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Original Research

A two-dimensional (2D) transthoracic echocardiogram 
has become the diagnostic standard for assessing cardiac 
functions1,2 and has a vital role in detecting heart abnor-
malities. Linear measurements of the left ventricle (LV) 
systolic functions provide major clues to a healthy heart 
that guides a corresponding diagnostic response for patient 
care. However, what constitutes the element of quality in 
cardiac images remains unspecified and elusive among 
researchers and many clinical exerts. In previous publica-
tions,3 it was possible to enumerate and apply a novel 
method to make a quality assessment using three features 
of image quality attributes. These are often discussed 
among clinical experts and relates to image acquisition 
that aids in clinical measurements. The feasibility of the 
objective assessment on legacy and domain attributes thus 
proved the successive reliability on the acquisition of opti-
mum image quality and accurate clinical measurements. 
Good quality images provide a contrasting structural 
delineation that yields accurate measurements of cardiac 

functions. However, the impact of such delineation and 
the image attributes, which constitute diagnostic clarity, 
are challenging and is directly addressed in this research. 
Currently in many practices, the method of image quality 
assessment is subjective and interpreter dependent but it’s 
a less reliable process, compared with an objective assess-
ment system that provides reproducible research, consis-
tent quality acquisition, reliable clinical quantification, 
and improved patient care.
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Abstract
Objective: The quality of echocardiographic image acquisition is vital for precise quantifications and diagnostic 
accuracy. However, ultrasound equipment is limited in performance throughput and image quality. It is also governed 
by the operators’ acquisition competence. Although, a subjective quality control process is adopted for standard 
procedures; to provide optimal quality image, this further introduces major drawbacks in the degree of consistency, 
quantifications, and diagnostic accuracy.
Materials and Methods: A deep neural network model was established that used a large data set containing 40 000 
echocardiograms and implemented a guided tool for objective optimization of the apical two chamber (A2C), apical 
four chamber (A4C) and parasternal long axis (PLAX) images, based on clinical protocols. This tool provided real-time 
quality feedback on image adequacy and gave the operators’ image optimization experience, as they examined patients.
Results: An average computational speed at 4.24 ms per frame, with 0.032% model error rate, was achieved on apical 
visibility, anatomical clarity, depth-gain, and foreshortening graded attributes. The novel pipeline was comparable to 
the operators’ ultrasound guidance system for quality image acquisition and reliable diagnosis in the health care system.
Conclusion: The result of a guided acquisition provided novel evidence for an objective optimization process, optimal 
image quality, diagnostic accuracy, and improved users’ acquisition experiences, in clinical practice. A subjective 
assessment of a sub-optimal image quality has the potential to negatively impact patients’ clinical care.

Keywords
AI-guided acquisition, clinical image acquisition, echocardiography, high-quality echocardiogram, ultrasonographic 
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During clinical examinations, echocardiogram in api-
cal-two chamber, (A2C), apical-four chamber (A4C), and 
parasternal long axis (PLAX) views are primarily recom-
mended,4 as important images for linear measurements 
and volumetric quantifications. Consequently, a real-time 
objective quality scoring systems that comprise two or 
more standard apical views would provide dynamic on-
screen guidance, during image acquisition. It would also 
allow clinicians to achieve consistency in the adequacy of 
the image quality obtained. An echocardiogram, with a 
single value quality score system, is limited in indicating 
which aspect of quality is lacking, as part of the overall 
assessment. Hence, practical applicability of such a sys-
tem of assessment is only limited to experimental demon-
stration instead of translational implementation. 
Therefore, a clinically relevant objective assessment 
should provide insight on objective standards for each 
defined elements of quality, within a cardiac image. It 
would also be important to define a dynamic method of 
accessing the specific element of quality attributes to pro-
vide the operator with immediate feedback, optimization, 
and quantification. Previously work has demonstrated the 
feasibility of a limited version of such system of assess-
ment3 and provides details of a complete implementation 
on three different apical standard views as required in 
clinical workflow.

Related Work

Cardiac images vary significantly from patient to patient, 
and it is difficult to define an image with perfect quality 
compared with nonmedical imaging pathology. 
Consequently, it is considered impracticable to define a 
reference image that can be measured by calculating its 
deviation.5,6 Therefore, it is necessary to develop an 
anonymous image quality assessment algorithm, which 
does not depend on a reference image.

Studies have been carried out on anonymous image 
quality assessments, which exhibited a universal quality 
index approach.7 This was largely focusing on the distor-
tion of compression, with some implementing machine 
learning algorithms and using random/structural noise 
level, to evaluate image quality. Again, this is considered 
impracticable because the quality perception of echocar-
diogram is specific to varying pathological prognosis. In 
both approaches, it is difficult to apply both methods to 
echocardiography because cardiac sonography does not 
present well defined edges. Hence, new measures of image 
quality need to be developed and tested based on the global 
properties of the echocardiogram that matches the patho-
logical inferences and clinical recommendation.

One of the earliest works on objective assessment of 
cardiac image quality was Abdi et al8 who demonstrated 
the feasibility of quality assessment using a convolutional 

neural network (CNN) model using five apical views, 
based on six criteria scoring methods. Since there was no 
publicly available cardiac data set to model, the proposed 
work was reliant on expert’s knowledge, of feature engi-
neering, which was a high resource intensive process. 
Although Abdi et al’s research yielded plausible outcome, 
it was technically insufficient for clinical workflow. This 
is because the defined quality features are limited and do 
not represent experts’ global characteristics for cardiac 
diagnosis, using 2D sonography.

Additional research9 was done by Nagata et al, which 
addressed the impact of image quality on echocardiogram 
measurements however, the study failed to address the 
explicit differentiation on specific elements that constitute 
quality elements, with respect to image acquisition, pre-
sentation, and quantifications. Furthermore, Luong et al,10 
defined 12 criteria to grade each of the nine apical standard 
views13 while computing a continuous single variable 
score to represent objective quantity for respective apical 
views. Luong’s regression model achieved overall accu-
racy of 87% with regard to four expert opinions and suffi-
ciently demonstrated the impact of image quality on 
diagnostic use. However, the assessment method and 
scores do not represent cardiologists’ conventional assess-
ment in practice, therefore, it did not gain translational 
acceptance for clinical workflow. The most recent study by 
Dong et al,11 represents a current study of objective quality 
assessment. Unfortunately, the study was limited to apical 
four-chamber plane (A4C) and did not include the PLAX 
view or specific score criteria that is independently assess-
able in clinical practice. For this reason, assessment could 
be suitable for quantifying image quality for fetal echocar-
diography, rather than for adult patients. Dong’s argument 
for using focus/zoom attributes stems from fetal cardiol-
ogy where specific tissue became the focus of an investiga-
tion. However, these attributes, though important should 
be described as element of clarity. Therefore, a zoomed 
section of myocardium should exhibit the attributes of 
clarity, instead of being considered as an independent 
factor.

Main Contributions

Interpreting the results of the proposed architectures in 
the literature is not straightforward. This is because a 
direct comparison of the models’ performance would 
require access to the same patient data set. At present, no 
echocardiography data set and the corresponding annota-
tions for the image quality assessment was publicly avail-
able. Therefore, the aim of this work was to evaluate the 
performance of novel deep learning models for the auto-
mated image quality assessment, using an independent 
echocardiography data set. Although the inference time 
reported in the previous studies reviewed was short 
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enough to make it feasible for real-time applications, the 
utility of such systems in the clinical practice would be 
limited. This is because only an overall predicted image 
quality score is provided by the models. If employed as 
part of an operator guidance system, the operator is pro-
vided with no clues as to why the image is being tagged 
as low quality, and how to improve it to obtain optimal 
images would become a time-consuming and guess work. 
A practical quality control report should contain such 
information which possibly break down the specific attri-
butes of relevant image or frame quality which this novel 
solution proposes. In the view of the above, the main con-
tributions of this research can be summarized as follows:

•• Preparation of (40 000) large independent cardiac 
data set consisting of A2C, A4C, PLAX apical 
views for quality assessment and benchmarking 
standard.

•• Release of a data set that includes an expert’s 
ground truth (GT; i.e. the reality you want to model 
with your supervised machine learning algorithm) 
and has annotations for apical visibility, chamber 
clarity, depth-gain, and foreshortening, to the pub-
lic domain.

•• Fully optimized deep learning (2D + t) pipeline 
that simultaneously predict four independents’ 
cores and views from echo sequences.

•• Novel method on real-time access of four specific 
qualities attributes to aid optimum image acquisi-
tion and reliable clinical quantification.

•• Provide evaluation for real-time application pipe-
line suitable for operator feedback for data acqui-
sition, and real-time optimization, for A2C, A4C, 
and PLAX cardiac standard views.

Materials and Methods

Unlike previous related works,3,16,17 the study provides 
the most comprehensive attributes of image quality, as 
reviewed by cardiologists, and dynamic viewer screen 

feedback as a guide to obtaining optimum image quality 
for quantification and clinical measurements. This inte-
grated tool provides easy access to qualitative acquisition 
of echocardiogram for clinicians, point of care, and con-
sistent, quality quantifications for cardiologists.

Optimization Protocols

In all existing quality assessment studies, criteria defined 
for objective assessment centered on limited features like 
subjective clarity of image’s edges, valves, chambers, and 
gain but are incapable of translational clinical advantage. 
Nevertheless, these clearly represent some important fea-
tures by which anatomical details of the myocardium are 
analyzed. In our studies, we identified subjective correla-
tion between observer perception of image’s anatomical 
features and the magnitude of distinguishable features 
present in the image. Thus, we proposed that objective 
assessment can be defined based on attributes that encom-
passes the projection of anatomical orientation, cavity 
clarity, depth-gain, and foreshortens. A system that can 
provide objective values on these four quality attributes 
can be utilized as real-time feedback on which aspect of 
image quality needs to be optimized specifically. The 
objective image quality attributes defined along with its 
optimization protocols are as follows:

Apical Visibility and Orientation is domain-specific 
and requires significant acquisition experience. In A4C, 
on-axis attribute defines the projection of the myocar-
dium with beam cutting through the heart’s apex region, 
presenting a four chamber views. This view is true for 
both diastole and systole frames and presents clinical and 
pathological significance paramount to optimum projec-
tion and clinical diagnosis.2 The model identifies the api-
cal orientation in real-time and applies translation model 
in equations (1) and (2) to provide on-screen feedback to 
operator’s probes action for necessary fine tuning. 
Supposed the intraventricular septum detection Figure 1, 
is oriented along any point Pi on x-axis, this position indi-
cates a spatial distribution with structural deviation from 

Figure 1.  Poor axial alignment showing off-axis projections as indicated by P(x,y) versus optimum on-axis projection indicated 
by P (0,0) where the intraventricular septum runs vertically down the middle of the screen. 
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origin P0. This activates the on-screen feedback system 
with currently achieved quality score [VS] until optimal 
[VS] score is achieved. In PLAX view, the left ventricle 
(LV) apex is not visualized but emphasis is placed on ana-
tomical orientation of the pericardium, RV at the apex, 
and LV chamber for linear and volumetric measurement. 
High-quality scores 0.9 is obtain by fine-tuning probe’s 
translations:

	 x x x y y xp c p c c1 � �� � � �� � �cos sin� � 	 (1)

	 y x x y y yp c p c c1 � �� � � �� � �sin cos� � 	 (2)

Anatomical Clarity is a legacy attribute of objective 
assessment.4,6 The chamber cavities, walls and valves are 
soft tissues which present rough boundaries and contrac-
tive edges. Studies have demonstrated the impact of con-
trast echocardiography,12 however, with respect to 
quantification; anatomical clarity is visualized by several 
distinguishable fast-moving pixels’ formations during 
cardiac cycles. This attribute addresses the degree of dis-
tinguishable pixel element that represent the endocardial 
border cavities or clear distinction between the intraven-
tricular septum in A4C, pericardium in PLAX, valves, 
trabeculated pericardial fluids and the endocardial walls. 
For 2D image, clarity is perception of luminance level 
summed up by the root means square (RMS) contrast 
where f (x, y) represents the normalized pixels in equa-
tion (3). The best pixel formation is computed in real-
time with RMS is applied to delineate anatomical borders 
while providing on-screen scoring as operators’ feedback 
until optimum [LS] scoring of 0.9 is achieved. The for-
mula is provided below:
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Luminance Depth Gain attributes present a measure of 
intensity in discrete signal samples on a detected region 
of cardiac frame. The acoustic beams, some of which 
passes through trabeculated tissues, presents subtle 
impedance which influences the intensity of the image 
signals, or making anatomical details susceptible to depth 
changes, sector width and patients’ pathological differ-
ences. Consequently, signal gain at the near field usually 
possesses strong intensity or high amplitude and may 
become excessively high or excessively low at the far 
field region. Furthermore, signal with excessive gain can 
present as pulmonary fluid in some cases11 and images 
with very low gain attributes but bear significant anatom-
ical details or noticeable artifact are not ignored in clini-
cal practice. Nevertheless, potential introduction of 
artifact from excessive gain would equally exacerbate 
visibility issue; yield an incorrect depiction of true 

anatomical tissues or obscure relevant anatomical details. 
Therefore, improper depth-gain can induce significant 
disuniformity in pixel intensities across the image, most 
often at the lower part of the image sector. For real-time 
optimization, time gain compensation (TGC) controls are 
often used to compensate for near-field or far-field atten-
uation, along with appropriate probe choices and objec-
tive score as a guide. The model detects the configuration 
for improved settings for both high-frequency probes 
useful for near field of tissue penetration,13 and low fre-
quency transducers in the far field penetration to achieve 
optimum [DG] score of 0.9 is achieved.

Apical Foreshortening is domain-specific attributes 
which identify the perspective deformation during image 
acquisition. Smistad et  al,14 have described the impor-
tance of real-time detection of apical foreshortening with 
deep learning pipeline. Foreshortening is a nonlinear 
structural deformation where changes in size of the areas 
and volumes become geometrically incongruent.15 It 
accounts for inaccurate measurements of ejection frac-
tion (EF)3 and prevents the detection of crucial patholo-
gies in the apical region which exacerbates clinical 
measurements. However, in PLAX view where LV apex 
visibility is not required, apex visibility could be taken as 
“false apex”13 and counts as LV foreshortening. From 
clinical standpoint, eliminating foreshortening is para-
mount to model’s objective assessment, quantifications 
and diagnosis. For a dynamic optimization experience, 
the pipeline displayed, on the image, the objective [FS] 
scores per frame. This score related to the magnitude of 
foreshortening in the current frame and is updated in real-
time when the operator engages any of the combination 
of five transducer manipulations until minimum fore-
shortening was achieved. In this case, [FS] score ranges 
from 0.1 (absence of foreshortening) is considered as 
optimum [FS] quality to maximum score range of 0.9 as 
sub-optimum quality. Images with high [FS] score are 
considered unsuitable under clinical assessment.

Data Set and Ethical Approval

For clinical assessment of myocardial functions, cardiol-
ogists place a magnitude of importance on A4C and 
PLAX for volumetric quantification and linear measure-
ments.1 Even though cardiac data are highly personalized 
with health care legislation, it’s rare to have substantial 
large number of cardiac data sets in public domain. But 
for the purpose of this research, an ethical approval (ref. 
243023) was sought from UK’s Health Regulatory 
Agency. This study is based on randomly selected 
patients’ data set consisting of 6216 (A2C frames), 15 476 
(A4C frames) and 18 308 (PLAX frames) from patients 
who had earlier undergone echocardiography TTE with 
St Mary’s Hospital, Private NHS Trust, which was 
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purposely acquired for this study. These were cardiac 
images acquired in both standards consist of end systole 
(ES) and end diastole (ED) frames were completed by 
experienced cardiac sonographers using Vivid I (GE 
Healthcare, Wausaukee, WI) and iE33 xMATRIX (Philips 
Healthcare, Cambridge, Mass) ultrasound equipment sys-
tems (See Figure 1). Standard protocol in data protection 
act (2018) allows for the removal of all patient-identifi-
able information from DICOM-formatted videos before 
data analysis and applicable studies. Three frames were 
randomly drawn from each cine loop video which is split 
into training (32 000 frames), and testing (8000 frames) 
subdatasets in 80:20 ratios.

The bar graph (See Figure 2) summarizes the model’s 
data set distributions with three categorical labels derived 
from expert’s quality scores previously assigned to each 
frame; range of zero (0) to 4.5 as poor quality, 4.6 to 6.5 
as average quality, and 6.7 to 9.9 as good (optimum) qual-
ity, respectively.

GT Annotations

Each of the cardiac cine clips (A2C, A4C and PLAX 
views) were studied for anatomical characteristics that 
are congruent to experts’ views on 2D echocardiogram 
characteristics projection. These features were visually 
analyzed and were defined by 23 criteria listed in Table 1. 
Consequently, establishes four qualities attributes by 
which each frame can be evaluated and accessed for real-
time optimization.

Model Training

Prior to the implementation of real-time streaming of the 
scanning protocol, an efficient light-weight spatiotempo-
ral model was established (See Figure 3, process 2 and 3) 

based on differentiable neural architecture search (NAS) 
approach.16 The predictive model was based on earlier 
work; multi-stream time series regression architecture17 
implemented via model sub-classing object for greater 
control, each independent stream predicts specific quality 
attribute proposed in section 2.2 and included a corre-
sponding prediction for view classification simultane-
ously. The architecture is logically divided into two parts; 
the first shared layer allows weight sharing through 
TensorFlow API module, while extracting the hierarchi-
cal spatial feature in the frame sequence. The resultant 
vector is flattened and feed not second part, a single-lay-
ered long short-term memory (LSTM)18 for temporal 
extraction. The spatiotemporal architecture is trained on 
24 000 frames of 227x227x3 spatial size, with 8000 vali-
dation samples in 80:20 ratios. Predictions are made via 
fully connected layers which compute specific quality 
scores and the probability for discrete labels via logistic 
regression module, simultaneously. Each layer employs 
Rectifier Linear Units (ReLU) for its internal activation 

Figure 2.  A bar graph that displays the distribution for total 
cardiac images used for model development consists of 40 000 
extracted frames of A2C, A4C, and PLAX images, with three 
quality-levels: suboptimal quality, average quality, and optimal 
quality, respectively.

Table 1.  The Scoring Criteria Used for Evaluating Cardiac 
Quality and Attributes.

Apical Visibility GT Scores

Correct Axis, Apex Visible 6
Anterior Wall IAS Visible 2
Inferior Wall IVS Visible 2
PLAX—LV Visible 5
PLAX—RV Visible 3
PLAX—Pericardium Visible 2

Anatomical Clarity GT Scores

LV Cavity, (Endocardial Border) 4
Anterior Leaflets (MITRA Valve) 3
Posterior Leaflets (MITRA Valve) 3
PLAX—LV Cavity (Endocardial Border)) 4
PLAX—LV Anteroseptal Wall Clarity 3
PLAX—LV Inferolateral Wall Clarity 3

Luminance Depth Gain GT Scores

Image Sectorial Gain 4
No Excess Gain 3
Minimum Artifacts 3
PLAX—Sectorial Gain 4
PLAX—No Excess Gain) 3
PLAX—Minimum Artifacts 3

Cavity Foreshortened GT Scores

LV Apical Segment present 4
Normal-Shaped Diastole 3
Normal-Shaped Systole 3
PLAX—Absence of False Apex 4
PLAX—Absence of Apex Diastole 3
PLAX—Absence of Apex Systole 3
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function while the output layer employs sigmoid function 
to provide boundary for normalized scores on each model 
output. The model incorporated dual loss functions; mean 
squared error (MSE) for regression and binary cross-
entropy for view classification are optimized via adaptive 
moment estimation (ADAM). The resultant output scores 
are bound normalized in the range of (0 to 1), yielding 
four quality attributes per frame.

Real-Time Optimization Tool

The objective quality assessment pipeline illustrated in 
Figure 3 is intended for real-time operator’s feedback and 
optimization of cardiac image quality before clinical 
measurement and quantification. The experiment was 
carried out on Z600 Mini server with GeForce GTX 970 
chipset’s Maxwell GPU architecture and featuring 4GB 
RAM coupled to 1664 CUDA cores. The pipeline frame-
work accepts high-speed, streaming (frame) data of any 
varying length for A2C, A4C, or PLAX from GE Vivid 
ultrasound source equipment while observing all clinical 
protocol in trans-thoracic workflow.

Each user session is divided into four sequential pro-
cesses, each process with its respective varying threads. 
The heart of process (See Figure 3, step 1) is an external 
frame grabber with capability for high data rates, frame 
buffer, and low latency. This deals with both operators 
and patients’ specific limitations during image acquisi-
tion phase, two-dimensional cardiac frame data is sequen-
tially feed into the encoder module where real-time 
feature extraction is taken place. While maintaining 
active connection with ultrasound equipment, process 

Figure 3, step 2 establishes two major threads of spatio-
temporal convolution to predict four specific qualities 
attributes scores, and logistic probability module handles 
the prediction class of currently generated image (See 
Figure 3, step 3). The objective scores are then visualized 
(superimposed) on the fast-moving frames, in real-time 
(See Figure 4), providing specific feedback, encoded as 
[ID, VS, LC, DG, FS, AS], Frame identification Visibility, 
Clarity, gain, Foreshortening, Mean Score respectively. 
These scores are updated in real-time as probe’s adjust-
ment progresses. The final process step 4 allows operator 
to record the optimized cine loop in Microsoft’s audio 
video interleave (.AVI) format, or a still image from the 
sequenced frames in Joint Photographic Experts Group 
(.JPG) format. Each session can thus be recorded and 
sequentially stored for further analysis.

Evaluation Metrics & Model Performance

Since the model uses multiplex variables for each score 
attributes, performance was evaluated via objective 
function using linear correlation coefficient (LCC) in 
equations (4) and (5); measures linear difference 
between cardiologist’s score (QMS) and algorithm’s 
predicted score (QPS). Minimal LCC error indicate 
best fit model, hence better predictions. Figure 4 indi-
cates LCC error distribution per selected quality attri-
butes. Model’s accuracy was determined in equation 
(6) MAE, while computational inference speed was 
found at 4.24 ms per frame as detailed in Table 2. 
Results reinforce possibility for real-time feasibility 
and clinical deploy ability:

Figure 3.  Block diagram of a real-time quality assessment and optimization pipeline showing essential processing steps and 
threads for user session. Features embedded 4 streams deep learning architecture dedicated to assessment and operators’ 
feedback on apical visibility, anatomical clarity, depth gain and apical foreshortening attributes of image quality.
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Model Validation

Acquisition of cardiac frames in PLAX, A4C, and A2C 
was performed using the phased array transducer with 

Vivid i ultrasound source equipment. This acquisition 
was done by an experienced clinician under trans-tho-
racic laboratory protocol. The frames were stored in 
DICOM and AVI formats for retrospective assessment in 
performance evaluation and analysis. Our source equip-
ment features relevant hardware interface ports for pos-
sible external connectivity. In the setup, an off-the-shelf 
but a high-end, high speed frame grabber with high-defi-
nition media interface (HDMI)19 input port and universal 
serial bus (USB) 3.020 output port was considered. The 
USB 3.0 boast of 5Gbps data rates with short cable con-
nection (1 m length) selected to avoid excessive transmis-
sion delay. The host equipment, an Intel i7 dual core21,22 
laptop running deep learning algorithm for real-time 
quality assessment as described in our methodology. 
Hereafter, each cardiac cine loop was play back and visu-
alized on the source and destination screen where quality 
scoring is performed in real time. In practice, frame 
length and frame speed are expected to vary significantly 
while providing real-time feedback to the operator during 
acquisition phase, pipeline performance was estimated 
using aggregated values for end-to-end classic character-
istic delay in transmission Dtx, propagation Dgt, process-
ing Dpt, and queuing Dqt; given in equation (6):

Figure 4.  Showing quality grading for visibility (VS), clarity (LC), depth-gain (DG), and apical foreshorten (FS). Pipeline model 
also shows image view classification and overall quality score (AS). Each quality grading varies from 0.0 to 1 and reflects the 
aspect of image quality that could be optimized during acquisition phase.

Table 2.  The Computed Accuracy Based on the Sonographic 
Quality Attributes.

Quality Attributes Mean ± SD

Visibility 0.52 0.011
Clarity 0.62 0.017
Luminance 0.69 0.011
Foreshorten 0.56 0.010
Pipeline’s Average Delay (De2e) = 1279.9 ms
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where delay components are expressed as sum of all the 
delays; d1, d2, d3, . . ., dn, average values taken over a 
series of measurements thus calculated as
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The terms; Dgt and Dpt are negligible due to latest 
advancement in processing power. Other terms in equation 

(7) constitutes significant impact to the overall delay 
mechanism; where l is the data packet length, q for rate of 
data transmission, d for distance using cable connection, ia 
pipeline embedded instructions, f processor’s clock fre-
quency, ba buffer delay, tm memory access time, and Dqt 
which details the queue waiting time using β(0) as arrival 
and µ departure rate. The overall delay (in milliseconds) 
must satisfy real-time feedback support for cardiac frames 
between 40 and 60 fps.
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Results

The multivariate model and the pipeline were evaluated 
using evaluation metrics as detailed in the methods section. 
Table 2 list the numeric results and error distribution per 
quality attribute is also depicted by box plot, as well as in 
Figure 5 for apical visibility, anatomical clarity, depth gain, 
and foreshortening properties. The model prediction speed 
was found to be 4.24 ms per frame for input pixel size of 
128 × 128 × 3, which is sufficient for real-time deploy-
ment. However, this speed was found to be much higher 
considering the end-to-end delay as detailed in Table 2.

Discussion

The aim of this study was to test the feasibility for the most 
comprehensive objective attributes of cardiac image qual-
ity with integrated model for user guidance on acquisition 
and quantifications suitable for wider adoption in clinical 
workflow. Consequently, we expanded on previous studies 
which propose a method of real-time assessment and build 
an end-to-end solution which demonstrated the perfor-
mance of a real-time application for operator feedback.

The implementation was deployed on GE Vivid i ultra-
sound hardware; the solution is platform-independent and 
is integrable on any standard proprietary hardware. This 
solution is embedded and can detect endocardial boarders, 
provides on-screen guidance for probe manipulations and 
on-screen objective scores, which is updated dynamically 
on each quality attribute. This eliminates the operator’s 
inherent limitations in image acquisition and helps acquire 
best image irrespective of patient positioning. This may be 
a leap in cardiac diagnosis, using echocardiography.

This guided tool may accelerate clinician’s experience 
in providing a consistent image acquisition and measure-
ments. This model achieved 4.24 ms speed per frame, 
which is a quarter of a normal frame rate at 60 fps and 
provided no inhibition to existing hardware or clinical 
protocol.

The operator’s time to obtain optimum quality images 
was reduced significantly, while having a qualitative 
image for further interpretation. The objective scoring 
system further reinforced the capability to achieve opti-
mum image acquisition and consistent measurement; 
improving clinician acquisition skills and reducing the 
extra time in training may be advantages over current 
clinical practice.

Furthermore, an integrated the tool could provide to 
be an invaluable learning opportunity for students and 
medical personnel, involved in point of care or in the 
laboratory.

Finally, the annotations provided by an expert cardi-
ologist and an accredited annotator were used in the 
study. Intraobserver variability can be examined by 
obtaining additional annotations from human experts and 
compared with the error in the predicted scores.

Limitations

This research was limited by the research design and is 
based on the image set that was available to conduct this 
project. Given the threats to internal and external validity, 
the results are unique to this set of patient images. This 
research only considered A2C, A4C, and PLAX images 
as a de facto standard for clinical measurement and quan-
tification in cardiac examination which is recommended 
by association of American cardiologists. A future study 
may include wider population and intensive clinical trials 
with guided tool to explore the support for different image 
compression and selective quality attributes that would 
satisfy individual laboratory requirements. Here, we have 
considered four attributes of image quality and believe it 
is comprehensive for translational application in clinical 
domain. A more comprehensive study would include 
additional criteria for 3D image quality assessments. 
Caution must be used in generalizing these results to 
other patient cohorts or practices. Replication of this 
work is needed to determine the wide clinical applicabil-
ity of this work.

Conclusion

Sonography has its known limitations but depending on the 
user, an echocardiographic assessment is based on a subjec-
tive quality (scoring) system, which explains why the 

Figure 5.  A box plot is provided of the error distributions 
per model outputs, which are computed as the absolute 
difference between predicted score per attributes and experts 
scores. There was a very minimal (0.032%) percentage of 
error distribution and high accuracy are paramount indicator 
to reliable quantification.
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incessant imaging variability and varying interpretations 
continue to persist. Echocardiographic variability persists 
even when the same user reassesses the same set of images 
the second time. Instead, this work has demonstrated how an 
objective scoring model which is platform independent 
could be deployed on ultrasound hardware to achieve the 
most possible high-quality and consistent dynamic cardiac 
imaging. This tool could guide the image acquisition pro-
cess, to ensure optimum image of respective cardiac views 
with accurate quantification and diagnosis. This may be a 
valuable tool for improved health care and could help in 
overcoming the user and patient limitations, due to clinical 
settings or at point of care scenarios. This should be consid-
ered valuable for researchers, clinicians, and cardiologists 
and could be used for independent measure in global stan-
dardization and echocardiogram benchmarking.
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