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Abstract 
Significance and Object: The proposed methodology aims to provide time- and cost-effective 
approach for the early stage in drug discovery. The machine learning models developed in this 
study used only the identification numbers provided by PubChem. Thus, a drug development 
researcher who has obtained a PubChem CID and SID can easily identify new functionality of 
their compound. The approach was demonstrated, using four bioassay which were on (i) the 
antagonists of human D3 dopamine receptors; (ii) the promoter Rab9 activators; (iii) small 
molecule inhibitors of CHOP to regulate the unfolded protein response to ER stress; (iv) 
antagonists of the human M1 muscarinic receptor. 

Solution: The four bioassays used for demonstration of the approach were provided by 
PubChem. For each bioassay, the generated by PubChem CIDs, SIDs were extracted together 
with the corresponding activity. The resulting dataset was sifted with the dataset on a water 
solubility bioassay, remaining only the compounds common for both bioassays. In this way, the 
inactive compounds were reduced. Then, all active compounds were added, and the resulted 
dataset was later used for machine learning based on scikit learn algorithms. 

Results: The average values of the ML models` metrics for the four bioassays were: 83.82% 
Accuracy with 5.35 standard deviation; 87.9% Precision with 5.04 standard deviation; 77.1% 
Recall with 7.65 standard deviation; 82.1% F1 with 6.44 standard deviation; 83.4% ROC with 5.09 
standard deviation.  Since the methodology was publicly available as a preprint, four more 
machine ML models have been developed. Their results are discussed in the "Results and 
Discussion" section 

.  
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Introduction 
One of the rules in ML is not to use identifications (IDs) of the samples during training, testing and 
evaluation of the machine learning (ML) models because by their nature, IDs are not suited for 
this task (Zhou, 2021). However, PubChem generates their IDs by applying an algorithm that 
considers the structure of the compounds/substances, their functionality and the similarity 
between them (Kim et al., 2016). On the other hand, nine out of ten drug candidates that have 
participated in clinical trials never apply for FDA approval, one of the reasons may be an 
unexpected side effect. (Jain, Subramanian and Rathore, 2022). In this way, drug candidates that 
would otherwise fail for such reasons would be discovered early in their development, thus 
preventing investment in unvalued formulations. In turn, this would prevent wasted investment 
and significantly reduce the overall cost of drug development that has been reported to require 
over 10 years and over USD 1 billion (Niazi and Mariam, 2025)  per drug.  Or it could detect 
functionalities of the designed small biomolecule that would enhance the knowledge regarding 
the capabilities of the new compound. Unlike ML models based on molecular fingerprints, the 
proposed approach does not require data conversion to numeric, as they are numeric. 
 
To demonstrate the methodology, four bioassays provided by PubChem (NIH, 2025) were 
utilized. All of them have been obtained by quantitative high-throughput screening (qHTS) (Soon, 
Hariharan and Snyder, 2013) and thus contain a significant number of records, which made the 
development of the ML models in the presented study possible  (Saha, Chauhan and Rastogi 
Verma, 2024). In summary, the considered bioassays, provided by PubChem were:  

(i) AID 652054 regarding the dopamine receptor D3 
(ii) AID 485297 regarding the promoter of the protein Rab9  
(iii) AID 2732 regarding CHOP 
(iv) AID 588852 regarding M1 muscarinic receptor  

 
The first bioassay, PubChem AID 652054 (NIH, 2013) was primarily designed to discover novel 
antagonists of the dopamine receptor D3, whose drug to antibody ration (DAR) is a target for 
treatment of neuropsychiatric disorders, such as addictions, schizophrenia, psychosis (Grunze, 
2023) and L-DOPA-induced dyskinesias (Chagraoui, Di Giovanni, Deurwaerdère, 2022). The 
bioassay`s dataset contained 364,367 rows with samples and 26 columns with their features. 
The results have been obtained by a luminometer reader using a 20 sec exposure time. The 
compounds whose activity have been <=-50 have been considered as active and these with 
activity >=-30 as inactive. Thus, 9,117 samples were defined as active, and 339,862 as inactive 
compounds. The inconclusive compounds with activity between these two values were not used 
in the study. For a comprehensive description of the bioassay, please refer to the bioassay`s 
documentation (NIH, 2013). 

The second bioassay, PubChem AID 485297 (NIH, 2010a), was on the identification/discovery 
small chemical compounds that can modulate the expression of the endogenous protein Rab9 
and provide new treatment modality for the neurodegenerative lipidosis such as  Nieman Pick 



Type C and Alzheimer`s disorder (Jordan, 2024). The original dataset of this bioassay contained 
321,272 rows with samples and 11 columns with their features. The tests have been performed 
at concentration of the compound at 2.3µM, 11.40µM and 57.5 µM. The results were obtained by 
fitting the dose-response curve to the Hill equation. The compounds with activity <=-50 have 
been considered as active and these with activity >=-29 as inactive. For a comprehensive 
description of the bioassay, please refer to the bioassay`s documentation (NIH, 2010a). 

The third bioassay, PubChem AID 2732 (NIH, 2010b) has been conducted with the intention small 
molecule inhibitors of DNA damage-inducible transcript 3, also known as C/EBP homologous 
protein (CHOP) to be discovered. The inhibition of CHOP is hypothesised to prevent programmed 
the unfolded protein response (UPR) cell death and thus having a therapeutic application to 
Alzheimer`s disorder, Parkinson`s disorder, haemophilia, lysosomal storage diseases, alpha-1 
antitrypsin deficiency and diabetes. The original dataset of this bioassay contained 219,165 rows 
and 10 columns. The tests have been performed at 10µM concentration of the compounds. Using 
luciferase in the cell-line and following the protocol explained in bioassay`s documentation 
(NIH, 2010b), the luminescence signal was measured on an Envision Multilabel plate reader and 
analysed by an algorithm.  From the entre dataset 8,243 samples had activity >70% and were 
considered as active. The rest of the compounds, i.e. 210 921 were ladled like inactive. For a 
comprehensive description of the bioassay, please refer to the bioassay`s documentation (NIH, 
2010b).  

The fourth bioassay, PubChem AID 588852 (NIH, 2012), identified antagonists of the human M1 
muscarinic receptor which mediates the actions of Acetylcholine in the CNS and represent 
attractive therapeutic targets for cognition (Zhao et al,2018), Alzheimer's disease (Monaco, 
Trebesova and Grilli, 2024) and schizophrenia (Kingwell, 2024; Metz, Brines and Pavlov, 2024). 
The original dataset contained 359,484 rows of compounds and 9 columns with their features.  
The tests have been performed at the compound concentration of 3µM. A cutoff parameter which 
was a sum of average percent inhibition of the test compound wells and three times their 
standard deviation was used. The compound exhibition has been compared to this cutoff. The 
results were normalised to 100% and the compounds with a score over 80 was defined as active. 
Thus, 4,590 compounds were selected as active. For a comprehensive description of the 
bioassay, please refer to the bioassay`s documentation (NIH, 2012). 

Additionally, to above-mentioned four bioassays, PubChem Bioassay 1996 (NIH, 2010c) was 
implemented in the study to assist in the handling the enormous balancing between the active 
and inactive compounds of the four bioassays. The PubChem Bioassay 1996 bioassay was on 
water solubility of small molecules. It played a role of  a sieve of the inactive compounds, 
reducing them to suitable quantity. For a comprehensive description of the bioassay, please refer 
to the bioassay`s documentation (NIH, 2010c)  

Computational approaches, lower the price and time necessary for drug discovery. Examples for 
such studies are Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD) 
(Bhujade et al.,2024); engineering of new compound features to expand the opportunity to 
forecast their functionalities (Ivanova, Russo, Djaid and Nikolic, 2024);  utilising of existing 
drugs,  using their safety profiles to discover new uses for treatment of variety of conditions (El-
Atawneh and Goldblum, 2024); performing drug design with molecular dynamics and machine 
learning targeting dopamine D3 receptor (Ferraro et al, 2020); predicting selectivity of dopamine 
receptor ligands using three-dimensional biologically spectrum (Kuang et al., 2016); suggesting 



a framework for AI-driven molecular design for discovering drugs against complex disorders 
(Cerveira et al, 2024); applying ML based on structural similarity for target identification, 
ChemMapper, and SwissTargetPrediction  to identify muscarinic acetylcholine receptor M1 
(Abdalfattah et al., 2024); using of mismatch negativity responses to predict of muscarinic 
receptor function, revealing the potential of generative models based on electrophysiological 
data (Schöbi et al., 2021). However, the method presented here has not been reported in the 
literature up to date. The ML part was conducted using the Python ML library scikit learn 
(Pedregosa et al., 2011)  in the Jupyter notebook environment (Jupyter, 2024) and followed the 
best practice recommended in the domain (Vinuesa, 2024). 

Methodology 
For each bioassay listed above, the CIDs, SIDs and activity results were extracted, and a new 
dataset was created.  Then, this new dataset was merged with the water solubility dataset, 
keeping only the compounds common for both bioassays. Thus, the first step towards balancing 
the data by reduction of the inactive compounds was completed. Further reduction of the 
inactive compounds continued with extracting every n-th compound from the inactive 
compounds dataset. The resulted dataset with inactive compounds then was concatenated with 
the active compounds’ dataset and thus, the final dataset obtained. The value of n that defined 
which compound to be extracted was determine individually for each bioassay. To prepare the 
dataset for ML, equal number of target 1 and 0, corresponding to 10% of the entire final dataset, 
were extracted and concatenated. Thus, 20% test dataset was obtain with equal number of 
targets in order a reliable evaluation of the models to be provided. The remaining compounds 
created the train sets. Initially the datapoints of this sets were scaled, and then together with the 
target part of the train sets were balanced (He and Garcia, 2009)  with Synthetic Minority 
Oversampling Technique (SMOTE) (Kabir et al, 2024) or Random Over Sampler (ROS) 
(Imbalanced Learn, 2024)  

ML was performed with algorithms, provided by scikit learn, which were: Decision Tree Classifier 
(DTC) (Lee, Sim and Hong, 2024) Random Forest Classifier (RFC) (He et al., 2024), Support Vector 
Classifier(SVC) (Shin and Shin, 2024); Gradient Boosting Classifier (GBC) (Ibragimov and 
Vakhrushev, 2024)  and XGBoosting Classifier (XGB) (Hanif, 2020).   Cross validation (Bates, 
Hastie and Tibshirani, 2024) was used to estimate how well a model generalizes to unseen data. 
After that, comparing the train and test accuracy, the best performed model was scrutinised for 
overfitting (Ying, 2019) to show how well the chosen ML model generalise. The deviation between 
the test and train accuracy bigger than 5% was accepted as an indicator when overfitting starts. 
Two approaches for hyperparameter tuning were explored. The first was the hyperparameter 
tuning using grid search (Arnold et al., 2024)  and the second was hyperparameter tuning with the 
real time running API Optuna (Akiba et al., 2019).  The hyperparameters used for hyperparameter 
tuning were: (i) ‘colsample_bytree’ which control the fraction of features randomly selected for 
each tree during training; (ii) ‘learning_rate’ which defines the step size at which the model learns 
from each subsequent tree; (iii) ‘n_estimator ‘ gives the number of trees that are constructed in 
the ensemble; (iv) ‘subsample’ is the fraction of samples used for training each individual tree in 
the ensemble; (v) ‘max_depth’ which defines the  maximum depth of each individual decision 
tree within the forest; (vi) ’gamma’ which is the minimum loss reduction required to make a 
further partition on a leaf node; (vii) ‘reg_lambda’ is the L2 regularization parameter; (viii) 
‘min_child_weight’ which controls the minimum sum of instance weight needed in a child node 
to be further partitioned; (ix) 'min_samples_leaf' minimum number of samples required to be at 
a leaf node of a decision tree; (x) ‘min_samples_split’ which defines the minimum number of 



samples required to split an internal node. Further, each ML hyperparameter tuned model was 
scrutinised for overfitting. The results were compared with each other and the best one was 
chosen for final one and visualised. 

The metrics for evaluation of the ML models used in the study were (Opitz, 2024):  
(i) Accuracy, showing the percentage of number of correct predictions divided by the 

total number of predictions. 
(ii) Precision, showing the accuracy of positive predictions made by a model.  
(iii) Recall is the ability of the ML model to correctly identify all actual positive instances 

within a dataset.  
(iv) F1-score which is the metric that combine the Precision and Recall.  
(v) ROC which shows the diagnostic ability of a binary classifier system when its 

discrimination threshold  varied.  

Confusion matrix, classification report, and plotting the learning curve and ROC visualised the 
final models.  

The methodology graph is provided on Figure 1.  

 

Figure 1. Methodology for development of the CID-SID ML model 

Results and discussion  
1.Predicting the human Dopamine D3 receptor antagonists.  

1.1. Dataset After numerous simulations, it turned out that in order to achieve meaningful 
training of the models, the proportion between the target 1 and 0 in the train set should be 



approximately 2:3. That is why, after the initial reduction of the inactive samples from 339,862 to 
54,951 samples, which was achieved by crossing the original dataset with the solubility dataset, 
the reduction continued by extracting every 3rd sample by the inactive compounds. Thus, 18,317 
inactive compounds remained and together with the active compounds, which were 9,117, 
created the final dataset of 27,434 compounds. To ensure an equal number of targets in the test 
sets to achieve a robust model, the inactive compounds were shuffled, and 10% of them were 
extracted, i.e.  2,750 samples. The same was done with the set of the active compounds. Thus, 
the test sets (X_test and y_test) became 5,500 compounds which was 20% from the final dataset 
and had an equal proportion of targets. The rest of the compounds, i.e. 12,817 samples, were 
used for the train sets. The compounds were scaled, and the sets were balanced with a Random 
Over Sampler. This increased the number of compounds from 12,817 to 31,134 samples.   

1.2. ML.  From the estimators listed in the Methodology section, XGBC presented best, obtaining 
85.6% accuracy and 85.6% ROC, followed by RFC with 85.1 % accuracy and 85.1% ROC (Table 
SM1). Further, five-fold cross-validation nominated RFC with the best mean cross-validation 
score of 0.8851 with 0.0027 standard deviation which means that the mean accuracy obtained 
across the five folds by RFC was 88.5%. The next in the cross-validation order was XGBC, with a 
0.885 cross-validation score and 0.0033 standard deviations (Table SM2). Scrutinising for 
overfitting of the XGBC showed that the deviation between the train and test accuracy started 
being bigger than 5% after the maximum depth of each individual decision tree within the forest, 
i.e. max_depth was equal to 9 (Figure SM1). 

1.3. The hyperparameter tuning of the XGBC performed with grid search (Table SM3) and 
scrutinised for overfitting (Figure SM2) achieved accuracy of 85.9%, and ROC of 85.9%. The 
accuracy after the hyperparameter tuning with Optuna (Table SM4) and scrutinising for overfitting 
(Figure SM3) was 85.8% and ROC 85.8%, respectively.  

1.4. The final ML model chosen based on the results presented above was the XGBC model with 
hyperparameters tuned by the greed search with max_depth equal to 4. The model obtained 85.8 
% accuracy, 91% precision, 79.3% recall, 84.8% F1, 85.8% ROC. To visualise the results the 
learning curve, AUC, confusion matrix and classification report are provided in the 
supplementary materials (Figure SM4, SM5, SM6, Table SM5)   

2. Predicting promoters of the Rab9 activator. 

2.1. Dataset Simulations showed that to achieve meaningful training of the models, the 
proportion between the target 1 and 0 in the train set had to be approximately 1:3. That is why, 
after the initial reduction of the inactive samples from 301,951 to 47,918 samples, which was 
achieved by crossing the original dataset with the solubility dataset, the reduction continued by 
extracting every second sample by the inactive compounds. Thus, 22,701 inactive compounds 
remained and together with the active compounds, which were 9,138, created the final dataset 
of 31,939. To ensure an equal number of targets in the test set and achieve a robust model, the 
inactive compounds were shuffled, and 10% of them were extracted, i.e. 3,200 samples. The 
same was done with the set of the active compounds. Thus, the test sets (X_test and y_test) 
became 6,400 compounds, which was 20% from the final dataset and had an equal proportion 



of targets. The rest of the compounds, i.e. 19,501 samples, were used for the training sets. The 
compounds were scaled, and the sets were balanced with SMOTE. This increased the number of 
compounds from 25,439 to 39,002 samples.   

2.2. ML From the estimators listed in the Methodology section, RFC presented best, obtaining 
75.7% accuracy and 75.8% ROC, followed by XGBC with 75.5 % accuracy and 75.5% ROC (Table 
SM6). Further, five-fold cross-validation ordered XGBC with the best mean cross-validation score 
of 0.8429 with 0.0032 standard deviation which means that the mean accuracy obtained across 
the five folds was 84.29%. The next in the cross-validation order was GBC, with a 0.8415 cross-
validation score and 0.0038 standard deviations (Table SM7). Scrutinising for overfitting of the 
XGBC showed that the deviation between the train and test accuracy started being bigger than 
5% after the maximum depth of each individual decision tree within the forest, i.e. max_depth 
was equal to 5 (Figure SM7). 

2.3. The hyperparameter tuning of the XGBC performed with grid search (Table SM8) and 
scrutinised for overfitting (Figure SM8) achieved accuracy of 75.4%, ROC of 75.4% and mean 
cross-validation score of 0.843. The accuracy after the hyperparameter tuning with Optuna 
(Table SM9) and scrutinising for overfitting (Figure SM9) was 75.4%, ROC 75.4% and mean cross-
validation score of 0.843., respectively.  

2.4. The final ML model chosen based on the results presented above was the XGBC model with 
hyperparameter default values and with max_depth equal to 5. The model obtained 75.4 % 
accuracy, 84.7% precision, 62.1% recall, 71.7% F1, 75.4% ROC and mean cross-validation score 
of 0.843.  To visualise the results the learning curve, AUC, confusion matrix and classification 
report are provided in the supplementary materials (Figure SM.10, SM11, SM12, Table SM10)   

3. Predicting of small molecule inhibitors of CHOP to regulate the unfolded protein 
response to ER stress  

3.1. Dataset The initial reduction of the inactive compounds decreased them from 210,921 to 
24,188 samples, which was achieved by crossing the original dataset with the solubility dataset. 
Unlike the previous two cases, CHOP dataset did not need an additional reduction. The inactive 
24,188 compounds together with the 8,243 active compounds created the final dataset of 32, 
431. To ensure an equal number of targets in the test set and achieve a robust model, the inactive 
compounds were shuffled, and 10% of them were extracted, i.e.  3,243 samples. The same was 
done with the set of the active compounds. Thus, the test sets (X_test and y_test) became 6,486 
compounds, which was 20% from the final dataset and had an equal proportion of targets. The 
rest of the compounds, i.e. 25,945 samples, were used for the training sets. The compounds 
were scaled, and the sets were balanced with a Random Over Sampler. This increased the 
number of compounds from 25,945 to 41,890 samples.   

3.2. ML From the estimators listed in the Methodology section, GBC presented best, obtaining 
89.9% accuracy and 89.9% ROC, followed by XGBC with 89.6 % accuracy and 89.6% ROC (Table 
SM11). Further, five-fold cross-validation ordered GBC with the best mean cross-validation score 
of 0.9414 with 0.0005 standard deviation which means that the mean accuracy obtained across 



the five folds was 94.14%. The next in the cross-validation order was XGBC, with a 0.9407 cross-
validation score and 0.0012 standard deviations (Table SM12). Scrutinising for overfitting of the 
GBC showed that the deviation between the train and test accuracy started being bigger than 5% 
after the maximum depth of each individual decision tree within the forest, i.e. max_depth was 
equal to 8 (Figure SM13). 

3.3. The hyperparameter tuning of the GBC performed with grid search (Table SM13) and 
scrutinised for overfitting (Figure SM14) achieved accuracy of 89.9%, ROC of 89.9% and mean 
cross-validation score: 0.94. The accuracy after the hyperparameter tuning with Optuna (Table 
SM14) and scrutinising for overfitting (Figure SM15) was 89.3%, ROC 89.3% and mean cross-
validation score: 0.932, respectively.  

3.4. The final ML model chosen based on the results presented above was the GBC model with 
hyperparameter default values and with max_depth equal to 5. The model obtained 90.1 % 
accuracy, 98.3% precision, 81.7% recall, 89.2% F1, 89.2% ROC and mean cross-validation 
score: 0.943, respectively. To visualise the results the learning curve, AUC, confusion matrix and 
classification report are provided in the supplementary materials (Figure SM16, SM17, SM18, 
Table SM15)   

4. Predicting antagonists of the human M1 muscarinic receptor (CHRM1).  

4.1. Dataset. After numerous simulations, it turned out that in order to achieve meaningful 
training of the models, the proportion between the target 1 and 0 in the train set should be 
approximately 1:5. That is why, after the initial reduction of the inactive samples from 354,923 to 
56,688 samples, which was achieved by crossing the original dataset with the solubility dataset, 
the reduction continued by extracting every fourth sample by the inactive compounds. Thus, 
14,172 inactive compounds remained and together with the active compounds, which were 
4,560, created the final dataset of 18,732. To ensure an equal number of targets in the test set 
and achieve a robust model, the inactive compounds were shuffled, and 10% of them were 
extracted, i.e.  1,880 samples. The same was done with the set of the active compounds. Thus, 
the test set (X_test and y_test) became 3 760 compounds, which was 20% from the final datasets 
and had an equal proportion of targets. The rest of the compounds, i.e. 14,972 samples, were 
used for the training sets. The compounds were scaled, and the sets were balanced with a 
Random Over Sampler. This increased the number of compounds from 14,972 to 24,584 
samples.   

4.2. ML From the estimators listed in the Methodology section, GBC presented best, obtaining 
82.9% accuracy and 82.9% ROC, followed by XGBC with 82.4 % accuracy and 82.4% ROC (Table 
SM16). Further, five-fold cross-validation ordered XGBC with the best mean cross-validation 
score of 0.8834 with 0.0026 standard deviation which means that the mean accuracy obtained 
across the five folds was 88.34%. The next in the cross-validation order was XGBC, with a 0.8784 
cross-validation score and 0.0028 standard deviations (Table SM17). Scrutinising for overfitting 
of the XGBC showed that the deviation between the train and test accuracy started being bigger 
than 5% after the maximum depth of each individual decision tree within the forest, i.e. 
max_depth was equal to 4 (Figure SM19). 



4.3. The hyperparameter tuning of the XGBC performed with grid search (Table SM18) and 
scrutinised for overfitting (Figure SM20) achieved accuracy of 83%, ROC of 83% and mean cross-
validation score: 0.883, respectively. The accuracy after the hyperparameter tuning with Optuna 
(Table SM19) and scrutinising for overfitting (Figure SM21) was 82.8%, ROC 82.8% and mean 
cross-validation score: 0.878, respectively. 

4.4. The final ML chosen based on the results presented above was the XGBC model with 
hyperparameter default values and with max_depth equal to 5. The model obtained 83.2 % 
accuracy, 87.9% precision, 77.1% recall, 82.1% F1, 83.2% ROC. To visualise the results the 
learning curve, AUC, confusion matrix and classification report are provided in the 
supplementary materials (Figure SM22, SM23, SM24, Table SM20)   

5. CID_SID ML models developed subsequently in other studies:  
(i) 78.7% accuracy for predicting whether the compound is a histone-lysine N-

methyltransferase (G9a) inhibitor (Ivanova, Russo and Nikolic, 2025a) 
(ii) 80.2% accuracy for predicting whether the compound is a Human Dopamine D1 

Receptor Antagonist (Ivanova, Russo and Nikolic, 2025b) 
(iii) 85.2% accuracy for predicting whether the compound is a human tyrosyl-DNA 

phosphodiesterase 1 (TDP1) Inhibitors (Ivanova, Russo, Mihaylov and Nikolic, 2025c) 
(iv) 81.5% accuracy for predicting whether the compound is a Transthyretin (TTR) 

transcription activator (Ivanova, Russo, Mihaylov and Nikolic, 2025d) 

For more details about these four case studies, please refer to the relevant article.  

 

Conclusion 

The methodology presented in the study revealed that the information encoded in the PubChem 
SIDs and CIDs can be beneficial beyond their identification task. The results obtained by the ML 
models showed that the methodology can be a time- and cost- effective approach in the early 
stage of drug discovery. Once, the researcher has obtained the PubChem SID and CID for their 
new compound, these identifiers will be enough to predict new functionalities of the compound. 
For a demonstration of the idea and the approach in this study, four use cases were explored 
which ML models can be used by the researchers in drug discovery directly. Furthermore, the 
methodology is expected to be applicable to any PubChem bioassay which has significant 
number of records and well-defined targets that can be useful for ML training and testing.  

Scientific contribution 
1. A time- and cost-effective ML application, called CID_SID ML model, for predicting a side 

effect of already designed small biomolecules, using PubChem identifiers. 
2. Eight CID_SID ML models can be used directly for predicting whether a small biomolecule 

has the potential to be:  
• A DNA Damage-Inducible Transcript 3 (CHOP) inhibitor. 
• A human Dopamine D1 receptor antagonist. 
• A human Dopamine D3 receptor antagonist. 



• A G9a inhibitor. 
• A human M1 muscarinic receptor antagonist. 
• A Raab promoter activator. 
• A human TDP1 inhibitor. 
• A TTR transcription activator.  
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2. Figures  

 

Figure SM1.Scrutinising for 
overfitting of the ML model 
predicting dopamine D3 receptor`s 
antagonists, which is with default 
values of its hyperparameters.  

 

 

 

 

Figure SM2.  Scrutinising for 
overfitting of the ML model 
predicting dopamine D3 receptor`s 
antagonists, which is a 
hyperparameter tuned by grid search.  

 

 

Figure SM3.  Scrutinising for 
overfitting of the ML model 
predicting dopamine D3 receptor`s 
antagonists, which is a 
hyperparameter tuned by Optuna. 

 

 

 



 

 

Figure SM4. Learning curve of the 
CID-SID ML model predicting 
dopamine D3 receptor`s antagonists. 

 

 

 

 

 

Figure SM5. ROC of the CID-SID 
ML model predicting dopamine D3 
receptor`s antagonists. 

 

  

 

Figure SM6. Confusion matrix of the 
CID-SID ML model predicting 
dopamine D3 receptor `s antagonists. 

 

 

 



 

Figure SM7. Scrutinising for 
overfitting of the ML model 
predicting Rab9 promoter`s 
activators which is with default 
values of its hyperparameters.  

 

 

Figure SM8. Scrutinising for 
overfitting of the ML model 
predicting Rab9 promoter`s 
activators, which is a 
hyperparameter tuned by grid 
search.  

 

 

 

Figure SM9. Scrutinising for 
overfitting of the ML model 
predicting Rab9 promoter`s 
activators, which is a 
hyperparameter tuned by Optuna. 

 

 

 



 

Figure SM 10. Learning curve of 
the CID-SID ML model predicting 
Rab9 promoter`s activators 

 

 

 

Figure SM11. ROC of the CID-
SID ML model predicting Rab9 
promoter`s activators 

 

 

 

Figure SM12. Confusion matrix of 
the CID-SID ML model predicting 
Rab9 promoter`s activators 

 



 

Figure SM 13. Scrutinising for 
overfitting of the ML model 
predicting CHOP`s inhibitors, 
which is with default values of its 
hyperparameters. 

 

 

 

Figure SM14.  Scrutinising for 
overfitting of the ML model 
predicting CHOP`s inhibitors., 
which is a hyperparameter tuned by 
grid search.  

 

 

 

Figure SM15.  Scrutinising for 
overfitting of the ML model 
predicting CHOP`s inhibitors, 
which is a hyperparameter tuned by 
Optuna. 

 

 



 

Figure SM 16. Learning curve of 
the CID-SID ML model 
predicting CHOP`s inhibitors. 

 

 

Figure SM17. ROC of the CID-
SID ML model predicting 
CHOP`s inhibitors. 

 

 

Figure SM18. Confusion matrix 
of the CID-SID ML model 
predicting CHOP`s inhibitors. 
 

 

 



 

 

Figure SM19. Scrutinising for 
overfitting of the ML model 
predicting M1 muscarinic 
receptor`s antagonists, which is 
with default values of its 
hyperparameters. 

 

 

Figure SM20.  Scrutinising for 
overfitting of the ML model 
predicting M1 muscarinic 
receptor`s antagonists, which is 
a hyperparameter tuned by grid 
search.  

 

 

Figure SM21.  Scrutinising for 
overfitting of the ML model 
predicting M1 muscarinic 
receptor`s antagonists, which is 
a hyperparameter tuned by 
Optuna. 

 



 

Figure SM 22. Learning curve 
of the CID-SID ML model 
predicting M1 muscarinic 
receptor`s antagonists. 

 

 

Figure SM23. ROC of the CID-
SID ML model predicting M1 
muscarinicr eceptor`s 
antagonists. 

 

 

Figure SM24. Confusion 
matrix of the CID-SID ML 
model predicting M1 
muscarinic receptor`s 
antagonists. 
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