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Abstract. The presented study contributes to 
ongoing research that aims to overcome 
challenges in predicting the bio-applicability of 
nanoparticles (NPs). The approach explored a 
variety of combinations of nuclear magnetic 
resonance (NMR) spectroscopy data derived 
from the Simplified molecular-input line-entry 
system (SMILES) notations and small 
biomolecule features. The resulting datasets 
were utilised for machine learning (ML) with 
scikit-learn and deep neural networks (DNN) with 
PyTorch.  Despite the obstacles in predicting 
how NPs influence biomolecule functionalities, 
the methodology was reasoned in terms of its 
applicability to compounds both with and 
without NPs. The methodology was illustrated 
through a quantitative high-throughput 
screening (qHTS) aimed at finding DNA Damage-
Inducible Transcript 3 (CHOP) inhibitors. Based 
on this data, the optimal ML performance was 
achieved by the Random Forest Classifier, which 
was trained on 19,184 samples and tested on 
4,000, resulting in 81.1% accuracy, 83.4% 
precision, 77.7% recall, 80.4% F1-score, 81.1% 
ROC, and a five-fold cross-validation score of 
0.821. Complementing the main study, two 
computational approaches were developed to 
enhance CHOP inhibitor prediction. The first 
identifies the most desirable/undesirable 
functional groups for CHOP inhibition. The 
second, a CID_SID ML model, achieved 90.1% 
accuracy in predicting whether compounds 
designed for other purposes possess CHOP 
inhibition potential. 

Key words:  Scikit learn, PyTorch, SMILES, NMR, 
CID_SID ML model. 

Introduction 

Nanoformulations (NFs), constructed from 
biomolecules and nanoparticles (NPs) into 
nanoscale architectures, are designed to augment 
biomolecule efficacy across various medical 
applications, such as drug delivery and tissue 
engineering, theragnostics, imaging, sensing, 
vaccine development, and medical nanodevices. 
This convergence of nanotechnology and medicine 
has spawned the field of nanomedicine. Although a 
relatively new field, nanomedicine has achieved 
substantial progress, with approximately 100 
nanotherapeutics approved or under FDA review 
[1]. 

However, predicting NPs behavior, as a part of such 
NFs, presents significant challenges. Due to their 
nanoscale dimensions, NPs cannot be accurately 
characterized using standard light microscopy [2]. 
Furthermore, their dimensions approach the 
quantum realm and hold the potential to alter 
inherent properties. Brownian forces, particularly 
influential on sub-micron particles, complicate 
particle motion control. Inconsistencies observed in 
particle sizing using various methods emphasize that 
the size measurement of the NPs is not an authentic 
feature [3]. Moreover, human serum (HS) can alter 
NP`s size and surface potential due to albumin 
adsorption and/or fibrinogen aggregation, as shown 
in studies with poly(lactic-co-glycolic) acid (PLG) 
NPs in buffer saline [4]. Also, the conductance state 
of NPs is size-dependent. Ultrafast laser 
spectroscopy has revealed the transitions in gold 
NPs from metallic to non-metallic behaviour based 
on size changes [5]. Notably, NPs with similar atom 
counts and sizes can exhibit significantly different 
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toxic effects [6]. A critical concern regarding NPs 
prediction extends beyond well-documented issues 
like cytotoxicity, genotoxicity, immunogenicity, 
unintended organ accumulation, and long-term side 
effects [7, 8, 9]. To address these concerns, 
specialized methodologies have been developed. 
One such approach is the nano-quantitative 
structure-activity relationship (nano-QSAR), an 
adaptation of the well-established QSAR model 
used in chemistry and pharmacy [10] Nano-QSAR 
aims to correlate nanoparticle structure with 
biological activity. While promising, it currently 
lacks universality and requires further refinement 
[11]. Similarly, the structure and activity prediction 
network (SAPNet), designed to guide NP design by 
identifying structural modifications for desired 
properties [12], also necessitates improvement. 
Another QSAR-derived method utilizing simplified 
molecular input-line entry systems (SMILES) [13] 
considers the molecular structure and electrical data 
to predict endpoints, but its NF-specific adaptation 
remains incomplete, highlighting the need for 
further research [10]. Beyond QSAR variations, 
quantum mechanics has been applied to estimate 
nanoparticle targeted delivery efficiency [14], 
although the reliance on wireless electromagnetic 
radiation systems introduces potential sources of 
error. Proof-of-concept models using iron oxide NPs 
demonstrated the feasibility of simulating 
nanomaterial impacts on living organisms with 
machine learning (ML) [15]. 

The current study explored the application of ML 
and nuclear magnetic resonance (NMR) 
spectroscopy data for addressing the limitations in 
NP prediction. Given the cost and time required to 
develop medicines, which takes USD 100 million to 
USD 2 billion over an average period of 10 to 17 
years to bring a single drug to market [16], plus the 
fact that overall, 9 out of 10 drug candidates that 
have entered clinical trials never submit for FDA 
approval [17], ML with its ability to predict 
promising-  and fail- drug candidates in the early 
stage of their development, has the potential to 
prevent further investment in non-valued 
formulations and save a significant portion of the 
development cost per drug. On the other hand, the 
NMR technique provides information about atomic 
structure and their chemical environments, which 
information is closely related to the functionality of 
biomolecules [18]. Electromagnetic radiation 
absorption by atomic nuclei in a strong magnetic 

field allows for the exploitation of their magnetic 
properties. The subsequent relaxation of the excited 
nuclei, accompanied by the emission of radiation, 
provides a spectrum of frequencies. These 
frequencies, or chemical shifts, are highly sensitive 
to the electronic environment of the nuclei, enabling 
the elucidation of molecular structure and dynamics. 
Carbon-13 isotope (¹³C) NMR spectroscopy 
identifies the chemical environment of carbon atoms 
within a biomolecule's carbon skeleton [19]. The 
proton (1H) NMR spectroscopy, on the other hand, 
identifies different hydrogen nuclei and their 
magnetic properties, revealing hydrogen bonding 
patterns that contribute to the understanding of 
intermolecular interactions [20]. The difference 
between both types of NMR spectra is that the 
former is a single peak corresponding to each unique 
carbon environment and is simpler than the latter, 
whose complexity is due to the spin-spin coupling 
between neighbouring protons [21]. So, considering 
the established dependencies of biomolecule 
functionalities mentioned above and the elucidative 
capabilities of NMR, providing information for the 
chemical environment of the carbon atoms building 
the carbon “skeleton “of the small biomolecule, it 
was hypothesised that an ML model trained on NMR 
spectroscopic data could predict the influence of 
NPs on biomolecule functionality, testing the NF 
both before and after it has been in a biological fluid 
such as blood plasma, cell culture media, or 
interstitial fluid and thus considered the influence of 
the “protein corona”.  

The necessary NMR spectroscopy data was obtained 
by converting the small biomolecules` SMILES 
notations [13] into 13C and 1H NMR spectroscopy 
data using the NMRDB online tool [22]. This tool 
employs HOSE code (Hierarchical Organisation of 
Spherical Environments) methods, and the 
quantitative errors of the predictions can vary 
depending on the specific compound [23] In general, 
the Mean Absolute Error (MAE) of 1H NMR 
chemical shifts (protons) are in the range of 0.2-0.3 
ppm [24], and of 13C NMR chemical shifts 
(carbons) are around 3ppm [25]. Even though the 
data used in the study were synthetic with 
fluctuating errors, they were sufficient to conduct 
and illustrate a preliminary study of the strategy 
concept. 

In the available literature, NMR spectroscopy has 
been pointed as a useful addition to electron 



microscopy and optical absorption spectroscopy 
used for characterisation of NPs, particularly for the 
hard–soft matter interfaces [26] and recognised as a 
technique capable of bridging the analytical gap 
between NPs in solution and solid phases 
[27].  NMR techniques have been employed to 
provide a method for elucidating the morphology 
and dynamics of polymer-functionalised NPs, with 
potential application to complex systems that form 
coronas around NPs [28]. Another study explored 
quantitative and one– and multi-dimensional NMR 
spectroscopy on gold NPs and developed a general 
method for NPs characterisation with NMR 
spectroscopy [29]. Overall, the direct influence of 
NPs on the functional activity of the small 
biomolecules, which they are intended to assist, 
requires investigation that can be supported by the 
NMR spectroscopy, covering Chemistry analysis of 
the NPs, their structural and dynamic 
characterisation and detection of their interactions 
with other molecules or materials [30].  

The presented approach followed the methodology 
of two prior studies [31, 32] that predicted human 
dopamine D1 receptor antagonists and Transthyretin 
(TTR) transcription activators, respectively. Both 
studies employed ML algorithms from the scikit-
learn library [33]. The ML data was derived from 
SMILES notations converted to ¹³C NMR 
spectroscopy features by the NMRDB software. The 
molecular features of the small biomolecule, pre-
calculated by PubChem [34], XLogP3 [ 35], and 
CACTVS [36] and provided by PubChem, have 
already shown their potential for ML development 
[37, 38] and explored in the study focused on 
predicting Transthyretin transcription activators  
[32]. These features were:  

(i) Molecular weight (MW) as a sum of 
the mass of all constituent atoms [39].  

(ii) Topological Polar Surface Area 
(TPSA) [40] 

(iii) XLogP3-AA (XL), which is a 
predicted octanol-water partition 
coefficient [41]. 

(iv) Hydrogen Bond Donor Count (HBDC) 
in the given small biomolecule. 

(v) Hydrogen Bond Acceptor Count 
(HDAC) in the given small 
biomolecule. 

(vi) Rotatable Bond Count (RBC). For a 
bond to be rotatable, it must be a single 
bond, not part of a ring, and connect 

two atoms that are not hydrogen and 
are not at the end of a chain. 

The current study expanded upon the methodology 
of the two preliminary studies by incorporating ¹H 
NMR spectroscopy data. The key difference from 
these preliminary studies was the use of consecutive 
decimal numbers, rather than natural numbers, to 
define chemical shift subranges for feature 
generation, allowing a more in-depth analysis of 
peak counts. Unlike the preliminary studies, which 
used traditional ML approaches, this study 
employed a PyTorch-based deep neural network 
(DNN) [42] with Optuna-optimized 
hyperparameters [43]. Python [44] and Jupyter 
Notebook [45] were employed as the programming 
language and development environment for all 
prediction models. 

Data derived from PubChem AID 2732 bioassay 
[46] focused on predicting the C/EBP Homologous 
Protein (CHOP) inhibitors was used to demonstrate 
the methodology. CHOP is a crucial transcription 
factor in the apoptotic arm of the Unfolded Protein 
Response (UPR). It can be activated by the 
accumulation of aberrantly folded proteins that have 
been recognised by the cellular surveillance system 
and retained within the endoplasmic reticulum (ER) 
[47,48]. The transcription factor activates ER 
protein chaperones and mediates for UPR response. 
So, it has been hypothesised that the inhibition of 
CHOP could regulate the unfolded protein response 
to ER stress and would have a potential therapeutic 
application to diverse diseases [49, 50, 51], such as 
diabetes [52], Alzheimer's disease [53] (although, it 
has been reported that CHOP is not the primary 
contributor to tau-mediated toxicity, related to 
memory lost [54]), Parkinson's disease [55], 
haemophilia [56], lysosomal storage diseases [57], 
and alpha-1 antitrypsin deficiency [58]. 

The paper also presents two computational 
applications for CHOP inhibition, in addition to the 
main research. The first one ordered the functional 
groups/fragments of explored small biomolecule 
from the most to the least desirable with respect to 
the CHOP inhibition. This computational approach 
was based on data encoded in the chemical names 
derived by the International Union of Pure and 
Applied Chemistry (IUPAC) nomenclature, which 
by itself ensure unique names for any chemical 
compound. The methodology has been developed 



and demonstrated with a case study on Tyrosyl-
DNA phosphodiesterase 1 (TDP1) inhibitors [59]. 
Through developing this approach with CHOP-
related data, the results serve researchers interested 
in CHOP inhibition and explore the applicability of 
the methodology for different data than TDP1. The 
second computational approach developed beyond 
the main study was the CID_SID ML model that can 
predict CHOP inhibitors, using only PubChem 
identifiers, i.e. PubChem CID and PubChem SID. 
This approach enables the assessment of small 
biomolecules initially intended for other targets for 
their CHOP inhibition capability. Since, generally, 
the identifiers are not used for ML training and 
testing, the CID_SID ML model is unconventional. 
Despite this, its development was meaningful 
because PubChem's method considers structural and 
similarity data when generating their identifiers. 
[60]. The CID_SID ML model has already been 
developed and is available in the relevant study [61]. 

Methodology  

The methodology is illustrated in Figure 1 and 
Figure 2.  The columns with CIDs, SMILES 
notations and activity labels of small biomolecules 
were retrieved from the PubChem AID 2732 dataset 
[46]. Since the study was focused on classification 
ML models, the severe imbalance between the 
inactive and active small biomolecules was handled. 
For this purpose, the inactive samples were reduced 
by keeping only the compounds considered as well 
in PubChem AID 1996 bioassay focused on small 
biomolecule solubility [62]. After shuffling the 
reminded inactive compounds, each second sample 
was selected and kept. Thus, the inactive compounds 
were reduced to some extent and combined with all 
active compounds from the PubChem AID 2732 
dataset [46].  

From the resulting dataset, the following datasets 
were created: 

(i) A dataset, which included only CIDs 
and SMILES notations, was 
formulated to enable the acquisition of 
NMR spectroscopic data through the 
NMRDB software. 

(ii) A dataset containing only SMILES 
notations and the activity labels of the 
small molecule was used later for 
labelling the spectroscopic data  

(iii) A dataset containing only CIDs, which 
was used as a list for downloading the 
molecule features listed above of the 
small molecules. 

Once the spectroscopic chemical shifts were 
obtained for 1H NMR and 13C NMR spectroscopy 
data, two types of datasets were generated. In the 
first type, each pick along the chemical shifts scale 
was counted within subranges defined by 
consecutive integers and called concise. The 
subranges in the second type were defined by 
consecutive decimal numbers and called extensive. 
All subranges formed the newly generated features 
of the data frames, which contained the number of 
picks along the chemical shifts scale. The four initial 
datasets, comprising both concise and extensive 1H 
NMR and 13C NMR spectroscopy data, were 
combined, as shown in Table 1, to yield eight 
resulting datasets. Each of these eight datasets was 
used further for ML with the classifiers: Decision 
Tree, Random Forest, Support Vector and Gradient 
Boosting software interpreted by scikit-learn ML 
library [35]. ML was conducted based on the best 
practices recommended in the literature [63, 64]. For 
that purpose, an equal number of samples for each 
class were extracted to ensure that there would not 
be bias towards the majority class that would lead to 
misleading accuracy.  The remaining samples were 
then balanced, increasing the number of minor 
classes with randomly selected and repeated samples 
of this class until the number of samples in the minor 
class was equal to the number of samples in the 
major class.   The ML models were then conducted 
with each of these eight datasets. The ML metrics 
were compared, and the most suitable dataset and an 
ML classifier for this case study were selected and 
scrutinised for overfitting tracing the deviation 
between the training and testing accuracy to be 
lower than 5%.    

Further, the above-described molecular features 
were integrated into the dataset used by the optimal 
ML model. Following this, ML analyses were 
conducted, comparing the results with and without 
PCA application [65], which application reduced the 
number of features, and the results obtained using 
only the molecular features. Using the expanded 
dataset with molecular features, a PyTorch DNN 
was developed, with hyperparameters optimised by 
Optuna [43] and scrutinised for overfitting. DNN 
was trained ten times, and the mean accuracy was 
compared to the optimal scikit-learn ML model. 



The supplementary computational approaches 
followed the methodologies of the relevant 
studies.  About this one using data encoded in the  
IUPAC names [59], the IUPAC names of the small 
biomolecule from the PubChem AID 2732 bioassay` 
dataset [46] were parsed into strings of four or more 
letters, and then used in two ways: to develop an ML 
model and to extract the most desirable and non-

desirable functional groups/fragment regarding the 
CHOP inhibition. For the second ML approach, the 
CID_SID ML model, the CIDs, SIDs and targets 
from the PubChem AID 2732 bioassay` dataset [46] 
were extracted and used for ML [61].  For more 
details about the methodologies, please refer to the 
relevant studies [59, 61]. 

 

Figure 1 Methodology of ML with eight datasets 



 

Figure 2 ML performed with the dataset of the optimal ML model and molecular features 

Results and discussion  

By identifying the overlap between 210,922 inactive 
compounds from PubChem AID 2732 and 57,859 
samples from PubChem AID 1996, 24,185 inactive 
samples were retained. The number of these 
compounds was reduced subsequently, keeping 
every second sample, which decreased them to 
12,085.  Combining these 12,085 remaining inactive 
samples with the 8,224 active compounds from 
PubChem AID 2732 resulted in a dataset of 20,309 
samples. The SMILES notations from this dataset 
were used by the NMRDB software, and NMR 
spectroscopy data was obtained as follows: 

(i) 220 columns with counts of chemical 
shifts of 13C NMR spectra in 
subranges defined by consequent 
natural numbers; the dataset 
abbreviation is 13C_c. 

(ii) 12 columns with counts of chemical 
shifts of 1H NMR spectra in subranges 
defined by consequent natural 
numbers; the dataset abbreviation is 
1H_c. 

(iii) 1,828 columns with counts of 
chemical shifts of 13C NMR spectra in 

subranges defined by consequent 
natural numbers; the dataset 
abbreviation is 13_e. 

(iv) 103 columns with counts of chemical 
shifts of 1H NMR spectra in subranges 
defined by consequent natural 
numbers; the dataset abbreviation is 
1H_e. 

These four datasets, containing NMR spectroscopy 
data, were combined as detailed in Table 1, resulting 
in eight datasets subsequently used for ML. To 
ensure reliable metric results, 2,100 samples were 
randomly selected from each dataset, resulting in a 
total of 4,200 samples used for testing the ML 
models. The imbalance in the remaining compounds 
was handled using Random Over Sampling (ROS), 
a technique replicating random minority class 
samples until both classes contained an equal 
number of samples. This process yielded a balanced 
dataset of 16,109 samples, which was used for 
training the ML models. Since there was a risk of the 
minority and majority classes not being well-
separated, which could lead to synthetic samples 
blurring the decision boundary, ROS was chosen 
over Synthetic Minority Over-sampling Technique 
(SMOTE). Additionally, ROS was preferred over 



Random Undersampling (RUS) to avoid decreasing 
the overall data volume, which is crucial for ML 
model performance. 

Table 1 summarises the optimal ML models' 
accuracy and five-fold cross-validation scores 
across the eight datasets. The performance of the 
ML models, when incorporating 13C NMR data, 
ranged from 76.4% (Dataset 6) to 79.3% (Dataset 2), 
a difference that was not statistically significant. 
Furthermore, including 1H NMR data did not 
improve model accuracy; in fact, a slight decrease 
was observed. Models trained solely on 1H NMR 
data yielded the lowest accuracies across the eight 
datasets, with results of 67.7% (Dataset 3) and 
69.5% (Dataset 4). The large gap between single 
result accuracy and five-fold cross-validation scores 
indicated potential overfitting. Due to this pattern 
across all datasets, only the optimal ML model 
(SVC, Dataset 2) was scrutinized for overfitting. 

Initially, SVC based on Dataset 2 (extensive 13 C 
NMR spectroscopy data) achieved 79.3% accuracy, 
82.6% precision, 74.1% recall, 78.2% F1-score, 
79.3% ROC (Table ESM 3), and a 0.835 five-fold 
cross-validation score (standard deviation ±0.002) 
(Table ESM4) followed closely by SVC based on 
Dataset 8 (extensive 13 C NMR  and extensive 1 H 
NMR spectroscopy data) 79.2% accuracy, 82.4% 
precision, 74.2% recall, 78.1% F1-score, 79.2% 
ROC (Table ESM15) and a 0.844 five-fold cross-
validation score (standard deviation ±0.002) (Table 
ESM16). The SVC variant trained on Dataset 2 was 
selected to minimize training and testing time due to 
its lower feature dimensionality. On the other hand, 
considering both variants, five-fold cross-validation 
revealed that RFC consistently had the highest 
cross-validation score, thus ranking it first. 
However, the substantial difference in RFC 
performance between a single evaluation and five-
fold cross-validation suggests potential overfitting 
(Table ESM 3, Table ESM4, Table ESM15, Table 
ESM16). Initial analysis showed no significant 
overfitting in the SVC model (with default 
hyperparameter based on Dataset 2) with training 
and testing accuracies of 0.846 and 0.793, 
respectively. Optuna's five-trial hyperparameter 
optimization (C=218090.43, gamma=0.0518) 
resulted in no significant accuracy gain. However, it 
increased the training-testing accuracy delta (0.879 
vs. 0.796), implying a higher propensity for 
overfitting. 

The inclusion of molecular features in Dataset 2 
altered its dimensions, increasing the number of 
features to 1,934 and reducing the number of 
samples to 19,501. The optimal ML model 
performed with this dataset was RFC achieving 83% 
accuracy, 88% precision, 76.4% recall, 81.8% F1-
score, 83% ROC (Table ESM17), and a 0.84 five-
fold cross-validation score with 0.006 standard 
deviations (Table ESM18). The overfitting 
assessment indicated that max_depth values 
exceeding 13, where the training and testing 
accuracy were 84.6% vs. 79.8%, respectively, 
resulted in a training-testing accuracy deviation 
greater than 5%, implying a potential for overfitting 
(Figure ESM 1). The hyperparameter tuning of RFC 
with Optuna improved the performance of the ML 
model to 81.1% accuracy, 83.4% precision, 77.7% 
recall, 80.4% F1-score, 81.1% ROC and 0.821 five-
fold cross-validation score. Overfitting (below 
max_depth=9) was not indicated by the examination 
(Figure 3). The hyperparameter values suggested by 
Optuna were:   

(i) max_depth=9, define the level the tree 
can have. 

(ii) n_estimators=494, shows the number 
of trees in the forest. 

(iii)  min_samples_split=2, the minimum 
number of samples required to split an 
internal node. 

(iv)  min_samples_leaf=6, the minimum 
number of samples required to be at a 
leaf node. 

(v)  max_features=None, i.e. 
max_features=n_features. 

(vi)  criterion='entropy', measuring the 
quality of a split. 

The learning curve of the ML model is plotted in 
Figure 4, the confusion matric in Figure 5, the AUC 
in Figure 6, and the classification report in Table 2. 

Dataset 2, with added molecular features, was used 
for ML after PCA reduced its dimensionality to the 
optimal eight components. However, this did not 
yield performance gains compared to the model 
without PCA (Table ESM19, Table ESM20). An 
ML variant using only molecular features was 
explored, but it did not outperform RFC with 
molecular-feature-integrated Dataset 2 as well 
(Table ESM21, Table ESM22).  

The Optuna-optimized DNN [43] comprised two 
hidden layers with 113 and 104 units, respectively. 



Dropout rates of 0.33165 and 0.3692 were applied 
after each layer. Utilizing the RMSprop optimizer 
with a learning rate of 0.001329, the model achieved 
82.34% accuracy. However, a significant 

discrepancy between the final training loss (0.07) 
and validation loss (2.5), as depicted in Figure 
ESM2, suggested potential overfitting.

 

Table 1.  Content of the eight datasets which were result of the combination of NMR spectroscopy data; Accuracy of the 
best ML model with the given dataset before to be scrutinized for overfitting; five-fold cross-validation score of the 
respected ML model; references to the tables in Electronic Supplementary material (ESM) with full set of ML metrics. 
Datasets contain data of carbon-13 isotope concise (13C_c), carbon-13 isotope extensive (13C_e), proton isotope concise 
(1H_c), proton isotope extensive (1H_c), 

Dataset 13C_c 13C_e 1H_c 1H_e Accuracy c-v score Table 
1  - - - 77.9% 0.864 ESM1, ESM2 

2 -  - - 79.3% 0.864 ESM3, ESM4 

3 - -  - 67.7% 0.769 ESM5, ESM6 

4 - - -  69.5% 0.821 ESM7, ESM8 

5  -  - 77.8% 0.861 ESM9, ESM10 

6 -   - 76.4% 0.872 ESM11, ESM12 

7  - -  77.8% 0.861 ESM13, ESM14 

8 -  -  79.2% 0.861 ESM15, ESM16 
 

Dataset 2 & molecule features  83.0% 0.840 ESM17, ESM18 
Dataset 2 & molecule features; feature 

reduction with PCA 82.8% 0.902 ESM19, ESM20 

Dataset only with molecule features  80.7% 0.887 ESM21, ESM22 
 

PyTorch DNN with Dataset 2 & molecule 
features  

81.3% - Figure ESM2 

 

Figure 3 Scrutinising for overfitting of the Optuna-
hyperparameter tuned RFC  

based on Dataset 2 and molecular feature 

 

Figure 4 Learning curve of the Optuna-hyperparameter 
tuned RFC  

based on Dataset 2 and molecular features 



 

 

Figure 5. ROC of the Optuna-hyperparameter tuned RFC 
based on Dataset 2 and molecular features 

 
 
 

 
 

 

Figure 6. Confusion matrix of the Optuna-
hyperparameter tuned RFC  

based on Dataset 2 and molecular features 
 
 

 
 

Table 2.  Classification report of the Optuna-
hyperparameter tuned RFC based on Dataset 2 and 
molecular features 
 

 precision recall F1-
score 

support 

Active 
(target 1) 

0.79 0.85 0.82 2000 

Inactive 
(target 0) 

0.83 0.78 0.80 2000 

     
accuracy   0.81 4000 

macro avg 0.81 0.81 0.81 4000 
Weighted 

avg 
0.81 0.81 0.81 4000 

 

The Optuna-tuned RFC achieving 68.9% accuracy, 
71.6% precision, 62.5% recall, 66.7% F1-score, 
68.8% ROC AUC, and a five-fold cross-validation 
score of 0.724% (standard deviation ±0.0076). The 
optimal hyperparameters, determined by Optuna 
were min_samples_split=10, min_samples_leaf=1, 
max_features='log2', criterion='gini', and 
max_depth=15, which was set to prevent overfitting 
(train/test accuracy deviation < 10%). Figure ESM 3 
illustrates the scrutinising for overfitting of the 
model with default hyperparameters, where the 
overfitting started at max_depth = 19, where the 
train accuracy was 66.2%; Figure ESM 4 is a plot of 
the scrutinising for overfitting of the model 
hyperparameter tuned by Optuna, which was the 
final model; Figure ESM 5 confusion matrix and 
Table ESM 23 the classification report of the final 
model.  

The top 24 functional groups (Figure ESM 6, Figure 
ESM 7), as ranked by the feature importance and 
permutation importance algorithms, showed high 
similarity. The difference between them was three 
groups per list, namely amino, pyramidin, methyl, 
sulfamoyl, carbamothioyl, trichloro. The result of 
combination of two feature importance lists keeping 
only the unique functional groups/fragments was 
reordered according to the relevant proportion of the 
active cases, so with the highest value was sulfamoyl 
with 69 active and 13 inactive cases and relative 
proportion of 5.31 and the lowest value relative 
proportion was hold by carbohydrazide with 0.1 
relative proportion of the active cases. The full 
reordered list based on relative proportion of the 
active cases is available on GitHub [66]. It should be 
noted that sulfamoyl should participate in the small 
biomolecule composition as an independent 
functional group, not in a pact with other groups, for 
example like sulfamoylbenzoicacid because it 
turned out that  sulfamoyl name  participated in 26 
features and formed dataset of 19,499 compounds, 
where 11,593 are inactive and 7,906 are active, so 
just the presence of sulfamoyl  in the IUPAC name 
is not enough to conclude that there is a high 
probability that the compound is a CHOP inhibitor. 
The sulfamoyl functional group should not be in a 
composition with other functional groups.  

The entire dataset of the bioassay PubChem AID 
2732 [46] was used for generation of the lists with 
functional groups/fragments participate only in 
active cases (highly desirable) or inactive cases 



(highly undesirable). As it was mentioned above, the 
dataset contained 218,583 samples 8,224 of which 
were labelled as active and 209,952 as inactive. So, 
the list with highly desirable functional 
groups/fragments was with 267 elements, starting 
with hexahydroazuleno and dioxonaphthalene as the 
most desirable each one of them with five active 
cases and no one inactive, followed by ynamide, 
oxirane, pyrazolidine each of them with four active 
cases The full list is available on GitHub [67]. It is 
worth mentioning that the hypothesis proposed in 
the parent study  of this approach [59] suggested that 
when the tested compound contains a functional 
group from one of these two lists and its (of the 
tested compound) 13CNMR spectroscopy data is 
similar to the compound source of this functional 
group/fragment, there is a high probability that the 
tested compound is a CHOP inhibitor. Given the 
nature of 13C NMR spectroscopy, the hypothesis 
was expected to be applicable in the presence of NPs 
(i.e. for NFs) as well. In this case the NFs will be 
processed in the same manner explained in the main 
study, i.e. way explained in the main study, i.e. NFs 
to be stood in a complex biological fluid in order to 
provoke NPs aggregation and then to process NMR 
spectroscopy whose data will be used for 
comparison.   

Regarding the most undesirable functional 
groups/fragments, i.e. whose compounds participate 
only in inactive cases, the descendent order 
contained 7,155 rows on the top of which was 
methyl with 25,955 inactive cases followed by 
carboxamide with 18,520 and methoxyphenyl with 
13,153. The list with the first 3000 rows is available 
on GitHub [68]. 

Regarding CID_SID ML model that check if a 
compound, designed initially for other purpose 
different than CHOP inhibition is a CHOP inhibitor, 
the RFC obtained 90.1% accuracy, 98.3% precision, 
81.7% recall, 89.2% F1, 90.1% ROC, five-fold 
cross-validation score of 0.943 with standard 
deviation of ±0.00075. For more details, please refer 
to the original study [61] 

Conclusion  

An ML methodology was developed, leveraging 
molecular features and 1H and 13C NMR 
spectroscopy data derived from SMILES notations. 
It was hypothesised that the approach could be 

applicable in case of predictions of a NF 
functionality due to the capability of 13C NMR to 
provide information regarding the chemical 
environment of the carbons building the carbon 
skeleton of small biomolecules. So, the presence of 
nanoparticle with or without protein corona would 
affect this environment and respectively detected by 
the 13C NMR spectroscopy. This information in 
turn can be used by ML to find a pattern amongst 
data that can predict the functionality of the 
compound (NF) accommodating the NP. The 
methodology was demonstrated using CHOP 
inhibitors as a case study, but its applicability to 
other bioassays is anticipated. A key innovation of 
this research, within a broader investigation, was the 
refined segmentation of chemical shift ranges, 
which increased feature dimensionality and slightly 
enhanced ML model performance. Additionally, a 
PyTorch DNN was designed and optimized using 
Optuna. The optimal solution was RFC that 
scrutinised for overfitting to confirm its robustness.  
Although data used for the development of the ML 
model was synthetic, the NMR chemical shift of NF 
that will be tested must be real spectroscopy data. 
The complementary computational approaches 
provide the researchers interested in CHOP 
inhibition with insights related to drug discovery and 
a side effect.  

Scientific contributions 

• Proposed a new concept to address the 
challenges in predicting the influence of 
NPs (NPs) based on 13C NMR 
spectroscopy. 

• Developed an ML model for predicting 
CHOP inhibition based on SMILES 
notations. 

• Sulfamoyl was identified as having 
potential to contribute to CHOP inhibition 

• Hexahydroazuleno and dioxonaphthalene 
were identified as a highly desirable 
functional group for CHOP inhibition. 

•  Methyl was found to be a highly 
undesirable functional group for CHOP 
inhibition 

• Developed CID_SID ML model that 
leverages PubChem CID and SID to predict 
CHOP inhibition as a potential side effect 
for existing chemical compounds.    
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