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A B S T R A C T

This paper introduces several proof-of-concept (PoC) computational methods intended to offer biochemical re
searchers straightforward, time- and cost-effective strategies to accelerate their work. While Machine Learning 
(ML) models were developed, the study's central purpose was to explore approaches for the identification of 
desirable functional groups/fragments in small biomolecules regarding a specific functionality, which, in this 
case, was human tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibition. This was achieved primarily by tokenising 
IUPAC names to generate features. Additionally, the applicability of the CID_SID ML model for predicting TDP1 
activity was developed and explored. Since these computational approaches were not experimentally validated 
due to a lack of appropriate laboratory facilities, they are presented as open proposals for further laboratory 
investigation.

1. Introduction

This work aims to develop computational approaches capable of 
predicting potential drug side effects in the development pipeline and 
generating novel insights for drug discovery. A major challenge in drug 
development underscores the critical need for computational tools: a 
report [1] shows that nine out of every ten drug candidates fail to reach 
FDA submission after entering trials. This inefficiency is compounded by 
the fact that developing a new drug requires an average of 12 years and 
costs over a billion US dollars [2]. To develop the proposed supportive 
computational approaches, the strategy focused on leveraging the vast 
experimental data within the PubChem repository, alongside the use of 
relatively simple chemical nomenclature for naming compounds and 
substances. The information encoded in the names of compounds, which 
are generated according to the International Union of Pure and Applied 
Chemistry (IUPAC) nomenclature [3], was investigated to determine 
how it could be utilized. These unique IUPAC names encode the chem
ical composition and structure of compounds, thereby ensuring clear 
and unambiguous communication among chemists worldwide. The 
naming variations inherent in the IUPAC nomenclature, including the 
designation of a Preferred IUPAC Name (PIN) for regulatory precision, 
do not compromise the integrity of this study. While PINs resolve 

ambiguity by standardising the order of precedence or the choice of 
parent structure, they are fundamentally built upon the same chemical 
structure as other valid systematic names. Consequently, the set of 
functional groups or chemical fragments remains identical regardless of 
the name chosen. The methodology's core strength lies in explicitly 
tokenising the IUPAC names to extract the presence or absence of these 
discrete structural fragments (e.g., 'phenyl' or 'imidazo'), successfully 
bypassing the ordering variations that define a PIN. Therefore, the 
resulting binary feature matrix (data frame) is a robust, direct repre
sentation of the molecule's composition, untouched by naming 
conventions.

IUPAC names have previously been leveraged for computational 
drug discovery applications by the large language models (LLMs) 
iupacGPT [4] and BioT5+ [5]. However, the two LLMs possess signifi
cant differences. The iupacGPT [4] approach is highly focused, treating 
IUPAC names as a chemist's natural language to directly design new 
compounds and predict their functionalities. In contrast, BioT5+ [5] 
uses IUPAC names merely as one feature within a vast, integrated 
dataset. This broadened data includes literature from PubMed and bio
Rxiv, molecular data like SELFIES from PubChem, and protein se
quences from UniRef50, allowing the model to learn simultaneously 
across 15 different tasks and 21 benchmark datasets. A limitation 
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common to both LLMs is the risk of "hallucination" [6,7], which, in 
chemistry, translates to generating non-existent or fabricated informa
tion. That includes reporting incorrect properties, non-existing in
teractions, or invalid sequences and nomenclature (SMILES, SELFIES, 
IUPAC names, or protein sequences) [8]. Prediction of IUPAC names 
based on the International Chemical Identifier (InChI) of the chemicals 
was performed by implementing character-by-character tokenisation of 
the names. This Machine Learning (ML) model achieved 91% accuracy 
for organic molecules (excluding macrocycles) [9], which suggests the 
potential for vice-versa implementation using IUPAC-encoded data. A 
separate insightful study demonstrated that deep learning (DL) can 
successfully generate IUPAC names directly from Atomic Force Micro
scopy (AFM) images [10]. Extensive review of the publicly available 
literature confirms that the approach presented in this paper is novel and 
has not been reported to date. The paper integrates two methodologies 
that process IUPAC-derived data to produce lists of functional groups. 
These lists are designed to facilitate drug development by serving as a 
resource for human-driven medicinal chemistry insights.

To demonstrate the methodologies, the PubChem AID 686978 
bioassay was selected [11]. This assay is focused on human tyrosyl-DNA 
phosphodiesterase 1 (TDP1) and seeks to identify active inhibitors, 
thereby providing potential agents to modulate the TDP1-mediated 
repair pathway for cancer therapy. While not strictly an essential pro
tein, TDP1 becomes critical for cell survival under treatment with the 
topoisomerase I poison camptothecin (CPT). To screen for inhibitors 
active in a cellular environment, a specialised assay was developed using 
chicken DT40 cells: a TDP1 knockout line (Tdp1 −/−) and a com
plemented line (Tdp1 −/−; hTDP1) stably expressing human TDP1. In 
the primary screen (PubChem AID 686978), the latter cells were 
exposed to small molecules from the MLSMR, both in the presence and 
absence of CPT, and their growth kinetics were evaluated by measuring 
ATP activity after 48 h. A compound demonstrating a synergistic effect 
with CPT suggests inhibition of the CPT-induced repair pathway, 
potentially through TDP1. Compounds that showed synergy in Tdp1 
−/−; hTDP1 cells but not in Tdp1 −/− cells were classified as hits 
potentially involved in TDP1-mediated repair inhibition and were then 
subjected to tertiary biochemical gel-based assays for specific TDP1 
targeting assessment. The screening involved dispensing 400 
DT40-hTDP1 cells per well into 1536-well plates, transferring 23 nL of 
compounds, incubating for 48 h, and reading luminescence after adding 
Cell Titer Glo solution. Finally, compounds were ranked based on their 
titration curves, with active compounds assigned a PUBCHEM\_AC
TIVITY\_SCORE between 40 and 100 (with Fit\_LogAC50 used for 
relative scaling), inconclusive compounds scored 1 to 39, and inactive 
compounds scored 0 [11]. The enzyme TDP1 was selected as the 
demonstration object for this study because of its crucial function in the 
DNA repair pathway, specifically in resolving lesions caused by topo
isomerase I cleavage complexes (TopIcc) [12].

The TDP1 enzyme's DNA repair capability holds promise for cancer 
treatment, as demonstrated by its clinical testing in a study involving 
150 patients with non-small-cell lung cancer [13]. To elucidate the 
mechanism by which TDP1 repairs DNA-protein crosslinks (DPCs), 
which are DNA lesions leading to genomic instability and cell death, an 
investigation was performed that confirmed the endogenous role of 
TDP1 in DPC repair [14,15].

In addition to its role in cancer, TDP1 has non-cancer related func
tions; specifically, its mutation is the known cause of spinocerebellar 
ataxia with axonal neuropathy type 1 (SCAN1) [16,17]. This rare 
neurodegenerative disorder remains incurable to date, representing a 
critical gap in current medical research [18,19].

An exploration of the available literature revealed a variety of AI 
approaches currently assisting in the field of drug discovery [20,21]; 
feature engineering for ML models using atomic properties. [22]; the 
results of ten ML algorithms were compared to facilitate the prediction 
of the intervention age that would improve the efficacy of the treatment 
for spinocerebellar ataxia type 3 [23]; ML predictions based on 13C 

NMR spectroscopic data derived from Simplified Molecular-Input 
Line-Entry System (SMILES) [24]; an ML model developed to predict 
potential TDP1 inhibitors using SMILES notations [25] that were 
transformed into numerical data by the RDKit cheminformatics toolkit 
[26]. To date, the approaches based on IUPAC-parsed names presented 
in this article this article has not been reported in the literature.

While this work centres on approaches using parsed IUPAC names, 
the TDP1 inhibition data were also utilized to test the applicability of the 
CID_SID ML model methodology [27]. This secondary model, while also 
predicting TDP1 inhibition, has a distinct goal: it relies solely on the 
PubChem compound and substance identifiers (CID/SID) to computa
tionally screen compounds originally designed for other purposes. While 
sample identifiers typically lack data suitable for ML training and 
testing, the PubChem compound and substance Identifiers (CID and SID) 
may be an exception. Since CID and SID are not arbitrary identifiers but 
sophisticated, structured keys to vast chemical and biological informa
tion, they can be used in ML. The CID acts as a non-redundant identifier 
for a single, canonical chemical structure; it is the result of a rigorous 
standardisation algorithm that resolves ambiguities like tautomers and 
salts, allowing it to serve as a reliable anchor for all molecular properties 
(e.g., fingerprints, SMILES strings) that are the true features in chem
informatics ML [28]. Conversely, the SID is crucial because it links the 
canonical structure (CID) back to the specific experimental context and 
data source (depositor) that provided the information, which is vital for 
modelling data variability, source bias, and linking to raw bioassay re
sults. By using these IDs, the ML model implicitly taps into PubChem's 
extensive data hierarchy and curation. This allows the model to group 
similar compounds and contextualise activity data, a strategy that has 
proven successful in numerous predictive modelling studies. Capital
ising on this, a study developed CID_SID ML models, predicting D3 
dopamine receptor antagonists, Rab9 promoter activators, DNA 
damage-inducible transcript 3 inhibitors and M1 muscarinic receptor 
antagonists [27]. The general applicability of the CID_SID ML model was 
later confirmed by a separate study that successfully predicted dopa
mine D1 receptor antagonists [24]. Leveraging this proven methodol
ogy, a CID_SID ML model was subsequently developed in the current 
study to specifically predict TDP1 inhibitors.

The methodologies presented in this study are fundamentally situ
ated within the research stream of Quantitative Structure-Activity 
Relationship (QSAR) modeling. Traditionally, QSAR models have been 
constructed using a variety of molecular descriptors, ranging from 
physicochemical properties to complex 3D structural parameters, to 
predict biological activity. In this work, the conventional QSAR para
digm is expanded through the introduction of systematic nomenclature- 
based descriptors. It is posited that IUPAC names, which are governed by 
rigorous compositional rules, can function as a high-level abstraction of 
molecular architecture suitable for QSAR tasks. By shifting the focus 
from traditional molecular fingerprints to IUPAC tokens, a novel layer of 
interpretability is added to the QSAR process. This approach allows for 
the statistical correlation of specific linguistic tokens with biochemical 
potency, thereby facilitating the identification of activity-boosting 
functional groups through a transparent, nomenclature-driven predic
tive framework.

2. Methodology

The first methodology involves an ML model that uses IUPAC- 
tokenised data to predict a small biomolecule's functionality [29]. 
Subsequently, the feature importance from this model is extracted and 
processed to derive insights for biochemical and medical research. The 
second methodology also utilizes tokenised IUPAC names but focuses on 
generating ranked lists of functional groups. This ranking identifies the 
most and least desirable functional groups based on their correspon
dence with relevant labels across the entire High-Throughput Screening 
(HTS) bioassay dataset. The third methodology is a complementary ML 
model that replicates the previously established CID_SID ML model. This 
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model does not rely on IUPAC names but serves as a resource for re
searchers interested in screening compounds designed for other pur
poses to determine if they also possess TDP1 inhibitory capabilities.

The first methodology is illustrated in Fig. 1. As was noted above, 
for the purpose of demonstrating the proposed methodology, the case 
study was built upon the publicly available PubChem AID 686978 
bioassay dataset focused on TDP1 inhibition [11]. The critical impor
tance of data quality and the valid point regarding the need to comment 
on curation, even for well-known datasets, are acknowledged, as model 
validity can still be compromised by errors and mislabelled entries. 
Therefore, to ensure the reliability of the results, a rigorous data cura
tion process was implemented prior to model training. This included the 
removal of duplicate entries, the conducting of consistency checks on all 
chemical structures and their corresponding activity labels, and the 
performing of literature cross-validation (CV) to resolve any ambiguous 
assignments. Through this thorough validation step, it is ensured that 
the final performance of the ML models, including the Random Forest 
Classifier (RFC), is based on a clean, statistically reliable foundation, 
thus addressing the potential for data-related inconsistencies. Although 
more advanced architectures, such as Deep Learning or Gradient Boos
ted Trees, are available, Random Forest was selected due to its proven 
stability and performance in traditional QSAR tasks involving 
high-dimensional, sparse data (like IUPAC tokens). Furthermore, RF's 
inherent ability to calculate feature importance and handle non-linear 
relationships provided a transparent foundation for the LIME (Local 
Interpretable Model-agnostic Explanations) validation used in this 
study.

The PubChem AID 686978 bioassay dataset consists of 424,883 
samples (rows) defined by 48 features (columns). The samples were 
divided into three distinct activity groups: 64,192 active, 116,652 
inconclusive, and 243,131 inactive. For the purpose of the first and 
second methodology, the active and inactive compounds were gathered 
into a single dataset. To mitigate the severe imbalance between the 
active and inactive small biomolecules, this resulting dataset was 
merged with the PubChem AID 1996 bioassay dataset [30], and only the 
common samples for both bioassays were retained.

While the filtering strategy using PubChem AID 1996 bioassay [30], 
focused on the aqueous solubility of small biomolecules, introduces a 
selection bias, this bias was considered intentional and necessary to 
focus the model on the chemical space most relevant to successful drug 
discovery; the bias was directed toward compounds with reliable 
physicochemical properties. Although the PubChem AID 1996 bioassay 
dataset contained 57,859 rows of samples, 40,860 of which were 
labelled as soluble and 17,573 as insoluble small biomolecules, solubi
lity was not taken into consideration for the purpose of the current 

study. Only the column with CIDs was used to reduce the inactive 
compounds in the PubChem AID 686978 bioassay, keeping the common 
for both bioassay samples. Furthermore, the final dataset used for 
downloading of IUPAC names from PubChem was obtained by the 
addition of all active compounds to the reduced inactive compounds. In 
this way, simultaneous mitigation of both data imbalance and selection 
bias was achieved.

PubChem's requirement for retrieving a bulk query of IUPAC names 
is to specify a list containing only CIDs. After such a list was created from 
the resulting dataset, the file with IUPACs was downloaded via the 
PubChem home page, Upload ID List, which is a data retrieval option for 
an easy-to-use way to perform bulk queries on the database without the 
need for more complex programming tools. For the purpose of the study, 
the comprehensive downloaded file from PubChem was filtered to retain 
only the necessary columns: CID, the SMILES string, and the IUPAC 
name. This focused dataset was then merged with the primary target- 
containing dataset. The merge operation used a compound key con
sisting of both the CID and the SMILES string to ensure accurate and non- 
redundant matching of each chemical entity with its corresponding 
experimental activity data. Following this procedure, to identify key 
molecular features, the IUPAC names in the dataset underwent a parsing 
step. Only strings of four or more letters were retained, as these likely 
represented significant functional groups or molecular fragments. The 
approach was intentionally designed and executed to ensure that the 
extracted strings represented existing constituents of the IUPAC names, 
meaning the process was constrained to avoid generating novel strings 
by cutting across IUPAC-defined groups or molecular fragments. The 
resulting strings then formed the column headers of a new data frame 
(Table 1). For each compound, a binary indicator (1 for present, 0 for 
absent) was assigned to mark the presence or absence of a given func
tional group, Table 1. The feature assignment is based strictly on an 
absolute, exact string match between a functional group or fragment and 
the corresponding column (feature) name. A partial or subordinate 
match is not sufficient for assignment; for instance, the mere presence of 
the string "amino" within a molecule will not assign a label of "1″ to every 
column name that contains "amino"; the functional group's string must 
perfectly equal the feature column's name. The new data frame, con
taining the functional group information, was subsequently merged with 
the labelled data frame by matching their CIDs and SMILES.

ML conducted in this study centred on the RFC, whose interpretation 
was facilitated by the scikit-learn library. The entire ML process, 
encompassing data preprocessing, model training, prediction, and result 
evaluation using relevant metrics, was compiled and executed in 
accordance with the best relevant practices recommended in the liter
ature, as detailed in Refs. [31,32], and [33].

Fig. 1. Methodology of the ML model utilizing 
IUPAC names, PubChem bioassay data and the scikit learn ML library.
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After the tokenisation of IUPAC names and integration with their 
relevant labels, the dataset was split into data points (X) and targets (y) 
(Fig. 2). These were subsequently divided into training and test sets 
(X_train, X_test, y_train and y_test). The test set was manually created by 
randomly extracting an equal number of cases to ensure a balanced 
evaluation. Using an equal number of classes in the test set (a balanced 
test set of randomly selected samples) basically provided a fair and 
reliable evaluation of the ML model's ability to generalise across all 
outcomes. This approach directly tackles the accuracy paradox, where 
an imbalanced test set could yield a deceptively high accuracy score by a 
model that simply predicts the majority class, masking poor perfor
mance on the minority class. By employing equal class proportions, the 
model is forced to correctly identify instances from every class, ensuring 

the overall accuracy is a meaningful metric that reflects equal emphasis 
and penalty for misclassification across all outcomes. Furthermore, a 
balanced test set allows the straightforward and reliable interpretation 
of standard metrics.

such as the Precision, the Recall and the F1-Score, validating the 
model's robustness and confirming that it has learned the distinct pat
terns for each classification label rather than merely exploiting a data 
distribution bias. The remaining samples formed the training set. It was 
then balanced using Random Over Sampler (ROS), which randomly 
replicated minority class samples until a balanced training dataset was 
achieved. Finally, these prepared sets were used for training, predicting, 
and evaluating the ML model based on the Random Forest Classifier 
(RFC) strategy. To ensure the ML model's reported performance 
(including Accuracy, Precision, Recall, F1-score, and ROC) is robust and 
generalised, rather than relying on a single data split, five-fold CV was 
conducted. The procedure began by partitioning the shuffled dataset 
into five equal, stratified folds to preserve the class proportion. In each 
iteration, one fold was designated as the test set, while the remaining 
four were used for training. This training set was further processed using 
the balancing technique appropriate for the model. The model was 
trained iteratively on the four balanced folds and validated on the single, 
untouched test fold, with all metrics recorded. The model's final, 
generalised performance is reported as the mean and standard deviation 
of the five recorded scores, confirming consistency.

Scientific context and proof of performance were established by 
comparing the model against two industry-standard baselines: MOR
GAN2 fingerprints [34] and features computed by RDKit from the 
SMILES notation [25]. These RDKit representations were essential as 
they provide a proven, accurate, and highly efficient means of trans
lating complex molecular information into the fixed numerical format 
that ML and QSAR algorithms can process.

Principal Component Analysis (PCA) was implemented as an unsu
pervised dimensionality reduction technique [35]. Its core function was 
to simplify the complex, high-dimensional dataset by transforming the 
original, correlated variables into a smaller, more manageable set of 
uncorrelated variables known as Principal Components (PCs), thereby 
retaining the maximum possible data variability and essential 

Table 1 
Methodology. Parsing/breaking down the IUPAC names into tokens/strings equal or longer than 
four letters and using these tokens/strings to create the data frame features. Counting the presence 
of the functional groups in the compound's content with 1 for presence and 0 for absence of the 
relevant feature group/fraction in the content of the small biomolecule.

Fig. 2. Illustration of Data Preprocessing Steps (Balancing and Scaling) Applied 
to the Training and Test Datasets (Ivanova et al., 2025).

M.L. Ivanova et al.                                                                                                                                                                                                                             Computers in Biology and Medicine 204 (2026) 111531 

4 



information.
Two complementary feature inspection techniques, both imple

mented via Scikit-learn, were used to rank the functional groups that 
compose the small molecule TDP1 inhibitors. The primary ranking was 
established using the RFC feature importance, which sorted the func
tional groups in descending order based on their ability to reduce Gini 
impurity, quantifying the model's reliance on each group for accurate 
prediction. A second, independent ranking was created using the Chi- 
squared statistical test within the SelectKBest tool. This test assesses 
the statistical independence of each functional group from the target 
variable; since highly independent variables have low predictive value, 
this process effectively quantifies the potential predictive power of each 
group by measuring the strength of its direct relationship with the in
hibition data. Collectively, these methods provided a clear quantifica
tion of feature influence by systematically assessing and disrupting the 
feature-target relationship.

After generating two distinct feature importance lists from the RFC 
model, each likely derived from a different set of molecular represen
tations, a single, consolidated list of unique functional groups was 
created. This final, unified list was then re-ranked using two indepen
dent chemical relevance metrics. The first re-ranking was based on the 
relative proportion of active versus inactive small biomolecules that 
possessed the given functional group, directly correlating group pres
ence with target activity (as detailed in Table 2). The second, more 
rigorous re-ranking utilized Fisher's exact test [36] to statistically assess 
the non-random association (dependency) between the categorical 
variable (the presence of a functional group) and the binary target 
outcome (active or inactive), providing a precise measure of the group's 
statistical significance as a predictor (Table 2). The Boruta feature se
lection algorithm [37] was additionally employed to identify the most 
relevant chemical features, providing a statistically robust foundation 
for subsequent process validation. By ensuring the ML models (such as 
the RFC) were trained only on the most significant variables, Boruta 
allowed for a rigorous and fair comparison of their performance, thereby 
confirming that the final results were based on truly meaningful inputs.

To optimise the model's performance, hyperparameter tuning was 
conducted on the RFC using Bayesian optimisation. This entire process 
was automated and executed efficiently via the open-source framework, 
Optuna [38]. During the hyperparameter optimisation using Optuna, 
the process was guided by k-fold Stratified CV (StratifiedKFold) on the 
training data (X_train and y_train), where the objective function itera
tively tests hyperparameter combinations and returns the mean cros_
val_score to maximise performance while preventing overfitting to any 
single data subset. The X_train set was fully utilized for both training and 
validation via the 5-fold CV to provide a stable, low-variance estimate of 
the optimal parameters. Finally, once the best parameters were found, 
the model was refit on the entire training set (X_train, y_train), and it was 
true, unbiased generalisation performance assessed only once by 
calculating the scikit-learn method.score() on the completely held-out 
test set (X_test and y_test), ensuring the reported result was a realistic 
measure of performance on unseen data. X_test and y_test were not used 
in any way to influence the model's structure, weights, or 

hyperparameters during the crucial learning and tuning phases.
Tracing the deviation between the training accuracy (the model's 

performance on seen classification examples) and the test accuracy (its 
ability to correctly classify unseen examples) is the most direct way to 
detect and quantify overfitting. Ideally, both curves increase together, 
confirming the model is learning generalisable classification boundaries. 
However, in an overfit scenario, the curves diverge: the training accu
racy continues its ascent as the model perfectly memorises the training 
data's noise and specific class assignments, while the test accuracy pla
teaus and then drops because the over-specialised model fails to 
generalise to new data. The resulting size of the gap between these two 
metrics directly indicates the level of overfitting, making this trace 
critical for implementing early stopping, a necessary regularization 
technique that halts training when test accuracy starts its decline, 
thereby selecting the classification model with optimal real-world 
generalisation capability. Although setting a fixed 5% deviation 
threshold for classifying 'overfitting' is arbitrary, in this specific context, 
the 5% margin was used only as an initial threshold to monitor model 
stability during preliminary runs. The primary and standard criterion for 
mitigating and defining overfitting was the use of early stopping, where 
training was halted precisely when the test (validation) loss failed to 
decrease for a set number of epochs. Therefore, the 5% threshold served 
merely as a secondary, conservative monitoring tool, and the true 
measure of acceptable generalisation was based on the F1-score and 
ROC metrics.

The Matthews Correlation Coefficient (MCC) was used as a single, 
robust metric to assess the quality of a binary classification model, 
particularly because it provides a reliable score even when dealing with 
imbalanced datasets [39]. The MCC is a correlation coefficient between 
the true and predicted classifications, symmetrically incorporating all 
four confusion matrix components: True Positives (TP), True Negatives 
(TN), False Positives (FP) and False Negatives (FN), into its calculation, 
ensuring that a high score reflects strong performance across all classes, 
not just the majority one. A perfect model scores +1, a random guess 
scores 0, and a perfect inverse prediction scores −1. However, MCC's 
limitations include its complex formula, which makes the magnitude 
less intuitive than Accuracy, its sensitivity to the classification threshold, 
and the fact that its formula can be undefined in rare, degenerate cases 
where a row or column in the confusion matrix is empty.

Confidence Intervals (CIs) were calculated for the ML parameters to 
quantify the uncertainty and precision associated with the sample-based 
estimates, thereby establishing a plausible range of values for the true 
population parameters. This process fundamentally acknowledges that 
any estimate derived from a limited sample is inherently subject to 
random error, with the resulting CI's width serving as a direct indicator 
of the estimate's precision. Furthermore, CIs are crucial for statistical 
significance testing, as they enable researchers to quickly ascertain if an 
effect is significant (e.g., by observing if the interval for a coefficient 
excludes zero) or if the performance of different models is meaningfully 
distinct (by assessing the overlap of their respective CIs). Ultimately, the 
inclusion of CIs enhances scientific reporting by lending transparency, 
context, and reliability to the reported results.

Table 2 
Five-fold cross-validation with StratifiedKFold of RFC based on IUPAC tokenised data.

Metrics Fold Average across the folds

1 2 3 4 5

Accuracy [%] 75.28 74.88 76.24 75.08 75.75 75.45 ± 0.49
Precision [%] 89.63 89.23 89.79 89.85 90.04 89.71 ± 0.27
Recall [%] 69.60 69.29 71.13 69.04 70.04 69.82 ± 0.74
F1-Score [%] 78.35 78.00 79.38 78.08 78.79 78.52 ± 0.51
ROC AUC [%] 85.64 85.24 86.37 85.58 86.19 85.80 ± 0.41
Confusion Matrix TN 4498 4469 4495 4522 4526 4502.0 ± 23.08

FP 763 792 766 739 734 758.8 ± 23.34
FN 2879 2909 2737 2932 2838 2859.0 ± 76.74
TP 6592 6562 6737 6539 6634 6612.8 ± 78.00
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LIME was used to provide essential transparency for any "black-box" 
ML model, which is critical for trust, debugging, and compliance. By 
creating a simple, local explanation for individual predictions, LIME 
allowed users to verify that the model was making decisions based on 
sound, expected features, rather than spurious correlations or data 
leakage. This capability is paramount in high-stakes fields to diagnose 
flaws before deployment and is increasingly necessary to meet regula
tory and ethical requirements for model accountability and fairness.

The second methodology aimed to identify chemical groups 
exclusively associated with a single activity class by focusing on the 
chemical composition of small biomolecules exhibiting a purely active 
or inactive nature regarding TDP1 inhibition (as summarised in Fig. 3). 
To achieve this, all molecules from AID 686978 were first tokenised and 
organised into a data frame containing their IUPAC names and corre
sponding target labels (active/inactive), following the same pre- 
processing steps as the first methodology. The core step then involved 
selectively extracting functional groups that appeared only in the 
composition of active biomolecules and were entirely absent from 
inactive ones. This process was then repeated to isolate functional 
groups found only in inactive biomolecules, thereby generating two 
distinct lists of activity-exclusive chemical features.

For both methodologies (First and Second), the compounds con
taining the suggested functional groups were screened for Pan-Assay 
Interference Compounds (PAINs) [40]. Despite their known propensity 
for generating false positives and assay artefacts they were not removed 
in advance. Fundamentally, PAINS represent statistical alerts rather 
than absolute exclusion rules, as evidenced by the small percentage of 
FDA-approved drugs that successfully contain these motifs [41]. Strictly 
filtering all PAINS risks incurring detrimental false negatives, leading to 
the premature dismissal of genuinely active or unique scaffold hits 
simply because they share a substructure common to interferers. 
Furthermore, retaining these compounds preserves invaluable historical 
data from legacy HTS campaigns, which is essential for a comprehensive 
chemical context. Finally, from an ML perspective, including flagged 
PAINS is necessary to train robust models that can effectively learn and 
predict promiscuity and chemical reactivity, ultimately enhancing the 
model's ability to triage novel compounds based on a complete spectrum 
of chemical behaviour. Therefore, their presence in large datasets is not 
accidental but serves to preserve historical integrity, prevent the loss of 
potential leads, and improve predictive modelling power.

The third methodology, complementary to the main study, adapted 
the framework of established CID-SID ML models to develop a dedicated 
TDP1 CID-SID model [27]. The data was sourced from PubChem AID 
686978 [11], retaining only the CID, SID, and the column related to 
TDP1 activity. The imbalance of the resulting dataset was addressed by 
initial filtering with the PubChem AID 1996 bioassay [30], followed by 
the described oversampling technique. The model leveraged five diverse 

classifiers: Decision Tree Classifier (DTC), RFC, Gradient Boosting 
Classifier (GBC), Extreme Boosting Classifier (XGBC), and Support 
Vector Classifier (SVC). To maximise predictive capability, the models 
underwent rigorous evaluation, including five-fold CV, hyperparameter 
optimisation with Optuna [37] and overfitting analysis as explained 
above. The performance of the resulting optimal model was then 
benchmarked against the MORGAN2 and SMILES RDKit-based ML 
models established in the third methodologies. PCA and feature 
importance were not processed because of the volume and nature of the 
datapoints columns (i.e. two with identifiers). Finally, MCC and confi
dence intervals for key ML metrics (Accuracy, Precision and Recall) 
were calculated across all models to quantify the uncertainty of the 
performance estimates.

3. Results and discussion

3.1. Results regarding the first methodology

After removing the isomers without retaining any samples, the 
dataset was reduced to 61,471 active, 112,867 inconclusive, and 
236,226 inactive compounds. This reduced set was then filtered using 
the PubChem AID 1996 bioassay [30], which left 40,404 inactive 
compounds. Concatenating these remaining inactive compounds with 
the active compounds (minus the isomers) yielded the final dataset of 
101,860 samples [29]. The IUPAC names for these samples were 
downloaded from PubChem and parsed into strings of four or more 
letters, a process that generated 5963 features (columns) for the model. 
The training of the RFC on 64,625 samples and testing on 28,200 sam
ples resulted in a strong initial performance. The model demonstrated a 
good balance of overall correctness, reflected by an accuracy of 78.4%, 
and a high confidence in its positive predictions, indicated by a precision 
of 83.4%. While the recall was lower at 70.8%, suggesting a notable 
portion of actual positive cases were missed, the combined metric of the 
F1-score (76.6%) confirms a solid harmonic mean between precision 
and recall. Finally, the ROC of 78.4% indicates the model has a prom
ising ability to distinguish between the classes. This performance es
tablishes a robust and encouraging baseline for the classification task. 
This achievement was further substantiated by five-fold CV(Table 2), 
which yielded a validated mean accuracy of 75.45% ± 0.49 and a 
significantly high mean precision of 89.71% ± 0.27, though a lower 
mean recall of 69.82 ± 0.74 was also observed. Crucially, a robust and 
stable performance was confirmed by a strong mean F1-score of 78.52 
± 0.51 and a high mean ROC of 85.80 ± 0.41, with the tight standard 
deviations indicating that model consistency was successfully main
tained across the data partitions.

The model's optimal performance, based purely on test accuracy 
before significant deviation, was observed at max_depth = 17, where the 

Fig. 3. Methodology generating ranking of the functional groups according to their presence in the biomolecule content.
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test Accuracy was 69.8% and the deviation between test and train ac
curacy was still below 5%. This setting is likely the most generalisable 
because when max_depth was increased to 19, a clear sign of overfitting 
was encountered: the train Accuracy jumped to 75.5% while the test 
Accuracy dropped slightly to 70.3%. Crucially, the deviation between 
the two exceeded 5% for the first time, indicating that the model began 
to fit the training noise rather than the underlying pattern, losing its 
ability to generalise (Fig. 4).

The implementation of PCA reduced the number of features from 5, 
963 to 44. However, the ML model performed with the PCA reduction of 
the features obtained accuracy 69.7%, precision 65.8%, recall 82.1, F1 
73%, ROC 69.7% which metrics values were a bit lower compared to 
these obtained by the ML model without PCA reduction of the features.

The Optuna hyperparameter search was highly effective, yielding an 
optimal Random Forest configuration defined by: 'n_estimators': 404, 
'max_depth': 8, 'min_samples_split': 10, 'min_samples_leaf': 6, 'max_fea
tures': 'log2', 'criterion': 'gini'. This finely-tuned model achieved a test 
Accuracy of 0.7068, successfully outperforming the 69.4% accuracy 
baseline obtained with default features and max_depth of 17. Crucially, 
the substantial reduction in max_depth from 17 to 8 and the tuning of the 
splitting criteria parameters demonstrate a clear strategy to combat 
overfitting, which was confirmed by the model adhering to the strict 5% 
deviation threshold between train and test sets, validating the Optuna 
result as the optimal balance of performance and generalisation. All key 
metrics cluster around 70.7%, indicating a good overall balance in the 
model's predictive capability. Specifically, the Precision is slightly 
higher at 0.7141 than the Recall at 0.691, suggesting the model is 
marginally better at making correct positive predictions than at identi
fying all actual positive cases. However, tracing the deviation between 
the train and test accuracy of the RFC based on Optuna hyperparameters 
revealed that even at max_depth = 30, the difference remained under 
5%. Consequently, the max_depth was set to its default value, None. This 
allowed the trees to continue growing until every leaf was pure (con
tained only samples of one class) or until a leaf contained fewer than min 
\samples\split samples.

The Optuna hyperparameter-tuned RFC with max_depth = None 
demonstrated moderate and highly stable performance on the testing 
data, achieving an Accuracy of 0.7233. All major metrics, Accuracy, 
Precision (0.7203), and Recall (0.7299), are tightly clustered just above 
the 70% benchmark, indicating the model was reliably better than 

random chance and maintains a good balance between FP and FN. 
Crucially, the narrow 95% CI, such as 0.7180 to 0.7283 for Accuracy, are 
the most significant finding. These narrow ranges, derived from 1000 
bootstraps, confirm the model's exceptional robustness and consistency, 
suggesting that while the performance level is only moderate, it will not 
significantly degrade when applied to new, similar data.

RFC exhibits moderate predictive strength with an MCC of 0.4466, 
placing its overall performance significantly above random chance but 
well below perfect classification. The model shows a balanced distri
bution of errors, as indicated by the high and nearly equal counts of FP 
(3,996) and FN (3,808). While the model correctly classified a large 
number of instances (TP: 10,292 and TN: 10,104), this large volume of 
both types of misclassification suggests the model struggles to generalise 
effectively to the underlying decision boundary (Fig. 5). Consequently, 
any future improvement efforts must focus on strategies to simulta
neously suppress both the FP and FN rates to achieve a more robust MCC 
score closer to 1.

The classification report for the RFC (Table 3) reveals moderate and 
exceptionally balanced performance across both classes, achieving an 
overall Accuracy of 0.72 on a perfectly balanced test set of 28,200 
samples. The most striking observation is the remarkable consistency: all 
key metrics, Precision, Recall, and F1-score, for both the Active (Target 
1) and Inactive (Target 0) classes are tightly grouped between 0.72 and 
0.73. This uniformity, confirmed by macro and weighted averages of 
0.72, confirms the model is unbiased and generalises consistently across 
both outcomes. While its stability is a strength, the moderate 72% per
formance ceiling suggests the model may have reached its limit given 
the current features, and further accuracy improvements will likely 
require feature engineering or exploring more complex algorithms.

The provided LIME result for RFC based on IUPAC tokenised data 
pertains to a correctly classified instance, where both the True Label (1) 
and the Model Prediction (1) align, within a high-dimensional feature 
space (94,712 samples and 5961 features) and a moderate overall Model 
Accuracy of 0.7235. The explanation identifies the two most influential 
features driving this specific prediction. Crucially, the absence or 
negligible presence (indicated by ≤ 0.00) of the chemical fragments 
'phenoxythieno' and 'methoxyxanthen' strongly contributed to the 
model's decision. The negative LIME weights (−0.0204 and −0.0087) 
associated with the ≤0.00 condition mean that the presence of these 
features would have pushed the prediction away from class 1. Therefore, 
their absence provided the necessary local support, acting as a positive 
indicator for the correct classification of this instance as Label 1.

The RFC applied to the transformed MORGAN2 dataset obtained an 
Accuracy of 86.1%, a Precision of 89.1%, a Recall of 87.6%, an F1-score 

Fig. 4. Overfitting analysis of the IUPAC RFC ML model: prediction accuracy vs 
maximum depth of the decision tree. The blue line is the training accuracy. The 
orange line is the test accuracy. The deviation between the testing and training 
accuracy higher than 5% was considered as an indication of overfitting. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) Fig. 5. The Confusion matrix of RFC based on IUPAC tokenised data.
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of 88.4% and an ROC of 85.7%. Tracking for the point where the de
viation between train and test accuracy was higher than 5% point 
max_depth = 10, where the train Accuracy was 79.7% and the test Ac
curacy was 74.6%. So, the choice was max_depth = 9 with train Accu
racy 78.7% and test accuracy 74.0%. This process, which guided the 
model's optimisation, is visually shown in Fig. 6.

Strong and stable performance was exhibited by the RFC based on 
the transformed MORGAN2 dataset when it was run with a maximum 
depth of 9. The model's single-run effectiveness was demonstrated by an 
Accuracy of 74.0%, a high Precision of 81.7%, a Recall of 73.3%, an F1- 
score of 77.3%, and an initial ROC of 74.2%. Crucially, the model's 
reliability and generalizability were confirmed through CV, where 
metrics were maintained with very low variance: the Accuracy was 
found to be 73.96% ± 0.39, the Precision 81.44% ± 0.33, the Recall 
73.62% ± 0.43, the F1-score 77.33% ± 0.36, and the ROC AUC was 
observed to be 81.58% ± 0.37, which suggests the model possesses 
excellent discriminative ability that is highly consistent across different 
data subsets. The results are shown in detail in Table 4.

The performance of the RFC on the transformed MORGAN2 dataset 
was quantified using the provided classification metrics, the details of 
which are visually represented in Fig. 7. A total of 10,142 instances were 
accurately predicted as positive (TP), while 6475 instances were 
correctly classified as negative (TN). Classification errors were noted, 
with 1606 negative instances being incorrectly labelled as positive (FP) 
and 2149 positive instances being missed and incorrectly labelled as 
negative (FN). These outcomes collectively resulted in an MCC of 
0.6202, indicating a moderately strong and balanced measure of pre
dictive quality across all four categories of the confusion matrix.

Moreover, when the RFC was applied to the dataset transformed 

using RDKit SMILES, it achieved an Accuracy of 89.2%, a Precision of 
91.8%, a Recall of 90.7%, an F1-score of 90.1% and an ROC of 89%. 
Tracking for the point where the deviation between train and test ac
curacy was higher than 5% point max_depth = 15, where the train Ac
curacy was 90.1% and the test Accuracy was 84.7%. So, the choice was 
max_depth = 14 with train Accuracy 89.3% and test Accuracy 84.5%. 
This process, which guided the model's optimisation, is visually shown 
in Fig. 8.

The RFC configured with a maximum depth of 14 yielded a highly 
stable and strong final performance on the test set. It achieved an Ac
curacy of 84.1%, a Precision of 91.1%, a Recall of 81.6%, an F1-score of 
86.1% and an ROC of 84.7%. The model's consistency is confirmed by 
the fact that these single-run metrics are all within a narrow range 
(0.17%–0.25%) of their respective CV averages (Table 5). This close 
agreement, further supported by the CV's low standard deviations (all 
below ±0.25%), indicates the model exhibits low variance and reliable 
generalisation without signs of overfitting. The performance profile 
highlights a preference for high Precision over Recall, making its posi
tive predictions highly trustworthy. Both the CV and final results high
light a strong preference for Precision (~91%) over Recall (~82%), 
indicating the model is highly trustworthy when predicting a positive 
outcome. However, the ROC shows a notable drop from the CV average 
of 92.23% ± 0.17%–84.7% on the test set, which suggests that while the 
model's performance is excellent at its specific classification threshold, 
its overall discriminative ability across all thresholds is significantly 
reduced on the final test data.

The classification results indicate that the RFC based on a dataset on 
RDKit SMILES was performing solidly and reliably. The model exhibits a 
strength in identifying positive cases, correctly predicting 10,086 TP 
(Fig. 9). The high resulting Precision is strongly supported by the low 
number of incorrect positive predictions, with only 1052 FP. However, 
the primary area for improvement is the substantial number of 2205 
missed positive cases FN, which impacts the model's Recall. The overall 
performance is quantified by the high F1-score of 0.8610 and an MCC of 
0.6785, confirming a strong, positive correlation between the predicted 
and true classifications and demonstrating good performance across 
both class predictions.

The comparative performance, as measured by the MCC, shows a 
clear hierarchy among the RFC models based on their feature encoding 
methods. The RFC using IUPAC tokenised data performed the weakest 
with an MCC of 0.4466, indicating a moderate correlation barely better 
than random. Performance significantly improved when using the 
MORGAN2 features, yielding an MCC of 0.6202, suggesting a strong 
positive correlation and a more reliable model. The best performance, 
however, was achieved by the RFC trained on RDKit-converted SMILES 
features, which reached the highest MCC of 0.6785, confirming that this 
encoding method provided the most balanced and strongest prediction 
quality across both positive and negative classes for the classification 
task.

Overall, while the ML models based on SMILES inherently demon
strated superior performance metrics, the model utilizing IUPAC- 
tokenised data offers a distinct and significant advantage: a relatively 
straightforward path to providing token-level correlations and chemi
cally meaningful functional groups insights for drug discovery. This 
direct interpretability allows medicinal chemists to immediately identify 
potential functional groups and structural fragments that drive activity, 
enabling targeted design efforts. Conversely, extracting comparable 
chemical intelligence from an SMILES-based ML model requires 
complicated post-hoc analysis and additional calculations to translate 
the abstract molecular strings into meaningful chemical features, mak
ing the IUPAC approach a far more practical and time-efficient tool for 
human decision-making in the initial phases of drug development.

Identification of the relevant functional groups for the inhibitory action
The feature importance analysis indicates which functional groups 

could be the most relevant for a specific chemical interaction. In Fig. 10

Table 3 
Classification report of the IUPAC RFC ML model.

precision recall F1-score support

Active (target 1) 0.73 0.73 0.72 14100
Inactive (target 0) 0.72 0.73 0.73 14100

accuracy ​ ​ 0.72 28200
macro avg 0.72 0.72 0.72 28200
Weighted avg 0.72 0.72 0.72 28200

Fig. 6. Overfitting analysis of the RFC based on transformed MORGAN2 
dataset: prediction accuracy vs maximum depth of the decision tree. The blue 
line is the training accuracy. The orange line is the test accuracy. The deviation 
between the testing and training accuracy higher than 5% was considered as an 
indication for early stopping. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.)
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below, a list of 24 functional groups with the highest relevance with 
respect to the inhibition of TDP1 is shown. It should be noted that the 
computations were based on the mutual influence between all features. 

Here, the first 24 functional groups out of the list of 5963 groups are 
shown.

Feature importance in a binary classifier quantifies each feature's 
contribution to the model's overall predictive power, but it doesn't 
specify whether a feature characterises the active or inactive class. While 
machine learning algorithms identify functional groups correlated with 
inhibition, this correlation doesn't guarantee the group is actively 
contributing to the effect; some groups may frequently appear in non- 
inhibitors. Therefore, to prioritise functional groups most likely to 
contribute to true inhibitors, we calculated the ratio (or relative pro
portion) of active versus inactive compounds containing that specific 
group. This ratio serves as a refined metric to focus on structurally 
enriched features.

The combined analysis of functional groups provides a nuanced view 
of the structural features governing activity, based on two ranking 
methods (Table 6). The imidazo group stands out as the most potent 
statistical predictor, with 89% of compounds containing it being active 
and an Active/Inactive Ratio of 8.33, though it only ranks 9th in Feature 
Importance. In contrast, the general methyl group is the model's top 
feature (Rank 1), despite a lower activity concentration (69%), likely 
due to its high overall count (20,205 active cases), making it crucial for 
the model's predictive power. The strong statistical enrichment of 
groups like ethenyl (87%) and quinolin (86%) confirms they are highly 
reliable activity markers, while groups such as carbohydrazide (22% 
active, Ratio 0.27) are powerful indicators of inactivity. This difference 
in rankings highlights that the Relative Proportion identifies the most 
enriched groups, while the Feature Importance identifies the most useful 
features for the specific ML classifier. A check was performed on a 
random sample of five compounds containing an imidazo, and all were 
determined not to be PAINs (Table 7). A comprehensive study of all 
samples containing an imidazo, as well as the similarities and differences 
of these structures, is a subject of further research.

As noted earlier, the IUPAC names were subjected to direct tokeni
sation, with the resultant components being utilized without modifica
tion. Specifically, this process did not generate new string elements or 
introduce any splitting of the strings beyond the divisions already 
established by the IUPAC nomenclature rules. To ensure data consis
tency and accurate representation, the mean value should be calculated 
for any functional group or molecular fragment that is observed with 
different spellings in the tokenised results. For example, instances like 
'piperazin' and 'piperazine’ should be collated and their mean value 
determined. For example, 'piperazin' and 'piperazine’ have the relative 
proportion values of 5.06 and 4.29, respectively. So, the relative pro
portion of the active and inactive cases for 'piperazine’ is calculated to be 
4.68. That process automation is an object for further development.

The Fisher's Exact Test analysis demonstrates that the presence of 
every functional group listed has a highly significant statistical associ
ation with a substance's activity status, as all P-values are extremely 
small (P < 0.0021) (Table 8). The Odds Ratio (OR) indicates the strength 
and direction of this relationship: the imidazo group (OR = 5.555) 
shows the strongest positive association, making a compound over five 
times more likely to be Active if this group is present. Other strong 

Table 4 
Five-fold cross-validation of RFC based on MORGAN2 transformed features with StratifiedKFold.

Metrics Fold Average across the folds

1 2 3 4 5

Accuracy [%] 74.32 74.27 74.24 73.52 73.43 73.96 ± 0.39
Precision [%] 81.67 81.74 81.68 80.93 81.16 81.44 ± 0.33
Recall [%] 74.07 73.85 73.86 73.42 72.88 73.62 ± 0.43
F1-Score [%] 77.68 77.60 77.58 76.99 76.80 77.33 ± 0.36
ROC AUC [%] 81.95 81.94 81.55 81.52 80.95 81.58 ± 0.37
Confusion Matrix TN 4830 4843 4836 4763 4801 4814.6 ± 29.49

FP 1635 1622 1629 1701 1663 1650.0 ± 29.05
FN 2550 2571 2570 2614 2667 2594.4 ± 41.88
TP 7283 7262 7263 7219 7166 7238.6.2 ± 41.88

Fig. 7. Confusion matrix of the RFC based on transformed MORGAN2 dataset.

Fig. 8. Overfitting analysis of the RFC based on dataset with transformed by 
RDKit SMILES: prediction accuracy vs maximum depth of the decision tree. The 
blue line is the training accuracy. The orange line is the test accuracy. The 
deviation between the testing and training accuracy higher than 5% was 
considered as an indication for early stopping. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.)
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positive predictors include ethenyl (OR = 4.605) and trimethoxyphenyl 
(OR = 4.074). Conversely, several groups are strongly associated with 
inactivity (OR < 1.0); the carbohydrazide group (OR = 0.178) has the 
strongest negative association, making a substance with this feature 
about 5.6 times more likely to be Inactive, followed by acetate (OR =
0.432) and oxoethyl (OR = 0.500). This analysis clearly identifies key 
structural features that either strongly promote or strongly inhibit 
activity.

A check was performed on a random sample of five compounds 
containing a carboxamide, and all were determined not to be PAINs 
(Table 9). A comprehensive study of all samples containing a carbox
amide, as well as the similarities and differences of these structures, is a 
subject of further research.

Boruta feature selection algorithm failed to identify any statistically 
relevant features whose importance was significantly higher than 

random noise (the "shadow features"). In essence, the algorithm suggests 
that none of the initial features contain a detectable signal that is 
stronger than pure chance for the given prediction task. Because the 
subsequent stage relies on a confirmed subset of features to build the 
RFC, the process cannot proceed as intended, as the feature set is 
considered uninformative.

3.2. Results regarding the second methodology

There were other ways of ranking the functional groups. For 
example, the ranking can be based on their participation in only one 
type of cases (active or inactive): 

(i) For the functional groups that participate only in active (i.e. it is a 
TDP1 inhibitor) small biomolecule content and in no inactive 
compounds, the leading functional group was oxonaphthalen with 
25 active cases, followed by methylsulfonylpyrimidine with 22 and 
tetrahydroindol with 20 active cases. The entire ranking list of 
2178 functional groups participating in the content of the active 
small biomolecule is available on GitHub [42]. A check was 
performed on a random sample of five compounds containing the 
oxonaphthalen and four out of five were flagged as PAINs 
(Table 10). A comprehensive study of all samples containing an 
oxonaphthalen, as well as the similarities and differences of these 
structures, is a subject of further research.

(ii) For the functional groups that participate only in inactive (i.e. it is 
not a TDP1 inhibitor) small biomolecule composition and in none 
of the active, on top of this list was ylbutanediamide with 104 
inactive cases, followed by oxopiperazin with 100 and tetrazabi
cyclo with 99. The entire ranking list of 6243 functional groups 
that participated only in the content of the inactive small 
biomolecule is available on GitHub [43]. A check was performed 
on a random sample of five compounds containing a ylbutane
diamide, and all were determined not to be PAINs (Table 11). A 
comprehensive study of all samples containing a ylbutanediamide, 
as well as the similarities and differences of these structures, is a 
subject of further research.

Table 5 
Five-fold cross-validation of RFC based on the bataset transformed using RDKit SMILES features with StratifiedKFold.

Metrics Fold Average across the folds

1 2 3 4 5

Accuracy [%] 83.46 84.16 83.94 83.89 83.70 83.83 ± 0.23
Precision [%] 90.38 90.97 91.00 90.80 90.84 90.80 ± 0.22
Recall [%] 81.24 81.87 81.43 81.57 81.17 81.45 ± 0.25
F1-Score [%] 85.57 86.18 85.95 85.94 85.73 85.87 ± 0.21
ROC AUC [%] 92.27 92.46 92.29 92.19 91.94 92.23 ± 0.17
Confusion Matrix TN 5615 5666 5673 5651 5659 5652.8 ± 20.26

FP 850 799 792 813 805 811.8 ± 22.71
FN 1845 1783 1826 1812 1852 1823.6 ± 27.63
TP 7988 8050 8007 8021 7981 8009.4 ± 27.63

Fig. 9. Confusion matrix of the RFC based on dataset with transformed by 
RDKit SMILES.

Fig. 10. Feature (functional group) importance ranking for the prediction of TDP1 inhibitors. a) Scikit Learn Feature Importance algorithm for the Random Forest 
Classifier. b) Chi2 algorithm.
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The rationale for not excluding PAINs (Pan-Assay Interference 
Compounds) from the initial dataset was explained in the Methodology 
section. However, out of curiosity, these PAINs were subsequently 
flagged using the PubChem AID 686978 bioassay data [11]. This flag
ging process resulted in 21,761 samples being identified as PAINs, 
leaving 388,803 compounds that were revealed as non-PAINs. This 
represents a 6.46% decrease in the total samples, which is unevenly 
spread across the classes, as shown in Table 12. Although no dramatic 
decrease was observed, the resulting PAIN-free dataset was considered 
of sufficient interest for further investigation [44,45].

As an option, given the correlation between the chemical shifts of a 
biomolecule provided by the 13C NMR spectroscopy and its function
ality [46,47], it was hypothesised that when a tested compound contains 
one of the extracted functional groups/fragments and its 13C NMR 
spectroscopy data resembles of the 13C NMR spectroscopy data of the 
source compound of this functional group/fragments, there is a high 
probability that the tested compound is a TDP1 inhibitor. One of the 
tools that can provide such a comparison of the NMR spectroscopy data 
is the ACD/Labs [48].

3.3. Results regarding the third methodology

The CID_SID ML model that was developed beyond the main study to 
aid drug discovery researchers interested in TDP1 inhibition, achieved 
with the XGBC Accuracy of 86.1%, Precision of 93.3%, Recall of 77.8%, 
F1-score of 84.9%, ROC of 86.1%, followed by GBC with Accuracy of 
85.2%, Precision of 94.2%, Recall of 75.0%, F1-score of 83.5%, ROC of 
85.2% (Table 13). The results were achieved by training the ML model 
with 100,942 samples and tested with 22,000 samples [49].

A statistical significance test was conducted to compare the two 
machine learning classifiers, the GBC (Model A) and XGBC (Model B), 
and it was concluded that Model B is the statistically superior performer. 
While both models achieved high accuracy (Model A: 0.8519, Model B: 
0.8611), the small difference in favour of XGBC was confirmed as sig
nificant by McNemar's Test, which yielded a P-value of 0.0000. This 
result, far below the 0.05 significance level, indicates the performance 
difference is not due to random chance. Further analysis of the 
disagreement counts supports this finding: Model B correctly classified 
583 samples that Model A missed, while Model A only correctly classi
fied 379 samples that Model B missed, showing a clear and statistically 
validated advantage for the XGBoost implementation.

The tracing of accuracy deviation during hyperparameter tuning 
revealed the point where model complexity began to hinder general
isation (Fig. 11). The highest deviation between training and testing 
accuracy was observed at max_depth = 22, where the model achieved a 
training accuracy of 89.6% and a test accuracy of 84.4%, indicating an 
undesirable degree of overfitting (a 5.2% gap). Crucially, the best test 
performance was achieved at a simpler setting, max_depth = 7, which 
yielded a test Accuracy of 86.2%. At this optimal depth, the training 
Accuracy was 86.2%, resulting in a much smaller and healthier devia
tion of 2.9%. This confirms that max_depth = 7 represents the optimal 
balance point, providing the highest generalisation capability before the 
model started to memorise noise instead of learning general patterns.

As was noted above, the XGBC model's performance, when evaluated 
as a single run, showed an Accuracy of 86.1%, a Precision of 93.3%, a 
Recall of 77.8%, an F1-score of 84.9% and an ROC of 86.1%. However, a 
more robust assessment using five-fold CV revealed a slightly lower but 

Table 6 
Relevance of functional groups regarding the prediction of TDP1 inhibitors, by using the Feature Importance algorithm (column 1), and reordered (in col. 2) on the 
basis of the value for the ratio of the number of Active inhibitor substances (col. 4) and Inactive (col.5), which is give in col.6.

Position according to 
Feature Importance 
algorithm

Position according to 
relative proportion of 
the active cases

Functional group/ 
fragment

Number of substances that 
are active inhibitors and 
contain this group (Active 
cases)

Number of substances that 
are not active inhibitors and 
contain this group (Inactive 
cases)

Percentage of 
Active cases

Ratio of Active and 
Inactive cases for the 
functional group

9 1 imidazo 1050 126 89% 8.33
21 2 ethenyl 591 85 87% 6.95
20 3 trimethoxyphenyl 731 119 86% 6.14
6 4 quinolin 1785 299 86% 5.97
3 5 piperazin(e)* 4211 870 83% 4.84
24 6 tetrahydro 1259 302 81% 4.17
15 7 benzothiazol 1375 368 79% 3.74
12 8 sulfonyl 1512 427 78% 3.54
13 9 piperidine 1839 547 77% 3.36
10 10 dimethoxyphenyl 2647 806 77% 3.28
25 11 methanone 1831 596 75% 3.07
2 12 phenyl 8524 2941 74% 2.90
19 13 piperidin 2457 851 74% 2.89
17 14 trifluoromethyl 2406 865 74% 2.78
14 15 benzyl 2458 892 73% 2.76
4 16 methoxyphenyl 6966 2559 73% 2.72
8 17 methylphenyl 5961 2383 71% 2.50
11 18 chlorophenyl 4749 2004 70% 2.37
7 19 ethyl 8252 3752 69% 2.20
1 20 methyl 20205 9283 69% 2.18
16 21 carboxamide 9495 4910 66% 1.93
5 22 oxoethyl 2420 3059 44% 0.79
22 23 acetate 655 982 40% 0.67
18 24 carbohydrazide 126 460 22% 0.27

Table 7 
Results of checking five random samples containing imidazo if they are PAINs.

CID SID IUPAC PAIN

3245566 4251947 5-ethyl-N-(2-imidazo[1,2-a]pyridin-2-ylethyl) 
thiophene-2-sulfonamide

No

20908515 49736571 2-(1H-imidazo[4,5-b]pyridin-2-ylsulfanyl)-N- 
(2-phenylethyl)butanamide

No

844907 7974454 2-(1H-imidazo[4,5-b]pyridin-2-ylsulfanyl)-N- 
(2-methoxyphenyl)acetamide

No

7066893 24269226 2-methoxy-4-[5-(3-methylanilino)imidazo[2,1- 
b][1,3]thiazol-6-yl]phenol

No

16018392 24396339 N-(4-methoxyphenyl)-3-(4-methylphenyl)- 
6,7,8,9-tetrahydro-5H-imidazo[1,5-a]azepine- 
1-carboxamide

No
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more reliable average Accuracy of 84.01% (±0.17%) and a marginally 
lower Precision of 95.42% (±0.25%). Notably, the CV summary indi
cated a slightly higher Recall of 78.45% (±0.14%) and a better average 
F1-score of 86.11% (±0.14%), suggesting the model is generally slightly 
better balanced and more effective across different data partitions. Most 
strikingly, the CV average ROC saw a significant increase to 91.84% 
(±0.22%), indicating that while the single run was a good estimate, the 
CV results provide a more optimistic and statistically stable measure of 

Table 8 
The Fisher's Exact Test analysis was applied to the functional groups/fragments 
that were identified as having the highest feature importance for the ML models.

Functional Group Active 
(a)

Inactive 
(b)

Odds 
Ratio

P-value Significance

carboxamide 9495 4910 57.78 0.00e+00 *** Highly 
Significant(P 
< 0.0021)

phenyl 8524 2941 33.50 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

ethyl 8252 3752 20.44 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

imidazo 1050 126 18.50 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

piperazin(e)* 4211 870 15.99 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

methoxyphenyl 6966 2559 15.64 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

ethenyl 591 85 14.71 2.04e- 
192

*** Highly 
Significant (P 
< 0.0021)

quinolin 1785 299 14.31 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

trimethoxyphenyl 731 119 13.17 4.28e- 
229

*** Highly 
Significant (P 
< 0.0021)

methylphenyl 5961 2383 10.91 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

tetrahydro 1259 302 9.39 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

dimethoxyphenyl 2647 806 8.57 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

benzothiazol 1375 368 8.50 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

sulfonyl 1512 427 8.16 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

chlorophenyl 4749 2004 8.12 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

piperidine 1839 547 8.01 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

piperidin 2457 851 7.33 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

methanone 1831 596 7.30 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

trifluoromethyl 2406 865 7.01 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

benzyl 2458 892 6.98 0.00e+00 *** Highly 
Significant (P 
< 0.0021)

oxoethyl 2420 3059 1.77 1.72e-76 *** Highly 
Significant (P 
< 0.0021)

acetate 655 982 1.36 6.40e-09 *** Highly 
Significant (P 
< 0.0021)

carbohydrazide 126 460 0.54 2.61e-10 *** Highly 
Significant (P 
< 0.0021)

Table 9 
Results of checking five random samples containing carboxamide if they are 
PAINs.

CID SID IUPAC PAIN

15993269 49667698 5-(1,3-benzodioxol-5-yl)-N-(2-methylpropyl)- 
1,2-oxazole-3-carboxamide

No

16008588 24384816 1-(2-chlorophenyl)-N-(3,5-dimethoxyphenyl)- 
3,6-dimethylpyrazolo[3,4-b]pyridine-4- 
carboxamide

No

16014225 24391772 2-(4-ethylphenyl)-5-(hydroxymethyl)-N- 
(thiophen-2-ylmethyl)triazole-4-carboxamide

No

4086767 24415205 4-benzyl-N-[2-(4-chlorophenyl)ethyl]-3-oxo- 
1,4-benzothiazine-6-carboxamide

No

46904149 99359587 1-benzyl-6-methyl-2-oxo-3-[2-oxo-2-(4- 
phenylbutylamino)ethyl]-N,N-di(propan-2-yl)- 
3,4-dihydropyridine-5-carboxamide

No

Table 10 
Results of checking five random samples containing oxonaphthalen if they are 
PAINs.

CID SID IUPAC PAIN

752424 24809810 1,5-dimethyl-4-[(4-oxonaphthalen-1-ylidene) 
amino]-2-phenylpyrazol-3-one

PAIN

6032979 17511248 (NZ)-N-[3-(4-methylanilino)-4-oxonaphthalen- 
1-ylidene]thiophene-2-sulfonamide

PAIN

5676317 17517158 (NZ)-N-(3-anilino-4-oxonaphthalen-1-ylidene) 
thiophene-2-sulfonamide

PAIN

4441046 14742503 N-(1-dibutoxyphosphoryl-4-oxonaphthalen-1-yl) 
benzenesulfonamide

No

5105556 87347760 N-[3-bromo-1-di(propan-2-yloxy)phosphoryl-4- 
oxonaphthalen-1-yl]benzenesulfonamide

PAIN

Table 11 
Results of checking five random samples containing ylbutanediamide if they are 
PAINs.

CID SID IUPAC PAIN

3205145 14721697 N'-(2,3-dihydro-1,4-benzodioxin-6-yl)-N'-[2-(3- 
methylbutylamino)-2-oxoethyl]-N-pyridin-2- 
ylbutanediamide

No

654170 26668007 N'-[2-(2-methoxyethylamino)-1-(4- 
methoxyphenyl)-2-oxoethyl]-N'-(oxolan-2- 
ylmethyl)-N-pyridin-2-ylbutanediamide

No

651822 26668581 N'-[1-(4-fluorophenyl)-2-(2-methylbutan-2- 
ylamino)-2-oxoethyl]-N'-(furan-2-ylmethyl)-N- 
pyridin-2-ylbutanediamide

No

3205015 49725897 N'-[2-(tert-butylamino)-1-(4-methoxyphenyl)-2- 
oxoethyl]-N′-cyclohexyl-N-pyridin-2- 
ylbutanediamide

No

3204777 49726932 N'-(4-methoxyphenyl)-N'-[2-oxo-2-(2- 
phenylethylamino)ethyl]-N-pyridin-2- 
ylbutanediamide

No

Table 12 
Result of application of a PAIN filter on the PubChem AID 686978 bioassay's 
dataset.

Samples Before the PAIN filter After the PAIN filter Decrease

Inactive 236,226 227,158 3.84%
Inconclusive 112,867 105,950 6.13%
Active 61,471 55,695 9.40%
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the model's discriminative power across various thresholds. The results 
are shown in detail in Table 14.

From one hundred trials, the optimisation framework Optuna suc
cessfully selected the best set of hyperparameters for the XGBC. The 
optimal configuration included a maximum tree depth of 10 ('max_
depth': 10), a reduced learning rate of approximately 0.017, 463 esti
mators ('n_estimators': 463), and specific regularization and sampling 
values ('gamma': 0.389, 'reg_lambda': 0.316, 'min_child_weight': 4). The 
Optuna hyperparameter optimisation run resulted in a model with a 
slightly lower Accuracy of 0.856 compared to the model using default 
hyperparameters, which achieved an Accuracy of 0.862. This suggests 
that the optimisation process either failed to find a better configuration 
than the default one or, perhaps more concerningly, settled on a less 
effective set of hyperparameters for maximising this specific metric. The 
difference, while small (0.006), indicates that the default settings were, 

in this instance, superior for classification accuracy.
The 95% CI, derived from 1000 bootstraps, provides crucial context: 

it indicates that the true performance of the model is highly likely to fall 
within the tight range of 0.8574–0.8667. This narrow range, with a 
width of approximately 0.0093, confirms the stability and robustness of 
the model's performance. Its Precision is particularly impressive at 
0.9299 (95% CI: 0.9247 to 0.9353), suggesting that when the model 
predicts a positive outcome, it is correct nearly 93% of the time, 
resulting in a very low FP rate. The Recall metric, however, is compar
atively lower at 0.7825 (95% CI: 0.7753 to 0.7903), meaning approxi
mately 78% of all true positive cases were correctly identified, leaving a 
notable portion (about 21.7%) as FN. Overall, the XGBC model is highly 
reliable in its positive predictions, and the narrow confidence intervals 
across all metrics confirm the stability and robustness of its performance 
across bootstrapped samples.

The performance of the XGBC model demonstrates a substantial 
improvement over the baseline RFC model, confirming its superior 
capability for classifying TDP1 inhibitors. The narrow 95% CI, calcu
lated from 1000 bootstraps on a test set of 22,000 samples, attests to the 
high reliability and stability of these metrics. Specifically, the Accuracy 
CI of 0.8577–0.8665 indicates the model is highly likely to be correct 
about 86% of the time. Crucially, the Precision CI of 0.9280–0.9385 
shows that when XGBC predicts a compound is a positive inhibitor, it is 
correct over 93% of the time, resulting in a significantly reduced false 
positive rate (~7\%) that is highly desirable for minimising the 
screening of inactive compounds in expensive wet-lab experiments. The 
Recall CI of 0.7725–0.7870 means the model successfully identifies 
nearly 78% of the actual inhibitors, a robust improvement that, while 
not perfect, is strong enough to capture a large fraction of active com
pounds for further drug discovery efforts.

The XGBC model based on CIDs and SIDs data demonstrates strong 
and balanced predictive power, highlighted by an excellent MCC of 
0.7328. The raw counts, 10,351 TN and 8608 TP, confirm the model's 
high overall accuracy in correctly identifying both classes. A low count 
of 649 FP suggests high Precision (the model rarely raises a false alarm), 
while the 2392 FN indicate that the main challenge lies in improving 
Recall (the rate at which it correctly captures all positive cases). Overall, 
the high MCC value, which is robust against class imbalance, validates 
the model as a highly effective and reliable solution for the classification 
task (Fig. 12).

The classification report (Table 15) demonstrates that the model 
achieved strong, balanced performance with an overall Accuracy of 0.86 
on a perfectly balanced dataset (11,000 samples per class). The model 
exhibits a classic Precision-Recall trade-off across the two classes: it is 
highly effective at finding positive cases, indicated by the exceptional 
Recall of 0.94 for the Active class (Target 1). This high recall, however, 
comes at the cost of its precision, resulting in a moderate Precision of 
0.81 for that same class, meaning it has a higher rate of "false alarms" 
when predicting active instances. Conversely, the model is very con
servative and highly trustworthy when predicting the negative class, 
boasting Precision of 0.93 for the Inactive class (Target 0), though its 
ability to find all truly inactive cases is lower, with a Recall of 0.78. 

Table 13 
ML metric regarding ML models based on CID and SID model predicting TDP1 
inhibition.

Algorithm Accuracy Precision Recall F1-score ROC

XGBoost 0.861 0.933 0.778 0.849 0.861
GradientBoost 0.852 0.942 0.750 0.835 0.852
RandomForest 0.846 0.855 0.835 0.845 0.846
K-nearest 0.832 0.844 0.814 0.829 0.832
Decision 0.800 0.770 0.856 0.810 0.800
SVM 0.792 0.912 0.645 0.756 0.792

Fig. 11. Scrutinizing for overfitting of the CID_SID XGBC ML model that pre
dicts the TDP1 inhibitors. The blue line is the train accuracy. The orange line is 
the test accuracy. The deviation between the test and train accuracy higher than 
5% is an indication for overfitting. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.)

Table 14 
Five-fold cross-validation results for the CID_SID machine learning models with XGB algorithm.

Metrics Fold Average across the folds

1 2 3 4 5

Accuracy [%] 83.77 83.96 83.99 84.01 84.29 84.01 ± 0.17
Precision [%] 95.20 95.27 95.28 95.33 95.91 95.42 ± 0.25
Recall [%] 78.18 78.50 78.56 78.54 78.49 78.45 ± 0.14
F1-Score [%] 85.89 86.08 86.12 86.13 86.33 86.11 ± 0.14
ROC AUC [%] 91.75 91.86 91.52 91.86 92.21 91.84 ± 0.22
Confusion Matrix TN 5491 5488 5488 5493 5543 5500 ± 21.28

FP 390 393 393 388 338 380.4 ± 21.28
FN 2203 2170 2164 2166 2171 2174 ± 14.33
TP 7892 7924 7930 7928 7923 7919.4 ± 13.94

M.L. Ivanova et al.                                                                                                                                                                                                                             Computers in Biology and Medicine 204 (2026) 111531 

13 



Overall, the macro and weighted average F1-scores of 0.86 confirm the 
model's reliability and its consistent ability to generalise across both 
outcomes.

The provided LIME analysis of XGBC based on IUPAC tokenised data 
offers clear local interpretability for a correctly classified instance, 
validating the model's overall strong Accuracy of 0.8616. For the 
instance where the True Label (0) matched the Model Prediction (0), the 
decision was overwhelmingly driven by the feature SID. Specifically, the 
condition SID >49728156.00 contributed a strong positive influence 
(~0.101) towards the prediction of Label 0. In contrast, the feature CID 
had a negligible, slightly negative influence (~-0.009), indicating that 
the high value of the SID feature was the primary, almost exclusive 
reason the XGBC model confidently and correctly assigned this data 
point to the inactive or negative class.

The XGBC applied to the transformed MORGAN2 dataset obtained an 
Accuracy of 84.7%, a Precision of 88.1%, a Recall of 86.6%, an F1-score 
of 87.2%, and an ROC of 84.3%. Tracking for the point where the de
viation between train and test accuracy was higher than 5% point 
max_depth = 6 where the train Accuracy was 90.1% and the test Ac
curacy was 84.7%. So, the choice was max_depth = 5 with train Accu
racy of 88.2% and test Accuracy of 83.7.0%. This process, which guided 
the model's optimisation, is visually in Fig. 13.

A high degree of strong and stable performance was exhibited by the 
XGBC when it was applied to the transformed MORGAN2 dataset and 
run with a maximum depth of 5. The model's single-run effectiveness 
was initially demonstrated by an Accuracy of 83.7%, a high Precision of 
87.7%, a Recall of 85%, an F1-score of 86.3%, and an initial ROC of 
83.4%. Crucially, the model's reliability and generalizability were 
confirmed through five-fold CV, where metrics were maintained with 
exceptionally low variance: the Accuracy was found to be 83.11% ±

0.11, the Precision 87.04 ± 0.11, the Recall 84.59% ± 0.14, and the F1- 
score 85.8% ± 0.10. Furthermore, the ROC AUC was observed to be 
particularly strong at 90.87% ± 0.16, suggesting the model possesses 

excellent and highly consistent discriminative ability across different 
data subsets. The detailed results are shown in Table 16.

The hyperparameter tuning using Optuna for the XGBC model was 
unsuccessful in the five optimisation studies conducted, achieving an 
accuracy of 83.6% compared to an accuracy of 84.7% when the model 
was set to default hyperparameters.

The classification performance of the XGBC model, utilizing the 
MORGAN4 features, was analysed based on the resulting confusion 
matrix, which is visually represented in Fig. 14. Out of all predictions, 
TP were observed to be 11,368 and TN were 6,942, indicating the 
number of instances correctly classified as positive and negative, 
respectively. Misclassifications were also recorded, with FP totalling 
1703 and FN reaching 1821. Overall, the model's balanced predictive 
quality, taking all four outcomes into account, was demonstrated by an 
MCC of 0.6629, signifying a good level of correlation between the true 
and predicted labels.

The XGBC applied to the transformed by RDKit SMILES dataset ob
tained an Accuracy of 88.2%, a Precision of 91.7%, a Recall of 88.4%, an 
F1-score of 90%, and an ROC of 88.1%. Tracking for the point where the 
deviation between train and test accuracy was higher than 5% point 
max_depth = 8, where the train Accuracy was 95.1% and the test Ac
curacy was 89.1%. So, the choice was max_depth = 7 with train Accu
racy 93.7% and test accuracy 88.8.0%. This process, which guided the 
model's optimisation, is visually shown in Fig. 15.

The XGBC leveraging RDKit-transformed SMILES features delivered 
excellent and stable performance, making it a highly reliable candidate 
for virtual screening. The model achieved a strong single-run test per
formance with an Accuracy of 88.8% and a particularly high Precision of 
91.9%, signifying that most compounds predicted as active will genu
inely be active, thus minimising false positives in laboratory follow-up. 
Furthermore, the 5-fold CV results, consistently clustered around an 
Accuracy of 88.22% with a minimal standard deviation of ±0.18, 
confirm the model's high stability and robustness across different data 
subsets. The outstanding CV ROC of 95.19% with a negligible variance 
of ±0.09 is especially noteworthy, demonstrating the model's superior 
ability to discriminate between active and inactive compounds, which is 
the most critical factor for a practical predictive model in chem
informatics. The detailed results are shown in Table 17.

Hyperparameter tuning using Optuna for the XGBC model was un
successful in the five optimisation studies conducted, achieving an 

Fig. 12. The CID_SID XGBC ML model confusion matrix.

Table 15 
The CID_SID XGBC ML model classification report.

precision recall F1-score support

Active (target 1) 0.81 0.94 0.87 11000
Inactive (target 0) 0.92 0.79 0.85 11000

accuracy ​ ​ 0.86 22000
macro avg 0.87 0.86 0.86 22000
Weighted avg 0.87 0.86 0.86 22000

Fig. 13. Overfitting analysis of the XGBC based on transformed MORGAN2 
dataset: prediction accuracy vs maximum depth of the decision tree. The blue 
line is the training accuracy. The orange line is the test accuracy. The deviation 
between the testing and training accuracy higher than 5% was considered as an 
indication for early stopping. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.)
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accuracy of 87% compared to an accuracy of 88.8% when the model was 
set to default hyperparameters.

The high-performing XGBC model, based on the dataset transformed 
by RDKit SMILES, achieved a strong, balanced outcome, as evidenced by 
an MCC of 0.7678. This high MCC confirms the model's reliability across 
both classes. The confusion matrix further details this success: out of the 
positive predictions, 10,966 were TP, while only 962 were FP. This low 
FP count is a critical advantage in virtual screening, minimising the cost 
of testing inactive compounds. On the negative side, 7119 instances 
were correctly identified as TN, with 1325 cases missed as FN. Overall, 
the metrics confirm that the XGBC is a robust classifier, demonstrating a 
high and well-balanced predictive capability for both active and inactive 
compounds. The confusion matrix of the XGBC based on the dataset 
transformed by RDKit SMILES is visually represented in Fig. 16.

The comparative analysis of XGBC models, assessed using the MCC, 
reveals that the choice of molecular descriptors dictates predictive 
performance for this classification task. The model utilizing features 
derived from SMILES RDKit achieved the highest MCC of 0.7912, indi
cating the most accurate and balanced classification performance. This 
result is significantly superior to the other two feature sets. The model 
based on CID_SID features achieved the second-best performance with 
an MCC of 0.7311. The least effective model used MORGAN2 circular 
fingerprints, yielding the lowest MCC of 0.6605. This ranking suggests 
that the specific.

3.4. Methodological value and interpretability of IUPAC-based models

While the lower predictive accuracy of IUPAC-based models 
compared to industry-standard SMILES and fingerprint-based de
scriptors is acknowledged, it must be clarified that the central objective 
of this study is not the optimisation of a high-confidence screening 
model, but rather the development of a transparent methodology for 
functional group extraction. In this framework, the ML models are uti
lized as diagnostic tools to determine feature importance, whereby the 
inherent readability of IUPAC tokens, such as "phenyl" or "imidazo", is 
leveraged to provide direct structural insights that cannot be provided 
by high-dimensional fingerprints.

Consequently, the IUPAC-induced approach is positioned as a spe
cialised tool for hypothesis generation and structural enrichment anal
ysis. By identifying specific motifs with a high statistical association to 
activity (e.g., the "imidazo" group with an Odds Ratio of 5.555), a 
methodological roadmap and a concrete starting point for laboratory 
investigation are provided to medicinal chemists. By utilizing exact 
string matching from systematic nomenclature, the "black-box" hallu
cinations associated with generative models are avoided, and the utility 
of the methodology is maintained as an interpretable, cost-effective 
proof-of-concept that complements traditional descriptors by bridging 
the gap between statistical importance and structural discovery.

3.5. Chemical expressiveness and limitations of IUPAC tokenisation

The use of IUPAC tokens is justified not as a replacement for high- 
fidelity structural models, but as a robust, direct representation of mo
lecular composition that enables the explicit extraction of discrete 

Table 16 
Five-fold cross-validation of XGBC based on MORGAN2 transformed features with StratifiedKFold.

Metrics Fold Average across the folds

1 2 3 4 5

Accuracy [%] 82.97 83.30 83.10 83.10 83.06 83.11 ± 0.11
Precision [%] 86.99 87.23 86.90 87.07 87.02 87.04 ± 0.11
Recall [%] 84.39 84.74 84.78 84.53 84.54 84.59 ± 0.14
F1-Score [%] 85.67 85.96 85.82 85.78 85.76 85.80 ± 0.10
ROC AUC [%] 91.00 90.99 90.84 90.96 90.58 90.87 ± 0.16
Confusion Matrix TN 5224 5245 5208 5230 5224 5226.2 ± 13.31

FP 1241 1220 1257 1234 1240 1238.4 ± 13.35
FN 1535 1501 1497 1521 1520 1514.8 ± 15.66
TP 8298 8332 8336 8312 8313 8318.2 ± 15.66

Fig. 14. Confusion matrix of the XGBC based on transformed MOR
GAN2 dataset.

Fig. 15. Overfitting analysis of the XGBC based on dataset with transformed by 
RDKit SMILES: prediction accuracy vs maximum depth of the decision tree. The 
blue line is the training accuracy. The orange line is the test accuracy. The 
deviation between the testing and training accuracy higher than 5% was 
considered as an indication for early stopping. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.)
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functional groups, such as “phenyl” or “imidazo”, without the noise 
typically introduced by naming order or regulatory standards. While the 
potential loss of critical information, including stereochemistry, 3D 
spatial context, and tautomeric fluctuations, is acknowledged as a 
hallucination risk where nomenclature may not capture the full physical 
reality of a molecule, the performance of the IUPAC-based model was 
rigorously benchmarked against industry standards such as MORGAN2 
fingerprints and RDKit-computed SMILES features. Although SMILES 
and fingerprint representations are recognised as proven and efficient 
for ML, a unique advantage for token-level correlations and chemically 
meaningful functional groups insights is demonstrated through IUPAC 
tokenisation. Furthermore, a key distinction is made regarding compu
tational efficiency in the third methodology, where the practical ad
vantages of utilizing pre-computed identifiers or nomenclature tokens 
are highlighted over the "on-the-fly" descriptor calculations required for 
SMILES/RDKit, potentially saving substantial time during large-scale 
screening processes.

4. Conclusion

The proposed methodologies are expected to be widely applicable to 
any case study featuring a bioassay with a significant number of labelled 
records. Although both the CID_SID model and the ML model based on 
IUPAC names predict the same specific functionality, TDP1 inhibition, 
their implementations and utility for biochemical research are distinct. 
The CID_SID ML model can be integrated in a time- and cost-efficient 
suite of ML models, predicting the functionalities of compounds 
beyond their primarily designed purpose. Conversely, the ML model 
based on the IUPAC data is used to generate a descending order of 

feature importance of RFC. While the initial feature importance ranking 
from the RFC provides a preliminary computational (in silico) assess
ment, translating this hierarchy into reliable, real-world insights ne
cessitates statistical re-evaluation and reordering through rigorous 
approaches. Ultimately, confirming these statistically prioritised fea
tures in the laboratory would be a major benefit to early drug discovery. 
It would quickly guide researchers toward the most functionally rele
vant groups, boosting the speed and efficiency of human intelligence- 
driven research.

4.1. Scientific contribution

o By tokenising IUPAC names, the proposed methodology established a 
reliable, AI hallucination-free foundation for analysis that surpasses 
the low ML scores of IUPAC token-based RFC models. The result is 
the production of focused lists identifying key functional groups for 
TDP1 inhibition, thereby providing clear direction and accelerating 
drug discovery by human researchers.

o Development of CID_SID ML models, thereby increasing the number 
of CID_SID ML models that can be integrated into a cost- and time- 
efficient framework predicting functionalities of small bio
molecules other than their original purpose.

4.2. Limitations

o Parsing IUPAC names generates thousands of features, necessitating 
a substantial dataset for both ML model training and effective feature 
list generation. This large dataset is critical to satisfy the practical ML 
guideline, suggesting that the number of data rows should be at least 
ten times greater than the number of columns (features). Techniques 
such as HTS are necessary to provide the volume of labelled data 
required.

o While the importance of cross-referencing predicted active frag
ments with published SAR data for establishing consistency with 
known medicinal chemistry principles is fully acknowledged, a 
comprehensive, systematic review of all historical SAR is unfortu
nately constrained by resource limitations and the lack of access to 
the necessary proprietary literature databases and advanced chem
informatics tools.

o External validation is a critical step; however, reliance must 
currently be placed on rigorous internal validation procedures 
because a suitable, independently collected external dataset has not 
yet been collected or made available for this purpose

o Because the exact coordinates and tolerance values of the proprietary 
TDP1 pharmacophore model are not publicly available, the top- 
ranked functional groups could not be checked against known 
pharmacophores for TDP1 inhibitors. Access to this information is 
restricted to licensed software, such as MOE or Ligand Scout, which 
the authors of this article were unable to obtain.

o Lack of laboratory confirmation of the computational obtained re
sults, which means the computational results are currently hypo
thetical and unproven in a real biological system.

Table 17 
Five-fold cross-validation with StratifiedKFold of XGBC based on RDKit transformed SMILES.

Metrics Fold Average across the folds

1 2 3 4 5

Accuracy [%] 88.06 88.42 88.25 88.41 87.98 88.22 ± 0.18
Precision [%] 91.38 91.63 91.01 91.56 91.09 91.33 ± 0.25
Recall [%] 88.57 88.93 89.35 89.00 88.76 88.92 ± 0.26
F1-Score [%] 89.95 90.26 90.17 90.26 89.91 90.11 ± 0.15
ROC AUC [%] 95.15 95.30 95.13 95.31 95.09 95.19 ± 0.09
Confusion Matrix TN 5643 5666 5597 5657 5610 5634.6 ± 26.75

FP 822 799 868 807 854 830.0 ± 26.74
FN 1124 1089 1047 1082 1105 1089.4 ± 25.66
TP 8709 8744 8786 8751 8728 8743.6 ± 25.66

Fig. 16. Confusion matrix of the XGBC based on dataset with transformed by 
RDKit SMILES.
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o Hyperparameter tuning of RFC with Optuna and Boruta feature 
importance was performed with only five studies/iterations.

o Manual calculation of the mean Ratio of Active and Inactive cases for 
the functional group/fragment having a different spelling.

o Only a few samples of chemical compounds related to the study were 
fully screened for PAINs.

4.3. Future directions

o Limited by an ongoing study, the authors will not continue to further 
mature the methods presented here. However, a valuable next step 
for advancing biochemical research is to integrate the existing 
CID_SID ML model, develop more models like it, and combine them 
into a single PoC framework. This framework would then allow for 
an estimation of the time benefits it provides compared to using 
features transformed by tools like MORGAN2 or SMIELS/RDKit. The 
CID_SID machine learning model, despite exhibiting a lower MCC 
(0.7311) than the SMILES RDKit model (0.7912), offers a significant 
practical advantage: it eliminates the need for on-the-fly descriptor 
calculations. Since the features associated with CID/SID are pre- 
computed and readily available through PubChem, the substantial 
time investment required for generating transformations like those 
necessary for SMILES RDKit is avoided. While this time saving may 
be negligible for a single model run, it is expected to become highly 
significant when scaling up to a large suite of integrated ML models 
used for predicting new functionalities for vast sets of test com
pounds. The quantification of the time saved by utilizing the CID_SID 
ML approach is designated as an objective for future investigation.

o Despite the justification provided in the paper for keeping PAINs, a 
comprehensive exploration of all proposed methodologies using 
datasets from which PAINs have been removed would be an 
appealing avenue for future investigation. It can be expected that the 
fidelity of the resulting models and analyses would be significantly 
increased by this step. By eliminating these known interference 
compounds, the computational results, including SAR analysis and 
ML predictions, will be based on molecules whose activity is more 
likely attributed to a specific biological interaction rather than an 
assay artefact, thereby yielding more reliable and chemically 
meaningful insights for drug discovery.

o A promising variant for future exploration that aims to significantly 
facilitate biochemical research involves using the PubChem Sub
structure Fingerprint instead of IUPAC names as molecular de
scriptors. In this approach, the dataset features would be the 881 bits 
of the PubChem fingerprint, each corresponding to the presence or 
absence of a specific structural motif, while the labels would be 
derived from an HTS bioassay of interest. Generating a descendant 
ordered list of feature importance using RFC for these 881 bits, and 
subsequently processing this list further using methods such as 
Fisher's Exact Test, or determining the most and least desirable 
functional groups based on the relative proportion of active cases, 
would yield highly actionable information for biochemical re
searchers. This structural guidance would streamline their synthetic 
work by identifying the most potent fragments for activity, thereby 
speeding up research, lowering costs, and accelerating drug 
discovery.

o Running the hyperparameter tuning study only five times is insuffi
cient and should be increased to at least 100 iterations. Increasing 
the number of study runs significantly improves the probability of 
finding a globally optimal or near-optimal hyperparameter config
uration, which is necessary to maximise model performance and 
ensure the final results are not due to chance, thereby increasing 
confidence in the tuning process.

o To ensure Boruta suggests features despite an initial lack of confir
mation, several tuning actions must be considered. Better statistical 
convergence can be allowed by increasing the maxRuns, or potential 
feature interactions can be better captured by adjusting the 

max_depth of the underlying RFC estimator. Furthermore, the root of 
the problem, a constant or near-constant target variable, or highly 
correlated features masking true importance, must be addressed 
through a thorough examination of the dataset, which would solve 
the troubleshooting requirement.

o Automation of merging the same functional groups/fragments that 
have different spellings during the IUPAC tokenisation

o Analysing the full list with results based on PAIN flags and 
concluding further investigations

o A comparison of the results obtained by the presented approach and 
Bio5T+, confirmed in a chemical laboratory, would provide clarifi
cation regarding the level of credibility and preferences between 
both.
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