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Abstract

The integration of artificial intelligence (AI) and machine learning (ML) has revolutionised
civil engineering, enhancing predictive accuracy, decision-making, and sustainability across
domains such as structural health monitoring, geotechnical analysis, transportation sys-
tems, water management, and sustainable construction. This paper presents a detailed
review of peer-reviewed publications from the past decade, employing bibliometric map-
ping and critical evaluation to analyse methodological advances, practical applications, and
limitations. A novel taxonomy is introduced, classifying AI/ML approaches by civil engi-
neering domain, learning paradigm, and adoption maturity to guide future development.
Key applications include pavement condition assessment, slope stability prediction, traffic
flow forecasting, smart water management, and flood forecasting, leveraging techniques
such as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), Sup-
port Vector Machines (SVMs), and hybrid physics-informed neural networks (PINNs). The
review highlights challenges, including limited high-quality datasets, absence of AI provi-
sions in design codes, integration barriers with IoT-based infrastructure, and computational
complexity. While explainable AI tools like SHAP and LIME improve interpretability, their
practical feasibility in safety-critical contexts remains constrained. Ethical considerations,
including bias in training datasets and regulatory compliance, are also addressed. Promis-
ing directions include federated learning for data privacy, transfer learning for data-scarce
regions, digital twins, and adherence to FAIR data principles. This study underscores AI as
a complementary tool, not a replacement, for traditional methods, fostering a data-driven,
resilient, and sustainable built environment through interdisciplinary collaboration and
transparent, explainable systems.

Keywords: artificial intelligence; civil engineering; machine learning; predictive modelling;
sustainability; infrastructure management

1. Introduction
AI and ML are significantly transforming civil engineering by enhancing efficiency,

accuracy, and decision-making across various domains. AI has undergone great techno-
logical changes with major influences across various sectors in the construction industry.
From analysing the sensor data to detect anomalies and predicting the structural failure
using real-time data in the field of structural health monitoring (SHM) to the predictive
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maintenance approach models to optimise maintenance schedules and resource allocation,
AI has evolved as a starling innovation.

Rapid developments in AI have opened new fields in sustainable development. IEEE
defined AI as the theory and development of computer systems that are able to perform tasks
which normally require human intelligence, such as visual perception, speech recognition,
learning, decision-making, and natural language processing [1]. AI is a distributed, statistical,
and symbolic technique that prioritises modelling before focusing on simulating human
functions, empathy, and acceptable communication. It also prioritises cognitive tasks before
advancing into the realm of earlier approaches, like making analytical decisions [2].

The building industry faced a serious crisis in 2020 as a result of aging workers
and declining productivity. The COVID-19 epidemic also has had a major impact on
the construction sector, making it difficult to enhance worker safety and wellbeing [3].
Following the start of the pandemic, there was a serious decline in the available construction
jobs and according to The National Bureau of Economic Research (NBER), the U.S. has
experienced a high rate of unemployment, reaching 14.7% in April 2020 [4]. As a result,
several options were put forth to address this issue. From a technical perspective, the
best proposed solution was the projects for construction automation that were put into
place, taking advantage of the potential of AI and the Fourth Industrial Revolution [5].
Specifically, basic studies were carried out in design automation using ML. Interest in
generative design using AI models, a method that automatically produces algorithm-based
design alternatives and drastically cuts down on human labour and time has increased
because of this surge. The research concentrated on how generative design may increase
architectural practices’ efficiency and reduce pointless and superfluous work for an aging
construction workforce [6,7].

In structural engineering, ML models are being applied in analysing structural de-
sign [8], reliability analysis [9], monitoring and inspecting structural health [10,11], failure
detection of reinforced structures [12], resistance to fire [13], and resistance of different
structural members under earthquake or various loads and conditions [14]. AI and ML
techniques are increasing used in structural analysis and design optimisation [15]. Because
of its capacity to manage intricate nonlinear structural systems under harsh conditions,
AI offers a singular chance to increase the predictability of structural engineering. The
findings in the literature highlight the value of adopting ML as a substitute prediction tool
in fields where traditional physics-based approaches are too laborious and difficult [16].

ML models suggest optimal solutions for material engineering based on mechanical
strength, durability, cost, and their environmental impact. Concrete is one of the leading
construction materials utilised all over the world. Considerable attempts have been made
for using ML techniques to anticipate the mechanical properties and mix design of different
types of concrete including normal strength concrete [17], high performance concrete [18],
fibre reinforced concrete [19], recycled aggregate concrete (RAC) [20], geopolymer con-
crete [21], self-compacting concrete [22], etc. The ML techniques used in most of the
research publications include artificial neural network (ANN), adaptive neuro-fuzzy in-
ference system (ANFIS), SVM, Random Forest (RF), extreme gradient boosting (XGBoost),
CNN, and Decision Tree (DT).

AI offers numerous benefits in construction management, transforming how projects
are planned, executed, and monitored. Previous researches showed that ML and AI tech-
niques can be beneficial in terms of improved cost estimation and budgeting by predicting
the future expenses with the help of historical data [23], enhancing risk management dur-
ing the project lifecycle [24], optimising project’s planning, scheduling, monitoring, and
control [25], optimising resource utilisation by predicting their demand [26], predictive
analysis in making better and timely decisions, reducing uncertainties and improving
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project outcomes [27], personnel selection with the focus on hierarchical competency assess-
ment [28], automating repetitive tasks and complex activities to enhance productivity [29],
ensuring the safety measures and regulations at construction sites [30], and last but not the
least, optimising the quality control by identifying early defects [31].

AI is playing an increasingly transformative role in transportation engineering by
improving safety, efficiency, and sustainability across various systems. Traffic management
and optimisation use AI algorithms to optimise signal timings based on real-time traffic con-
ditions. ML models analyse historical and real-time data to predict congestion and adjust
controls accordingly to predict traffic flow. Computer vision and sensor data can identify
accidents, stalled vehicles, or dangerous conditions quickly, offering workable ideas to
legislators and urban planners to promote more sustainable and effective transportation
systems [32]. In smart urban planning, AI models can predict how infrastructure changes
affect mobility patterns, helping planners make data-driven decisions. ML algorithms fore-
cast public transport demand and ride-sharing needs, enabling better service allocation that
are essential for intelligent planning of transportation [33]. Google maps, Tesla autopilot,
and smart highways are the most used AI-driven applications in transportation worldwide.

In the field of geotechnical engineering, AI can estimate soil parameters that are
otherwise expensive or time-consuming to obtain through laboratory or field testing.
By incorporating laboratory test results, ML models can predict soil classification, shear
strength, permeability, and bearing capacity [34]. AI helps in analysing and interpreting
geotechnical data from multiple sources to recognise the pattern that can identify zones
with similar geotechnical behaviour and map subsurface variability more accurately. Based
on these patterns, a combined interpretation of the soil profiles with measured uncertainty
can be provided [35]. Slope stabilisation and land sliding involve a key illustration of rock,
soil, or mixed mass under different failures that cause moving detachable masses on a slope
downstream. DTs, SVMs, and neural network techniques in AI enable real-time monitoring
using sensor data from inclinometers, piezometers, and rainfall gauges to predict the factor
of safety (FOS) and assess landslide risks based on terrain, rainfall, and soil properties [36].
AI can optimise the design of shallow or deep foundations and probabilistic risk analysis
in uncertain conditions by analysing risks of ground failure, liquefaction, or settlement by
reducing over-conservatism, learning from historical design and performance data and
providing quick estimates for settlement, load-bearing, and uplift capacities [37]. During
excavation, tunnelling, or piling, ML models can monitor ground behaviour in real time,
predict ground movements, settlements, and collapses which can help in establishing
preventative measures.

AI plays a vital role in environmental engineering to advance sustainability through
smarter monitoring, resource management, pollution control, and climate adaptation. AI
enables real-time monitoring and predictive analytics for various environmental parameters
like air and water quality monitoring by using ML models to analyse sensor data to detect
pollutants, predictive models for forecasting pollution events for early interventions and
detecting contamination and illegal dumping in the field of waste water, and solid waste
monitoring by optimise treatment plant operations for energy efficiency and regulatory
compliance [38]. AI improves the efficiency and conservation of natural resources with
smart irrigation systems using AI and sensors which can minimise water use in agriculture.
Similarly predictive models help manage reservoirs and groundwater extraction sustain-
ably. In terms of energy efficiency, AI optimises energy use in buildings, water treatment
plants, and urban infrastructure, and supports the integration of renewables in energy grids
like solar and wind forecasting. AI models and techniques are developing renewable energy
sources and giving energy efficiency top priority to address energy sustainability and meet-
ing the sustainable development goals (SDG) 7 and 13 [39]. By automating data analysis
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for quicker and more accurate evaluations, AI gives decision-makers practical insights for
sustainability objectives and the execution of environmental impact assessments.

The use of AI and ML in civil engineering signifies a radical shift in the direction of
safer, smarter, and more sustainable infrastructure. By supporting real-time monitoring
and prediction, optimising resources, and bolstering data-driven decision-making, these
technologies are not only improving efficiency and accuracy but also transforming the
practice of civil engineering in the future. As the area grows, AI and ML will play an
increasingly significant role in solving difficult engineering issues and furthering SDGs.

ML is a subfield of AI; however, they are so closely related that they are sometimes
used interchangeably. We refer to AI as the whole collection of methods that makes machine
behave intelligently like human being. This includes symbolic AI and nonsymbolic AI. ML,
however, is used in AI systems to improve their performance through gathering experience
from data and is considered within the nonsymbolic AI category [40,41].

Despite recent significant development, the current use of AI and ML in civil appli-
cations remains discrete and focused on narrow domains, with the basic shortcomings
including limited interdisciplinary integration, attention to model interpretability, data
availability and quality, and a lack of standardised frameworks. The aim of this review
study is to provide a comprehensive assessment of how AL and ML techniques have been
used in the main civil engineering disciplines to highlight their potential in addressing
sustainability challenges and the difficulties in their general adaptation. To address this,
the subsequent sections of the manuscript are structured as follows: Section 2 addresses the
vital challenges in civil engineering that drive AI adoption across various fields; Section 3
presents a bibliometric analysis on the use of AL and ML in the recent research; Section 4
introduces AI and ML techniques and tools relevant to engineering; Sections 5–7 examine
their applications in sustainable materials, structural engineering, and geotechnical and
environmental engineering, respectively; and Section 8 concludes with a summary of
findings and directions for future research.

2. Key Challenges in Civil Engineering Leading to AI Adoption
To create more intelligent, effective, and ecologically friendly solutions, AI is being

used in civil engineering to address sustainability issues. The key issues that have spurred
this change are listed below.

2.1. Construction and Demolition (C&D) Waste

Construction consumes massive amounts of raw materials like concrete, steel, and
water, leading to depletion and waste [42]. With ever-increasing requirements and ad-
vancement in concrete construction, there is a huge demand for structures, which in turn
produces a large amount of C&D waste in urban areas. Encouraging sustainable construc-
tion methods requires precise construction waste estimation. C&D waste, which includes
trash produced during building construction, refurbishment, and demolition, is a major
environmental concern [43]. It is concerning to note that about 10 billion tonnes of C&D
waste is produced worldwide each year [44,45]. Conventional estimation methods use
manual computations that consider variables like building type, floor space, and other
pertinent elements. On the other hand, ML algorithms have significantly improved esti-
mation accuracy, surpassing 90% [46]. The ability to estimate and accurately predict waste
quantities is the primary benefit of utilising ML techniques. Several ML algorithms, such
as autoregressive integrated moving average approaches for time-series analysis, SVM,
regression trees, Gaussian process regression, and linear regression, can be applied to
predict the accurate number and quantity of wastes [47]. By creating an intelligent waste
management engineering system, these algorithms can be used to lessen the negative
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effects of trash on the environment, the economy, and society. When it came to estimating
and classifying construction debris, deep CNNs scored an exceptional 94% accuracy rate.
According to the authors’ observations, ML algorithms are suitable for future sustainable
waste management and are well suited for the prediction or classification of building
debris [48]. A study comprising 98 journals pertaining to the use of ML in construction
waste management were thoroughly examined between 2012 and 2023 to pinpoint hot
subjects and new trends using different ML models [49]. The findings show that ML is
used, and the suggested models show promise in various waste management procedures
related to building and demolition. Adopting ML techniques optimises material usage
through predictive modelling and structural optimisation, accurate waste prediction, trend
forecasting, and automated categorisation from historical data, image analysis, and sensor
data, reducing waste and environmental impact.

2.2. Carbon Emissions and Energy Consumption

The construction industry is one of the largest contributors to global carbon dioxide
(CO2) emissions [50]. CO2 poses a significant challenge to sustainability in civil engineering
due to its major role in climate change and the high carbon footprint associated with many
constructions processes. Approximately 7–9% of global CO2 emissions are ascribed to the
production process of hydraulic cement only, which makes concrete responsible for adverse
impacts on environment, human health, and plantations [51,52]. ML models help design
low-carbon structures, concrete, predict energy consumption, and improve the efficiency of
construction equipment and building operations. There is an utmost need to reduce carbon
emission and accurately identify the threat levels of CO2 on the environment. The risk
point, point of no return, and other thresholds that represent the most critical CO2 levels
must be mapped. ML models are used to predict these values by using historical data of
CO2 emission and its consequences on the atmosphere. A study concludes that by 2047, the
crucial CO2 level of 500 ppm will be reached. This level is regarded as irreversible. To return
the emissions to safe levels, a 6.37% decrease rate and a 23.38% reversal rate are needed [53].
A similar study was carried out by [54] by experimenting with a method known as the
non-equigap grey model to predict the CO2 emissions in 53 countries and other places.
CO2 emissions were used as the experiment’s output and energy consumption as its input.
To forecast greenhouse gas emissions, mainly the CO2 from agricultural soil, nine distinct
ML and deep learning models were developed and tested. When it came to predicting
N2O and CO2, the LSTM model (a type of recurrent neural network (RNN)) performed the
best [55]. Different AI techniques including ML, dimensionality reduction, and clustering
by adopting methods like fuzzy neural networks and singular value decomposition (SVD)
are used to forecast carbon emissions and energy consumptions [56]. Predicting energy
consumption is a crucial component of building sector planning and energy control. To
shed light on the viability of predicting building energy performance using ML-based
techniques, Light Gradient Boosting Machine (LGBM) integrated with the SHAP algorithm
was adopted which accurately forecasts residential structures’ energy use and greenhouse
gas emissions, finds the most important factors, and assesses their relative significance [57].
The wavelet enhanced extreme learning machine (W-EELM), a more advanced form of
the extreme learning machine (ELM), is used to forecast CO2 on weekly, monthly, and
annual time frames. The model contributes to the basic understanding of the environmental
engineering perspective by demonstrating that it is a reliable and useful computer-based
technology for modelling CO2 concentrations [58].
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2.3. Aging Infrastructure and Maintenance

One of the biggest sustainability issues facing civil engineering worldwide is aging
infrastructure and related maintenance cost. Many nations are dealing with aging water
systems, roads, bridges, and buildings that were constructed decades ago but are now
beyond their planned lifespan. There are social, economic, and environmental ramifications
to maintaining or replacing these systems. Many structures globally are aging, requir-
ing sustainable and timely maintenance to avoid collapse or environmental hazards. A
modified deep hierarchical CNN architecture, based on 16 convolution layers and cycle
generative adversarial network (GAN), was developed to predict pixel-wise segmentation
in an end-to-end fashion to automatically detect corrosion and related damages to civil
infrastructures like bridges, buildings, and roads [59]. In structural engineering, any dam-
age to a bridge’s structural elements will compromise its durability, safety, and integrity.
Because bridge decks are subjected to extreme conditions such high traffic volumes, fluc-
tuating temperatures, road salts, and abrasive forces, they are more likely to suffer from
serious deterioration. A framework with a 91.44% prediction accuracy for assessing and
forecasting deck conditions was created with two computational ML models of ANNs and
kernel-nearest neighbours (KNNs) [60]. This can assist in guaranteeing the appropriate and
efficient allocation of funds designated for bridge upkeep, rehabilitation, and repair. Deep
hierarchical CNN architecture of 10 convolutional layers integrated with cycle GAN in
utilised in [61] to assess the cracks in bridge structures. As compared to more conventional
techniques like Segment Network Model (SegNet), Crack-BN (Crack Band), and Crack-GF
(Crack Guided Filter), the researchers found that higher F-score, recall, and precision val-
ues are obtained. To determine the optimal set of input parameters that best capture the
deteriorating phenomena of crack segments, two ML models, ANN and support vector re-
gression (SVR), have been researched. The results can then be directly fed into optimisation
algorithms [62]. In civil engineering, aging infrastructure is becoming a bigger danger to
sustainability. It is less resilient to contemporary environmental issues, uses more resources,
and presents safety hazards. A shift toward predictive maintenance utilising sensor data
and ML, fewer needless repairs, green retrofitting, and more sophisticated monitoring
systems is required to ensure the sustainability of infrastructure for future generations.

2.4. Water Management and Pollution Control

One of the most important sustainability issues facing civil engineering today is water
management and pollution control due to urbanisation and climate change. This problem
has connections to population expansion, urbanisation, industrialisation, and climate
change. Civil projects can cause water wastage, groundwater contamination, and poor
stormwater management. ML modes monitor water quality in real time and optimise water
distribution and treatment using AI-based decision systems. In [63], fifteen different ML
techniques, RF, DT, SVM, and ANN are used to analyse the water quality and determine
its potability in order to address the potential problem of water pollution brought on
by increased urbanisation. SVM performed the best with an accuracy of 83% while the
RF model achieved an accuracy of 81%. A wide range of ML techniques, using ANNs,
fuzzy rule-based systems, reinforcement learning, and evolutionary algorithms, are studied
in [64] to solve complex decision-making problems in the areas of real-time control of
combined sewer systems for pollution reduction, integrated design and operation of storm
water control systems for maintaining and repairing coastal aquatic ecosystems harmed by
increased urbanisation and development, and integrated management of multipurpose
river-reservoir systems. The water quality index is used to communicate water quality
information to the public and decision-makers, which is a numerical representation that
aggregates various water quality parameters into a single score, making it easier to assess
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the overall condition or “quality” of a water body (like a river, lake, or groundwater
source). ML models like RT, RF and Reduced Error Pruning Tree (REPT) are used to predict
water quality index [65]. In order to improve model robustness and prediction accuracy
in water quality assessment, researchers present a novel hybrid approach that combines
non-parametric kernel Gaussian learning (GPR), ANFIS, and DT algorithms. They also
stress the importance of data quantity and quality in training to predict the water quality
index of surface as well as ground water WQI and GWQI respectively [66].

2.5. Urbanisation and Land Use Pressure

Urbanisation and Land Use Pressure are indeed major challenges for sustainable civil
engineering. As cities grow and populations increase, civil engineers face escalating de-
mands to build infrastructure while minimising environmental impact, preserving natural
resources, and ensuring resilience. Rapid urban growth strains infrastructure and leads
to unsustainable land development. AI supports smart urban planning through land use
modelling, traffic flow prediction, and green infrastructure design. Traditional urban plan-
ning techniques are being transformed by ML, which has the capacity to evaluate vast and
intricate data, predict trends, and make better judgements. Various clustering, regression,
and classification algorithms are used as effective tools for urban land use planning [67].
ML models are used to optimise the land use and land cover change (LULCC). LULCC
classification is used to categorise land covers into different types according to their use
and cover, such as crop, forest, road, residential, or industrial areas. LULCC modelling
by incorporating models like DNN, RNN, SOM, and ANN-CA, uses information derived
from forms, fringe, textures, and features to assess the cumulative effects of environmental
and anthropogenic causes on landscape patterns [68]. The globe is rapidly becoming more
urbanised; urban coverage is expanding twice as quickly as the global population, and
the primary cause of the increasing urban encroachment into agricultural areas is the
world’s rapid population rise. An Urbanisation Risk Map (URM) can be created using
ML algorithms like MLP-ANN, CA, and logistic regression models to let decision-makers
know which districts are prioritised for sustainable planning [69]. Another factor that
affects the expansion and changes of land use in urban areas is population increase. The
pattern of industrial and rural land usage can be examined using ML techniques like Lasso
Linear Regression (LLR), Random Forest Regression (RFR), and Multivariate Adaptive
Regression Splines (MARS) [70]. AI technologies are helpful to handle land pressure and
urbanisation through sustainable methods like Building Information Modelling (BIM)
with GIS to effectively model land use and to use smart city technologies to maximise
available resources.

2.6. Climate Change and Resilience

Climate change, driven by greenhouse gas emissions and environmental degradation,
poses one of the most significant sustainability challenges of our time. For civil engineering,
this means designing, building, and maintaining infrastructure that can withstand extreme
weather events, changing environmental conditions, and long-term climate shifts while
minimising ecological impact. Most of the non-renewable materials found in heritage
sites and buildings in general face a new challenge because of the ongoing, cumulatively
worsening effects of climate change. Climate change is one of the many domains where
ML (ML) and deep learning (DL) techniques have become increasingly prominent because
of technological advancements. ANNs are the most widely used ML approach for both
mitigating and adapting to climate change [71]. In addition to already-existing issues
including aging infrastructure, shifting regulations, and cybersecurity threats, climate
change increases the risks facing electric power networks. Despite increasing energy
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efficiency and distribution, AI and ML also support conservation initiatives, provide
dependable energy in the face of climate change, and strengthen power systems’ resistance
to catastrophic weather events brought on by climate change [72]. The results demonstrated
the value of drone surveys in the context of automated heritage building monitoring as
AI techniques were used to segment and classify data from a Digital Elevation Model
DEM acquired by a photogrammetric drone survey [73]. In transportation engineering, it is
concerning how climate change is affecting road maintenance systems since it increases their
vulnerability to weather-related incidents and the resulting damage. This change can be
mitigated by using Convolutional LSTM technique to optimise RMSDC (Road Maintenance
Systems Using Deep Learning and Climate Adaptation) to enhance traffic safety, reduce
costs, and improve environmental sustainability [74]. AI predicts climate risks, assesses
vulnerabilities, and supports adaptive design strategies for resilient infrastructure.

The way sustainability is accomplished could be completely transformed by the com-
bination of ML and civil engineering. Civil engineers can create and manage infrastructure
that is not only robust and efficient but also reduces its environmental impact over time by
utilising data-driven insights. By tackling these issues, AI and ML are enhancing civil in-
frastructure’s sustainability, resilience, and readiness for the future in addition to enhancing
engineering performance. Table 1 shows a summary of previous research addressing the
sustainability challenges in civil engineering their respective solutions with ML techniques.

Table 1. Summary of ML techniques addressing sustainability challenges in civil engineering
in literature.

Sustainability Challenge Specific Problem ML Adoption Technique Reference

C&D Waste

C&D Waste SVM, ANNs, RF, K-Nearest
Neighbour (KNN), DCNNs [48]

Smart Solid Waste
Management

Linear Regression, Regression
Trees, Gaussian Process
Regression, SVM, and

Autoregressive Integrated
Moving Average Method

[47]

C&D Waste Classification
CVGGNet, VGGNet-11,

VGGNet-13, VGGNet-16, and
VGGNet-19

[75]

C&D Waste Management ANN, Deep Learning DL,
CNN, and SVM [49]

Carbon Emissions and
Energy Consumption

CO2 Emission

Linear Regression, Ridge
Regression, k-nearest

Neighbour (KNN) Regression,
Polynomial Regression, Forest

Regression, DT Regression,
Gradient Boosting Regression,

Support Vector Regression

[53]

Forecasting the CO2 Emissions Non-equigap GM, CFNGM [54]

Greenhouse Gas Emissions
LSTM Model, Root Zone

Water Quality Model
(RZWQM2)

[55]

Energy Consumption,
Economic Growth, and

CO2 Emissions
ANFIS [56]

Short-, Medium-, and
Long-Term Prediction of CO2

W-EELM [58]

Building Energy Consumption LGBM, SHAP, XGBoost, RF,
and Support Vector Regression [57]
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Table 1. Cont.

Sustainability Challenge Specific Problem ML Adoption Technique Reference

Aging Infrastructure and
Maintenance

Civil Infrastructure Damage
and Corrosion Detection

CNN, Cycle GAN,
Conditional Random Fields

(CRFs)
[59]

Bridge Infrastructure, Deck
Deterioration

ANNs and k-nearest
Neighbours (KNNs) [60]

Crack Detection for Bridge CNNs, Cycle GAN, DSN and
Fully FCN [61]

Track Deterioration ANN and Support Vector
Regression (SVR) [62]

Water Management and
Pollution Control

Water Pollution Reduction RFs, DTs, SVM, ANNs, [63]

Water Resources
Systems Engineering

Reinforcement Learning,
ANNs, Fuzzy Rule-Based

Systems
[64]

Water Quality Management
Random Trees (RT), RF, M5P,
and Reduced Error Pruning

Tree (REPT)
[65]

Water Pollution and
Groundwater Quality

Non-parametric Kernel
Gaussian Learning (GPR),

ANFIS, and DT
[66]

Urbanisation and Land
Use Pressure

Urban Land Use CNNs and SVMs [67]
Land use and Land

Cover Change
DNN, RNN, SOM, and

ANN-CA [68]

Urban Expansion MLP-ANN, CA, and logistic
regression models [69]

Land Use Change

Lasso Linear Regression (LLR),
RFR, and Multivariate

Adaptive Regression Splines
(MARS)

[70]

Climate Change and
Resilience

Climate Change Mitigation
and Adaptation

Latent Dirichlet Allocation
(LDA) [71]

Power System Resilience
against Extreme
Weather Events

Automated Meter
Infrastructure (AMI),

Supervisory Control and Data
Acquisition (SCADA)

[72]

Conservation of Built Heritage
CNNs, Digital Elevation

Model (DEM), GSD
Orthophoto

[73]

Road Maintenance Systems Convolutional LSTM [74]

2.7. Civil-Specific Challenges in AI/ML Implementation

While data scarcity, interpretability, compliance, and computational cost are common
challenges across AI domains, civil engineering presents several unique obstacles that make
adoption particularly complex:

• Safety-critical decision environments: Unlike other fields, AI errors in civil engineering
(e.g., misclassification of structural cracks or slope stability failures) can result in catas-
trophic consequences for public safety, requiring stricter validation and redundancy
than typical AI applications.

• Long service life and lifecycle uncertainty: Civil infrastructure often spans decades.
Models trained on short-term datasets may not generalise to long-term degradation,
creep, or impacts of climate change.
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• Integration with design codes: Current design codes (Eurocodes, ACI) provide no
provisions for AI-based predictions. Therefore, AI outcomes must be reconciled with
conservative physics-based approaches before regulatory acceptance.

• Heterogeneity of data sources: Unlike domains with standardised datasets (e.g., Im-
ageNet in computer vision), civil data are fragmented (lab vs. field vs. sensor),
non-standardised, and site-specific, which hampers model transferability.

• Liability and professional accountability: Engineers remain legally responsible for
design decisions. This constrains the practical use of “black-box” AI models unless ex-
plainability methods (e.g., SHAP, LIME) can be shown to align with physical reasoning
and code-based checks.

These aspects underscore the need for explainable, physics-informed, and code-
compliant AI models in civil engineering.

3. Bibliometrics of AI and ML in Civil Engineering
The use of AI and ML in the field of civil engineering has undergone great techno-

logical changes, with major influences across various sectors. Recent studies confirm the
critical role of AI technologies to improve structural analysis, construction management,
geotechnical assessment, and infrastructure monitoring. The potential of AI and ML to
enhance engineering processes’ precision, effectiveness, and sustainability has been shown
in numerous research. With an emphasis on how these advancements are influencing
the field’s future, this part provides a thorough analysis of the body of literature now in
publication, highlighting significant advancements, approaches, and uses of AI and ML in
civil engineering. This section presents a bibliometric analysis of a collection of research
on the application of ML techniques to civil engineering applications. Based on literature
searches, Scopus and Web of Sciences are the most successful scientific databases [76,77].
Therefore, only Scopus-indexed publications are included in the literature search. The
following keywords were used in this search with Boolean search query as (“artificial intel-
ligence” OR “AI”) AND (“civil engineering” OR “geotechnical engineering” OR “structural
engineering” OR “environmental engineering” OR “transportation engineering”). The total
number of documents that resulted was 2074; however, after the application of various
filters listed in the Table 2, the number of documents was reduced to 1206.

Table 2. Data mining in Scopus Database.

Data Type Filters

Engineering

Subject Area Environmental Science
Earth and Planetary Sciences

Energy
Conference Paper

Article
Document Type Review

Conference Review
Book

Book Chapter

Language English

Year 2000 to 2024

Figure 1 shows the subject area’s annual trend which includes the data from year
2000 to 2024 and shows that the research trend in this field was nearly non-prominent
and very low number of research papers were published until 2018. But starting in 2018,
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there has been a consistent rise in this field, which is intriguing and positive as it indicates
that academics are concentrating on AI and ML-driven models for advancing in civil
engineering. Figure 2 depicts the country data of the published documents in the said field.
As of recent analyses, China leads globally in the number of publications related to AI and
ML in civil engineering. As per digital science, in 2023, China published nearly 60,000
AI-related papers, surpassing the European Union and the United States. While China
leads in publication volume, the United States remains influential in terms of citations and
research impact.

 

Figure 1. Annual publication trend (Scopus: 2000–2024) in AI-driven models.

 

Figure 2. Published documents by country.

Engineering, Computer Science, Environmental Science, Earth and Planet Science
and Material Science were the top five source types during data mining based on the
document’s density and relevance to the Boolean search of keywords. From 2000 to
2024, they contributed 38.1%, 14.9%, 10.6%, 8.7%, and 5% of documents, respectively, as
Figure 3 illustrates. While each of the other individual sources account for less than 5%
of the total volume of documents, these five fields account for 78%. Similarly, the contri-
bution by document type is shown in Figure 4, with journal articles accounting for 37.1%,
conference papers for 45.7%, reviews for 6.6%, conference reviews for 4.3%, and book
chapter for 3.3%. Conference papers (45.7%) exceeded journal articles (37.1%), likely due to
the interdisciplinary nature of AI research, where conferences serve as rapid dissemina-
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tion venues. Conferences provide immediate feedback, collaboration opportunities, and
visibility ultimately accelerates refinement and follow-up studies for journal submission.

 

Figure 3. Published documents by subject area.

 

Figure 4. Type of published documents.

The bibliometric analysis presented in this review depicts the noteworthy surge of
interest in AI and ML applications within civil engineering, particularly since 2018. This
rapid growth reflects not only the increasing availability of computational resources and
domain-specific datasets but also the urgency of addressing efficiency, resilience, and
sustainability challenges in the built environment. This paper shows, by combining recent
research trends through bibliometric assessment with current methods, that AI has moved
beyond experimentation and is becoming a key tool for creating data-driven, adaptive, and
sustainable civil infrastructure.

4. Overview of AI and ML in Engineering
To organise the diverse applications, we propose a conceptual taxonomy of AI/ML in

civil engineering (Table 3), which maps methods across three dimensions: (1) engineering
domain (e.g., structural, geotechnical, environmental, transportation, materials), (2) learn-
ing paradigm (supervised, unsupervised, deep learning, hybrid), and (3) adoption maturity
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(experimental, pilot-scale, operational integration). This taxonomy serves as a framework
for comparing methods, identifying gaps, and guiding future adoption strategies.

Table 3. Conceptual taxonomy of AI/ML applications in civil engineering by domain, learning
paradigm, and adoption maturity.

Domain
Supervised

Learning (Adoption
Maturity)

Unsupervised
Learning (Adoption

Maturity)

Deep Learning
(Adoption Maturity)

Hybrid/Physics-
Informed (Adoption

Maturity)

Structural
SVM, RF for damage
detection
(pilot-scale)

PCA for SHM
feature reduction
(experimental)

CNN for crack
detection
(pilot-scale)

PINNs for seismic
response
(experimental)

Geotechnical
Regression, ANN for
soil properties
(pilot-scale)

Clustering for soil
classification
(experimental)

LSTM for slope
stability
(experimental)

ANN–PSO hybrids
for slope FS
prediction
(experimental)

Environmental DT, RF for water
quality (operational)

Clustering for
pollution source ID
(pilot-scale)

CNN for waste
classification
(pilot-scale)

Hybrid ML + LCA
for CO2 emissions
(experimental)

Transportation SVM, RF for traffic
flow (operational)

K-means for travel
pattern clustering
(pilot-scale)

RNN/LSTM for
congestion
forecasting
(pilot-scale)

AI + CFD hybrid for
wind/traffic
modelling
(experimental)

Materials
ANN, SVR for
concrete strength
(pilot-scale)

Feature clustering for
mix optimisation
(experimental)

CNN for
microstructure
analysis
(experimental)

Hybrid ML + SHAP
for embodied carbon
optimisation
(experimental)

4.1. Definitions and Techniques (Supervised, Unsupervised, Deep Learning)

AI and ML represent paradigm-shifting technologies that have fundamentally trans-
formed the landscape of civil engineering applications. ML, as a subset of AI, encompasses
computational methods that enable systems to automatically learn and improve perfor-
mance from experience without being explicitly programmed for every scenario [78]. The
integration of these technologies into civil engineering has opened unprecedented opportu-
nities for data-driven decision-making, predictive modelling, and optimisation of complex
engineering systems.

Rule-based systems use if/then rules created either by human experts or ML algo-
rithms are widely used in civil engineering. As mentioned before, ML algorithms are
designed to learn patterns from data. From the explainability point of view, rule-based
systems are transparent and predictable. Modifying rules, needs human intervention that
makes them inflexible, whereas ML systems although are dynamic and adaptable but com-
plex and data dependent. Integration of ML, with rule-based systems has enabled refining
the rules. On the other hand, rule-based systems can be used to initiate ML algorithms.

Supervised learning forms the backbone of predictive modelling in civil engineering
applications. This approach utilises labelled training datasets to learn mapping functions
between input features and target outputs. Common supervised learning algorithms
extensively used in civil engineering include:

1. SVM: Particularly effective for classification problems such as soil type identification
and structural damage classification. SVMs excel in handling high-dimensional data
and nonlinear relationships through kernel functions [79].

2. RF: An ensemble method that combines multiple DTs, providing robust predictions for
both regression and classification tasks. This technique has shown exceptional perfor-
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mance in predicting concrete strength, structural health monitoring, and geotechnical
parameter estimation [80].

3. Neural Networks: Multi-layered perceptrons capable of approximating complex non-
linear relationships. Traditional neural networks have been successfully applied to
structural response prediction, material property modelling, and optimisation prob-
lems [81]. Unsupervised learning techniques focus on discovering hidden patterns
and structures within unlabelled datasets, making them invaluable for exploratory
data analysis and feature extraction in civil engineering:

4. K-means Clustering: Widely used for grouping similar structural elements, identifying
failure patterns, and segmenting infrastructure assets based on condition states [82].

5. Principal Component Analysis (PCA): Essential for dimensionality reduction and
feature extraction, particularly useful in analysing large datasets from structural health
monitoring systems and reducing computational complexity [83].

6. Hierarchical Clustering: Effective for creating taxonomies of structural systems, or-
ganising maintenance schedules, and identifying relationships between different in-
frastructure components [84]. Deep learning represents the most recent advancement
in AI, utilising deep neural networks with multiple hidden layers to automatically ex-
tract hierarchical features from raw data. This approach has revolutionised computer
vision applications in civil engineering:

7. CNNs: Specifically designed for image processing tasks, CNNs have become the gold
standard for automated crack detection, structural damage assessment, and quality
control in construction [85].

8. RNNs and LSTM: Particularly suited for time-series data analysis, these architectures
excel in predicting structural responses, monitoring temporal changes in infrastructure
condition, and analysing dynamic loading patterns [86].

9. GANs: Emerging applications in generating synthetic data for training purposes,
creating realistic structural failure scenarios for testing, and augmenting limited
datasets common in civil engineering research [78].

4.2. AI vs. Traditional Modelling Approaches

The transition from traditional modelling approaches to AI-driven methodologies
represents a fundamental shift in civil engineering practice. Traditional approaches, while
well-established and theoretically grounded, often face limitations when dealing with com-
plex, multi-variable systems and large datasets characteristic of modern civil engineering
challenges [87,88].

Traditional finite element analysis (FEA) has long been the cornerstone of structural
analysis, providing detailed insights into stress distributions, deformation patterns, and
failure mechanisms. However, FEA requires extensive computational resources, detailed
material property definitions, and significant expertise for model setup and interpretation.
The deterministic nature of FEA also limits its ability to handle uncertainty and variability
inherent in real-world engineering systems [89–91].

AI methods can autonomously learn complex relationships from raw data without
explicit physical modelling [92] and, once trained, they deliver rapid, scalable predictions in
tasks like structural design and health monitoring [93]. Ensemble models with explainabil-
ity also effectively quantify uncertainty [94]. However, traditional physics-based methods
remain essential due to their interpretability and ability to generalise beyond training data.
They continue to serve as the cornerstone of current design codes while AI awaits full
regulatory integration [93,95].

Hybrid approaches emerge as the most promising direction, combining the strengths
of both traditional and AI-based methods. Physics-informed neural networks (PINNs)
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represent a notable example, incorporating physical laws as constraints within neural
network architectures, ensuring predictions remain physically consistent while leveraging
the flexibility of AI [96].

4.3. Tools, Platforms, and Datasets

The rapid expansion of AI and ML tools, platforms, and datasets has significantly
reduced the barriers to implementing these technologies in civil engineering practice. The
increasing availability of accessible programming environments, cloud-based services, and
domain-specific datasets has democratised AI/ML adoption, allowing civil engineers to
leverage advanced analytics with minimal programming expertise [97].

Python has become the dominant programming language for AI/ML applications in
civil engineering, primarily due to its extensive library ecosystem. Tools such as scikit-learn
provide user-friendly implementations of traditional ML algorithms including classifi-
cation, regression, and clustering [98]. For deep learning applications, TensorFlow and
PyTorch offer scalable and flexible frameworks suitable for both research and production
environments [99,100]. Complementing these, Pandas and NumPy serve as foundational
tools for data preprocessing, manipulation, and numerical analysis [101]. In addition, R
remains highly valuable for statistical analysis and visualisation tasks, offering packages
specifically adapted to engineering datasets. Meanwhile, MATLAB continues to hold a
strong position within academic and industrial settings due to its specialised toolboxes for
optimisation, signal processing, and neural networks [102].

Beyond programming environments, cloud platforms have played a critical role in
facilitating AI/ML adoption by offering scalable computational resources. Services such as
Google Cloud AI Platform, Amazon SageMaker, and Microsoft Azure ML provide end-to-
end pipelines for model development, training, and deployment. These platforms not only
enable rapid scalability but also integrate with specialised AI services for computer vision,
natural language processing, and predictive analytics [103].

The success of AI/ML applications in civil engineering heavily depends on the avail-
ability of high-quality, domain-specific datasets. In the field of SHM, datasets from the
Los Alamos National Laboratory offer time-series data capturing controlled damage sce-
narios, providing a valuable resource for developing and validating AI-based diagnostic
models [104]. For material behaviour modelling, datasets such as the widely used Concrete
Compressive Strength Dataset available through the UCI ML Repository contain detailed
records of concrete mix designs and associated strength outcomes, facilitating supervised
learning approaches [105]. In the geotechnical domain, the National Geotechnical Database
(NGDC) and USGS National Water Information System offer extensive data on subsurface
soil, rock, and groundwater conditions, critical for data-driven modelling of underground
infrastructure. Additionally, condition assessment datasets such as the FHWA Bridge Con-
dition Database and various state-level pavement condition databases provide real-world
inspection data for infrastructure asset management [106–108].

Open-source platforms have emerged that support AI integration for practitioners
with limited coding expertise. OpenCV powers advanced image processing pipelines
essential for crack detection in structural assessment [109], and deep learning extensions
compound this capability through pixel-wise damage identification [110]. Tools such as
WEKA and Orange provide intuitive, visual interfaces that facilitate ML workflows without
extensive programming [111]. Together, these developments have democratised AI/ML
in civil engineering, enabling professionals to harness data-driven insights on structural
health that were previously limited by traditional methods [112].



Appl. Sci. 2025, 15, 10499 16 of 52

5. Applications in Sustainable Materials
5.1. Sustainable Binder Alternatives

Cement concrete, being the most consumed material after water globally, has an annual
production of approximately 30 billion tonnes. However, cement is the key ingredient
in concrete which accounts for significant global CO2 emissions, as producing 1 tonne of
ordinary Portland cement (OPC) generates an equivalent of 1 tonne of CO2 [113]. This
is leading to serious environmental concerns, making low-carbon alternatives necessary.
Several industrial and agricultural by-products are being considered partial or complete
substitutes for cement. The most frequently used materials, however, are fly ash (FA),
ground granulated blast furnace slag (GGBS), rice husk ash (RHA), metakaolin (MK),
silica fume (SF), bagasse ash, and wood ash (WA) [114–119]. Such materials decrease the
environmental impact of concrete, and in many cases, both strength and workability are
also enhanced.

One of these alternatives is geopolymers, which have generated a lot of interest as a po-
tential sustainable binder. Introduced in the late 1970s by Joseph Davidovits, geopolymers
are derived from the activation of aluminosilicate-rich materials (e.g., FA, GGBS, MK) with
alkaline solutions (e.g., sodium hydroxide, sodium silicate). This chemical reaction leads to
a three-dimensional aluminosilicate structure that has compressive strength equivalent to
or higher than OPC-based concrete [120].

Recent studies on industrial by-products and geopolymers have shown promise in
utilising these materials in sustainable binders; however, we need to have a standardised
mix design process and longer-term studies on durability. The following steps are to engage
in a collaborative process to determine the specific testing methods, look to integrate AI lead
optimisation following code-based provisions, and test when performance specifications
are required in uncertain environments.

5.2. AI in Sustainable Concrete

The primary focus of this section is to use AI within environmental assessment and
sustainable design practices, with an interest in how AI tools can help to alleviate environ-
mental impact. It also focuses on ML models that optimise the mix design of geopolymer
concrete, to further sustainability and performance. In civil engineering, AI is changing
how environmental assessment is practiced, so sustainable development becomes the main-
stream instead of an additional goal. AI tools such as Envision, developed by the Institute
for Sustainable Infrastructure (ISI), allow engineers to analyse concrete designs against
a wide range of sustainability indicators involving environmental, social and economic
elements. Envision’s decision-making process allows infrastructure professionals to eval-
uate their project performance across several sustainability standard measures that can
support sustainable designs and aid in meeting their sustainability regulation obligations.
Envision’s flexible decision-making process allows AI models to anticipate and evaluate
long-term environmental consequences of designs, such as CO2 emissions and energy
usage, and consequently, make decisions about alternatives that could mitigate future
harms [121].

AI also allows for early anticipation of long-term environmental impacts during the
design process, such as CO2 emissions and energy consumption. This enables engineers
to modify plans to minimise future damage. For instance, firms such as AECOM deploy
AI models to simulate effects and manage environmental risks, thereby enabling their
projects to achieve a high sustainability index because high sustainability has become more
important [122].

Although geopolymer concrete offers environmental benefits, its widespread use remains
limited due to a complex mix of design procedures and a lack of standardised formulations.
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Many ML models have been created to estimate the compressive strength of FA-based geopoly-
mer concrete with different levels of accuracy and complexity. Participants in the category
of ensemble learning, including Boosting (R2 = 0.96, RMSE = 2.04 MPa), Bagging (R2 = 0.97,
RMSE = 1.94 MPa), have always played a better role than single learners, such as ANN.
Notably, Khalaf, A. constructed an efficient FLNN with an R2 of 0.975 and RMSE = 3.87 MPa
across a diverse dataset of 189 samples [123]. Dao, D.V. (2019) employed an ANFIS model
and achieved relatively accurate predictions (R2 = 0.879, MAE = 1.655 MPa) [124]. A recent
hybrid model achieved the best results (R2 = 0.983, RMSE = 1.712 MPa) by hybridising RF
with GWO and XGBoost, demonstrating the capability of hybrid stacking models to predict
the complex response of geopolymer mixtures [125]. These results demonstrate how ensemble
and optimised AI methods can quickly, with a fast yet effective ROI, assist in the management
of the pandemic, accurate prediction, and mix design of sustainable concrete systems. The
LSTM–MPA and RF–GWO–Boost models all demonstrated the highest prediction accuracy
of ensemble and hybrid models, with R-squared greater than 0.97 and the lowest RMSE
values recorded. As predicted, traditional models like ANN and ANFIS performed lower
than expected. The best-performing models incorporated nine or more input features with
moderately to highly sized datasets, which highlights the value of high-quality, multi-variable
datasets (as summarised in Table 4).

Table 4. Performance comparison of ML models for predicting compressive strength of geopoly-
mer concrete.

Model Type R2 MAE (MPa) RMSE (MPa) Inputs Dataset Size References

Boosting 0.96 1.69 2.04 9.0 154 [126]
RFR 0.92 1.99 2.67 9.0 210.0 [127]

ANFIS 0.879 1.655 2.265 4.0 210.0 [124]
Optimised FLNN 0.975 - 3.87 10.0 189.0 [123]

RF–GWO–XGBoost 0.983 - 1.712 15.0 156.0 [125]
LSTM–MPA 0.994 - 0.8332 17.0 162.0 [128]

Gradient Boosting
(AML) 0.9651 1.1891 - 9.0 132.0 [129]

AdaBoost 0.944 1.259 2.506 8.0 154 [130]
ANN 0.921 - 2.52 6.0 263.0 [131]

RFR = Random Forest Regression, ANFIS = Adaptive Neuro-Fuzzy Inference System, FLNN = Functional Link
Neural Network, GWO = Grey Wolf Optimizer, XGBoost = Extreme Gradient Boosting, LSTM = Long Short-Term
Memory, MPA = Marine Predators Algorithm, AML = Automated Machine Learning, AdaBoost = Adaptive
Boosting, ANN = Artificial Neural Network.

At this stage, AI models can predict the performance of a concrete mix with a sufficient
level of accuracy; however, studies have mainly used small experimental datasets, and
many have not been validated against code-based options. Thus, for the following stage
of work, this involves creating large datasets and, in open-source form, assessing an
explainable AI approach to get regulatory acceptance, and linking performance predictions
back to concrete design via the provisions of Eurocode and ACI.

5.3. AI in Sustainable Mix Design Optimisation

This section considers the application of AI-based techniques to optimise the mixtures
of geopolymer and conventional concretes, especially when recycled materials are available
as supplementary cementing materials. Not only do AI models assist in improving mechan-
ical performance, but they can also yield more cost-effective, durable, and environmentally
beneficial outcomes by lowering raw material consumption and carbon emissions. Recent
studies confirm the critical role of AI in optimising the mix design of geopolymer concretes,
especially those incorporating recycled or industrial by-products. Golafshani et al. devel-
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oped machine learning models to accurately predict the CS of geopolymer RAC [132]. They
used ensemble learning techniques, especially XGBoost and light gradient boosting, and
identified testing age, natural fine aggregate content, and recycled aggregate ratio as key
predictors. Their approach, based on a comprehensive experimental synthetic database and
SHAP analysis, enables reliable predictions and mix optimisation for sustainable concrete
applications. Marathe S. focused on geopolymer pervious concrete, incorporating agro-
industrial and construction demolition wastes. It employed hybrid AI models, particularly
RF and Gradient Boosted Regression Trees, optimised with the Firefly Algorithm to achieve
high prediction accuracy. The study emphasised the combined effects of GGBS, SF, W/B
ratio, and alkaline activator dosage on strength development, highlighting the potential of
intelligent models in designing sustainable and porous geopolymer concretes [133].

In the context of concrete technology, the value of AI models is demonstrated in
predicting material properties. The study investigated the use of ensemble and deep learn-
ing models, including ANNs, CatBoost, and Extra Trees, for predicting the compressive
strength of FA-based concrete. The ANN model achieved the highest accuracy (R2 = 0.93),
confirming its ability to capture complex, nonlinear relationships in concrete mix data.
Key influencing variables included NaOH molarity, cement, and fine aggregate content.
This research highlights how AI can support data-driven decision-making in concrete mix
design, especially when incorporating industrial by-products like FA [134].

An intelligent optimisation framework was recently developed for mix design of
alkali-activated (GGBS-FA) geopolymer concrete with a focus on compressive strength,
cost-effectiveness, and carbon emission reduction. By utilising RF, Gradient Boosting, and
BPNN models in conjunction with PSO, the authors have developed predictive models and
observed that the GGBS and sodium hydroxide content are the most dominant factors. The
platform efficiently produced mix designs providing a compromise between mechanical
performance of the material and economic and environmental advantages, highlighting the
role of AI in enabling sustainable, high strength geopolymer concretes [135].

In a new study on GGBS-based concrete, four models, DT, RF, Gradient Boosting, and
XGBoost, were developed to predict the CS. XGBoost was the most accurate model (R2 = 0.97),
showing the best prediction performance and stability. The implications of the model results
were also investigated through SHAP, which revealed that cement content, the curing age,
and W/C had the most significant effect. This application of explainable AI increases the trust
in model predictions or decisions and promotes transparency, making it a powerful tool for
mix design in sustainable construction [136].

These studies show that ensemble and hybrid AI models not only improve prediction
accuracy but also offer interpretability and flexibility for adjusting mix design parameters.
The use of SHAP and optimisation algorithms like PSO and Firefly enables data-driven
decisions that align mechanical performance with environmental and economic goals.
AI can facilitate the efficient use of materials and decrease carbon footprints. However,
current applications of AI tend to be case-specific in nature, often neglecting the trade-offs
between performance and cost. Therefore, future research should look to build more
multi-objective frameworks that evaluate materials based on strength, durability, price,
and emissions, while also examining alignments with sustainability rating systems and
building regulations.

5.4. ML in the Recycling and Reuse of Construction Waste

With the never-ending requirements and developments in concrete construction,
the demand for structures continues to grow, which further generates a vast amount of
C&D waste in cities. In the UK in 2022, around 59.4 Mt of C&D waste was produced, of
which about 55.0 Mt was recovered. Most of that C&D waste was produced in England,
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accounting for about 53.9 million tonnes. Management and reduction are a global issue,
particularly in densely populated city centres [137]. AI offers a scalable, accurate, and
flexible solution to the complex nature of C&D waste management. Increasing accuracy
compared to traditional methods, AI enables users to make data-driven decisions on the
spot, assisting in shifting construction methods toward more sustainable, circular, and
cost-effective building practices. Recent studies have demonstrated how ML techniques,
more specifically deep learning (CNN, YOLOv7, Faster R-CNN) and traditional classifiers
(SVM, RFs), have greatly increased the automated classification of C&D waste using image
recognition and feature extraction. These models improve accuracy, speed, and sorting
in real-time applications. From a computer vision and AI perspective, improvements
in C&D waste management at a sustainable and scalable level are finally possible [48].
Alongside image-based systems, there are emerging studies that apply ML clustering (such
as t-SNE and PCA) and chemical composition data to classify types of C&D waste, and to
forecast the behaviours of contaminants. An ANN model was able to successfully predict
hazard quotients from the chemical composition of basic oxides, illustrating that there are
useful additional benefits for hazard assessment and sorting in risk assessment and sorting
systems [138]. On an even larger environmental scale, semantic segmentation of remote
sensing imagery has been employed to automatically identify illegal C&D waste landfills.
One study utilising models such as DeepLabV3+ and HRNet detected 52 (illegal) landfills
across Shenzhen, China, with 96.3% accuracy and an IoU of 74.6%. This study showcases the
potential of AI for aiding in compliance and environmental oversight [139]. In addition to
this work, Iyiola, Shakantu, and Daniel examined how digital technologies (DTs), including
AI, ML, Blockchain, Internet of Things (IoT), Robotics, Building Information Modelling
(BIM), and computer vision, could improve C&D Waste Management overall. They found
that AI and ML supported three main roles, including: real-time monitoring, material
classification, C&D waste prediction, lifecycle analysis, and design validation [139].

All these AI applications help contribute to sustainable construction with waste man-
agement and increased traceability. In addition, this research has built on these applications
to develop intelligent optimisation of recycled aggregate concrete (RAC). As a result of
AI ML models, data-driven design is possible and includes every aspect of compressive
strength, durability, carbon footprint, and cost, unlike fixed mix design rules. The frame-
works were often multi-objective approaches that combined improvements to the design
used for RAC with optimised algorithms, also from an ensemble learning perspective, to
develop a significant, sustainable approach toward being able to design concrete made
using recycled materials and low-carbon binders [140]. One such approach was proposed
by Zhang et al. [141] who developed a method to use big data analytics, including an
LCA of RAC mix designs to evaluate environmental performance. The findings concluded
that transportation distance is a significant factor influencing total carbon emissions in
RAC, and strength categories C30 performed the best in the trade-off between sustainabil-
ity/structural performance. In contrast, Liu et al. [142] applied a multi-objective Particle
Swarm Optimisation (CMOPSO) approach to the simultaneous optimisation of compres-
sive strength, cost, emissions, and energy intensity, pointing to inherent trade-offs between
mechanical and environmental objectives. Further work explored hybrid ML models (e.g.,
ANN–SVR, GWO–SVR) for predicting mechanical properties of RAC. Among these, the
GWO–SVR model demonstrated the best performance (R2 = 0.9056), indicating that the
potential for using explainable AI tools to support accurate and sustainable RAC mix
design is a reality [143].

ML techniques can enhance waste classification systems and the design process for
RAC; nonetheless, any research that focuses on field-scale projects with verified RAC
classification systems and lifecycle assessments is scarce. Future work should focus on
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large-scale pilot projects, databases of RAC, and hybrid models incorporating AI and
environmental impact models.

5.5. Scalability of AI in Resource Constrained Environments

In developing and underdeveloped countries, the data regarding the computational
infrastructure is very limited, which require various tailored and scalable approaches
to validate the data. Recent research studies have signified practical applications that
can help regarding these constraints. Using light weight and parameter efficient models
such as adapter modules or low rank adaptations applied to foundation models like
SAM for crack detection can enable powerful inference using minimal computational
data [144]. The research showed that CrackSAM performs significantly better than all
state-of-the-art models on datasets with generated noise and datasets that have never
been seen before. Particularly in difficult situations like low light levels, shadows, road
markings, construction joints, and other interfering issues, CrackSAM shows exceptional
performance. These cross-scenario results offer fresh concepts for creating vision models in
civil engineering and highlight the exceptional zero-shot capacity of foundation models.
Another work regarding built resistant infrastructure, a MEC (mobile edge computing)
was introduced that can store data and improve the applications of federate learning
to detect and improve the defects [145]. The model allows decentralisation and privacy-
preserving model training using smart phones which can be helpful for providing insightful
information for projects like road-condition digital twins in Sri Lanka. Similarly, in countries
like Africa, local AI manufacturing techniques like ECI (edge computing infrastructure) is
advancing to process the data sources and reducing latency and reliance on cloud services.
These ML techniques for developing countries focus on transfer learning that may be
helpful, but they must account for the biases in pertaining data and high adaptation costs.
While AI holds promise for sustainable development, its scalability must be considered to
ensure the extension of their benefits on a global level.

Artificial intelligence applications in sustainable materials research have shown sig-
nificant potential for mix design and mechanical performance prediction, especially with
the use of ensemble and hybrid models for geopolymer concretes and recycled aggregate
concretes. However, many of these models are still limited by the small size of labora-
tory datasets. In many cases, they have not been validated outside of the laboratory to
demonstrate performance across different environments. As a result, the motivation to
test these models on-site has not been realised because there is no standard formulation,
material specification, or regulatory guideline for large-scale adoption, like practices in
geotechnical engineering. Additionally, the reliability of these models is constrained by
the relatively small datasets available. Material design is also trust-based; practitioners
need access to larger databases and explainable models to regain confidence. Continuing to
bridge sustainability goals with structural performance and lifecycle carbon assessments,
AI in material engineering will provide a foundation for interconnected applications in
civil engineering fields.

While AI models such as ensemble and hybrid approaches achieve high predic-
tive accuracy for compressive strength and mix optimisation, most studies remain lim-
ited to small laboratory datasets without validation against large-scale field projects.
This gap questions the immediate transferability of results to practice, highlighting the
need for open-access, standardised databases and explainable models linked to code-
based provisions.
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6. Applications in Structural Engineering
6.1. Structural Health Monitoring

SHM is significantly enhanced by AI advancements in the form of real-time condition
monitoring through various sensor technologies such as vibration-based sensors, strain
gauges, wireless sensor networks, and optical fibre sensors [146]. Technology makes it
possible to obtain accurate, continuous data required for monitoring structural health. AI
and ML algorithm-based predictive maintenance with such methods as anomaly detection
procedures, autoregressive integrated moving average (ARIMA), and LSTM models gives
reliable predictions of structural degradation and enhances anticipatory interventions [147].
In addition to the use of AI for real-time monitoring, sensor optimisation and strategic
placement play a critical role in improving data quality and cost-efficiency of SHM systems.
Optimisation algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimisation
(PSO) have been extensively applied to determine optimal sensor locations, minimising
the number of sensors required while maximising monitoring effectiveness [148]. These
metaheuristic approaches account for multiple objectives, including sensitivity to damage,
redundancy, and environmental robustness, ultimately enhancing both monitoring accuracy
and economic feasibility [149–151].

Most studies rely on laboratory datasets or controlled experiments, which limit gener-
alisation to large-scale field applications. Sensor placement optimisation and data fusion
techniques remain underdeveloped. Future research should focus on integrating SHM with
digital twins for continuous monitoring, validating ML models on long-term field datasets,
and developing low-cost, energy-efficient sensor networks to enable scalable deployment.

6.2. Damage Detection and Structural Diagnostics

Deep learning, i.e., CNNs, improved structural damage detection markedly by au-
tomating image-based inspection using images taken by drones and advanced computer
vision algorithms [152]. Figure 5 illustrates a representative CNN architecture for crack
detection, where image input passes through successive convolutional, pooling, normal-
isation, and activation layers before final classification using softmax [153]. Reported
performance in key studies includes F1 scores above 0.85, with precision and recall fre-
quently exceeding 0.80 [154–156]. Nonetheless, CNNs can suffer from overfitting, especially
when trained on small or homogeneous datasets, which limits their generalisation to new
conditions. To mitigate this, dataset diversity and augmentation techniques such as rotation,
flipping, and synthetic data generation are often employed to enhance robustness [155,157].
AI-enabled non-destructive testing (NDT) techniques, including ultrasonic testing, infrared
thermography, and ground-penetrating radar, provide faster and more accurate structural
diagnostics compared to traditional manual inspection methods [158,159]. ML-based re-
gression models and deep regression CNNs are also used to quantify damage severity and
identify the location of defects. This capability supports targeted maintenance planning,
helping reduce both maintenance downtime and associated costs [156,157].

CNN-based approaches require large, diverse image datasets, but available datasets
are often small or site-specific. Transferability across different structures and environmental
conditions remains limited. Research should prioritise dataset standardisation, transfer
learning to improve cross-structure applicability, and explainable AI methods to ensure
that automated diagnostic tools are accepted in practice.
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Figure 5. Overall architecture: L#: layers corresponding to operations (L1, L3, L5, and L7: convolution
layers; L2 and L4: pooling layers; L6: ReLU layer; L8: softmax layer); C#: convolution; P#: pooling;
BN: batch normalisation [153].

6.3. Load and Response Prediction

AI techniques notably improve load and response prediction capabilities, particularly
in seismic response modelling through hybrid simulation methods and deep learning mod-
els that simulate earthquake-induced structural responses [147]. Advanced approaches,
such as physics-informed machine learning (PIML), integrate domain knowledge with
data-driven algorithms, resulting in models that uphold physical consistency while improv-
ing generalisation. In wind engineering, ML-driven computational fluid dynamics (CFD)
analyses facilitate precise wind load predictions and aerodynamic assessments, enhancing
structures resilience against extreme weather. Similarly, AI-based fatigue life prediction us-
ing recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM) architectures
significantly improve the accuracy of structural lifespan estimation, supporting optimal
resource allocation and proactive maintenance planning [160].

To ensure alignment with design codes and regulatory standards, AI models are val-
idated using benchmark datasets, cross-validation techniques, and comparison against
analytical solutions or high-fidelity finite element models. Additionally, uncertainty quan-
tification and sensitivity analyses are employed to assess robustness, while compliance
checks with Eurocode or ACI guidelines help confirm that AI-predicted responses meet
structural safety criteria [161].

Many ML models neglect physics-based constraints, leading to predictions that may
not align with structural safety codes. Benchmarking against traditional FEA or code provi-
sions is often insufficient. Physics-informed ML models (PINNs) and hybrid approaches
should be developed to combine computational efficiency with physical interpretability,
ensuring compliance with Eurocodes and other regulatory standards.

6.4. Optimisation of Structural Design for Sustainability

AI and ML algorithms optimise structural designs for sustainability by aiding the
selection of eco-friendly materials and techniques, significantly reducing carbon footprints
through accurate embodied carbon assessments and integrated lifecycle analyses [162].
These models allow engineers to evaluate multiple mix designs incorporating supple-
mentary cementitious materials such as fly ash, ground granulated blast furnace slag
(GGBS), silica fume, or recycled aggregates. They enable direct estimation of embodied
carbon impacts during the early design phase. Figure 6 illustrates a generative approach
that automatically proposes novel concrete formulations based on targeted strength, age,
and environmental performance criteria [163]. Generative design algorithms using rein-
forcement learning can explore extensive design spaces to recommend optimal structural
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configurations that balance mechanical performance, cost efficiency, and sustainability
goals [164,165].

 

Figure 6. Generating new concrete formulas and evaluating their properties [163].

Cost-effectiveness analyses using multi-objective optimisation algorithms like NSGA-
II and SPEA2 ensure sustainable designs meet both structural performance targets and
economic viability [166]. Lifecycle cost analysis (LCCA), combined with embodied carbon
optimisation, enables long-term sustainability goals that consider both embodied and
operational carbon emissions over the structure’s lifespan [167]. Table 5 illustrates a
comprehensive comparison of embodied carbon and cost for different concrete mix designs
using data from the Inventory of Carbon and Energy [168].

Table 5. Embodied carbon, cost, and strength trade-off for various cement replacements in concrete
mixes [168].

Concrete
Mix

Cement
Replacement

Embodied Carbon
(kgCO2e/m3)

Material Cost
(£/m3)

Compressive
Strength (MPa)

C30/37 0% (ordinary
Portland cement) 320 £110 37

C30/37 30% GGBS 260 £105 36
C30/37 50% GGBS 220 £100 34
C30/37 70% GGBS 180 £98 32
C30/37 20% Fly Ash 270 £106 36
C30/37 10% Silica Fume 250 £108 38

C30/37 40% Recycled
Aggregate 290 £102 35

Existing optimisation frameworks often overlook the trade-off between embodied
carbon, cost, and structural safety. Many models remain theoretical and lack real-world
case validation. Future work should emphasise multi-objective optimisation validated on
real construction projects, integration with Building Information Modelling (BIM), and
frameworks that explicitly balance sustainability with long-term durability.

6.5. Risk Assessment and Resilience

AI methodologies are highly useful in probabilistic risk analysis with Monte Carlo
simulations and Bayes’ networks for evaluation and mitigation of uncertainties in struc-
tural performance. Digital twin technology integrated with AI simulation ensures better
scenario analysis, which enhances structural resilience by pre-emptively responding to
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potential disaster scenarios [169,170]. Structural risk management is increasingly enhanced
by AI-driven decision-support systems, which integrate predictive analytics, probabilis-
tic modelling, and real-time data processing. These systems leverage ML algorithms,
Bayesian networks, and scenario-based simulations to evaluate multiple risk scenarios
under uncertainty, allowing engineers and decision-makers to proactively identify vulnera-
bilities, optimise maintenance strategies, and improve operational resilience. By reducing
uncertainties associated with structural performance, environmental conditions, and ag-
ing infrastructure, AI-supported frameworks significantly strengthen the reliability and
sustainability of long-term structural asset management [171,172].

Current AI-based risk frameworks are often tested under simulated scenarios rather
than actual hazard events, and uncertainty quantification is still underdeveloped. Future
studies should explore probabilistic ML approaches, integrate climate change projections into
resilience modelling, and enhance the use of digital twins for real-time risk management.

6.6. Automated Construction and Robotics

AI-driven robots revolutionise construction productivity with computer vision-based
automated additive manufacturing and robotic assembly cells. Notable case studies include
the 3D-printed pedestrian bridge in Madrid, developed by Acciona, which demonstrated
the feasibility of large-scale printed concrete infrastructure [173], and robotic rebar tying
systems employed by Skanska in the United States, which have improved reinforcement
efficiency and reduced labour-intensive tasks [174]. Additionally, computer vision-enabled
systems and wearable sensors enhance on-site safety by enabling real-time hazard detection,
reducing accident rates, and ensuring regulatory compliance. Autonomous inspection
robots and drones enhance inspection with quick, frequent, and accurate analyses [153].

While promising, robotic construction applications remain limited to experimental
projects. High implementation costs, lack of skilled operators, and safety regulations
restrict wider adoption. Future research should focus on cost-effective robotic systems, AI-
driven safety compliance checks, and integration of robotics into mainstream construction
workflows supported by real-world case studies.

6.7. Advanced Structural Analysis and Design

AI-assisted finite element analysis (FEA) and modelling techniques enhance structural
analysis and design processes by providing accurate parameter identification, surrogate
modelling, and optimisation capabilities that significantly reduce computational costs
while improving accuracy [147]. ML-enhanced structural dynamics analyses can effectively
predict complex modal behaviours under varying loading scenarios and optimise vibration
control systems. Reinforcement learning algorithms allow for adaptive structural design
strategies that respond to changing performance demands in real time [175–177].

Furthermore, AI-powered topology optimisation methods enable the generation of
structurally efficient geometries by minimising material usage while maintaining safety
and serviceability The use of surrogate modelling techniques, such as Kriging and support
vector regression (SVR), further accelerates parametric design optimisation by approxi-
mating high-fidelity finite element (FE) models. As shown in Figure 7, SVR can effectively
approximate structural displacements across different parameter settings, with demon-
strated accuracy in predicting probabilistic constraints under varying uncertainties. In their
proposed SVR-TO-APMA framework, SVR models were trained using Latin Hypercube
Sampling and integrated with an accelerated performance measure approach (APMA) to
improve computational efficiency in reliability-based topology optimisation (RBTO). The
results confirm that optimal SVR parameters significantly influence prediction accuracy,
with the model yielding relative errors below 7% and strong agreement with FE analysis
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across multiple reliability levels. Such hybrid approaches not only reduce computational
burden but also ensure robust structural performance under uncertainty [178]. Table 6
illustrates a simplified comparison of conventional design versus AI-assisted optimisation
outcomes for a reinforced concrete beam.

 

Figure 7. Scatter points of predicted SVR model and computed FE for three different shape parameters
of SVR (A) σ = 1, (B) σ = 2, and (C) σ = 5 for structure [179].

Table 6. Comparison of conventional versus optimised beam design. Optimisation (via shape and
prismatic beam algorithms) yields a 38% reduction in embodied carbon with ~24% less concrete
and ~22% less steel relative to standard design practices, actuated through AI-informed parametric
strategies [180].

Design Type Concrete
Volume (m3)

Reinforcement
(kg)

Embodied Carbon
(kg CO2e)

CO2 Reduction
(%)

Conventional
Beam 12.5 1800 12,500 –

Optimised
Prismatic 9.5 1400 7750 38%

By integrating AI-driven optimisation and adaptive analysis tools, structural engineers
are empowered to generate innovative, resource-efficient, and sustainable designs that
would be impractical or impossible with traditional trial-and-error approaches. Modern AI
frameworks leverage surrogate-assisted optimisation to explore vast, multidimensional de-
sign spaces, allowing rapid evaluation of structural performance, cost, and environmental
sustainability during the design phase. As shown in Figure 8, AI applications support both
design and operational stages across different sustainability tiers, enabling smart control,
fault detection, and load prediction in addition to early-stage optimisation [181,182].

 

Figure 8. AI integration in building sustainability. AI is applied during both design and operational
stages. Design stage focuses on optimising decisions from the three tiers, while operational stage
includes smart control, fault detection, and load prediction [182].
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Significant progress has been made in structural engineering through advancements
in crack detection with CNN, sensor-based SHM, and hybrid simulations guided by SHM
for load prediction. These techniques are generally automated, reducing the need for
manual inspections with high accuracy, and they also enhance safety. However, a key
issue is the limited transferability of models trained on narrow datasets to real-world
applications. When relying on models for standards like Eurocode or ACI, their poor
performance transferability can be a critical problem. Another challenge is that machine
learning methods are often seen as “black boxes,” offering little interpretability, especially
when safety is involved. Regardless of technical, regulatory, or ethical hurdles, transparency
in AI systems that indicate safety remains essential, much like in environmental monitoring,
where regulatory oversight is crucial for addressing biosphere and climate change issues.
Future progress depends on developing explainable AI and physics-informed AI, which
will help bridge research models and practical design, ensuring consistency in safety and
sustainability practices.

Many AI applications in structural engineering, particularly CNN-based crack detec-
tion and SHM, demonstrate excellent accuracy in controlled settings but lack generalisation
to diverse real-world conditions. Without harmonisation with Eurocode or ACI design
requirements, their adoption will remain constrained.

7. Applications in Geotechnical and Environmental Engineering
7.1. Slope Stability Analysis Using ML

Slope stability evaluation plays an important role in the geotechnical engineering field,
with traditional approaches relying on limited equilibrium, finite element, or statistical
methods. However, these approaches are problematic in their ability to account for the non-
linear feedback loops between geological and environmental conditions that influence slope
behaviour [178]. Since the late 1990s, increasing applications of AI have been considered.
The early work by Ni et al. using fuzzy ANN models incorporated thirteen input vari-
ables related to topography, geology, meteorology, and environment, yielding promising
results [183]. In more recent years, several researchers have explored various ML models
(primarily ANN, SVMs, DTs, RFs, ELMs, ANFIS, and hybrid approaches) to predict the
factor of safety and slope failure. Primary predictive features include slope angle, cohesion,
internal friction angle, pore water pressure, and seismic loading. Recent models had some
limitations that can affect the generalizability of the models, such as dataset imbalance and
size. Additionally, because these are synthetic datasets, they do not encapsulate all the
real-world geotechnical conditions, which could influence discrepancies in the predictions.
There is also the risk of overfitting, specifically with complex models such as ANNs that
will perform well on training data but likely struggle with new unobserved data. To combat
these issues, geotechnical validation is necessary; verification of the model predictions is
essential to ensuring reliable and applicable predictions in real-world engineering scenarios
by seeking out comparisons to field data and subject matter expertise [184–194].

As an example, Meng et al. proposed a 3D slope stability prediction model based on
an ANN-based software called “SlopeLab”. This software is valuable to engineers because
it provides the ability to estimate FS3D or FS2D in addition to incorporating geometric and
material variables (Figure 9). Because the model was found to be very accurate (R > 0.999,
RMSE < 0.15) and because it was implemented on a GUI-based software, slope stability
can be evaluated promptly and taking into consideration 3D aspects so that engineering
decisions can be made easily [189].
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Figure 9. Results data for undrained slope [189].

Another comparison of models was done by Huang et al. involving SVM, RF, CNN,
and LSTM models. They reported LSTM to have the best modelling accuracy (0.9827) and
lowest RMSE (4.45%) (Figure 10). This showcases LSTM‘s potential to be able to extract
temporal and spatial features better than traditional models [193].
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Figure 10. Comparison of various ML models [193].

Hybrid models were also very interesting. For instance, Lei et al. proposed a PCA-
PANN model that assimilates ANN and PSO optimisation by Principal Component Analy-
sis, resulting in a R2 = 0.971 [192]. In ANN models with PCA, high accuracy usually means
lower interpretability. ANN is a black-box model, which makes it difficult to understand
how individual features, that is, slope angle, cohesion, and so on, make contributions to
predictions. To improve interpretability without losing accuracy, we can employ inter-
pretability models such as SHAP, LIME, and sensitivity analysis, which can explain how
each input affects the decision of the model. This provides transparency and usability
in practice. In civil engineering practice, the feasibility of explainable AI tools such as
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SHAP and LIME remains mixed. While they successfully identify influential variables in
lab-scale datasets (e.g., water–cement ratio in concrete mix design, or soil cohesion in slope
stability), practitioners often require that these insights correspond directly to code-based
provisions or physical models. For instance, a SHAP ranking of features may highlight
curing age as dominant, but unless this aligns with Eurocode-based durability models,
practitioners may be hesitant to adopt the tool. Therefore, explainability methods should
not only improve transparency but also demonstrate regulatory alignment and physical
plausibility before they can be widely adopted in practice. There is also the AN-MPA model,
which incorporates ANN and the Marine Predators Algorithm, and was performed for
probabilistic slope analysis during seismic loading and resulted in a R2 = 0.9931 [194]. The
ensemble models, and primarily the RF and Gradient Boosting models, were demonstrated
to work in the studies by Yadav et al. and Karir et al. with classification accuracies up to
96% and good regression results (R2 ≈ 0.84), meaning they are robust models for predicting
slope stability for natural and man-made slopes [195,196].

Slope stability prediction has seen various ML models applied, with their performance
and strengths depending on model architecture, input features, and dataset characteristics
(Table 7). For example, the hybrid models ANN-ICA and ANN-MPA achieved the highest
prediction accuracy. In contrast, tree-based models like RF and XGBoost performed well
when the dimensionality was limited. Deep learning architectures such as CNN and LSTM
have also been used on large datasets to analyse complex soil behaviour. Notably, LSTM
models have the advantage of retaining memory over time steps, making them ideal for
modelling events like progressive slope instability across different variables. The literature
suggests that ML models are particularly useful, especially when employing ensemble or
hybrid methods, in enhancing slope stability prediction. From modelling nonlinearity to
integrating various data types and delivering timely, accurate predictions, they represent a
significant advancement for geotechnical engineering practice. Future work should focus
on constructing large, open-access databases of slope stability, integrating explainable
AI tools, and combining ML with physical models to enhance their trustworthiness and
acceptance in the engineering practice context.

Table 7. Various ML models for slope stability prediction.

Study Model Used Performance Advantages Limitations Notes

Meng et al. [189] ANN R2 > 0.999,
RMSE < 0.15

Accurate 3D slope
stability prediction;

GUI support

No pore pressure
considered;

homogeneous
slopes only

Trained on
dimensionless

parameters using
classical charts

Ahangari Nanehkaran
et al. [190]

MLP, SVM, KNN, DT,
RF MLP: R2 = 0.9

Comparison of
multiple ML models;

MLP showed best
results

Limited to
100 slope cases

Applied to real slope
data from Iran’s Fars,
Isfahan, and Tehran

provinces

Kardani et al. [191] Hybrid Stacking
Ensemble AUC = 90.4%

Combines multiple
optimised ML

models for better
performance

Model complexity;
optimisation cost

Used synthetic and
field datasets;

applied LVQ for
feature ranking

Lei et al. [192] PCA-PANN R2 = 0.971
Feature reduction via
PCA; optimised with

PSO

Limited dataset size
(307 cases)

Slope angle, cohesion,
and pore pressure

most sensitive

Bardhan and
Samui [194] ANN-MPA R2 = 0.9931,

RMSE = 0.0233

Probabilistic analysis;
strong in seismic

analysis

Search space
selection critical for

MPA

Used for Indian
Railways

embankment slope

Kasa and Mohd [197] ANN, ANN-ICA,
ANFIS

ANN-ICA:
R2 = 0.998,

RMSE = 0.041

Hybrid model
improved ANN

performance

ANN without
optimisation

underperformed

PLAXIS used to
generate dataset for

ML training

Kumari et al. [198] ANN, ANFIS ANFIS: R2 = 0.9999,
RMSE = 0.0308

Very high accuracy;
real soil data

High data
requirements for

ANFIS

Used TIC, RAE,
RRSE, and LMI as

performance metrics
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Table 7. Cont.

Study Model Used Performance Advantages Limitations Notes

Lei et al. [199] Improved SVR R2 = 0.901,
RMSE = 0.133

Hyperparameter
tuning via grid

search

Needs more
development for

field use

γ found to be most
influential variable

Yadav et al. [195] RF, Bagging,
Boosting

Accuracy = 96%,
R2 = 0.84

Robust under
dimensionality

reduction

High
computational cost

Compared
classification and

regression
perspectives

Karir et al. [196] SVR, ANN, RF, GB,
XGBoost

XGBoost best,
SVR worst

Compared models on
natural and

man-made slopes

Natural slopes harder
to model accurately

Tree-based models
outperformed others

Tien Bui et al. [200] MLP, GPR, MLR,
SLR, SVR

MLP: R2 = 0.9939,
RMSE = 0.7039

Comprehensive
model comparison

Single-layered
slope case

Used WEKA and
Optum G2 for

simulation

Huang et al. [193] LSTM, CNN,
SVM, RF

LSTM best
(lowest RMSE)

Captures global
temporal features

High training data
requirements

LSTM showed higher
accuracy than CNN,

SVM, RF

7.2. AI and ML Applications in Groundwater Modelling

Groundwater resources are essential for agriculture, industry, and drinking water, and
they also greatly influence environmental and socioeconomic systems [199]. Groundwater
level (GWL) indicates water availability but is difficult to forecast because of its reliance on
complex climatic and hydrogeological interactions. AI has become a very useful alterna-
tive to traditional numerical models for predicting GWL, as these models face challenges
like data shortages, complex calibration needs, and boundary condition issues [200]. AI
methods, especially using machine learning and soft computing techniques, are potentially
better at capturing the nonlinear and high-dimensional aspects of these systems [201,202].
AI models need fewer input parameters and tend to deliver more accurate results than
numerical models, making them valuable tools for practical water resource management.
Recently, AI has been increasingly applied in groundwater modelling across various cli-
mates and geological conditions. Despite these advances, many regions still lack AI-based
studies [201–204]; therefore, further application and corroboration of AI-based models are
warranted [205].

Many studies have effectively used ANN models to perform groundwater level fore-
casting in different regions on a global scale. In India, for instance, a study used ANN
with a large training dataset with the Levenberg–Marquardt (LM) training algorithm to
contend with historical rainfall (Raf) and antecedent GWL to make long-term monthly
predictions [206]. Similar success in Tunisia, where researchers have evaluated ground-
water forecasting with a few input variables (Raf, EVP, and antecedent GWL) for monthly
GWL predictions [207]. In Pakistan, there was a strong daily groundwater-level prediction
performed with a large ANN based on meteorological data (temperature, solar radiation,
humidity, wind speed) despite complex interconnectedness within the groundwater system
correlation with hydro accumulated historical datasets, particularly when the training
networks employed tangent sigmoid transfer functions and optimal partitioning recur-
sive statistical analysis of datasets. Studies within the United States also employed both
feed-forward and RNNs to relate hour and daily groundwater level estimates, showing
that ANN was effective, particularly given the ability to identify cycles and lags effec-
tively [208,209].

In this context, tree-based machine learning models, especially RF, are highly effective
at estimating groundwater contamination levels. These models can identify the most
critical factors that influence contaminant concentrations; they may also help trace pollution
sources and pinpoint hotspots. Additionally, unlike time-series prediction models such as
ANN, RF models can classify and predict contamination risks, providing practitioners with
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early warning signals and potential strategies for mitigation [210]. Deep learning techniques
like LSTM networks are increasingly popular and reliable for long-term groundwater level
(GWL) forecasting. LSTM models have consistently outperformed traditional models,
offering higher accuracy by capturing both temporal dependencies with monthly and
hourly data; case studies have been conducted in South Korea, Italy, and Virginia. Hybrid
models have also been developed to enhance prediction accuracy. By combining ANN with
Genetic Algorithm (GA) or SVM with Particle Swarm Optimisation (PSO), improved results
were achieved through optimised internal parameters. Studies in India and Canada have
validated these hybrid frameworks as practical methods for attaining greater prediction
accuracy compared to standard models [205].

Current groundwater studies related to AI do demonstrate the predictive power and
even generalisable powers of AI; however, the level of application is regional, and the
studies are currently restricted by incomplete datasets (in terms of the length and extent
of study), short (temporal) observations, and a lack of validation at the field scale. Future
studies should develop global datasets for groundwater, expand long-term forecasting
models of groundwater flow and storage, and explore hybrid application frameworks that
use AI-based predictions and adhere to hydrogeological principles that can also facilitate
design and the provision of solutions.

7.3. AI in Flood Prediction and Resilience Modelling

For efficient flood control and prompt public warnings, urban flood prediction is
essential. Issues associated with conventional mechanistic models which rely on detailed
physical and mathematical representations of hydrological and hydraulic processes, include
their restricted real-time capabilities and hefty processing costs. ML can significantly com-
plement traditional approaches by handling data uncertainty, reducing model complexity,
forecasting real-time floods, adapting better scalability and enhancing decision-making
tools. The main causes of flooding include climate change and urbanisation. Due to the
interdependence between temperature and precipitation, climate change-induced extreme
rainfall and temperature events can lead to urban pluvial floods [211]. The 1D and 2D
models combined with machine learning (ML) techniques to thoroughly investigate flood
dynamic features and hazard analysis in metropolitan locations, particularly near the River
Thames in London [212]. This study showed how a hybrid hydrodynamics-ML model
can increase the accuracy of flood predictions and hazard analyses. Flood scenarios were
simulated for the River Thames in West London using high-resolution Lidar photos and
advanced modelling. The socioeconomic information was used to precisely map areas that
were at risk. The 1D and 2D hydrodynamic models integrated with high-resolution Lidar
data and calibrated with exact parameters showed remarkable accuracy in forecasting flood
dynamics. High predicted accuracy was demonstrated by the 1D model validation using
2008 flood data, with an RMSE of 0.960 m3/s and an MAE of 0.332 m3/s. Error measure-
ments were greatly impacted by the 2D model’s sensitivity to computational time steps.
The advanced ML models, such as the Extra Trees–Principal Component Analysis (ET-PCA)
model further bolstered confidence in the validity of the study findings by exhibiting nearly
perfect predictive validity with an R2 of 0.999. This project aims to improve flood dynamics
forecast accuracy, analyse hazards and perform flood risk zoning, evaluate flood risk based
on frequency analysis, and incorporate socioeconomic data into flood hazard analysis by
using hybrid technique of integrating hydrodynamic models and ML predictive.

The rise in temperature is causing a significant increase in rainfall intensity and snow
melting rates, ultimately resulting in higher evaporation and groundwater levels. Similarly,
many environmental issues such as population growth, land use changes, rising water
demand, and excessive groundwater extraction are worsened by rapid urbanisation [211].
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The rate and amount of water that reaches drainage systems are ultimately impacted
by these land use changes, which also modify soil retention and drainage capacity and
interfere with hydrological connection. A typical flowchart used for ML modelling for
urban flood forecasting control system is shown in Figure 11 [213].

 

Figure 11. Diagram of urban flood forecasting control system (license no. 6075870216257) [213].
(a) Implementation process; (b) foreseeable period.

A study conducted by [214] shows that in coastal cities, regions with urbanisation rates
exceeding 80% face a flood risk 2.5 times higher than those with urbanisation levels below
20%. CNN are among the most extensively studied algorithms for urban flood prediction,
particularly effective in processing image and spatial data. RF demonstrate high robustness
against noisy data and outliers. LSTM networks are well suited for time-series forecasting
due to their ability to capture temporal dependencies. SVMs generally perform well when
working with smaller datasets [213]. K-means clustering algorithm and RF models were
trained employing the flood type derived from clustering as the dependent variable and
the rainfall associated with past flood episodes as the independent variable [215]. They
deciphered the flooding mechanism using a hybrid approach that combined ML techniques
with physically based modelling. Parameters of the hydrological model were modified
in response to dynamic rainfall data. The results of the proposed method indicate its
effectiveness in simulating the flood process, with probabilistic integration yielding more
accurate flood forecasts than ensemble averaging. The datasets were used to train ANN
and DT algorithms to classify the precipitation at the same time when RNN and ES-LSTM
models were used to forecast hourly rain measurement [216]. The results showed positive
outcomes of all the models with accurately predict the precipitation rate of 96.5% and
84% by ANN and DT models, respectively. The suggested model could predict the rain
incidence well in time. A rapid urban flood inundation forecasting model was developed
by integrating ML algorithms with a hydrodynamic-based urban flood model [217]. The
data outputs from the hydrodynamic model and the rainfall characteristics were applied to
train the ML models like RF and K-nearest neighbour KNN. By predicting the flood water
volume with 10% of the mean relative errors, a hybrid model of these algorithms allowed
decision-makers to take more suitable and timely precautions against flooding. ANN and
LR models were trained using available data to create a connection between the historical
flood record from impacted areas and specific factors such the local terrain, climate, and
land use planning [218]. The focus of the study was to develop a flood prediction chart.
The results showed that the ANN model predicted the flood with an accuracy rate of
76.4% compared to the LR model whose accuracy rate was 62.5%. According to the
research, places with significant flood susceptibility are primarily found in areas with high
levels of human activity, such as agricultural and populated land areas. A comparison of
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performance evaluation of different ML models including RF, NB and XGBoost for flood
prediction was established by [219]. The historical data was collected from 50 different
topographic areas and analysed considering the factors like precipitation, sediments and
their transport, land use and coverage, and topography of the area. The higher accuracy
of 84.7 was achieved by RF model followed by the 83.1% accuracy of XGBoost model.
The efficiency of the NB model was 82.1%. All possible flooding scenarios must be fully
covered by the training data to guarantee the accuracy of prediction results. Table 8 shows
a summary of previous research as mentioned above.

Table 8. Studies on use of AI techniques in flood control prediction.

Study Research Focus Study Area ML Applied
Techniques Ref.

Flood Risk Assessment
Comparison b/w

Hydrodynamic Models
and ML Models

River Thame
West London

ET-PCA Extra
Trees–Principal

Component
Analysis Model

[212]

Coastal Flood Risk
Assessment

Adaptation Strategies to
mitigate Coastal

Flooding

Coast Line of
South Korea RF, ANN, KNN [214]

Flood Forecasting Based
on Precipitation

Hybrid Combination of
Physical Models with

ML models

Jingle, Yellow River
Basin, China K-means cluster, RF [215]

Rainfall Prediction to
Control Floods

Rain Prediction with
ML Models

Australia (Multiple
Locations with
heavy rainfall)

AN, DT [216]

Rapid Forecasting of
Urban Flooding

ML prediction model
with Hydrodynamic

model simulation

Fengxi New
Town China RF, KNN [217]

Flood Mitigation
and Control

Flood Susceptibility
Map by ML models Nigeria Coastlines ANN, LR [218]

Flood Susceptibility
Planning

Comparison b/w
ML models Silabati River India RF, NB, XGBoost [219]

7.4. AI in Soil Classification and Texture Prediction

Soil classification is the main factor that governs the design criteria of foundation for
any structure. To define the different components discovered during ground investigation,
a formal system of soil description and categorisation must be adopted which entails
expensive and time-consuming tasks, such as sample collection and laboratory testing.
Different ML models have proved to be efficient in soil classification over the traditional
methods in terms of accuracy, analysing large datasets and most importantly saving time
without extensive field work and laboratory testing. A dataset comprising 805 soil samples
was developed and analysed by [220] and the model was trained and tested with Python
libraries. The missing data values were imputed by using KNN imputer and balanced by
synthetic minority oversampling technique SMOTE. The data was tested by XGBoost, Light
GBM, and Cat Boost. The ML models performed well with an accurate rate of 90%. The
results were compared with the ANN, DT, SVM, and naïve Bayes results that previously
showed an accuracy of 70%.

A comparative performance of different ML methods to evaluate soil texture classifi-
cation was assessed by [221]. The focus of the study was to predict the soil classification
and contents of clay, silt, sand and gravels by using ANN, Kriging, Co-Kriging, and IDW
models in MATLAB software. The root means square error (RMSE), and correlation co-
efficient R values result showed that the ANN method performed well compared to the
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other three methods. The IDW method had the lowest values for MSE and R for all three
parameters, including sand, silt, and clay. SVM models were trained using digital images of
different areas to classify these images using linear kernel [222]. The results showed that the
proposed model has an accuracy of 91.37% as an overall average with 97.7%. 96.21%, and
93.25% average percentage of accuracy of clay, sand, and silt, respectively. The suggested
method for classifying the soil is precise and quick. With the aid of smart phones and
an SVM, it provides a quick and precise result for soil categorisation as compared to a
simple hydrometer test that requires 24 h to give accurate results. Digital mapping for
soil classification and prediction using DT, RF, and SVM was performed including the
use of Landsat 8 OLI science products and DEM (digital elevation models) to evaluate
environmental variables’ capacities [223]. The results showed that the majority of the
dataset was overestimated by the SVM model. However, in terms of both accuracy and
abundance index, RF maps performed the best.

The best environmental covariate for predicting the spatial distribution of texture
classes was the TWI (topographic wetness index) generated from the DEM and the remote
sensing-derived covariates were more significant than TWI. Kappa index, overall accuracy,
area under the ROC curve (AUC), and receiver operating characteristics (ROC), were
employed to identify the soil texture classification and analyse a comparison between three
ML algorithms, including ANN, SVM, and classification trees [224]. The performance of
SVM model was more accurate than the other deployed models with values of 0.943, 0.79,
and 0.944 for overall accuracy, kappa index, and SVM polynomial function, respectively.
The accuracy rates were 0.794, 0.992, and 0.661 for the classification criteria for clay, loam
and sand. The findings demonstrated the viability and dependability of SVM for classifying
soil textures.

AI models like ANNs, SVMs, and LSTMs can predict slope stability, soil classification,
and foundation performance. These models excel at predicting nonlinear behaviours that
traditional models struggle with and offer real-time predictive capabilities. However, they
often suffer from limited model fidelity because they are mainly developed using synthetic
or small datasets, which reduces their robustness under diverse field conditions. Further-
more, issues with field validation, explanation, and interpretability decrease trust in purely
data-driven outputs, causing concerns among practitioners. These biases and limitations
are like those found in structural and environmental research, where uncertainty and data
scarcity are common. Integrating hybrid, physics-informed models and addressing data
scarcity and uncertainty through shared datasets could significantly advance geotechni-
cal AI research, leading to deeper insights and potentially strengthening connections to
structural resilience and climate adaptation. Although ML models for slope stability and
water management outperform conventional approaches in predictive accuracy, they are
highly dependent on site-specific datasets and suffer from overfitting. The real challenge
lies in validating these tools under heterogeneous geological and environmental conditions,
where physical consistency is as important as predictive power.

8. Applications of AI in Transportation and Infrastructure
The use of AI in transportation and urban infrastructure is transforming how we

understand and manage urban mobility. Challenging issues associated with complex urban
transport planning, traffic management, and infrastructure maintenance are currently
addressed using AI. This section highlights the use of AI in transportation and infrastructure
from the literature and enlists the use of various AI techniques. Table 9 summarises various
studies using AI techniques in the fields of transportation and built environment.
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Table 9. Studies on use of AI techniques in transportation and infrastructure.

ML Technique Purpose Key Findings Advantages Disadvantages Ref.

Field experiment with AI
controllers (RL

supervised)

Assessing AI
integration in

smart city service
operations

(Industry 5.0)

AI improved
service efficiency,
user satisfaction,
and operational

uptime

Real-world
deployment;

adaptive
responsiveness;
context-aware

Operational
complexity;

integration with
legacy systems

[225]

Sustainable deep radial
function network

Enhance traffic
intelligence in

smart cities

Improved
prediction

accuracy over
baseline

CNN/RNNs

High modelling
fidelity;

sustainability
considerations

Possible scalability
constraints;

computational
load

[226]

Chaos theory inverse
modelling

Traffic flow
forecasting using
chaotic dynamics

Achieved RMSE
comparable to

traditional
statistical models

Handles
nonlinearities;

novel theoretical
framework

Methodological
complexity; niche

domain
[227]

Spatiotemporal Graph
Attention Network (GAT)

Short-term road
traffic flow
prediction

Outperformed
LSTM/CNN

baselines
acros25test
scenarios

Captures
spatial–temporal

dependencies;
high precision

Requires rich
graph-structured

input; heavy
computation

[228]

ATT-CONV-LSTM
(Attention + Conv +

LSTM)

Freeway traffic
flow forecasting

Achieved about
5–10% lower

forecasting error
vs. standard LSTM

Integrates spatial
feature extraction

and temporal
memory

More parameters,
risk of overfitting;

slower training
[229]

T-GCN (temporal graph
convolutional)

Forecast traffic
under extreme
weather events

Effective in
extreme conditions;

better than
GRU/LSTM

Models
spatiotemporal

correlations; robust
to anomalies

Needs high-quality
weather and
graph data

[230]

CNN-based video
processing

Detect parking
occupancy in
smart systems

>95% accuracy in
daylight; lower

at night

Real-time
detection; high

accuracy in ideal
conditions

Sensitive to
occlusion and

lighting changes
[231]

Federated learning for
traffic forecast

Privacy-aware,
distributed traffic

modelling

Comparable
accuracy to

centralised models
with privacy

benefits

Protects data
privacy; leverages
multi-agent data

Network overhead;
slower

convergence
[232]

Chaos theory inverse
modelling (non-ML but

computational)

Predict urban
traffic flow

RMSE comparable
to traditional

models

Captures chaotic,
nonlinear
behaviour

Complex and less
generalisable

model
[227]

Pattern-based regression
(linear/logistic regression)

Short-term urban
traffic prediction in

India

Acceptable
accuracy in
short-term
forecasts

Computationally
light, interpretable

Limited in
capturing complex
nonlinear patterns

[233]

Intelligent control system
(possibly fuzzy logic or

ML classification)

Intelligent
pedestrian traffic
light optimisation

Reduced average
waiting time and

queue length

Improves
pedestrian wait
times; real-time

adaptation

Lack of clarity on
ML algorithms

used
[234]

Route optimisation via AI
(GA, RL)

Minimise
congestion via
route planning

Significant
reductions in

travel time
and delays

Adaptive to
dynamic traffic;

scalable

Computational
complexity;

data-dependency
[235]
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Table 9. Cont.

ML Technique Purpose Key findings Advantages Disadvantages Ref.

Review of deep learning
for edge analytics

Survey edge
computing in ITS

Edge deployment
is promising but

network and
compute limits

persist

Highlights DL
approaches
on-device

Does not present
new model;

identifies latency
concerns

[236]

AIoT traffic management
(IoT + ML/AI)

Develop a smart,
integrated traffic

system

Demonstrates
improved traffic

flow in simulations

Real-time sensor
fusion; scalable

control

Integration
complexity; device

constraints
[237]

AI-based ITS benchmark
(likely ML

classification/regression)

Provide
benchmark for

intelligent traffic
control systems

Offers reference
metrics for ML in

ITS

Establishes a
baseline; allows

future comparison

Specific algorithms
not deeply detailed [238]

SVM with hybrid Particle
Swarm Optimisation

Predict traffic
fatalities

Accuracy
improved over
base SVM; PSO
tuning critical

Improves SVM
performance via

PSO

SVM + PSO can be
slow to train;

data-intensive
[239]

8.1. Pavement Condition Monitoring and Maintenance

Monitoring and maintenance of pavement infrastructure is a labour intensive and sub-
jective problem which leads to inconsistencies in assessing pavement conditions. However,
the use of AI and image processing techniques has emerged as a more efficient and reliable
alternative to conventions techniques. A study conducted on classification of various
types of pavement distress has achieved significant accuracy using deep learning method,
CNN [225].

Moreover, predictive modelling methods for the prediction of pavement citation index
and estimation of required repair and maintenance with ANNs has been used. A study
illustrated that models utilising ensemble learning yield improved predictive reliability
compared to methods using single predictive techniques, which shows the benefits of
combining multiple techniques to enhance accuracy and decision-making in infrastructure
maintenance [226].

The use of AI in pavement condition monitoring not only facilitates timely interven-
tions but also enhances maintenance schedules. Consequently, municipalities can assign
resources more purposefully and lifecycle of pavement materials can be prolonged, even-
tually leading to cost-effective and enhanced services. This predictive competence aligns
with the broader objectives of sustainable urban planning, where proactive maintenance
strategies are of paramount importance.

8.2. Bridge SHM

Bridges are critical components of transportation infrastructure due to their vital role
in connectivity, complex construction processes, and high costs associated with construction
and maintenance. As a result, ensuring their long-term serviceability and safety requires
robust, proactive approaches to SHM and maintenance.

SHM of bridges benefits significantly from the capacity of AI to quickly process and
interpret large datasets obtained from various sensors installed in the bridge system. By
using learning algorithms, researchers can automatically detect the anomalies and potential
structural failures in advance thus reducing the risk of major damage or collapse [227].
Recent developments in the use of AI techniques for anomaly detection improves the preci-
sion and reliability of these monitoring systems, allowing for timely mitigation techniques.
For instance, a study demonstrated the efficiency of unsupervised AI learning methods in
detecting anomalies in bridge systems by classifying delicate sensor behaviour changes
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prior to structural issues [240]. Such methodologies not only improve the reliability of SHM
systems but also address the need for an automatic infrastructure monitoring system and
providing real-time details that conventional methods normally overlook.

The use of AI-based SHM methods ensure public safety and resource management. By
ensuring that structural anomalies are detected quickly, necessary repair and maintenance
can be done before structural collapse.

8.3. Traffic Flow Prediction and Management

Traffic congestion is a persistent issue to urban development due to continued increase
in vehicles, and complex road structures. Typical statistical methods like autoregressive
integrated moving average (ARIMA) mostly falls short to forecast the traffic flow due to
its linier approach [228,233]. Similarly, another study reported that conventional statis-
tical methods struggle with the large-scale data processing and sophisticated nonlinear
relationships required for precise traffic prediction [229]. On the other hand, AI methods
application especially deep learning techniques has better performance. For example,
the LSTM networks method has demonstrated significant efficiency in predicting traffic
attributes. A study conducted on traffic flow prediction reported better performance using
LSTM networks compared to conventional methods due to the model’s ability to extract
temporal correlations from data [230].

Similarly, another study reported improved predicting capabilities required for im-
proving real-time traffic management systems using hybrid models integrating CNNs
with LSTMs for extracting both temporal and spatial attributes from traffic data [234]. The
use of hybrid models in urban traffic management indicates a shift towards data-driven
methodologies; however, ML algorithms are used to analyse huge datasets obtained from
various traffic monitoring and sensors systems. The use of robust predicting models is
not limited to only congestion management, they are used for optimising urban systems
resource allocation, reducing delays, and improved experience for the commuters. The
development and use of these predictive models shows the potential of AI in creating
responsive and smarter transportation systems, positioning with broader trends toward
smart urban development [235].

8.4. Intelligent Transportation Systems (ITS)

ITS use AI to improve the effectiveness and safety of the transportation networks. It
facilitates route optimisation, adaptive signal control, vehicle detection, and autonomous
navigation. Reinforcement learning (RL) has appeared as an effective methodology in
developing real-time adaptive traffic signal systems. A study suggested a multi-agent
traffic signal control system with Q-learning, considerably outperform static rule-based
systems by vigorously adapting to the traffic conditions [231]. This methodology features
the versatility of RL in operating complex urban traffic conditions. AI-based computer
vision applications contribute to improving road safety by enabling automatic vehicle and
incident detection. The growing reliance on big data and ML to resolve real-time traffic
monitoring issues through sophisticated analytical techniques with the increasing data
volume from sensors and cameras has a potential for AI applications [236].

The rapid advancements in ITS demonstrate the use of AI in urban transportation,
which is transforming the systems from reactive to pre-emptive approach, emphasising
safety, operational efficiency, and ways for further exploration and implementation.

8.5. Urban Mobility and Infrastructure Planning

The urban mobility and infrastructure planning has very important role in the devel-
opment and construction sector which affect the landscape of the whole built environment.
The use of AI in this sector has significant applications for infrastructure planning and
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policy evaluation. Using agent-based models supplemented with ML algorithms, urban
planners can simulate the infrastructures in conformity with the built environment. A study
proposed a hybrid methodology combining spatial analysis with deep learning to optimise
public transit routes, indicating the efficiency of predictive analysis in urban planning [237].
Additionally, GANs have been used as tools for generating artificial urban traffic data. This
approach is used in situations where historical data is limited, allowing for scenario testing
under uncertain future conditions. A study validates the accuracy of the synthetic traffic
data benchmarked against real-world data, offering insights into the model’s strengths
and limitations and enabling realistic simulation of traffic scenarios for urban planning
purposes [241]. The use of GANs in urban mobility planning demonstrates the advanced
approach to tackle the uncertainties in urban systems traffic scenarios so that planners can
create strategies that align with preventative measures rather than reactive measures [238].
As data becomes more readily available from a various source, it can be used effectively
for urban planning to cater for how cities respond to the complex modern transportation
challenges. Thus, integrating AI in urban mobility planning constitutes a critical evolution
in the development of smarter infrastructure influencing long-term decisions impacting
city growth, sustainability, and quality of life for residents.

8.6. Comparison of AI Techniques in Transportation and Infrastructure

AI methodologies vary significantly in their applications, advantages, and limitations
across different fields within the transportation sector. A comparison of various ML
techniques for various applications in the field of transportation has been made in Table 10.
For instance, LSTM networks are best suited for traffic flow forecasting due to their ability
to model temporal dependencies intricately. However, they require large, labelled datasets
for efficient training, which can slow the training process [229]. Similarly, CNNs are
preferred for tasks like pavement image-based crack detection due to their accuracy and
real-time operational abilities; however, they are sensitive to environmental factors such as
lighting [242].

Table 10. Application of various ML techniques in transportation.

AI Technique Application Area Advantages Limitations

CNN (ResNet, VGG) Pavement image-based
crack detection

Accurate feature extraction
from images; real-

time capability

Sensitive to lighting and
shadows; needs extensive

training data

LSTM/RNN Traffic flow forecasting
Captures complex temporal

dependencies; high prediction
accuracy

Requires large, labelled
datasets; slow training

Reinforcement Learning Adaptive signal control
Learns policies from

environment; handles
non-stationary traffic

Difficult convergence;
computational cost

Ensemble ML (XGBoost) Pavement condition
prediction

Improved generalisation;
combines multiple models

Requires careful feature
engineering; risk of overfitting

Autoencoders/LSTM-AE Bridge SHM
anomaly detection

Handles unlabelled data;
effective in early
fault detection

Can produce false positives;
complex architecture

Agent-Based + ML Models Urban mobility simulation
Represents individual-level

interactions; supports
dynamic planning

High complexity;
data-intensive

GANs Traffic data simulation for
urban planning

Generates realistic synthetic
data; helps in planning under

uncertainty

Training instability;
interpretability issues

On the other hand, reinforcement learning has potential in adaptive signal control
systems by learning optimal traffic plans in dynamic environments. Although it effectively
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handles non-stationary traffic patterns, challenges associated with convergence and com-
putational demands persist [239]. By leveraging ensemble learning techniques, researchers
have improved the reliability of pavement condition predictions, though careful feature
engineering is required to mitigate overfitting risks [230].

GANs are effective in simulating urban traffic data for planning, although they face
challenges like interpretative difficulties and training instability [232]. Agent-based mod-
els paired with ML offer insights into individual-level interactions, providing dynamic
responses for urban mobility simulations. However, their complexity and data intensity
can pose practical challenges [243].

In conclusion, while the integration of AI in transportation and infrastructure offers
significant benefits and promotes sustainability in planning, designing, and prevention.
It can improve traffic management and enhance the prediction of required maintenance.
However, the challenges associated with each AI technique highlight the need for continued
research in the field. Challenges such as model interpretability, real-time integration, and
consideration of long-term sustainability impacts are still underexplored. Therefore, future
work should prioritise large and diverse datasets, develop explainable AI frameworks
to build trust, and explore integration with IoT infrastructure and autonomous vehicle
systems to enable more adaptive and sustainable transportation networks. As transporta-
tion continually evolves through the interplay of practical applications and technological
advancements, ongoing innovation is essential to fully realise the potential of AI.

9. Intrinsic Connections Across Civil Engineering Domains
AI applications in civil engineering are frequently cited in different spaces, and there

is overlap, if not clear and close connections between them. Material selections and mix de-
signs are determined by sustainability targets, which also influence structural performance
and geotechnical design considerations. Data from environmental monitoring informs
water management and resilience planning. Transportation systems and urban mobility are
tied directly to water management, resilience to climate impacts, structural performance,
and geotechnical considerations. Transportation infrastructure relies on road-building
innovations and the development of materials. Material optimisation influences sustain-
ability targets. Figure 12 depicts the interconnectedness of these types of contributions.
Sustainability, infrastructure performance, geotechnics, water management, transportation
systems, and urban mobility are not entities in and of themselves. Each of these connections
feeds the best practices of another. At the same time, we consider regulatory and code
standards to be at the core as the primary requirement for AI and civil engineering research
to be applied in design practice. This interconnectedness aims to illustrate that AI in civil
engineering is not a collection of connections, but a connected ecosystem dedicated to
delivering safer, more sustainable, and code-compliant infrastructure.

To provide a cross-cutting synthesis, Table 11 compares the main AI/ML methods
used across civil engineering. It highlights their strengths, weaknesses, and representative
applications. This framework shows that while methods such as CNNs and LSTMs excel
in monitoring and forecasting, their adoption in practice is limited by data requirements
and a lack of code integration. Hybrid and physics-informed models, though less mature,
offer a promising pathway toward regulatory acceptance.
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Figure 12. Overlaps and interdependencies between six civil engineering domains.

Table 11. Comparison of AI/ML methods in civil engineering: strengths, weaknesses, and typical
use cases.

Method Strengths Weaknesses Typical Use Cases in
Civil Engineering

ANN
[131,138,189,194,208,209]

Captures complex nonlinear
relationships; good

for prediction

Black-box, prone to
overfitting, needs

large datasets

Concrete strength prediction,
slope stability, groundwater

forecasting

CN
[153,156,157,225,226]

High accuracy in image
recognition; automates

visual tasks

Requires large, labelled
datasets; computationally

heavy

Crack detection, traffic
intelligence,

waste classification
RNN/LSTM

[229,230]
Handles sequential and

time-series data well
Training complexity; sensitive

to data quality
Traffic flow forecasting, SHM

time-series

SVM
[207,223]

Works well with small
datasets; effective for

classification

Limited with large datasets;
struggles with high noise

Soil type classification,
Rain prediction

RF
[195]

Robust, handles nonlinearities;
interpretable

feature importance

Can be computationally
heavy; less effective with very

high-dimensional data

Slope stability, material
property prediction

DT
[218,223] Simple, interpretable, fast

Lower accuracy than
ensemble methods; prone to

overfitting

Preliminary soil classification,
Rain Prediction

Ensemble Models (XGBoost,
Bagging, Boosting)
[126,129,130,196]

High accuracy; reduce
overfitting; flexible

Require tuning; less
interpretable

Geopolymer mix design, CO2
emissions forecasting, slope

stability
GA

[148,241]
Generates synthetic data;

augments limited datasets
Complex training; risk of

instability
Structural failure simulation,

traffic data

Hybrid Model
[179,191,212]

Combine data-driven and
physics-based accuracy;

better reliability

Still experimental; requires
domain expertise

Structural load prediction,
geotechnical modelling,

flood forecasting
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10. Challenges and Limitations
Despite the promising advancements of AI in civil engineering, several cross-disciplinary

limitations hinder its widespread adoption

10.1. Data Limitations and Fragmentation

Across domains such as geotechnical engineering, environmental modelling, and
recycled concrete design, the lack of unified, high-quality, and openly accessible datasets
hampers generalizability and transferability. Particularly in slope stability prediction,
groundwater modelling, and CDW classification, sparse or non-standardised data lim-
its model robustness. Similarly, the fragmented data, arising from the inconsistency in
collection format, lack of standard protocols also limits the model performance.

10.2. Model Interpretability and Trust

Deep learning models like LSTMs, CNNs, and hybrid stacks achieve high accuracy
but often lack explanations. In safety-critical applications such as flood prediction, SHM,
and damage detection the “black-box” nature of these models presents significant chal-
lenges to adoption by engineers and regulators. To address these issues, the integration of
human-in-the-loop (HITL) systems is a promising approach, enabling expert oversight and
improved accountability. However, employing HITL frameworks dependably across all
these domains remains an evolving and complex challenge, requiring cross-disciplinary
collaboration, tailored solutions, and supportive regulatory frameworks.

10.3. Regulatory and Code Compliance Gaps

AI integration in design and monitoring practices e.g., in SHM is complicated by a
lack of alignment with current building codes and standards. This is especially problematic
in domains with high public safety and liability concerns.

10.4. Computational Complexity and Cost

Hybrid models like RF–GWO–XGBoost or ANN–MPA used in materials or geotechni-
cal predictions offer superior accuracy but require heavy computational power and careful
parameter tuning. This makes real-time deployment or use on mobile inspection devices
impractical without simplification.

10.5. Generalisation and Overfitting and Physical Inconsistencies

AI models trained on localised, narrow datasets (e.g., from a specific soil region or
building type) may not perform well in new environments. Overfitting reduces model scal-
ability for applications like urban land use modelling or energy forecasting. Additionally,
many models overlook domain-specific physical constraints, leading to predictions that
are statistically valid but physically not viable. This is a key concern in critical areas of
applications like structural load estimation, SHM, and slope stability models. Addressing
both overfitting and physical inconsistency is important for developing reliable, real-world
AI applications in the built environment.

10.6. Integration and Real-Time Responsiveness

While AI can enhance real-time decision-making in traffic control, flood response,
and maintenance scheduling, real-time integration with IoT devices, sensor networks, and
digital twins remains limited and technically demanding.

These limitations must be addressed through interdisciplinary collaboration, regula-
tory reform, interpretable AI development, and investment in open data infrastructure.
For instance, the development of open benchmark datasets for the researcher to test and
compare AI models easily could arise a viable solution. Additionally, using hybrid methods
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that combine physics-based models with ML can improve accuracy by blending expert
knowledge with data-driven insights. It is important for experts from different fields to
work together and share knowledge. Rules and standards should be updated regularly to
ensure AI models are safe, transparent, and respect privacy, with pilot projects to try new
ideas carefully. Finally, investing in open data platforms and encouraging companies to
share their data will help everyone build better and more reliable AI systems.

10.7. Regulatory Acceptance and Integration with Codes

A major obstacle is that it is not codified in engineering standards such as Eurocode,
ACI, and various national codes. These standards are deterministic and transparent, while
AI models are probabilistic and data-driven, which makes integrating AI into design
practice difficult. Achieving practical and realistic AI integration requires hybrid ver-
ification methods, including isoquant-based code calculations, certified benchmarking
datasets, explainable AI outputs useful for regulatory compliance, and pilot studies as
essential intermediaries. The process of integration will likely be gradual, starting with
lower-risk applications like sustainability assessments and material optimisation, before
gradually expanding into full design processes. Ultimately, codes may evolve over time to
include AI-based criteria that formalise AI-assisted design, similar to current allowances for
numerical methods.

11. Future Research Directions
Integrating digital twins with AI promises transformative impacts on civil engineering

by enabling predictive modelling, performance monitoring, and lifecycle management.
When combined with real-time data and advanced analytics, digital twins can support
dynamic simulation and optimisation, thereby improving structural resilience and opera-
tional efficiency [244–246]. Recent case studies have already demonstrated their potential
in proactive maintenance and disaster preparedness [169,170,247]. However, most cur-
rent applications remain focused on simulation and monitoring. A key research priority
lies in developing hybrid AI–physical models that can operate in real time for complex
infrastructure systems such as bridges, dams, and transportation networks.

Explainable AI (XAI) is another critical direction. Techniques such as SHAP and LIME
enhance trust by clarifying model decisions, which is crucial for regulatory compliance
and industry acceptance [248]. Scholars increasingly highlight the importance of XAI in
ensuring ethical use, reliability, and practical integration of AI into civil engineering work-
flows [249]. However, there is a critical need for interpretability techniques that incorporate
engineering principles, regulatory requirements, and structural safety constraints, ensuring
AI recommendations are practically possible and trustworthy for practitioners.

Open datasets and reproducibility standards are foundational for credible AI research.
Publicly available datasets allow benchmarking, validation, and transparency, promoting
collaboration and innovation [250]. Initiatives such as FAIR (Findable, Accessible, Interoper-
able, Reusable) data principles advocate for enhanced data sharing, significantly improving
the reproducibility and quality of research outcomes [251].

Deep learning (DL) continues to show great promise in areas such as flood forecasting
and emergency management. However, its limited interpretability and challenges with
real-time deployment restrict widespread adoption. Future research should focus on
integrating diverse data sources, improving DL transparency, and enabling real-time
analytics. Promising directions include the development of hybrid DL–physics models and
scalable architectures for early warning systems and disaster response.

The future adoption of AI in civil engineering will also depend heavily on interdis-
ciplinary collaboration. Combining expertise from engineering, computer science, envi-
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ronmental science, and materials science is vital for addressing complex sustainability
challenges holistically. Such collaboration fosters innovation and ensures solutions are
technically robust, environmentally responsible, and socially acceptable [252].

Finally, emerging approaches such as federated learning and transfer learning hold
strong potential. Federated learning enables privacy-preserving collaboration by allowing
institutions to train models without sharing sensitive datasets, while transfer learning
allows knowledge gained from well-instrumented sites to be applied to data-scarce regions.
At the same time, advancing AI ethics, fairness, and bias mitigation is critical to ensure
equitable, transparent, and trustworthy deployment of AI in infrastructure systems.

In summary, future research should focus on hybrid and explainable models, ro-
bust data governance, scalable real-time applications, interdisciplinary collaboration, and
ethical AI adoption. Collectively, these directions will move AI from experimental stud-
ies to reliable, field-ready tools that enhance the resilience, sustainability, and equity of
civil infrastructure.

12. Conclusions
This review provides an overview of the growing applications of AI and ML in civil

engineering, spanning sustainable materials, structural engineering, geotechnical and
environmental assessment, and transportation systems. Many studies have highlighted
the benefits of predictive accuracy, resource optimisation, and automation. However, the
fragmented and domain-limited landscape of the existing research highlights the need for
a more inclusive framework. Beyond compiling existing applications, this review critically
evaluates the limitations of current approaches, emphasising gaps in data quality, code
integration, and real-world feasibility that must be addressed for AI/ML to transition from
promising research to reliable engineering practice.

Unlike generic AI reviews, this study highlights civil-specific barriers such as safety-
critical requirements, lifecycle uncertainties, and the absence of AI provisions in design
codes, ensuring that the feasibility of interpretability methods is critically assessed in the
context of real-world engineering practice.

By combining bibliometric mapping, a structured taxonomy, and critical evaluation,
this review moves beyond a descriptive listing of applications. It establishes a conceptual
framework that highlights unique challenges in civil engineering, including limited domain-
specific datasets, absence of AI provisions in codes, and the integration with physical
models, thereby providing novel insights not addressed in earlier reviews.

AI and ML are redesigning civil engineering across sustainable materials, geotech-
nical and environmental systems, structural engineering, and transportation systems by
enabling precise predictions, intelligent monitoring, and resource optimisation. Despite
clear development such as better concrete mix design, structural health monitoring, slope
stability prediction, flood modelling, and traffic flow forecasting, the existing research
remains fragmented, case-specific, and restricted by small datasets, weak generalizabil-
ity, and lack of model interpretability. Future work should focus on developing large,
standardised datasets, advancing hybrid and explainable AI approaches, and integrating
these technologies with digital twins, IoT, and sustainability frameworks. By bridging
disciplinary gaps and aligning with codes, resilience goals, and carbon reduction strategies,
AI can move civil engineering from isolated applications toward holistic, adaptive, and
low-carbon infrastructure solutions.

Building on the insights of this review, three key directions emerge as fundamental for
advancing AI and ML in civil engineering. First, explainability and trust remain critical
bottlenecks, underscoring the need to integrate interpretable methods such as SHAP and
LIME to increase transparency and accelerate adoption in safety-critical domains. Second,
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hybrid approaches that combine data-driven models with mechanics-based principles
offer a powerful pathway to overcome the limitations of both traditional and purely
AI-based methods, ensuring predictions remain robust and physically consistent. Finally,
interdisciplinary integration of AI with IoT, digital twins, and sustainability frameworks can
shift civil engineering practice from reactive problem-solving toward proactive, adaptive,
and resilient infrastructure systems that align with long-term sustainability goals.
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