95. According to Evans'
classification, this indicates a very strong correlation between
the simulated and measured CO2 concentrations. Moreover, in
the laboratory (210EL) and office room, the correlation is strong
in most cases, with r values ranging from 0.65 to 0.79. These
values are considered acceptable when compared to findings
from other research and guidelines [46, 47].

In addition, to validate the thermal performance model, Figure 9
presents a monthly comparison of energy consumption as cal-
culated by EnergyPlus simulation against the actual data.

The annual energy consumption of EnergyPlus model is
321,418.7 kWh, leading to a 7.02% error from the actual annual
consumption of 345,697.48 kWh. These low error percentages
indicate that, while monthly trends may vary, the simulated

FIGURE 7 | Assigned weights for the objectives in the SAW method.

TABLE 5 | Mean relative error (MRE) and correlation coefficient (r) in three validation periods.

Zones Room type

Summer semester Spring semester Autumn semester
15 May–22 May 23 November–30 November 20 February–27 February

r MRE r MRE r MRE

112C Classroom 0.87 0.14 0.85 0.14 0.84 0.18

210EL Laboratory 0.74 0.10 0.81 0.13 0.80 0.10

214C Classroom 0.95 0.04 0.74 0.07 0.88 0.04

Office
room

Office 0.67 0.20 0.65 0.19 0.79 0.12
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FIGURE 8 | Comparison of CO2 concentration from measured data and simulation results.
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model provides a reasonable approximation of the building's
total annual energy demand.

3.2 | Optimisation Results

The optimisation process ran for 21 iterations, exploring 413
solutions, of which 210 were Pareto fronts. Figure 10 shows the
parallel‐coordinates plot of the explored solutions. The first
column in this figure (T) represents the two initial files: one
using the actual (baseline) ventilation rates, and the other using
demand‐controlled ventilation based on the number of occu-
pants. P0, P1, P2 and P3 are the design variables explained in
Table 4, and t1, t2 and t3 are the objectives discussed in
Section 2.6.

Among all the solutions, the highest utilised amount for P0 was
0.2, which was used in 60 solutions. For P1, temperatures of
21°C and 23°C were used 104 and 97 times, respectively. For P2,
0.008 m³/s.p was used 74 times. For P3, the highest used insu-
lation thickness was 0.03 m, used 56 times, followed by 0.07 and
0.13m, each used 52 times.

The Pareto fronts from the optimisation are shown in Figure 11
as green dots. The three objectives are paired in each plot to
better understand their interactions. In this figure, most PPD
values, including the maximum and minimum values, fall
between 450 and 700 ppm CO2 levels. Moreover, amounts of the

design variables resulting from the SAW analysis of various
preference cases (Figure 7) and the building's baseline condition
are presented in Table 6.

3.3 | Final Values of Objectives Using
Co‐Simulation

3.3.1 | Energy Consumption and PPD

The final results were obtained by applying the values of the
design variables in the defined scenarios to the CONTAM‐
EnergyPlus co‐simulation files. The results of the co‐simulation
are presented in Table 7. This table shows a significant reduc-
tion in energy consumption (11.23%–18.94% decrease) in the
energy priority scenarios. However, this reduction results in
increase of PPD (15.3%–17.9% increase), indicating a decline in
occupant comfort.

3.3.2 | CO2 Levels and SARS‐CoV‐2 Probability of
Infection

As the building has many zones, four rooms with the highest
peak CO2 concentrations were selected to present the results of
contaminant levels. These include three classrooms: 117C, 212C
and 213C, and the computer lab: 110CL. Characteristics of these
zones are summarised in Table 8. Since these rooms are located

FIGURE 9 | Comparison of simulation results with actual energy consumption.

FIGURE 10 | Parallel‐coordinates plot of all explored solutions.
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on different sides and floors of the building, the natural venti-
lation resulting from wind and stack effect will vary for each
room. The average and maximum CO2 concentrations of these
zones under various scenarios are presented in Table 9.

According to Table 9, 212C shows the highest CO2 level among
all zones in baseline case. Consequently, it shows a significant
reduction in CO2 levels, particularly in IAQ‐priority scenarios
(up to 52.3% in the average level reduction in C70). Maximum
levels reductions in 212C also highlight significant improve-
ments (up to 62.2% in C70) which is the highest value among all

four rooms. 117C shows a similar trend to 212C with the
highest average reduction of up to 52.9% in IAQ‐priority cases.

In addition to CO2 levels, the SARS‐CoV‐2 probability of
infection (PI) on the peak day of virus levels in a year was
calculated for the selected scenarios. A comparison of each
scenario's performance in reducing the PI is presented in
Figure 12.

Each peak in Figure 12 represents a class session during the-
day. The PI is calculated only for the occupied hours of the

FIGURE 11 | Pareto front of the optimisation with three objectives.

TABLE 6 | Design variables of selected cases with different priorities.

Priority

Baseline/
optimised
scenarios

Design variables

Fraction of
window opening

(0‐1)
Heating

setpoint (°C)

Air flow rate

Insulation
thickness (m)Baseline

Per
person
(m3/s)

— Baseline 0.0 21 ✓ — 0.0

Energy E70 0.1 20 ✓ — 0.15

E60 0.6 20 ✓ — 0.15

E50 0.5 20 ✓ — 0.11

✓

IAQ C70 0.9 21 — 0.006 0.03

C60 0.4 22 — 0.007 0.11

C50 0.5 22 — 0.006 0.01

Thermal
comfort

P70 0.1 23 — 0.007 0.05

P60 0.1 23 — 0.007 0.05

P50 0.2 23 — 0.006 0.11

Energy
and IAQ

EC45 0.7 20 — 0.005 0.13

Energy
and PPD

EP45 0.2 23 — 0.005 0.11

IAQ and PPD CP45 0.2 23 — 0.006 0.11

All ECP33 0.2 23 — 0.005 0.11
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zones. The spikes indicate that as occupants are more exposed
to an infector, the risk of infection increases. The goal is to
decrease the maximum PI in each session.

4 | Discussion

The co‐simulation results show that IAQ‐priority scenarios
increase energy use by 26.95% to 44.7% but significantly reduce
CO2 levels. However, their impact on thermal comfort (PPD) is
mixed, with slight improvements (up to 15.5%) or small
increases (up to 1.2%) compared to the baseline. The thermal
comfort priority scenarios result in a 42.77% to 53.91% increase
in energy consumption from the baseline to achieve a lower
PPD, ranging from an 18.6% to 22.3% decrease from the base-
line. In these scenarios, the average infection probability (PI) in
all rooms is around 16%. Slightly higher PI values (12.6%–21%)
are observed in PPD‐energy mixed priority scenarios (EP45 and

ECP33). However, Scenarios prioritising IAQ (C70, C50) and
EC45 achieve the lowest average PI between 9.6% to 10.7%
across all classrooms.

These trade‑offs between IAQ and comfort improvement and
higher energy use are consistent with other multi‑objective
optimisation studies [17, 20] that balanced these factors against
energy in buildings, which also reported that achieving better
comfort or air quality typically results in increased energy use.
However, unlike the present study, those studies did not model
contaminant transport or infection risk.

Among energy‐priority scenarios, E70 with only 10% window
opening leads to significant CO2 reductions of 27.4%–31%.
Increasing window opening to 50% in E60 further lowers
average CO2 by 17% in a 117C classroom and maximum levels
by 35% in 212C classroom. However, even in these energy‐
priority cases, CO2 peaks occasionally exceed 1000 ppm (the
limit indicating adequate minimum ventilation in classrooms
[40]), which shows that ventilation is still inadequate at some
times. On the other hand, IAQ priority scenarios in which the
window is open from at least 40% to 90%, and ventilation rates
range from 0.006 to 0.007m³/s.p, achieve the lowest CO2

concentrations.

Results of comparing mixed priority scenarios indicate that
while ventilation through window opening helps with reducing
average CO2, mechanical ventilation is more effective at con-
trolling short‐term peaks, especially when window use is
inconsistent, as supported by previous findings [22, 48]. This
focus on IAQ indicators beyond energy and thermal comfort
aligns partially with [13], who also used a genetic algorithm to
simultaneously improve CO2‑based IAQ and thermal comfort;
however, their work remained within EnergyPlus and did not
simulate a detailed multi‑zone analysis of contaminant trans-
port by co‐simulating EnergyPlus with CONTAM or similar
tools.

The cumulative percentage plots in Figure 13 provide insight
into which scenarios contribute most to the overall performance
of each objective. For the IAQ analysis, the maximum levels of
CO2 and PI in 1 year for the 212C classroom are presented. As
shown in Figure 13, the baseline scenario occupies a mid‐range
position in cumulative percentage distributions for energy
consumption and PPD, indicating that performance for these
objectives can either improve or worsen relative to the baseline
depending on the scenario. However, for IAQ (Figure 13c,d), all
scenarios lead to an enhancement compared to the baseline, as
the baseline scenario consistently ranks last. Scenario EC45

TABLE 7 | Annual energy consumption and average PPD of dif-

ferent scenarios.

Priority scenarios

Annual
energy

consumption
(kWh)

Average
PPD (%)

all
occupied
zones

— Baseline 321,418.7 19.17

Energy E70 260,553.0 22.1

E60 285,341.9 22.6

E50 284,286.6 22.6

IAQ C70 407,925.4 19.4

C60 464,917.7 16.2

C50 443,097.2 16.8

Thermal
comfort

P70 494,425.8 14.9

P60 494,425.8 14.9

P50 458,700.5 15.6

Energy
and IAQ

EC45 319,660.0 22.5

Energy
and PPD

EP45 414,105.3 16.5

IAQ
and PPD

CP45 458,700.5 15.6

All ECP33 414,105.3 16.5

TABLE 8 | Characteristics of four selected zones to present IAQ results.

Zones Floor Area (m2)
Baseline mechanical

ventilation rate (m3/h)
Max. number of

occupants
External wall
orientation

117C 1st 60 164 20 Southwest

212C 2nd 65 123 20 Northeast

213C 2nd 49 164 15 Southwest

110CL 1st 54 123 15 Northeast
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appears as an efficient solution, as in Figure 13a,c,d, it is among
the lowest contributors to contaminant levels and energy usage.

As shown in Figure 14, the normalised comparison of each
scenario highlights the trade‐offs among energy consumption,
thermal comfort and IAQ across various scenarios and each
scenario's performance compared to the baseline condition. In
this regard, scenarios EP45 and ECP33 suggest a moderate
trade‐off between all the objectives. These scenarios lead to
a 28.88% increase in annual energy consumption, which is
a moderate increase compared to other scenarios that can lead
to more than a 42% increase. PPD in these scenarios decreases
by 13.9% compared to the baseline. Moreover, maximum and
average CO2 levels in all classes are below 1000 ppm, with an
average decrease of CO2 levels from the baseline in all rooms by
42%. Furthermore, the average transmission risk of the virus in
all sessions is about 17%.

However, if energy consumption should not be increased under
any circumstances and contaminants' level should be at lower
levels, then the best choice would be EC45. This scenario
achieves almost the same energy use to the baseline case (0.55%
increase from baseline) and comes with a 17.4% increase on
average PPD. However, it results in a 47% decrease in CO2 levels
(never exceeding 1000 ppm over a year) and a 10.7% average PI

in all rooms.

In the selected scenarios, the ventilation rate is 0.005m3/s.p,
which aligns with the ANSI/ASHRAE 62.1 regulation for edu-
cational facilities [38]. They also suggest adding external wall
insulation ranging from 0.11 to 0.13 m. The key differences in
scenarios' results stem from variations in the thermostat set-
points and window opening fractions (20°C and 0.7 for EC45 vs.
23°C and 0.2 for EP45 and ECP33). According to the results,
increasing the heating setpoint by 3°C significantly impacts

energy consumption, regardless of the 71% reduction in window
opening in scenarios EP45 and ECP33. In another study, an
increase in the heating setpoint was also identified as a cause of
a sharp rise in total energy consumption [13]. This highlights
that the heating setpoint plays a more dominant role in
increasing energy consumption than window opening, as its
effect is constant across all zones, while reduced window
openings are limited to occupied periods and have a much
smaller influence on overall energy savings.

In this study, the integrated methodology demonstrates signif-
icant advantages in analysing the trade‐offs between energy use,
IAQ and thermal comfort. Compared to using EnergyPlus or
CONTAM alone, the co‐simulation offers a more comprehen-
sive approach by capturing both energy dynamics and pollutant
dispersion. Furthermore, although this study employed a de-
tailed simulation framework and real building data, several
limitations remain. For instance, the use of fixed ventilation
rates and occupancy schedules does not capture the variability
of real‐world building operations. CONTAM assumes well‐
mixed conditions within each zone and overlooks spatial gra-
dients and directional airflow. Additionally, the Wells–Riley
model used for infection risk estimation simplifies complex
factors such as breathing rates and interpersonal distance.
These limitations should be considered when interpreting the
findings, particularly for real‐world applications.

5 | Conclusion

This study introduces a novel methodology that integrates En-
ergyPlus and CONTAM co‐simulation with NSGA‐II multi‐
objective optimisation to explore trade‐offs between energy
efficiency, IAQ and thermal comfort in a UK educational
building.

TABLE 9 | Average and maximum annual CO2 concentration in different scenarios.

Priority Scenarios

CO2 level

212C 117C 110CL 213C

Ave. Max. Ave. Max. Ave. Max. Ave. Max.

— Baseline 1244.2 2079.6 1239.9 1901.2 1019.0 1569.0 1106.5 1607.2

Energy E70 865.7 1763.6 855.3 1550.2 740.2 1323.2 787.3 1339.4

E60 672.7 1034.5 645.4 1003.7 610.1 885.5 618.7 932.5

E50 688.7 1104.0 659.1 1064.3 621.3 928.6 630.3 971.8

IAQ C70 593.5 785.6 583.9 787.4 565.5 721.2 570.2 748.7

C60 617.7 818.0 610.1 837.7 591.3 768.5 596.2 802.7

C50 620.7 845.0 610.4 861.0 590.8 768.9 595.9 816.3

Thermal comfort P70 687.6 920.7 690.2 937.7 644.6 880.8 670.4 911.6

P60 687.6 920.7 690.2 937.7 644.6 880.8 670.4 911.6

P50 663.5 929.2 662.0 953.4 626.5 883.4 643.6 911.3

Energy and IAQ EC45 618.6 847.7 607.1 856.4 584.8 781.5 591.2 813.7

Energy and PPD EP45 684.9 998.8 681.9 1029.6 639.8 938.5 661.4 975.2

IAQ and PPD CP45 663.5 929.2 662.0 953.4 626.5 883.4 643.6 911.3

All ECP33 684.9 998.8 681.9 1029.6 639.8 938.5 661.4 975.2
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The findings suggest that improving IAQ and thermal comfort
can be achieved without excessively compromising energy
efficiency by adopting mixed‐priority strategies. For instance,
EC45, as a mixed‐priority scenario, stands with the scenarios
prioritising IAQ (C70, C50) as having the lowest SARS‐CoV‐2
infection probabilities, averaging between 9.6% and 10.7%
across all classrooms. These results emphasise the importance
of good IAQ and balanced optimisation strategies in minimising
the risk of SARS‐CoV‐2 infection.

Additionally, the study emphasises the importance of flexible
and adaptive building management systems that can respond to
varying conditions and priorities. The results also indicate that
while natural ventilation improves average IAQ, it can some-
times fail as maximum CO2 levels exceed the limit. On the other
hand, consistent airflow from mechanical ventilation may result

in higher average CO2 levels, but leads to lower maximum CO2

levels under the same conditions.

Furthermore, the study highlights that the heating setpoint
plays a more dominant role in increasing energy consumption
than window opening, as its effect is constant across all zones,
while reduced window openings is limited to occupied periods
and have a much smaller influence on overall energy savings.

Despite the study's limitations, such as the well‐mixed
assumption in CONTAM, the simplified virus spread model,
and fixed parameters in EnergyPlus (e.g., occupancy schedules),
the framework represents a step forward compared to tradi-
tional single‐tool approaches that often overlook IAQ or infec-
tion risk considerations. Future studies are encouraged
to incorporate real‐time occupancy sensing and adaptive

FIGURE 12 | Probability of infection (PI) in four zones under different scenarios on peak day of virus levels in a year. (a) 212, (b) 213, (c) 110CL

and (d) 117.
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ventilation control strategies to more accurately capture
dynamic building usage, particularly in educational settings.
Advanced optimisation methods, such as reinforcement learn-
ing or hybrid metaheuristics, could also be explored to enhance

the simultaneous management of energy use, IAQ and thermal
comfort under varying indoor and outdoor conditions. Further
research can also evaluate the life cycle costs and environ-
mental impacts of IAQ improvement strategies to support more

FIGURE 13 | Cumulative percentages distribution of (a) energy consumption, (b) thermal comfort (PPD), (c) IAQ (maximum CO₂ levels) and (d)

IAQ (maximum PI) in 212C classroom across scenarios.

FIGURE 14 | Trade‐offs between energy consumption, PPD, along with the maximum CO2 level and probability of virus infection in the one‐year
period in classroom 212C.
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sustainable and economically viable decisions. Finally, the
integrated simulation and optimisation approach can be applied
to a wider range of building types and climate zones to uncover
building‐specific optimisation pathways.

Finally, this study provides stakeholders with actionable guid-
ance for optimising IEQ in high‐occupancy spaces by offering
practical insights into the implications of prioritising one
objective over others. Furthermore, the findings of this study
can be applied to other educational buildings with similar
weather conditions. The study also emphasises the need for
regular monitoring and adjustment of indoor environmental
parameters to ensure optimal conditions.
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