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This paper introduces several proof-of-concept (PoC) computational methods intended to offer biochemical re-
searchers straightforward, time- and cost-effective strategies to accelerate their work. While Machine Learning
(ML) models were developed, the study's central purpose was to explore approaches for the identification of
desirable functional groups/fragments in small biomolecules regarding a specific functionality, which, in this
case, was human tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibition. This was achieved primarily by tokenising

IUPAC names to generate features. Additionally, the applicability of the CID_SID ML model for predicting TDP1
activity was developed and explored. Since these computational approaches were not experimentally validated
due to a lack of appropriate laboratory facilities, they are presented as open proposals for further laboratory

investigation.

1. Introduction

This work aims to develop computational approaches capable of
predicting potential drug side effects in the development pipeline and
generating novel insights for drug discovery. A major challenge in drug
development underscores the critical need for computational tools: a
report [1] shows that nine out of every ten drug candidates fail to reach
FDA submission after entering trials. This inefficiency is compounded by
the fact that developing a new drug requires an average of 12 years and
costs over a billion US dollars [2]. To develop the proposed supportive
computational approaches, the strategy focused on leveraging the vast
experimental data within the PubChem repository, alongside the use of
relatively simple chemical nomenclature for naming compounds and
substances. The information encoded in the names of compounds, which
are generated according to the International Union of Pure and Applied
Chemistry (IUPAC) nomenclature [3], was investigated to determine
how it could be utilized. These unique IUPAC names encode the chem-
ical composition and structure of compounds, thereby ensuring clear
and unambiguous communication among chemists worldwide. The
naming variations inherent in the IUPAC nomenclature, including the
designation of a Preferred IUPAC Name (PIN) for regulatory precision,
do not compromise the integrity of this study. While PINs resolve

* Corresponding author.
E-mail address: mariya.ivanova@uwl.ac.uk (M.L. Ivanova).

https://doi.org/10.1016/j.compbiomed.2026.111531

ambiguity by standardising the order of precedence or the choice of
parent structure, they are fundamentally built upon the same chemical
structure as other valid systematic names. Consequently, the set of
functional groups or chemical fragments remains identical regardless of
the name chosen. The methodology's core strength lies in explicitly
tokenising the IUPAC names to extract the presence or absence of these
discrete structural fragments (e.g., 'phenyl' or 'imidazo'), successfully
bypassing the ordering variations that define a PIN. Therefore, the
resulting binary feature matrix (data frame) is a robust, direct repre-
sentation of the molecule's composition, untouched by naming
conventions.

IUPAC names have previously been leveraged for computational
drug discovery applications by the large language models (LLMs)
iupacGPT [4] and BioT5+ [5]. However, the two LLMs possess signifi-
cant differences. The iupacGPT [4] approach is highly focused, treating
IUPAC names as a chemist's natural language to directly design new
compounds and predict their functionalities. In contrast, BioT5+ [5]
uses IUPAC names merely as one feature within a vast, integrated
dataset. This broadened data includes literature from PubMed and bio-
Rxiv, molecular data like SELFIES from PubChem, and protein se-
quences from UniRef50, allowing the model to learn simultaneously
across 15 different tasks and 21 benchmark datasets. A limitation
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common to both LLMs is the risk of "hallucination" [6,7], which, in
chemistry, translates to generating non-existent or fabricated informa-
tion. That includes reporting incorrect properties, non-existing in-
teractions, or invalid sequences and nomenclature (SMILES, SELFIES,
IUPAC names, or protein sequences) [8]. Prediction of IUPAC names
based on the International Chemical Identifier (InChI) of the chemicals
was performed by implementing character-by-character tokenisation of
the names. This Machine Learning (ML) model achieved 91% accuracy
for organic molecules (excluding macrocycles) [9], which suggests the
potential for vice-versa implementation using IUPAC-encoded data. A
separate insightful study demonstrated that deep learning (DL) can
successfully generate IUPAC names directly from Atomic Force Micro-
scopy (AFM) images [10]. Extensive review of the publicly available
literature confirms that the approach presented in this paper is novel and
has not been reported to date. The paper integrates two methodologies
that process IUPAC-derived data to produce lists of functional groups.
These lists are designed to facilitate drug development by serving as a
resource for human-driven medicinal chemistry insights.

To demonstrate the methodologies, the PubChem AID 686978
bioassay was selected [11]. This assay is focused on human tyrosyl-DNA
phosphodiesterase 1 (TDP1) and seeks to identify active inhibitors,
thereby providing potential agents to modulate the TDP1-mediated
repair pathway for cancer therapy. While not strictly an essential pro-
tein, TDP1 becomes critical for cell survival under treatment with the
topoisomerase I poison camptothecin (CPT). To screen for inhibitors
active in a cellular environment, a specialised assay was developed using
chicken DT40 cells: a TDP1 knockout line (Tdpl —/—) and a com-
plemented line (Tdpl —/—; hTDP1) stably expressing human TDP1. In
the primary screen (PubChem AID 686978), the latter cells were
exposed to small molecules from the MLSMR, both in the presence and
absence of CPT, and their growth kinetics were evaluated by measuring
ATP activity after 48 h. A compound demonstrating a synergistic effect
with CPT suggests inhibition of the CPT-induced repair pathway,
potentially through TDP1. Compounds that showed synergy in Tdpl
—/—; hTDP1 cells but not in Tdpl —/— cells were classified as hits
potentially involved in TDP1-mediated repair inhibition and were then
subjected to tertiary biochemical gel-based assays for specific TDP1
targeting assessment. The screening involved dispensing 400
DT40-hTDP1 cells per well into 1536-well plates, transferring 23 nL of
compounds, incubating for 48 h, and reading luminescence after adding
Cell Titer Glo solution. Finally, compounds were ranked based on their
titration curves, with active compounds assigned a PUBCHEM\_AC-
TIVITY\_SCORE between 40 and 100 (with Fit\ LogAC50 used for
relative scaling), inconclusive compounds scored 1 to 39, and inactive
compounds scored 0 [11]. The enzyme TDP1 was selected as the
demonstration object for this study because of its crucial function in the
DNA repair pathway, specifically in resolving lesions caused by topo-
isomerase I cleavage complexes (Toplcc) [12].

The TDP1 enzyme's DNA repair capability holds promise for cancer
treatment, as demonstrated by its clinical testing in a study involving
150 patients with non-small-cell lung cancer [13]. To elucidate the
mechanism by which TDP1 repairs DNA-protein crosslinks (DPCs),
which are DNA lesions leading to genomic instability and cell death, an
investigation was performed that confirmed the endogenous role of
TDP1 in DPC repair [14,15].

In addition to its role in cancer, TDP1 has non-cancer related func-
tions; specifically, its mutation is the known cause of spinocerebellar
ataxia with axonal neuropathy type 1 (SCAN1) [16,17]. This rare
neurodegenerative disorder remains incurable to date, representing a
critical gap in current medical research [18,19].

An exploration of the available literature revealed a variety of Al
approaches currently assisting in the field of drug discovery [20,21];
feature engineering for ML models using atomic properties. [22]; the
results of ten ML algorithms were compared to facilitate the prediction
of the intervention age that would improve the efficacy of the treatment
for spinocerebellar ataxia type 3 [23]; ML predictions based on 13C
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NMR spectroscopic data derived from Simplified Molecular-Input
Line-Entry System (SMILES) [24]; an ML model developed to predict
potential TDP1 inhibitors using SMILES notations [25] that were
transformed into numerical data by the RDKit cheminformatics toolkit
[26]. To date, the approaches based on IUPAC-parsed names presented
in this article this article has not been reported in the literature.

While this work centres on approaches using parsed [UPAC names,
the TDP1 inhibition data were also utilized to test the applicability of the
CID_SID ML model methodology [27]. This secondary model, while also
predicting TDP1 inhibition, has a distinct goal: it relies solely on the
PubChem compound and substance identifiers (CID/SID) to computa-
tionally screen compounds originally designed for other purposes. While
sample identifiers typically lack data suitable for ML training and
testing, the PubChem compound and substance Identifiers (CID and SID)
may be an exception. Since CID and SID are not arbitrary identifiers but
sophisticated, structured keys to vast chemical and biological informa-
tion, they can be used in ML. The CID acts as a non-redundant identifier
for a single, canonical chemical structure; it is the result of a rigorous
standardisation algorithm that resolves ambiguities like tautomers and
salts, allowing it to serve as a reliable anchor for all molecular properties
(e.g., fingerprints, SMILES strings) that are the true features in chem-
informatics ML [28]. Conversely, the SID is crucial because it links the
canonical structure (CID) back to the specific experimental context and
data source (depositor) that provided the information, which is vital for
modelling data variability, source bias, and linking to raw bioassay re-
sults. By using these IDs, the ML model implicitly taps into PubChem's
extensive data hierarchy and curation. This allows the model to group
similar compounds and contextualise activity data, a strategy that has
proven successful in numerous predictive modelling studies. Capital-
ising on this, a study developed CID_SID ML models, predicting D3
dopamine receptor antagonists, Rab9 promoter activators, DNA
damage-inducible transcript 3 inhibitors and M1 muscarinic receptor
antagonists [27]. The general applicability of the CID_SID ML model was
later confirmed by a separate study that successfully predicted dopa-
mine D1 receptor antagonists [24]. Leveraging this proven methodol-
ogy, a CID_SID ML model was subsequently developed in the current
study to specifically predict TDP1 inhibitors.

The methodologies presented in this study are fundamentally situ-
ated within the research stream of Quantitative Structure-Activity
Relationship (QSAR) modeling. Traditionally, QSAR models have been
constructed using a variety of molecular descriptors, ranging from
physicochemical properties to complex 3D structural parameters, to
predict biological activity. In this work, the conventional QSAR para-
digm is expanded through the introduction of systematic nomenclature-
based descriptors. It is posited that IUPAC names, which are governed by
rigorous compositional rules, can function as a high-level abstraction of
molecular architecture suitable for QSAR tasks. By shifting the focus
from traditional molecular fingerprints to IUPAC tokens, a novel layer of
interpretability is added to the QSAR process. This approach allows for
the statistical correlation of specific linguistic tokens with biochemical
potency, thereby facilitating the identification of activity-boosting
functional groups through a transparent, nomenclature-driven predic-
tive framework.

2. Methodology

The first methodology involves an ML model that uses IUPAC-
tokenised data to predict a small biomolecule's functionality [29].
Subsequently, the feature importance from this model is extracted and
processed to derive insights for biochemical and medical research. The
second methodology also utilizes tokenised IUPAC names but focuses on
generating ranked lists of functional groups. This ranking identifies the
most and least desirable functional groups based on their correspon-
dence with relevant labels across the entire High-Throughput Screening
(HTS) bioassay dataset. The third methodology is a complementary ML
model that replicates the previously established CID_SID ML model. This
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model does not rely on IUPAC names but serves as a resource for re-
searchers interested in screening compounds designed for other pur-
poses to determine if they also possess TDP1 inhibitory capabilities.

The first methodology is illustrated in Fig. 1. As was noted above,
for the purpose of demonstrating the proposed methodology, the case
study was built upon the publicly available PubChem AID 686978
bioassay dataset focused on TDP1 inhibition [11]. The critical impor-
tance of data quality and the valid point regarding the need to comment
on curation, even for well-known datasets, are acknowledged, as model
validity can still be compromised by errors and mislabelled entries.
Therefore, to ensure the reliability of the results, a rigorous data cura-
tion process was implemented prior to model training. This included the
removal of duplicate entries, the conducting of consistency checks on all
chemical structures and their corresponding activity labels, and the
performing of literature cross-validation (CV) to resolve any ambiguous
assignments. Through this thorough validation step, it is ensured that
the final performance of the ML models, including the Random Forest
Classifier (RFC), is based on a clean, statistically reliable foundation,
thus addressing the potential for data-related inconsistencies. Although
more advanced architectures, such as Deep Learning or Gradient Boos-
ted Trees, are available, Random Forest was selected due to its proven
stability and performance in traditional QSAR tasks involving
high-dimensional, sparse data (like IUPAC tokens). Furthermore, RF's
inherent ability to calculate feature importance and handle non-linear
relationships provided a transparent foundation for the LIME (Local
Interpretable Model-agnostic Explanations) validation used in this
study.

The PubChem AID 686978 bioassay dataset consists of 424,883
samples (rows) defined by 48 features (columns). The samples were
divided into three distinct activity groups: 64,192 active, 116,652
inconclusive, and 243,131 inactive. For the purpose of the first and
second methodology, the active and inactive compounds were gathered
into a single dataset. To mitigate the severe imbalance between the
active and inactive small biomolecules, this resulting dataset was
merged with the PubChem AID 1996 bioassay dataset [30], and only the
common samples for both bioassays were retained.

While the filtering strategy using PubChem AID 1996 bioassay [30],
focused on the aqueous solubility of small biomolecules, introduces a
selection bias, this bias was considered intentional and necessary to
focus the model on the chemical space most relevant to successful drug
discovery; the bias was directed toward compounds with reliable
physicochemical properties. Although the PubChem AID 1996 bioassay
dataset contained 57,859 rows of samples, 40,860 of which were
labelled as soluble and 17,573 as insoluble small biomolecules, solubi-
lity was not taken into consideration for the purpose of the current
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Fig. 1. Methodology of the ML model utilizing
IUPAC names, PubChem bioassay data and the scikit learn ML library.
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study. Only the column with CIDs was used to reduce the inactive
compounds in the PubChem AID 686978 bioassay, keeping the common
for both bioassay samples. Furthermore, the final dataset used for
downloading of IUPAC names from PubChem was obtained by the
addition of all active compounds to the reduced inactive compounds. In
this way, simultaneous mitigation of both data imbalance and selection
bias was achieved.

PubChem's requirement for retrieving a bulk query of IUPAC names
is to specify a list containing only CIDs. After such a list was created from
the resulting dataset, the file with IUPACs was downloaded via the
PubChem home page, Upload ID List, which is a data retrieval option for
an easy-to-use way to perform bulk queries on the database without the
need for more complex programming tools. For the purpose of the study,
the comprehensive downloaded file from PubChem was filtered to retain
only the necessary columns: CID, the SMILES string, and the IUPAC
name. This focused dataset was then merged with the primary target-
containing dataset. The merge operation used a compound key con-
sisting of both the CID and the SMILES string to ensure accurate and non-
redundant matching of each chemical entity with its corresponding
experimental activity data. Following this procedure, to identify key
molecular features, the IUPAC names in the dataset underwent a parsing
step. Only strings of four or more letters were retained, as these likely
represented significant functional groups or molecular fragments. The
approach was intentionally designed and executed to ensure that the
extracted strings represented existing constituents of the IUPAC names,
meaning the process was constrained to avoid generating novel strings
by cutting across IUPAC-defined groups or molecular fragments. The
resulting strings then formed the column headers of a new data frame
(Table 1). For each compound, a binary indicator (1 for present, 0 for
absent) was assigned to mark the presence or absence of a given func-
tional group, Table 1. The feature assignment is based strictly on an
absolute, exact string match between a functional group or fragment and
the corresponding column (feature) name. A partial or subordinate
match is not sufficient for assignment; for instance, the mere presence of
the string "amino" within a molecule will not assign a label of "1” to every
column name that contains "amino"; the functional group's string must
perfectly equal the feature column's name. The new data frame, con-
taining the functional group information, was subsequently merged with
the labelled data frame by matching their CIDs and SMILES.

ML conducted in this study centred on the RFC, whose interpretation
was facilitated by the scikit-learn library. The entire ML process,
encompassing data preprocessing, model training, prediction, and result
evaluation using relevant metrics, was compiled and executed in
accordance with the best relevant practices recommended in the liter-
ature, as detailed in Refs. [31,32], and [33].

Parse IUPAC names into

=) Functional groups
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1 Machine Learning: train, 1
| predict, evaluate H
1
1
1
1
1
1
1
1

Relative

proportion

1

1

: List with
\  between

1

1

1

1

1

1

1

1

% 1

functional |
active and H
inactive !
cases 1

groups



M.L. Ivanova et al.

Table 1
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Methodology. Parsing/breaking down the IUPAC names into tokens/strings equal or longer than
four letters and using these tokens/strings to create the data frame features. Counting the presence
of the functional groups in the compound's content with 1 for presence and O for absence of the
relevant feature group/fraction in the content of the small biomolecule.

amino
oxopropyl
methylpropyl
methylundecyl
octaoxo

acetic

IUPAC
acid

pent

cyclopropylsulfonylphe
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yloxy

acetyl
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3,6,6- -N-[(2S)-1-[4-(1-
methylpiperidin-4-
yl)oxyanilino]-1-
oxohexan-2-yl]-4-oxo-
5,7-dihydro-1H-indole-

2-carboxamide

After the tokenisation of IUPAC names and integration with their
relevant labels, the dataset was split into data points (X) and targets (y)
(Fig. 2). These were subsequently divided into training and test sets
(X_train, X_test, y_train and y_test). The test set was manually created by
randomly extracting an equal number of cases to ensure a balanced
evaluation. Using an equal number of classes in the test set (a balanced
test set of randomly selected samples) basically provided a fair and
reliable evaluation of the ML model's ability to generalise across all
outcomes. This approach directly tackles the accuracy paradox, where
an imbalanced test set could yield a deceptively high accuracy score by a
model that simply predicts the majority class, masking poor perfor-
mance on the minority class. By employing equal class proportions, the
model is forced to correctly identify instances from every class, ensuring
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Fig. 2. Illustration of Data Preprocessing Steps (Balancing and Scaling) Applied
to the Training and Test Datasets (Ivanova et al., 2025).

the overall accuracy is a meaningful metric that reflects equal emphasis
and penalty for misclassification across all outcomes. Furthermore, a
balanced test set allows the straightforward and reliable interpretation
of standard metrics.

such as the Precision, the Recall and the F1-Score, validating the
model's robustness and confirming that it has learned the distinct pat-
terns for each classification label rather than merely exploiting a data
distribution bias. The remaining samples formed the training set. It was
then balanced using Random Over Sampler (ROS), which randomly
replicated minority class samples until a balanced training dataset was
achieved. Finally, these prepared sets were used for training, predicting,
and evaluating the ML model based on the Random Forest Classifier
(RFC) strategy. To ensure the ML model's reported performance
(including Accuracy, Precision, Recall, F1-score, and ROC) is robust and
generalised, rather than relying on a single data split, five-fold CV was
conducted. The procedure began by partitioning the shuffled dataset
into five equal, stratified folds to preserve the class proportion. In each
iteration, one fold was designated as the test set, while the remaining
four were used for training. This training set was further processed using
the balancing technique appropriate for the model. The model was
trained iteratively on the four balanced folds and validated on the single,
untouched test fold, with all metrics recorded. The model's final,
generalised performance is reported as the mean and standard deviation
of the five recorded scores, confirming consistency.

Scientific context and proof of performance were established by
comparing the model against two industry-standard baselines: MOR-
GAN2 fingerprints [34] and features computed by RDKit from the
SMILES notation [25]. These RDKit representations were essential as
they provide a proven, accurate, and highly efficient means of trans-
lating complex molecular information into the fixed numerical format
that ML and QSAR algorithms can process.

Principal Component Analysis (PCA) was implemented as an unsu-
pervised dimensionality reduction technique [35]. Its core function was
to simplify the complex, high-dimensional dataset by transforming the
original, correlated variables into a smaller, more manageable set of
uncorrelated variables known as Principal Components (PCs), thereby
retaining the maximum possible data variability and essential
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information.

Two complementary feature inspection techniques, both imple-
mented via Scikit-learn, were used to rank the functional groups that
compose the small molecule TDP1 inhibitors. The primary ranking was
established using the RFC feature importance, which sorted the func-
tional groups in descending order based on their ability to reduce Gini
impurity, quantifying the model's reliance on each group for accurate
prediction. A second, independent ranking was created using the Chi-
squared statistical test within the SelectKBest tool. This test assesses
the statistical independence of each functional group from the target
variable; since highly independent variables have low predictive value,
this process effectively quantifies the potential predictive power of each
group by measuring the strength of its direct relationship with the in-
hibition data. Collectively, these methods provided a clear quantifica-
tion of feature influence by systematically assessing and disrupting the
feature-target relationship.

After generating two distinct feature importance lists from the RFC
model, each likely derived from a different set of molecular represen-
tations, a single, consolidated list of unique functional groups was
created. This final, unified list was then re-ranked using two indepen-
dent chemical relevance metrics. The first re-ranking was based on the
relative proportion of active versus inactive small biomolecules that
possessed the given functional group, directly correlating group pres-
ence with target activity (as detailed in Table 2). The second, more
rigorous re-ranking utilized Fisher's exact test [36] to statistically assess
the non-random association (dependency) between the categorical
variable (the presence of a functional group) and the binary target
outcome (active or inactive), providing a precise measure of the group's
statistical significance as a predictor (Table 2). The Boruta feature se-
lection algorithm [37] was additionally employed to identify the most
relevant chemical features, providing a statistically robust foundation
for subsequent process validation. By ensuring the ML models (such as
the RFC) were trained only on the most significant variables, Boruta
allowed for a rigorous and fair comparison of their performance, thereby
confirming that the final results were based on truly meaningful inputs.

To optimise the model's performance, hyperparameter tuning was
conducted on the RFC using Bayesian optimisation. This entire process
was automated and executed efficiently via the open-source framework,
Optuna [38]. During the hyperparameter optimisation using Optuna,
the process was guided by k-fold Stratified CV (StratifiedKFold) on the
training data (X_train and y_train), where the objective function itera-
tively tests hyperparameter combinations and returns the mean cros._-
val_score to maximise performance while preventing overfitting to any
single data subset. The X_train set was fully utilized for both training and
validation via the 5-fold CV to provide a stable, low-variance estimate of
the optimal parameters. Finally, once the best parameters were found,
the model was refit on the entire training set (X_train, y_train), and it was
true, unbiased generalisation performance assessed only once by
calculating the scikit-learn method.score() on the completely held-out
test set (X_test and y_test), ensuring the reported result was a realistic
measure of performance on unseen data. X_test and y_test were not used
in any way to influence the model's structure, weights, or

Table 2
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hyperparameters during the crucial learning and tuning phases.

Tracing the deviation between the training accuracy (the model's
performance on seen classification examples) and the test accuracy (its
ability to correctly classify unseen examples) is the most direct way to
detect and quantify overfitting. Ideally, both curves increase together,
confirming the model is learning generalisable classification boundaries.
However, in an overfit scenario, the curves diverge: the training accu-
racy continues its ascent as the model perfectly memorises the training
data's noise and specific class assignments, while the test accuracy pla-
teaus and then drops because the over-specialised model fails to
generalise to new data. The resulting size of the gap between these two
metrics directly indicates the level of overfitting, making this trace
critical for implementing early stopping, a necessary regularization
technique that halts training when test accuracy starts its decline,
thereby selecting the classification model with optimal real-world
generalisation capability. Although setting a fixed 5% deviation
threshold for classifying 'overfitting' is arbitrary, in this specific context,
the 5% margin was used only as an initial threshold to monitor model
stability during preliminary runs. The primary and standard criterion for
mitigating and defining overfitting was the use of early stopping, where
training was halted precisely when the test (validation) loss failed to
decrease for a set number of epochs. Therefore, the 5% threshold served
merely as a secondary, conservative monitoring tool, and the true
measure of acceptable generalisation was based on the Fl-score and
ROC metrics.

The Matthews Correlation Coefficient (MCC) was used as a single,
robust metric to assess the quality of a binary classification model,
particularly because it provides a reliable score even when dealing with
imbalanced datasets [39]. The MCC is a correlation coefficient between
the true and predicted classifications, symmetrically incorporating all
four confusion matrix components: True Positives (TP), True Negatives
(TN), False Positives (FP) and False Negatives (FN), into its calculation,
ensuring that a high score reflects strong performance across all classes,
not just the majority one. A perfect model scores +1, a random guess
scores 0, and a perfect inverse prediction scores —1. However, MCC's
limitations include its complex formula, which makes the magnitude
less intuitive than Accuracy, its sensitivity to the classification threshold,
and the fact that its formula can be undefined in rare, degenerate cases
where a row or column in the confusion matrix is empty.

Confidence Intervals (CIs) were calculated for the ML parameters to
quantify the uncertainty and precision associated with the sample-based
estimates, thereby establishing a plausible range of values for the true
population parameters. This process fundamentally acknowledges that
any estimate derived from a limited sample is inherently subject to
random error, with the resulting CI's width serving as a direct indicator
of the estimate's precision. Furthermore, Cls are crucial for statistical
significance testing, as they enable researchers to quickly ascertain if an
effect is significant (e.g., by observing if the interval for a coefficient
excludes zero) or if the performance of different models is meaningfully
distinct (by assessing the overlap of their respective CIs). Ultimately, the
inclusion of CIs enhances scientific reporting by lending transparency,
context, and reliability to the reported results.

Five-fold cross-validation with StratifiedKFold of RFC based on IUPAC tokenised data.

Metrics Fold Average across the folds
1 2 3 4 5
Accuracy [%] 75.28 74.88 76.24 75.08 75.75 75.45 + 0.49
Precision [%] 89.63 89.23 89.79 89.85 90.04 89.71 £ 0.27
Recall [%] 69.60 69.29 71.13 69.04 70.04 69.82 + 0.74
F1-Score [%] 78.35 78.00 79.38 78.08 78.79 78.52 + 0.51
ROC AUC [%] 85.64 85.24 86.37 85.58 86.19 85.80 + 0.41
Confusion Matrix TN 4498 4469 4495 4522 4526 4502.0 + 23.08
FP 763 792 766 739 734 758.8 + 23.34
FN 2879 2909 2737 2932 2838 2859.0 + 76.74
TP 6592 6562 6737 6539 6634 6612.8 + 78.00
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LIME was used to provide essential transparency for any "black-box"
ML model, which is critical for trust, debugging, and compliance. By
creating a simple, local explanation for individual predictions, LIME
allowed users to verify that the model was making decisions based on
sound, expected features, rather than spurious correlations or data
leakage. This capability is paramount in high-stakes fields to diagnose
flaws before deployment and is increasingly necessary to meet regula-
tory and ethical requirements for model accountability and fairness.

The second methodology aimed to identify chemical groups
exclusively associated with a single activity class by focusing on the
chemical composition of small biomolecules exhibiting a purely active
or inactive nature regarding TDP1 inhibition (as summarised in Fig. 3).
To achieve this, all molecules from AID 686978 were first tokenised and
organised into a data frame containing their IUPAC names and corre-
sponding target labels (active/inactive), following the same pre-
processing steps as the first methodology. The core step then involved
selectively extracting functional groups that appeared only in the
composition of active biomolecules and were entirely absent from
inactive ones. This process was then repeated to isolate functional
groups found only in inactive biomolecules, thereby generating two
distinct lists of activity-exclusive chemical features.

For both methodologies (First and Second), the compounds con-
taining the suggested functional groups were screened for Pan-Assay
Interference Compounds (PAINs) [40]. Despite their known propensity
for generating false positives and assay artefacts they were not removed
in advance. Fundamentally, PAINS represent statistical alerts rather
than absolute exclusion rules, as evidenced by the small percentage of
FDA-approved drugs that successfully contain these motifs [41]. Strictly
filtering all PAINS risks incurring detrimental false negatives, leading to
the premature dismissal of genuinely active or unique scaffold hits
simply because they share a substructure common to interferers.
Furthermore, retaining these compounds preserves invaluable historical
data from legacy HTS campaigns, which is essential for a comprehensive
chemical context. Finally, from an ML perspective, including flagged
PAINS is necessary to train robust models that can effectively learn and
predict promiscuity and chemical reactivity, ultimately enhancing the
model's ability to triage novel compounds based on a complete spectrum
of chemical behaviour. Therefore, their presence in large datasets is not
accidental but serves to preserve historical integrity, prevent the loss of
potential leads, and improve predictive modelling power.

The third methodology, complementary to the main study, adapted
the framework of established CID-SID ML models to develop a dedicated
TDP1 CID-SID model [27]. The data was sourced from PubChem AID
686978 [11], retaining only the CID, SID, and the column related to
TDP1 activity. The imbalance of the resulting dataset was addressed by
initial filtering with the PubChem AID 1996 bioassay [30], followed by
the described oversampling technique. The model leveraged five diverse
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classifiers: Decision Tree Classifier (DTC), RFC, Gradient Boosting
Classifier (GBC), Extreme Boosting Classifier (XGBC), and Support
Vector Classifier (SVC). To maximise predictive capability, the models
underwent rigorous evaluation, including five-fold CV, hyperparameter
optimisation with Optuna [37] and overfitting analysis as explained
above. The performance of the resulting optimal model was then
benchmarked against the MORGAN2 and SMILES RDKit-based ML
models established in the third methodologies. PCA and feature
importance were not processed because of the volume and nature of the
datapoints columns (i.e. two with identifiers). Finally, MCC and confi-
dence intervals for key ML metrics (Accuracy, Precision and Recall)
were calculated across all models to quantify the uncertainty of the
performance estimates.

3. Results and discussion
3.1. Results regarding the first methodology

After removing the isomers without retaining any samples, the
dataset was reduced to 61,471 active, 112,867 inconclusive, and
236,226 inactive compounds. This reduced set was then filtered using
the PubChem AID 1996 bioassay [30], which left 40,404 inactive
compounds. Concatenating these remaining inactive compounds with
the active compounds (minus the isomers) yielded the final dataset of
101,860 samples [29]. The IUPAC names for these samples were
downloaded from PubChem and parsed into strings of four or more
letters, a process that generated 5963 features (columns) for the model.
The training of the RFC on 64,625 samples and testing on 28,200 sam-
ples resulted in a strong initial performance. The model demonstrated a
good balance of overall correctness, reflected by an accuracy of 78.4%,
and a high confidence in its positive predictions, indicated by a precision
of 83.4%. While the recall was lower at 70.8%, suggesting a notable
portion of actual positive cases were missed, the combined metric of the
Fl-score (76.6%) confirms a solid harmonic mean between precision
and recall. Finally, the ROC of 78.4% indicates the model has a prom-
ising ability to distinguish between the classes. This performance es-
tablishes a robust and encouraging baseline for the classification task.
This achievement was further substantiated by five-fold CV(Table 2),
which yielded a validated mean accuracy of 75.45% + 0.49 and a
significantly high mean precision of 89.71% + 0.27, though a lower
mean recall of 69.82 + 0.74 was also observed. Crucially, a robust and
stable performance was confirmed by a strong mean F1-score of 78.52
=+ 0.51 and a high mean ROC of 85.80 + 0.41, with the tight standard
deviations indicating that model consistency was successfully main-
tained across the data partitions.

The model's optimal performance, based purely on test accuracy
before significant deviation, was observed at max_depth = 17, where the
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Fig. 3. Methodology generating ranking of the functional groups according to their presence in the biomolecule content.
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test Accuracy was 69.8% and the deviation between test and train ac-
curacy was still below 5%. This setting is likely the most generalisable
because when max_depth was increased to 19, a clear sign of overfitting
was encountered: the train Accuracy jumped to 75.5% while the test
Accuracy dropped slightly to 70.3%. Crucially, the deviation between
the two exceeded 5% for the first time, indicating that the model began
to fit the training noise rather than the underlying pattern, losing its
ability to generalise (Fig. 4).

The implementation of PCA reduced the number of features from 5,
963 to 44. However, the ML model performed with the PCA reduction of
the features obtained accuracy 69.7%, precision 65.8%, recall 82.1, F1
73%, ROC 69.7% which metrics values were a bit lower compared to
these obtained by the ML model without PCA reduction of the features.

The Optuna hyperparameter search was highly effective, yielding an
optimal Random Forest configuration defined by: 'n_estimators": 404,
'max_depth" 8, 'min_samples_split: 10, 'min_samples_leaf: 6, 'max_fea-
tures" 'log2', 'criterion": 'gini'. This finely-tuned model achieved a test
Accuracy of 0.7068, successfully outperforming the 69.4% accuracy
baseline obtained with default features and max_depth of 17. Crucially,
the substantial reduction in max_depth from 17 to 8 and the tuning of the
splitting criteria parameters demonstrate a clear strategy to combat
overfitting, which was confirmed by the model adhering to the strict 5%
deviation threshold between train and test sets, validating the Optuna
result as the optimal balance of performance and generalisation. All key
metrics cluster around 70.7%, indicating a good overall balance in the
model's predictive capability. Specifically, the Precision is slightly
higher at 0.7141 than the Recall at 0.691, suggesting the model is
marginally better at making correct positive predictions than at identi-
fying all actual positive cases. However, tracing the deviation between
the train and test accuracy of the RFC based on Optuna hyperparameters
revealed that even at max_depth = 30, the difference remained under
5%. Consequently, the max_depth was set to its default value, None. This
allowed the trees to continue growing until every leaf was pure (con-
tained only samples of one class) or until a leaf contained fewer than min
\samples\split samples.

The Optuna hyperparameter-tuned RFC with max_depth = None
demonstrated moderate and highly stable performance on the testing
data, achieving an Accuracy of 0.7233. All major metrics, Accuracy,
Precision (0.7203), and Recall (0.7299), are tightly clustered just above
the 70% benchmark, indicating the model was reliably better than
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Fig. 4. Overfitting analysis of the IUPAC RFC ML model: prediction accuracy vs
maximum depth of the decision tree. The blue line is the training accuracy. The
orange line is the test accuracy. The deviation between the testing and training
accuracy higher than 5% was considered as an indication of overfitting. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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random chance and maintains a good balance between FP and FN.
Crucially, the narrow 95% CI, such as 0.7180 to 0.7283 for Accuracy, are
the most significant finding. These narrow ranges, derived from 1000
bootstraps, confirm the model's exceptional robustness and consistency,
suggesting that while the performance level is only moderate, it will not
significantly degrade when applied to new, similar data.

RFC exhibits moderate predictive strength with an MCC of 0.4466,
placing its overall performance significantly above random chance but
well below perfect classification. The model shows a balanced distri-
bution of errors, as indicated by the high and nearly equal counts of FP
(3,996) and FN (3,808). While the model correctly classified a large
number of instances (TP: 10,292 and TN: 10,104), this large volume of
both types of misclassification suggests the model struggles to generalise
effectively to the underlying decision boundary (Fig. 5). Consequently,
any future improvement efforts must focus on strategies to simulta-
neously suppress both the FP and FN rates to achieve a more robust MCC
score closer to 1.

The classification report for the RFC (Table 3) reveals moderate and
exceptionally balanced performance across both classes, achieving an
overall Accuracy of 0.72 on a perfectly balanced test set of 28,200
samples. The most striking observation is the remarkable consistency: all
key metrics, Precision, Recall, and F1-score, for both the Active (Target
1) and Inactive (Target 0) classes are tightly grouped between 0.72 and
0.73. This uniformity, confirmed by macro and weighted averages of
0.72, confirms the model is unbiased and generalises consistently across
both outcomes. While its stability is a strength, the moderate 72% per-
formance ceiling suggests the model may have reached its limit given
the current features, and further accuracy improvements will likely
require feature engineering or exploring more complex algorithms.

The provided LIME result for RFC based on IUPAC tokenised data
pertains to a correctly classified instance, where both the True Label (1)
and the Model Prediction (1) align, within a high-dimensional feature
space (94,712 samples and 5961 features) and a moderate overall Model
Accuracy of 0.7235. The explanation identifies the two most influential
features driving this specific prediction. Crucially, the absence or
negligible presence (indicated by < 0.00) of the chemical fragments
'phenoxythieno' and 'methoxyxanthen' strongly contributed to the
model's decision. The negative LIME weights (—0.0204 and —0.0087)
associated with the <0.00 condition mean that the presence of these
features would have pushed the prediction away from class 1. Therefore,
their absence provided the necessary local support, acting as a positive
indicator for the correct classification of this instance as Label 1.

The RFC applied to the transformed MORGAN2 dataset obtained an
Accuracy of 86.1%, a Precision of 89.1%, a Recall of 87.6%, an F1-score
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Fig. 5. The Confusion matrix of RFC based on IUPAC tokenised data.
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Table 3
Classification report of the [UPAC RFC ML model.
precision recall F1-score support

Active (target 1) 0.73 0.73 0.72 14100
Inactive (target 0) 0.72 0.73 0.73 14100
accuracy 0.72 28200
macro avg 0.72 0.72 0.72 28200
Weighted avg 0.72 0.72 0.72 28200

of 88.4% and an ROC of 85.7%. Tracking for the point where the de-
viation between train and test accuracy was higher than 5% point
max_depth = 10, where the train Accuracy was 79.7% and the test Ac-
curacy was 74.6%. So, the choice was max_depth = 9 with train Accu-
racy 78.7% and test accuracy 74.0%. This process, which guided the
model's optimisation, is visually shown in Fig. 6.

Strong and stable performance was exhibited by the RFC based on
the transformed MORGANZ2 dataset when it was run with a maximum
depth of 9. The model's single-run effectiveness was demonstrated by an
Accuracy of 74.0%, a high Precision of 81.7%, a Recall of 73.3%, an F1-
score of 77.3%, and an initial ROC of 74.2%. Crucially, the model's
reliability and generalizability were confirmed through CV, where
metrics were maintained with very low variance: the Accuracy was
found to be 73.96% = 0.39, the Precision 81.44% =+ 0.33, the Recall
73.62% =+ 0.43, the Fl-score 77.33% =+ 0.36, and the ROC AUC was
observed to be 81.58% =+ 0.37, which suggests the model possesses
excellent discriminative ability that is highly consistent across different
data subsets. The results are shown in detail in Table 4.

The performance of the RFC on the transformed MORGAN2 dataset
was quantified using the provided classification metrics, the details of
which are visually represented in Fig. 7. A total of 10,142 instances were
accurately predicted as positive (TP), while 6475 instances were
correctly classified as negative (TN). Classification errors were noted,
with 1606 negative instances being incorrectly labelled as positive (FP)
and 2149 positive instances being missed and incorrectly labelled as
negative (FN). These outcomes collectively resulted in an MCC of
0.6202, indicating a moderately strong and balanced measure of pre-
dictive quality across all four categories of the confusion matrix.

Moreover, when the RFC was applied to the dataset transformed

—o— Train
0.95 Test

0.90

o
[+
[}

accuravy

0.80

123456 7 8 9101112131415161718192021222324252627 282930
max_depth

Fig. 6. Overfitting analysis of the RFC based on transformed MORGAN2
dataset: prediction accuracy vs maximum depth of the decision tree. The blue
line is the training accuracy. The orange line is the test accuracy. The deviation
between the testing and training accuracy higher than 5% was considered as an
indication for early stopping. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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using RDKit SMILES, it achieved an Accuracy of 89.2%, a Precision of
91.8%, a Recall of 90.7%, an F1-score of 90.1% and an ROC of 89%.
Tracking for the point where the deviation between train and test ac-
curacy was higher than 5% point max_depth = 15, where the train Ac-
curacy was 90.1% and the test Accuracy was 84.7%. So, the choice was
max_depth = 14 with train Accuracy 89.3% and test Accuracy 84.5%.
This process, which guided the model's optimisation, is visually shown
in Fig. 8.

The RFC configured with a maximum depth of 14 yielded a highly
stable and strong final performance on the test set. It achieved an Ac-
curacy of 84.1%, a Precision of 91.1%, a Recall of 81.6%, an F1-score of
86.1% and an ROC of 84.7%. The model's consistency is confirmed by
the fact that these single-run metrics are all within a narrow range
(0.17%-0.25%) of their respective CV averages (Table 5). This close
agreement, further supported by the CV's low standard deviations (all
below +0.25%), indicates the model exhibits low variance and reliable
generalisation without signs of overfitting. The performance profile
highlights a preference for high Precision over Recall, making its posi-
tive predictions highly trustworthy. Both the CV and final results high-
light a strong preference for Precision (~91%) over Recall (~82%),
indicating the model is highly trustworthy when predicting a positive
outcome. However, the ROC shows a notable drop from the CV average
of 92.23% + 0.17%-84.7% on the test set, which suggests that while the
model's performance is excellent at its specific classification threshold,
its overall discriminative ability across all thresholds is significantly
reduced on the final test data.

The classification results indicate that the RFC based on a dataset on
RDKit SMILES was performing solidly and reliably. The model exhibits a
strength in identifying positive cases, correctly predicting 10,086 TP
(Fig. 9). The high resulting Precision is strongly supported by the low
number of incorrect positive predictions, with only 1052 FP. However,
the primary area for improvement is the substantial number of 2205
missed positive cases FN, which impacts the model's Recall. The overall
performance is quantified by the high F1-score of 0.8610 and an MCC of
0.6785, confirming a strong, positive correlation between the predicted
and true classifications and demonstrating good performance across
both class predictions.

The comparative performance, as measured by the MCC, shows a
clear hierarchy among the RFC models based on their feature encoding
methods. The RFC using IUPAC tokenised data performed the weakest
with an MCC of 0.4466, indicating a moderate correlation barely better
than random. Performance significantly improved when using the
MORGAN?2 features, yielding an MCC of 0.6202, suggesting a strong
positive correlation and a more reliable model. The best performance,
however, was achieved by the RFC trained on RDKit-converted SMILES
features, which reached the highest MCC of 0.6785, confirming that this
encoding method provided the most balanced and strongest prediction
quality across both positive and negative classes for the classification
task.

Overall, while the ML models based on SMILES inherently demon-
strated superior performance metrics, the model utilizing IUPAC-
tokenised data offers a distinct and significant advantage: a relatively
straightforward path to providing token-level correlations and chemi-
cally meaningful functional groups insights for drug discovery. This
direct interpretability allows medicinal chemists to immediately identify
potential functional groups and structural fragments that drive activity,
enabling targeted design efforts. Conversely, extracting comparable
chemical intelligence from an SMILES-based ML model requires
complicated post-hoc analysis and additional calculations to translate
the abstract molecular strings into meaningful chemical features, mak-
ing the IUPAC approach a far more practical and time-efficient tool for
human decision-making in the initial phases of drug development.

Identification of the relevant functional groups for the inhibitory action
The feature importance analysis indicates which functional groups
could be the most relevant for a specific chemical interaction. In Fig. 10
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Table 4
Five-fold cross-validation of RFC based on MORGAN2 transformed features with StratifiedKFold.
Metrics Fold Average across the folds
1 2 3 4 5
Accuracy [%] 74.32 74.27 74.24 73.52 73.43 73.96 + 0.39
Precision [%] 81.67 81.74 81.68 80.93 81.16 81.44 + 0.33
Recall [%] 74.07 73.85 73.86 73.42 72.88 73.62 £ 0.43
F1-Score [%] 77.68 77.60 77.58 76.99 76.80 77.33 + 0.36
ROC AUC [%] 81.95 81.94 81.55 81.52 80.95 81.58 + 0.37
Confusion Matrix TN 4830 4843 4836 4763 4801 4814.6 + 29.49
FP 1635 1622 1629 1701 1663 1650.0 + 29.05
FN 2550 2571 2570 2614 2667 2594.4 + 41.88
TP 7283 7262 7263 7219 7166 7238.6.2 + 41.88
Here, the first 24 functional groups out of the list of 5963 groups are
= 10000 shown.
Feature importance in a binary classifier quantifies each feature's
[~ contribution to the model's overall predictive power, but it doesn't
False ahs - 8000 specify whether a feature characterises the active or inactive class. While
machine learning algorithms identify functional groups correlated with
- 7000 inhibition, this correlation doesn't guarantee the group is actively
3 contributing to the effect; some groups may frequently appear in non-
© - 6000 inhibitors. Therefore, to prioritise functional groups most likely to
- contribute to true inhibitors, we calculated the ratio (or relative pro-
= - 5000 portion) of active versus inactive compounds containing that specific
group. This ratio serves as a refined metric to focus on structurally
True ~ 1e+04 - 4000 enriched feat}lres. . . . .
The combined analysis of functional groups provides a nuanced view
- 3000 of the structural features governing activity, based on two ranking
2000 methods (Table 6). The imidazo group stands out as the most potent
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Fig. 7. Confusion matrix of the RFC based on transformed MORGAN2 dataset.
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Fig. 8. Overfitting analysis of the RFC based on dataset with transformed by
RDKit SMILES: prediction accuracy vs maximum depth of the decision tree. The
blue line is the training accuracy. The orange line is the test accuracy. The
deviation between the testing and training accuracy higher than 5% was
considered as an indication for early stopping. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version
of this article.)

below, a list of 24 functional groups with the highest relevance with
respect to the inhibition of TDP1 is shown. It should be noted that the
computations were based on the mutual influence between all features.

statistical predictor, with 89% of compounds containing it being active
and an Active/Inactive Ratio of 8.33, though it only ranks 9th in Feature
Importance. In contrast, the general methyl group is the model's top
feature (Rank 1), despite a lower activity concentration (69%), likely
due to its high overall count (20,205 active cases), making it crucial for
the model's predictive power. The strong statistical enrichment of
groups like ethenyl (87%) and quinolin (86%) confirms they are highly
reliable activity markers, while groups such as carbohydrazide (22%
active, Ratio 0.27) are powerful indicators of inactivity. This difference
in rankings highlights that the Relative Proportion identifies the most
enriched groups, while the Feature Importance identifies the most useful
features for the specific ML classifier. A check was performed on a
random sample of five compounds containing an imidazo, and all were
determined not to be PAINs (Table 7). A comprehensive study of all
samples containing an imidazo, as well as the similarities and differences
of these structures, is a subject of further research.

As noted earlier, the IUPAC names were subjected to direct tokeni-
sation, with the resultant components being utilized without modifica-
tion. Specifically, this process did not generate new string elements or
introduce any splitting of the strings beyond the divisions already
established by the IUPAC nomenclature rules. To ensure data consis-
tency and accurate representation, the mean value should be calculated
for any functional group or molecular fragment that is observed with
different spellings in the tokenised results. For example, instances like
'piperazin' and 'piperazine’ should be collated and their mean value
determined. For example, 'piperazin’ and 'piperazine’ have the relative
proportion values of 5.06 and 4.29, respectively. So, the relative pro-
portion of the active and inactive cases for 'piperazine’ is calculated to be
4.68. That process automation is an object for further development.

The Fisher's Exact Test analysis demonstrates that the presence of
every functional group listed has a highly significant statistical associ-
ation with a substance's activity status, as all P-values are extremely
small (P < 0.0021) (Table 8). The Odds Ratio (OR) indicates the strength
and direction of this relationship: the imidazo group (OR = 5.555)
shows the strongest positive association, making a compound over five
times more likely to be Active if this group is present. Other strong
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Table 5
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Five-fold cross-validation of RFC based on the bataset transformed using RDKit SMILES features with StratifiedKFold.

Metrics Fold Average across the folds
1 2 3 4 5
Accuracy [%] 83.46 84.16 83.94 83.89 83.70 83.83 £ 0.23
Precision [%] 90.38 90.97 91.00 90.80 90.84 90.80 + 0.22
Recall [%] 81.24 81.87 81.43 81.57 81.17 81.45 + 0.25
F1-Score [%] 85.57 86.18 85.95 85.94 85.73 85.87 £ 0.21
ROC AUC [%] 92.27 92.46 92.29 92.19 91.94 92.23 +0.17
Confusion Matrix TN 5615 5666 5673 5651 5659 5652.8 + 20.26
FP 850 799 792 813 805 811.8 + 22.71
FN 1845 1783 1826 1812 1852 1823.6 + 27.63
TP 7988 8050 8007 8021 7981 8009.4 + 27.63
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Fig. 9. Confusion matrix of the RFC based on dataset with transformed by
RDKit SMILES.

positive predictors include ethenyl (OR = 4.605) and trimethoxyphenyl
(OR = 4.074). Conversely, several groups are strongly associated with
inactivity (OR < 1.0); the carbohydrazide group (OR = 0.178) has the
strongest negative association, making a substance with this feature
about 5.6 times more likely to be Inactive, followed by acetate (OR =
0.432) and oxoethyl (OR = 0.500). This analysis clearly identifies key
structural features that either strongly promote or strongly inhibit
activity.

A check was performed on a random sample of five compounds
containing a carboxamide, and all were determined not to be PAINs
(Table 9). A comprehensive study of all samples containing a carbox-
amide, as well as the similarities and differences of these structures, is a
subject of further research.

Boruta feature selection algorithm failed to identify any statistically
relevant features whose importance was significantly higher than
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random noise (the "shadow features"). In essence, the algorithm suggests
that none of the initial features contain a detectable signal that is
stronger than pure chance for the given prediction task. Because the
subsequent stage relies on a confirmed subset of features to build the
RFC, the process cannot proceed as intended, as the feature set is
considered uninformative.

3.2. Results regarding the second methodology

There were other ways of ranking the functional groups. For
example, the ranking can be based on their participation in only one
type of cases (active or inactive):

(i) For the functional groups that participate only in active (i.e. itisa
TDP1 inhibitor) small biomolecule content and in no inactive
compounds, the leading functional group was oxonaphthalen with
25 active cases, followed by methylsulfonylpyrimidine with 22 and
tetrahydroindol with 20 active cases. The entire ranking list of
2178 functional groups participating in the content of the active
small biomolecule is available on GitHub [42]. A check was
performed on a random sample of five compounds containing the
oxonaphthalen and four out of five were flagged as PAINs
(Table 10). A comprehensive study of all samples containing an
oxonaphthalen, as well as the similarities and differences of these
structures, is a subject of further research.

For the functional groups that participate only in inactive (i.e. it is
not a TDP1 inhibitor) small biomolecule composition and in none
of the active, on top of this list was ylbutanediamide with 104
inactive cases, followed by oxopiperazin with 100 and tetrazabi-
cyclo with 99. The entire ranking list of 6243 functional groups
that participated only in the content of the inactive small
biomolecule is available on GitHub [43]. A check was performed
on a random sample of five compounds containing a ylbutane-
diamide, and all were determined not to be PAINs (Table 11). A
comprehensive study of all samples containing a ylbutanediamide,
as well as the similarities and differences of these structures, is a
subject of further research.

(i)

(b)
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phenyl
quinolin

piperazin
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Fig. 10. Feature (functional group) importance ranking for the prediction of TDP1 inhibitors. a) Scikit Learn Feature Importance algorithm for the Random Forest

Classifier. b) Chi2 algorithm.
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Table 6

Computers in Biology and Medicine 204 (2026) 111531

Relevance of functional groups regarding the prediction of TDP1 inhibitors, by using the Feature Importance algorithm (column 1), and reordered (in col. 2) on the
basis of the value for the ratio of the number of Active inhibitor substances (col. 4) and Inactive (col.5), which is give in col.6.

Position according to  Position according to Functional group/

Number of substances that

Number of substances that Percentage of Ratio of Active and

Feature Importance relative proportion of fragment are active inhibitors and are not active inhibitors and Active cases Inactive cases for the
algorithm the active cases contain this group (Active contain this group (Inactive functional group
cases) cases)
9 1 imidazo 1050 126 89% 8.33
21 2 ethenyl 591 85 87% 6.95
20 3 trimethoxyphenyl 731 119 86% 6.14
6 4 quinolin 1785 299 86% 5.97
3 5 piperazin(e) * 4211 870 83% 4.84
24 6 tetrahydro 1259 302 81% 4.17
15 7 benzothiazol 1375 368 79% 3.74
12 8 sulfonyl 1512 427 78% 3.54
13 9 piperidine 1839 547 77% 3.36
10 10 dimethoxyphenyl 2647 806 77% 3.28
25 11 methanone 1831 596 75% 3.07
2 12 phenyl 8524 2941 74% 2.90
19 13 piperidin 2457 851 74% 2.89
17 14 trifluoromethyl 2406 865 74% 2.78
14 15 benzyl 2458 892 73% 2.76
4 16 methoxyphenyl 6966 2559 73% 2.72
8 17 methylphenyl 5961 2383 71% 2.50
11 18 chlorophenyl 4749 2004 70% 2.37
7 19 ethyl 8252 3752 69% 2.20
1 20 methyl 20205 9283 69% 2.18
16 21 carboxamide 9495 4910 66% 1.93
5 22 oxoethyl 2420 3059 44% 0.79
22 23 acetate 655 982 40% 0.67
18 24 carbohydrazide 126 460 22% 0.27
3.3. Results regarding the third methodology
Table 7
Results of checking five random samples containing imidazo if they are PAINs. The CID_SID ML model that was developed beyond the main study to
CID SID IUPAC PAIN aid drug discovery researchers interested in TDP1 inhibition, achieved
3245566 4251947  5-ethyl-N-(2-imidazo[1,2-a]pyridin-2-ylethyl) No with the XGBC Accuracy of 86.1%, Precision of 93.3%, Recall of 77.8%,
thiophene-2-sulfonamide F1-score of 84.9%, ROC of 86.1%, followed by GBC with Accuracy of
20908515 49736571 (2;;}?;';‘1‘::;;5;;5;’3:Ii’l‘;f;n'z'YIS“lfanyl)'N' No 85.22/0, Precision of 94.2%, Recall of 75:0%, Fl—sc01je Aof 83.5%, ROC of
844907 7974454 2-(1H-imidazo[4,5-b]pyridin-2-ylsulfany])-N- No 85.2% (Table 13). The results were achieved by training the ML model
(2-methoxyphenylacetamide with 100,942 samples and tested with 22,000 samples [49].
7066893 24269226  2-methoxy-4-[5-(3-methylanilino)imidazo[2,1-  No A statistical significance test was conducted to compare the two
b][1,3]thiazol-6-yl]phenol machine learning classifiers, the GBC (Model A) and XGBC (Model B),
16018392 24396339  N-(4-methoxyphenyl)-3-(4-methylphenyl)- No

6,7,8,9-tetrahydro-5H-imidazo[1,5-a]azepine-
1-carboxamide

The rationale for not excluding PAINs (Pan-Assay Interference
Compounds) from the initial dataset was explained in the Methodology
section. However, out of curiosity, these PAINs were subsequently
flagged using the PubChem AID 686978 bioassay data [11]. This flag-
ging process resulted in 21,761 samples being identified as PAINS,
leaving 388,803 compounds that were revealed as non-PAINs. This
represents a 6.46% decrease in the total samples, which is unevenly
spread across the classes, as shown in Table 12. Although no dramatic
decrease was observed, the resulting PAIN-free dataset was considered
of sufficient interest for further investigation [44,45].

As an option, given the correlation between the chemical shifts of a
biomolecule provided by the 13C NMR spectroscopy and its function-
ality [46,47], it was hypothesised that when a tested compound contains
one of the extracted functional groups/fragments and its 13C NMR
spectroscopy data resembles of the 13C NMR spectroscopy data of the
source compound of this functional group/fragments, there is a high
probability that the tested compound is a TDP1 inhibitor. One of the
tools that can provide such a comparison of the NMR spectroscopy data
is the ACD/Labs [48].
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and it was concluded that Model B is the statistically superior performer.
While both models achieved high accuracy (Model A: 0.8519, Model B:
0.8611), the small difference in favour of XGBC was confirmed as sig-
nificant by McNemar's Test, which yielded a P-value of 0.0000. This
result, far below the 0.05 significance level, indicates the performance
difference is not due to random chance. Further analysis of the
disagreement counts supports this finding: Model B correctly classified
583 samples that Model A missed, while Model A only correctly classi-
fied 379 samples that Model B missed, showing a clear and statistically
validated advantage for the XGBoost implementation.

The tracing of accuracy deviation during hyperparameter tuning
revealed the point where model complexity began to hinder general-
isation (Fig. 11). The highest deviation between training and testing
accuracy was observed at max_depth = 22, where the model achieved a
training accuracy of 89.6% and a test accuracy of 84.4%, indicating an
undesirable degree of overfitting (a 5.2% gap). Crucially, the best test
performance was achieved at a simpler setting, max_depth = 7, which
yielded a test Accuracy of 86.2%. At this optimal depth, the training
Accuracy was 86.2%, resulting in a much smaller and healthier devia-
tion of 2.9%. This confirms that max depth = 7 represents the optimal
balance point, providing the highest generalisation capability before the
model started to memorise noise instead of learning general patterns.

As was noted above, the XGBC model's performance, when evaluated
as a single run, showed an Accuracy of 86.1%, a Precision of 93.3%, a
Recall of 77.8%, an F1-score of 84.9% and an ROC of 86.1%. However, a
more robust assessment using five-fold CV revealed a slightly lower but
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Table 8
The Fisher's Exact Test analysis was applied to the functional groups/fragments
that were identified as having the highest feature importance for the ML models.

Computers in Biology and Medicine 204 (2026) 111531

Table 9
Results of checking five random samples containing carboxamide if they are
PAINSs.

Odds
Ratio

Inactive P-value

(b)
4910

Active

@
9495

Functional Group Significance

carboxamide 57.78 0.00e+00  *** Highly
Significant(P
< 0.0021)
Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
Highly
Significant (P
< 0.0021)
Significant (P
< 0.0021)
Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*#% Highly
Significant (P
< 0.0021)
0.00e+00  *** Highly
Significant (P
< 0.0021)
Significant (P
< 0.0021)
Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)
*** Highly
Significant (P
< 0.0021)

phenyl 8524 2041 3350  0.00e+00

ethyl 8252 3752 20.44 0.00e+00

imidazo 1050 126 18.50 0.00e+00

piperazin(e)* 4211 870 15.99 0.00e+00

methoxyphenyl 6966 2559 15.64 0.00e+-00

591 85 14.71 2.04e-

192

ethenyl

quinolin 1785 299 14.31 0.00e+00

731 119 13.17 4.28e-

229

trimethoxyphenyl

methylphenyl 5961 2383 10.91 0.00e+00

tetrahydro 1259 302 9.39 0.00e+00

dimethoxyphenyl 2647 806 0.00e+00

benzothiazol 1375 368 8.50 0.00e-+00

sulfonyl 1512 427 8.16 0.00e+-00

chlorophenyl 4749 2004 8.12

piperidine 1839 547 8.01 0.00e+00

piperidin 2457 851 7.33 0.00e+00

methanone 1831 596 7.30 0.00e-+00

trifluoromethyl 2406 865 7.01 0.00e+00

benzyl 2458 892 6.98 0.00e-+00

oxoethyl 2420 3059 1.77 1.72e-76

acetate 655 982 1.36 6.40e-09

carbohydrazide 126 460 0.54 2.61e-10
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CID SID IUPAC PAIN

15993269 49667698  5-(1,3-benzodioxol-5-y1)-N-(2-methylpropyl)- No
1,2-oxazole-3-carboxamide

16008588 24384816  1-(2-chlorophenyl)-N-(3,5-dimethoxyphenyl)- No
3,6-dimethylpyrazolo[3,4-b]pyridine-4-
carboxamide

16014225 24391772  2-(4-ethylphenyl)-5-(hydroxymethyl)-N- No
(thiophen-2-ylmethyl)triazole-4-carboxamide

4086767 24415205  4-benzyl-N-[2-(4-chlorophenyl)ethyl]-3-oxo- No
1,4-benzothiazine-6-carboxamide

46904149 99359587  1-benzyl-6-methyl-2-ox0-3-[2-0x0-2-(4- No
phenylbutylamino)ethyl]-N,N-di(propan-2-yl)-
3,4-dihydropyridine-5-carboxamide

Table 10

Results of checking five random samples containing oxonaphthalen if they are
PAINs.

CID SID TUPAC PAIN
752424 24809810  1,5-dimethyl-4-[(4-oxonaphthalen-1-ylidene) PAIN
amino]-2-phenylpyrazol-3-one
6032979 17511248 (NZ)-N-[3-(4-methylanilino)-4-oxonaphthalen- PAIN
1-ylidene]thiophene-2-sulfonamide

5676317 17517158 (NZ)-N-(3-anilino-4-oxonaphthalen-1-ylidene) PAIN
thiophene-2-sulfonamide

4441046 14742503  N-(1-dibutoxyphosphoryl-4-oxonaphthalen-1-yl) ~ No
benzenesulfonamide

5105556 87347760  N-[3-bromo-1-di(propan-2-yloxy)phosphoryl-4- PAIN

oxonaphthalen-1-yl]benzenesulfonamide

more reliable average Accuracy of 84.01% (+0.17%) and a marginally
lower Precision of 95.42% (+0.25%). Notably, the CV summary indi-
cated a slightly higher Recall of 78.45% (+£0.14%) and a better average
F1-score of 86.11% (£0.14%), suggesting the model is generally slightly
better balanced and more effective across different data partitions. Most
strikingly, the CV average ROC saw a significant increase to 91.84%
(£0.22%), indicating that while the single run was a good estimate, the
CV results provide a more optimistic and statistically stable measure of

Table 11
Results of checking five random samples containing ylbutanediamide if they are
PAINSs.

CID SID IUPAC PAIN

3205145 14721697 N'-(2,3-dihydro-1,4-benzodioxin-6-yl1)-N'-[2-(3-
methylbutylamino)-2-oxoethyl]-N-pyridin-2-
ylbutanediamide
N'-[2-(2-methoxyethylamino)-1-(4-
methoxyphenyl)-2-oxoethyl]-N'-(oxolan-2-
ylmethyl)-N-pyridin-2-ylbutanediamide
N'-[1-(4-fluorophenyl)-2-(2-methylbutan-2-
ylamino)-2-oxoethyl]-N'-(furan-2-ylmethyl)-N-
pyridin-2-ylbutanediamide
N'-[2-(tert-butylamino)-1-(4-methoxyphenyl)-2-
oxoethyl]-N'-cyclohexyl-N-pyridin-2-
ylbutanediamide
N'-(4-methoxyphenyl)-N'-[2-0x0-2-(2-
phenylethylamino)ethyl]-N-pyridin-2-
ylbutanediamide

No

654170 26668007 No

651822 26668581 No

3205015 49725897

3204777 49726932

Table 12
Result of application of a PAIN filter on the PubChem AID 686978 bioassay's
dataset.

Samples Before the PAIN filter After the PAIN filter Decrease
Inactive 236,226 227,158 3.84%
Inconclusive 112,867 105,950 6.13%
Active 61,471 55,695 9.40%
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Table 13
ML metric regarding ML models based on CID and SID model predicting TDP1
inhibition.

Algorithm Accuracy Precision Recall Fl1-score ROC
XGBoost 0.861 0.933 0.778 0.849 0.861
GradientBoost 0.852 0.942 0.750 0.835 0.852
RandomForest 0.846 0.855 0.835 0.845 0.846
K-nearest 0.832 0.844 0.814 0.829 0.832
Decision 0.800 0.770 0.856 0.810 0.800
SVM 0.792 0.912 0.645 0.756 0.792
0.90
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Fig. 11. Scrutinizing for overfitting of the CID_SID XGBC ML model that pre-
dicts the TDP1 inhibitors. The blue line is the train accuracy. The orange line is
the test accuracy. The deviation between the test and train accuracy higher than
5% is an indication for overfitting. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of
this article.)

the model's discriminative power across various thresholds. The results
are shown in detail in Table 14.

From one hundred trials, the optimisation framework Optuna suc-
cessfully selected the best set of hyperparameters for the XGBC. The
optimal configuration included a maximum tree depth of 10 (‘max -
depth': 10), a reduced learning rate of approximately 0.017, 463 esti-
mators (‘'n_estimators 463), and specific regularization and sampling
values ('gamma': 0.389, 'reg_lambda': 0.316, 'min_child_weight': 4). The
Optuna hyperparameter optimisation run resulted in a model with a
slightly lower Accuracy of 0.856 compared to the model using default
hyperparameters, which achieved an Accuracy of 0.862. This suggests
that the optimisation process either failed to find a better configuration
than the default one or, perhaps more concerningly, settled on a less
effective set of hyperparameters for maximising this specific metric. The
difference, while small (0.006), indicates that the default settings were,

Table 14
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in this instance, superior for classification accuracy.

The 95% CI, derived from 1000 bootstraps, provides crucial context:
it indicates that the true performance of the model is highly likely to fall
within the tight range of 0.8574-0.8667. This narrow range, with a
width of approximately 0.0093, confirms the stability and robustness of
the model's performance. Its Precision is particularly impressive at
0.9299 (95% CI: 0.9247 to 0.9353), suggesting that when the model
predicts a positive outcome, it is correct nearly 93% of the time,
resulting in a very low FP rate. The Recall metric, however, is compar-
atively lower at 0.7825 (95% CI: 0.7753 to 0.7903), meaning approxi-
mately 78% of all true positive cases were correctly identified, leaving a
notable portion (about 21.7%) as FN. Overall, the XGBC model is highly
reliable in its positive predictions, and the narrow confidence intervals
across all metrics confirm the stability and robustness of its performance
across bootstrapped samples.

The performance of the XGBC model demonstrates a substantial
improvement over the baseline RFC model, confirming its superior
capability for classifying TDP1 inhibitors. The narrow 95% CI, calcu-
lated from 1000 bootstraps on a test set of 22,000 samples, attests to the
high reliability and stability of these metrics. Specifically, the Accuracy
CI of 0.8577-0.8665 indicates the model is highly likely to be correct
about 86% of the time. Crucially, the Precision CI of 0.9280-0.9385
shows that when XGBC predicts a compound is a positive inhibitor, it is
correct over 93% of the time, resulting in a significantly reduced false
positive rate (~7\%) that is highly desirable for minimising the
screening of inactive compounds in expensive wet-lab experiments. The
Recall CI of 0.7725-0.7870 means the model successfully identifies
nearly 78% of the actual inhibitors, a robust improvement that, while
not perfect, is strong enough to capture a large fraction of active com-
pounds for further drug discovery efforts.

The XGBC model based on CIDs and SIDs data demonstrates strong
and balanced predictive power, highlighted by an excellent MCC of
0.7328. The raw counts, 10,351 TN and 8608 TP, confirm the model's
high overall accuracy in correctly identifying both classes. A low count
of 649 FP suggests high Precision (the model rarely raises a false alarm),
while the 2392 FN indicate that the main challenge lies in improving
Recall (the rate at which it correctly captures all positive cases). Overall,
the high MCC value, which is robust against class imbalance, validates
the model as a highly effective and reliable solution for the classification
task (Fig. 12).

The classification report (Table 15) demonstrates that the model
achieved strong, balanced performance with an overall Accuracy of 0.86
on a perfectly balanced dataset (11,000 samples per class). The model
exhibits a classic Precision-Recall trade-off across the two classes: it is
highly effective at finding positive cases, indicated by the exceptional
Recall of 0.94 for the Active class (Target 1). This high recall, however,
comes at the cost of its precision, resulting in a moderate Precision of
0.81 for that same class, meaning it has a higher rate of "false alarms"
when predicting active instances. Conversely, the model is very con-
servative and highly trustworthy when predicting the negative class,
boasting Precision of 0.93 for the Inactive class (Target 0), though its
ability to find all truly inactive cases is lower, with a Recall of 0.78.

Five-fold cross-validation results for the CID_SID machine learning models with XGB algorithm.

Metrics Fold Average across the folds
1 2 3 4 5
Accuracy [%] 83.77 83.96 83.99 84.01 84.29 84.01 £ 0.17
Precision [%] 95.20 95.27 95.28 95.33 95.91 95.42 £+ 0.25
Recall [%] 78.18 78.50 78.56 78.54 78.49 78.45 + 0.14
F1-Score [%] 85.89 86.08 86.12 86.13 86.33 86.11 + 0.14
ROC AUC [%] 91.75 91.86 91.52 91.86 92.21 91.84 + 0.22
Confusion Matrix TN 5491 5488 5488 5493 5543 5500 + 21.28
FP 390 393 393 388 338 380.4 + 21.28
FN 2203 2170 2164 2166 2171 2174 £14.33
TP 7892 7924 7930 7928 7923 7919.4 + 13.94
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Fig. 12. The CID_SID XGBC ML model confusion matrix.
Table 15
The CID_SID XGBC ML model classification report.
precision recall F1-score support
Active (target 1) 0.81 0.94 0.87 11000
Inactive (target 0) 0.92 0.79 0.85 11000
accuracy 0.86 22000
macro avg 0.87 0.86 0.86 22000
Weighted avg 0.87 0.86 0.86 22000

Overall, the macro and weighted average F1-scores of 0.86 confirm the
model's reliability and its consistent ability to generalise across both
outcomes.

The provided LIME analysis of XGBC based on IUPAC tokenised data
offers clear local interpretability for a correctly classified instance,
validating the model's overall strong Accuracy of 0.8616. For the
instance where the True Label (0) matched the Model Prediction (0), the
decision was overwhelmingly driven by the feature SID. Specifically, the
condition SID >49728156.00 contributed a strong positive influence
(~0.101) towards the prediction of Label 0. In contrast, the feature CID
had a negligible, slightly negative influence (~-0.009), indicating that
the high value of the SID feature was the primary, almost exclusive
reason the XGBC model confidently and correctly assigned this data
point to the inactive or negative class.

The XGBC applied to the transformed MORGANZ2 dataset obtained an
Accuracy of 84.7%, a Precision of 88.1%, a Recall of 86.6%, an F1-score
of 87.2%, and an ROC of 84.3%. Tracking for the point where the de-
viation between train and test accuracy was higher than 5% point
max_depth = 6 where the train Accuracy was 90.1% and the test Ac-
curacy was 84.7%. So, the choice was max_depth = 5 with train Accu-
racy of 88.2% and test Accuracy of 83.7.0%. This process, which guided
the model's optimisation, is visually in Fig. 13.

A high degree of strong and stable performance was exhibited by the
XGBC when it was applied to the transformed MORGAN2 dataset and
run with a maximum depth of 5. The model's single-run effectiveness
was initially demonstrated by an Accuracy of 83.7%, a high Precision of
87.7%, a Recall of 85%, an Fl-score of 86.3%, and an initial ROC of
83.4%. Crucially, the model's reliability and generalizability were
confirmed through five-fold CV, where metrics were maintained with
exceptionally low variance: the Accuracy was found to be 83.11% =+
0.11, the Precision 87.04 4 0.11, the Recall 84.59% =+ 0.14, and the F1-
score 85.8% =+ 0.10. Furthermore, the ROC AUC was observed to be
particularly strong at 90.87% =+ 0.16, suggesting the model possesses
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Fig. 13. Overfitting analysis of the XGBC based on transformed MORGAN2
dataset: prediction accuracy vs maximum depth of the decision tree. The blue
line is the training accuracy. The orange line is the test accuracy. The deviation
between the testing and training accuracy higher than 5% was considered as an
indication for early stopping. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

excellent and highly consistent discriminative ability across different
data subsets. The detailed results are shown in Table 16.

The hyperparameter tuning using Optuna for the XGBC model was
unsuccessful in the five optimisation studies conducted, achieving an
accuracy of 83.6% compared to an accuracy of 84.7% when the model
was set to default hyperparameters.

The classification performance of the XGBC model, utilizing the
MORGAN4 features, was analysed based on the resulting confusion
matrix, which is visually represented in Fig. 14. Out of all predictions,
TP were observed to be 11,368 and TN were 6,942, indicating the
number of instances correctly classified as positive and negative,
respectively. Misclassifications were also recorded, with FP totalling
1703 and FN reaching 1821. Overall, the model's balanced predictive
quality, taking all four outcomes into account, was demonstrated by an
MCC of 0.6629, signifying a good level of correlation between the true
and predicted labels.

The XGBC applied to the transformed by RDKit SMILES dataset ob-
tained an Accuracy of 88.2%, a Precision of 91.7%, a Recall of 88.4%, an
F1-score of 90%, and an ROC of 88.1%. Tracking for the point where the
deviation between train and test accuracy was higher than 5% point
max_depth = 8, where the train Accuracy was 95.1% and the test Ac-
curacy was 89.1%. So, the choice was max _depth = 7 with train Accu-
racy 93.7% and test accuracy 88.8.0%. This process, which guided the
model's optimisation, is visually shown in Fig. 15.

The XGBC leveraging RDKit-transformed SMILES features delivered
excellent and stable performance, making it a highly reliable candidate
for virtual screening. The model achieved a strong single-run test per-
formance with an Accuracy of 88.8% and a particularly high Precision of
91.9%, signifying that most compounds predicted as active will genu-
inely be active, thus minimising false positives in laboratory follow-up.
Furthermore, the 5-fold CV results, consistently clustered around an
Accuracy of 88.22% with a minimal standard deviation of +0.18,
confirm the model's high stability and robustness across different data
subsets. The outstanding CV ROC of 95.19% with a negligible variance
of +0.09 is especially noteworthy, demonstrating the model's superior
ability to discriminate between active and inactive compounds, which is
the most critical factor for a practical predictive model in chem-
informatics. The detailed results are shown in Table 17.

Hyperparameter tuning using Optuna for the XGBC model was un-
successful in the five optimisation studies conducted, achieving an
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Table 16
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Five-fold cross-validation of XGBC based on MORGAN?2 transformed features with StratifiedKFold.

Metrics Fold

Average across the folds

1 2

82.97
86.99
84.39
85.67

83.30
87.23
84.74
85.96
90.99
5245
1220
1501
8332

Accuracy [%]
Precision [%]
Recall [%]
F1-Score [%]
ROC AUC [%] 91.00
Confusion Matrix TN 5224
FP 1241
FN 1535
TP 8298

83.10
86.90
84.78
85.82
90.84
5208
1257
1497
8336

83.10
87.07
84.53
85.78
90.96
5230
1234
1521
8312

83.06
87.02
84.54
85.76
90.58
5224
1240
1520
8313

83.11 £ 0.11
87.04 £0.11
84.59 £ 0.14
85.80 £ 0.10
90.87 £ 0.16
5226.2 +13.31
1238.4 £13.35
1514.8 + 15.66
8318.2 + 15.66
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Fig. 14. Confusion matrix of the XGBC based on transformed MOR-
GAN2 dataset.
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Fig. 15. Overfitting analysis of the XGBC based on dataset with transformed by
RDKit SMILES: prediction accuracy vs maximum depth of the decision tree. The
blue line is the training accuracy. The orange line is the test accuracy. The
deviation between the testing and training accuracy higher than 5% was
considered as an indication for early stopping. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version
of this article.)

accuracy of 87% compared to an accuracy of 88.8% when the model was
set to default hyperparameters.

The high-performing XGBC model, based on the dataset transformed
by RDKit SMILES, achieved a strong, balanced outcome, as evidenced by
an MCC of 0.7678. This high MCC confirms the model's reliability across
both classes. The confusion matrix further details this success: out of the
positive predictions, 10,966 were TP, while only 962 were FP. This low
FP count is a critical advantage in virtual screening, minimising the cost
of testing inactive compounds. On the negative side, 7119 instances
were correctly identified as TN, with 1325 cases missed as FN. Overall,
the metrics confirm that the XGBC is a robust classifier, demonstrating a
high and well-balanced predictive capability for both active and inactive
compounds. The confusion matrix of the XGBC based on the dataset
transformed by RDKit SMILES is visually represented in Fig. 16.

The comparative analysis of XGBC models, assessed using the MCC,
reveals that the choice of molecular descriptors dictates predictive
performance for this classification task. The model utilizing features
derived from SMILES RDKit achieved the highest MCC of 0.7912, indi-
cating the most accurate and balanced classification performance. This
result is significantly superior to the other two feature sets. The model
based on CID_SID features achieved the second-best performance with
an MCC of 0.7311. The least effective model used MORGAN2 circular
fingerprints, yielding the lowest MCC of 0.6605. This ranking suggests
that the specific.

3.4. Methodological value and interpretability of IUPAC-based models

While the lower predictive accuracy of IUPAC-based models
compared to industry-standard SMILES and fingerprint-based de-
scriptors is acknowledged, it must be clarified that the central objective
of this study is not the optimisation of a high-confidence screening
model, but rather the development of a transparent methodology for
functional group extraction. In this framework, the ML models are uti-
lized as diagnostic tools to determine feature importance, whereby the
inherent readability of IUPAC tokens, such as "phenyl" or "imidazo", is
leveraged to provide direct structural insights that cannot be provided
by high-dimensional fingerprints.

Consequently, the IUPAC-induced approach is positioned as a spe-
cialised tool for hypothesis generation and structural enrichment anal-
ysis. By identifying specific motifs with a high statistical association to
activity (e.g., the "imidazo" group with an Odds Ratio of 5.555), a
methodological roadmap and a concrete starting point for laboratory
investigation are provided to medicinal chemists. By utilizing exact
string matching from systematic nomenclature, the "black-box" hallu-
cinations associated with generative models are avoided, and the utility
of the methodology is maintained as an interpretable, cost-effective
proof-of-concept that complements traditional descriptors by bridging
the gap between statistical importance and structural discovery.

3.5. Chemical expressiveness and limitations of IUPAC tokenisation
The use of IUPAC tokens is justified not as a replacement for high-

fidelity structural models, but as a robust, direct representation of mo-
lecular composition that enables the explicit extraction of discrete
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Table 17
Five-fold cross-validation with StratifiedKFold of XGBC based on RDKit transformed SMILES.
Metrics Fold Average across the folds
1 2 3 4 5
Accuracy [%] 88.06 88.42 88.25 88.41 87.98 88.22 + 0.18
Precision [%] 91.38 91.63 91.01 91.56 91.09 91.33 + 0.25
Recall [%] 88.57 88.93 89.35 89.00 88.76 88.92 + 0.26
F1-Score [%] 89.95 90.26 90.17 90.26 89.91 90.11 + 0.15
ROC AUC [%] 95.15 95.30 95.13 95.31 95.09 95.19 + 0.09
Confusion Matrix N 5643 5666 5597 5657 5610 5634.6 £ 26.75
FP 822 799 868 807 854 830.0 £ 26.74
FN 1124 1089 1047 1082 1105 1089.4 + 25.66
TP 8709 8744 8786 8751 8728 8743.6 + 25.66
feature importance of RFC. While the initial feature importance ranking
from the RFC provides a preliminary computational (in silico) assess-
= 10000 ment, translating this hierarchy into reliable, real-world insights ne-
cessitates statistical re-evaluation and reordering through rigorous
False v approaches. Ultimately, confirming these statistically prioritised fea-
- 8000 tures in the laboratory would be a major benefit to early drug discovery.
It would quickly guide researchers toward the most functionally rele-
3 vant groups, boosting the speed and efficiency of human intelligence-
'% - 6000 driven research.
2
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- 4000 .. .

True 10966 o By tokenising IUPAC names, the proposed methodology established a
reliable, AI hallucination-free foundation for analysis that surpasses
the low ML scores of IUPAC token-based RFC models. The result is

~ 2000 the production of focused lists identifying key functional groups for
TDP1 inhibition, thereby providing clear direction and accelerating
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Fig. 16. Confusion matrix of the XGBC based on dataset with transformed by
RDKit SMILES.

functional groups, such as “phenyl” or “imidazo”, without the noise
typically introduced by naming order or regulatory standards. While the
potential loss of critical information, including stereochemistry, 3D
spatial context, and tautomeric fluctuations, is acknowledged as a
hallucination risk where nomenclature may not capture the full physical
reality of a molecule, the performance of the IUPAC-based model was
rigorously benchmarked against industry standards such as MORGAN2
fingerprints and RDKit-computed SMILES features. Although SMILES
and fingerprint representations are recognised as proven and efficient
for ML, a unique advantage for token-level correlations and chemically
meaningful functional groups insights is demonstrated through IUPAC
tokenisation. Furthermore, a key distinction is made regarding compu-
tational efficiency in the third methodology, where the practical ad-
vantages of utilizing pre-computed identifiers or nomenclature tokens
are highlighted over the "on-the-fly" descriptor calculations required for
SMILES/RDKit, potentially saving substantial time during large-scale
screening processes.

4. Conclusion

The proposed methodologies are expected to be widely applicable to
any case study featuring a bioassay with a significant number of labelled
records. Although both the CID_SID model and the ML model based on
IUPAC names predict the same specific functionality, TDP1 inhibition,
their implementations and utility for biochemical research are distinct.
The CID_SID ML model can be integrated in a time- and cost-efficient
suite of ML models, predicting the functionalities of compounds
beyond their primarily designed purpose. Conversely, the ML model
based on the IUPAC data is used to generate a descending order of

drug discovery by human researchers.

o Development of CID_SID ML models, thereby increasing the number
of CID_SID ML models that can be integrated into a cost- and time-
efficient framework predicting functionalities of small bio-
molecules other than their original purpose.

4.2. Limitations

o Parsing IUPAC names generates thousands of features, necessitating
a substantial dataset for both ML model training and effective feature
list generation. This large dataset is critical to satisfy the practical ML
guideline, suggesting that the number of data rows should be at least
ten times greater than the number of columns (features). Techniques
such as HTS are necessary to provide the volume of labelled data
required.

o While the importance of cross-referencing predicted active frag-
ments with published SAR data for establishing consistency with
known medicinal chemistry principles is fully acknowledged, a
comprehensive, systematic review of all historical SAR is unfortu-
nately constrained by resource limitations and the lack of access to
the necessary proprietary literature databases and advanced chem-
informatics tools.

o External validation is a critical step; however, reliance must
currently be placed on rigorous internal validation procedures
because a suitable, independently collected external dataset has not
yet been collected or made available for this purpose

o Because the exact coordinates and tolerance values of the proprietary
TDP1 pharmacophore model are not publicly available, the top-
ranked functional groups could not be checked against known
pharmacophores for TDP1 inhibitors. Access to this information is
restricted to licensed software, such as MOE or Ligand Scout, which
the authors of this article were unable to obtain.

o Lack of laboratory confirmation of the computational obtained re-
sults, which means the computational results are currently hypo-
thetical and unproven in a real biological system.
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o Hyperparameter tuning of RFC with Optuna and Boruta feature
importance was performed with only five studies/iterations.

o Manual calculation of the mean Ratio of Active and Inactive cases for
the functional group/fragment having a different spelling.

o Only a few samples of chemical compounds related to the study were
fully screened for PAINs.

4.3. Future directions

o Limited by an ongoing study, the authors will not continue to further
mature the methods presented here. However, a valuable next step
for advancing biochemical research is to integrate the existing
CID_SID ML model, develop more models like it, and combine them
into a single PoC framework. This framework would then allow for
an estimation of the time benefits it provides compared to using
features transformed by tools like MORGAN2 or SMIELS/RDKit. The
CID_SID machine learning model, despite exhibiting a lower MCC
(0.7311) than the SMILES RDKit model (0.7912), offers a significant
practical advantage: it eliminates the need for on-the-fly descriptor
calculations. Since the features associated with CID/SID are pre-
computed and readily available through PubChem, the substantial
time investment required for generating transformations like those
necessary for SMILES RDKit is avoided. While this time saving may
be negligible for a single model run, it is expected to become highly
significant when scaling up to a large suite of integrated ML models
used for predicting new functionalities for vast sets of test com-
pounds. The quantification of the time saved by utilizing the CID_SID
ML approach is designated as an objective for future investigation.

o Despite the justification provided in the paper for keeping PAINs, a
comprehensive exploration of all proposed methodologies using
datasets from which PAINs have been removed would be an
appealing avenue for future investigation. It can be expected that the
fidelity of the resulting models and analyses would be significantly
increased by this step. By eliminating these known interference
compounds, the computational results, including SAR analysis and
ML predictions, will be based on molecules whose activity is more
likely attributed to a specific biological interaction rather than an
assay artefact, thereby yielding more reliable and chemically
meaningful insights for drug discovery.

o A promising variant for future exploration that aims to significantly
facilitate biochemical research involves using the PubChem Sub-
structure Fingerprint instead of IUPAC names as molecular de-
scriptors. In this approach, the dataset features would be the 881 bits
of the PubChem fingerprint, each corresponding to the presence or
absence of a specific structural motif, while the labels would be
derived from an HTS bioassay of interest. Generating a descendant
ordered list of feature importance using RFC for these 881 bits, and
subsequently processing this list further using methods such as
Fisher's Exact Test, or determining the most and least desirable
functional groups based on the relative proportion of active cases,
would yield highly actionable information for biochemical re-
searchers. This structural guidance would streamline their synthetic
work by identifying the most potent fragments for activity, thereby
speeding up research, lowering costs, and accelerating drug
discovery.

o Running the hyperparameter tuning study only five times is insuffi-
cient and should be increased to at least 100 iterations. Increasing
the number of study runs significantly improves the probability of
finding a globally optimal or near-optimal hyperparameter config-
uration, which is necessary to maximise model performance and
ensure the final results are not due to chance, thereby increasing
confidence in the tuning process.

o To ensure Boruta suggests features despite an initial lack of confir-
mation, several tuning actions must be considered. Better statistical
convergence can be allowed by increasing the maxRuns, or potential
feature interactions can be better captured by adjusting the
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max_depth of the underlying RFC estimator. Furthermore, the root of
the problem, a constant or near-constant target variable, or highly
correlated features masking true importance, must be addressed
through a thorough examination of the dataset, which would solve
the troubleshooting requirement.

o Automation of merging the same functional groups/fragments that
have different spellings during the IUPAC tokenisation

o Analysing the full list with results based on PAIN flags and
concluding further investigations

o A comparison of the results obtained by the presented approach and
Bio5T+, confirmed in a chemical laboratory, would provide clarifi-
cation regarding the level of credibility and preferences between
both.
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