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Abstract  

This study contributes to ongoing research which aims to predict small biomolecule functionality 
using Carbon-13 Nuclear Magnetic Resonance (13C NMR) spectrum data and machine learning. 
A bioassay on human dopamine D1 receptor antagonists was used to demonstrate the 
approach. The Simplified Molecular Input Line Entry System (SMILES) notations of the 
compounds were extracted and converted into spectroscopic data using purpose-built software. 
This data was then used for machine learning with scikit-learn algorithms. The ML models were 
trained with 27,756 samples and tested with 5,466. Of the estimators tested (K-Nearest 
neighbor, Decision Tree Classifier, Random Forest Classifier, Gradient Boosting Classifier, 
XGBoost Classifier, and Support Vector Classifier), the Support Vector Classifier was found to be 
the most effective, achieving 71.5% accuracy and a cross-validation score of 0.749. The 
methodology can be applied to predict the functionality of any compound, provided relevant data 
are available. It was also hypothesized that an increase in sample numbers would lead to 
increased accuracy. Additionally, a time- and cost-efficient CID_SID ML model was also 
developed, allowing compounds to be checked for D1 receptor antagonist activity using only 
their PubChem identifiers. This model's metrics were 80.2% accuracy and a five-fold cross-
validation score of 0.8071. 
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Introduction 

The study is based on data obtained through quantitative high throughput screening (qHTS) on 
human dopamine receptor D1 (D1 DAR) antagonists (1). The information regarding this screening 
was provided by PubChem (2), the world's biggest freely available database for chemical data. 
The mentioned screening, registered as PubChem AID 504652 bioassay, contained 359,035 rows 
of samples and 10 columns with the features of these samples, such as PubChem identifiers of 
compounds (CIDs) or substances (SIDs), SMILES notations and the outcomes of the screening. 
The bioassay aimed to select and develop allosteric modulators of D1 DAR for in vivo and in vitro 
applications. It was performed by measuring the compound D1 DAR antagonism with an EC80 
addition of dopamine by tracking calcium flux in a force-coupled inducible Hek293 Trex D1 cell 
line. The compound concentration utilized in this bioassay was 10.0microM.   For more 
information regarding the screening protocol, please refer to the bioassay`s documentation (1). 

https://orcid.org/0009-0005-7730-2423
https://orcid.org/0000-0002-6379-0287
https://orcid.org/0000-0002-2495-1623
https://orcid.org/0000-0002-6551-2977
mailto:mariya.ivanova@uwl.ac.uk


Since the ratio of active and inactive antagonists in the PubChem AID 504652 bioassay (1) was 
severely imbalanced, another bioassay, PubChem AID 1996 for small molecule water solubility 
(3), was used as a filter to reduce the number of inactive antagonists. This water solubility 
bioassay was also provided by PubChem and had 57,859 rows of samples and 30 columns with 
their characteristics. 

For the purpose of the study, 13C NMR spectroscopy was considered. This spectroscopy utilises 
the magnetic property of the 13C isotope (4), measuring the atomic nuclei's absorption and 
emission of radiofrequency radiation. The 13C nucleus contains six protons and seven neutrons. 
The extra ½ spin makes the 13C isotope behave as a little magnet. As a result, NMR spectroscopy 
is sensitive to differences in the chemical structure of the organic molecule, giving information 
for the connectivity and relative position of the carbon atoms in the molecule.  So, given the 
Carbon skeletons of the organic molecule (5) and the technology of 13C NMR spectroscopy, it 
was hypothesised that 13C NMR spectroscopic data would contribute to the development of 
robust, reliable, cost- and time-effective machine learning (ML) model that would predict the 
functionalities of small biomolecules.  

To test the hypothesis, the SMILES notations from the PubChem AID 504652 bioassay were 
extracted and converted into 13C NMR spectroscopic data by the NMRDB software (6), which data 
was subsequently used for ML. 

Various studies have been conducted exploring the combination of ML and 13C NMR 
spectroscopy, such as the study of correlations between peak patterns and chemical structure 
using machine learning (7); a computational approach to establish correspondence between 
molecular graphs and NMR spectra (8); prediction of 13C NMR chemical shifts with a message 
passing neural network (MPNN) (9);  detection of chemical shifts of benzene compounds (10); 
software predicting 13C spectroscopic data by uploading SMILES, international chemical 
identifier (inChl) or drawing the structure of the compound (11); prediction of NMR spectra with 
the COLMARppm software using NMR data obtained in aqueous solution (12); use of an artificial 
neural network (ANN) to generate new structures based on information obtained from 13C NMR 
(13).  

ML has been increasingly integrating into the search for innovative, robust, and reliable 
approaches that can significantly reduce the time and cost of laboratory experiments and, 
consequently, the time and cost of the research itself. Some examples of such approaches are 
AlphaFold3 for modelling the structure of proteins and their interactions (14); deep learning for 
structure-based drug design (15); generation of ML attributes based on atomic characteristics 
(16); machine learning approaches for pharmaceutical decision-making processes (17). On the 
other hand, ML applications regarding the dopamine D1 receptor antagonists are classification 
conducted using topological descriptors (18); effective identification of novel agonists of 
dopamine receptors has been obtained using predictive or generative geometric ML (19); 
agonists and antagonists have been predicted, using topological fragment spectra (TFS)-based 
support vector machine (SVM) (20). However, the approach presented in the current article has 
not been reported in the available literature. 



The methodology applied in the study is explained in the section Methodology below and 
illustrated in Figure 1.  

 

 

Figure 1.  
13C NMR spectroscopy data-based ML model 

 for predicting of human dopamine D1receptor antagonists’ methodology  

 

To complement the main study, the CID_SID ML model (21) was developed to assist researchers 
interested in D1 DAR antagonists. This ML model can predict the functionality of a compound 
based on the information encoded in its PubChem CID and SID, thus providing drug researchers 
with a cost- and time-effective tool for early-stage drug development. The generated code is 
available on GitHub for direct use by interested parties. 

Methodology  

From the PubChem bioassay AID 504652 (1), the columns with SMILES notations, outputs of the 
screening and CIDs of the compounds were extracted, and a new dataset was created.  This 
dataset, in turn, was merged with the water solubility PubChem AID 1996 bioassay dataset (3), 
and only the unique identifiers (CIDs) of the substances for both datasets were kept. Thus, the 
inactive compounds were reduced to some extent. Then, the reduced inactive compounds were 
concatenated with all active compounds from the PubChem bioassay AID 504652 (1). The newly 
formed dataset was used to create two datasets. One of these two datasets, called ‘smiles’, 
contained the CIDs and SMILES notations of the compounds and was utilised to scrap the 13C 
NMR spectrum data. The other dataset, called ‘targets’, contained the CIDs and the relevant 
outputs, which, at the end of the dataset generation process, completed the dataset for ML by 
adding the labels to the 13C NMR spectrum data 



The SMILES strings from the dataset ‘smiles’ were used to calculate the 13C NMR spectroscopic 
data by the NMRDB software (6). From the generated by the software lists of signals, i.e. the 
predicted 13C NMR spectroscopy picks, the picks in each range were counted. The length of the 
ranges, which, in turn, also established the number of ranges, had been determined by 
consecutive whole numbers from zero to three hundred. The resulting data were then merged 
with the dataset ‘targets’, and a dataset containing 13C NMR spectroscopy information and 
targets was obtained. The inactive compounds in the resulting dataset were then additionally 
reduced, keeping only every third inactive compound. Thus, the final dataset necessary for ML 
was completed. From it, an equal number of samples were extracted for each target and created 
the test sets. The rest of the samples formed the train sets. Further, the datasets were balanced 
in order to ensure that the ML model would learn from both classes effectively (22) and enhance 
the accuracy of the ML models.  The ML binary classification estimators used in the study 
originated from scikit-learn (23) and were K-Nearest neighbour (KNN) (24), Random Forest 
Classifier (RFC) (25), XGBoosting Classifier (XGBC) (26), Decision Tree Classifier (DTC) (27), 
Gradient Boosting Classifier (GBC) (28) and Support Vector Classifier (SVC) (29). Principle 
component analysis (PCA) was used to reduce the dataset's high dimensionality that arose due 
to the conversion of SMILES notations into spectroscopy data. The number of components 
suitable for the given dataset was calculated using unsupervised ML, and subsequently, the 
suggested number of components was applied for PCA dimensionality reduction. 

The metrics suitable for binary classification (30) used to evaluate the ML models were as 
follows:  

(i) Accuracy was calculated by dividing the correct prediction by the total number of 
predictions, unveiling the overall correctness of the ML model. 

(ii)  Precision exposes how many of the positive predictions are true positive  
(iii) Recall reveals how many of the positive cases in the data set have been identified 

correctly  
(iv) F1-score is the harmonic mean of the precision and the recall  
(v) ROC curves illustrate how a binary classifier's performance changes as its decision 

threshold for classifying instances varies. 

Due to the size of the dataset, hyperparameter tuning (31) would take a long time. To reduce the 
time without making quality compromises, from the final dataset, a representative dataset of 
1000 compounds was extracted and used for hyperparameter tuning performed by Optuna (32). 
The hyperparameters considered during the hyperparameter tuning were as follows:  

(i) The ‘rbf’ kernel (radial basis function kernel) finds boundaries and achieves high 
accuracy by mapping data into a higher-dimensional space, separating non-linearly 
separable data; the kernel ‘linear’ - the choice of the SVM when the data can be 
effectively separated by a linear boundary. 

(ii) The parameter C minimises the training error, controlling the balance between the 
closest data points and the separating hyperplane. 

(iii)  Gamma, which controls the influence of a single training example  



The difference between the train and test accuracy was traced because it provided information 
about the presence of overfitting, i.e. when the model performs well on the train set but not on 
unseen data. This scrutinising for overfitting was the last step before the final model was selected 
and visualised by plotting the learning curve, matrix and area under the curve (AUC). 

Results and discussion  

Crossing both bioassay datasets, PubChem AID 504652 (1) and AID 1996 (2), and keeping only 
the samples common for both resulted in a new dataset of 49,744 samples. The additional 
reduction of the inactive compounds, keeping only every third inactive compound, and 
concatenating the resulting set of inactive compounds with the full set of active compounds from 
PubChem AID 504652 (1) led to a dataset of 27,330 samples. For the test sets, 2,733 were 
extracted for each target, making testing sets 20% of the entire dataset. The training sets created 
by the remaining samples became 26,756 samples after their balancing with the Random Over 
Sampler algorithm (33). The number of columns corresponding to the ranges in which the 13C 
NMR spectroscopic picks were counted dropped from 300 to 243 after the column containing 
only zeroes was removed.  

From the above-listed ML classifiers, SVC was the most suitable for the study. It obtained 71.5% 
accuracy, 77.4% precision, 60.6% recall, 68% F1 and 71.5% ROC, followed by XGBC with 
Accuracy 68.8% accuracy, 73.7% precision, 58.7 % recall, 65.3% F1 and ROC 68.8% ROC (Table 
1). The mean cross-validation ordered the classifiers in the same order where the cross-
validation score of SVC based on accuracy was 0.7487  with 0.003 standard deviations for SVC 
and 0.7207 with 0.0054 standard deviations for XGBC, i.e. the SVC model across the data set 
obtained mean 74.87% accuracy and for XGBC the accuracy was 72.07% (Table 2). The five-fold 
cross-validation results were higher than the ML model results and since the difference between 
them was less than 5%, this indicated that the model generalized well.  

The hyperparameter tuning with Optuna suggested kernel=’rbf’, C=493.2744094205687, gamma 
= 0.00040591543979010816. However, the model performed with these values obtained 68.51% 
accuracy, which is lower than the accuracy performed with the default set of values, i.e. kernel 
=’rbf’, C=1, gamma = ‘scale’, where the value ‘scale’ means that the algorithm automatically will 
define the best reasonable initial value for gamma. This hyperparameter is calculated by number 
of features in the dataset multiply by the variance of the features in the dataset. 

When using PCA, unsupervised ML learning suggested the number of components to be reduced 
from 221 to 23.  However, the dimensionality reduction with PCA with 23 components did not 
improve the performance of the ML model. The SVC achieved 64.1% accuracy, 68.6% precision, 
51.8 % recall, 59.1% F1 and 64.1% ROC, followed by RFC with 61.9% accuracy, 70.4% precision, 
41.1 % recall, 51.9% F1, 61.9% ROC (Table 3). The five-fold cross-validation score of SVC was 
0.683 with 0.0052 standard deviations, followed by RFC with 0.6713 cross-validation score and 
0.0072 standard deviations (Table 4). Visualisation of the SVC model is illustrated by the learning 
curve (Figure 2), AUC (Figure 3), Confusion matrix (Figure 4) and the Classification report (Table 
5). 



So, the final ML model chosen in the study was SVC with default hyperparameters that achieved 
71.5% Accuracy, 77.4% Precision, 60.6% Recall, 68% F1, 71.5% ROC and cross-validation score 
0.749 with 0.0036 standard deviations.  The final model was visualised with the learning curve 
(Figure 5), AUC (Figure. 6), Confusion matrix (Figure 7) and the Classification report (Table 6). 

During the hyperparameter tuning, which was performed with a smaller number of data set 
samples, it was observed that the metrics of the ML model were lower than the final results of 
the study. With training sets of 2366 samples and test sets of 440 samples, the accuracy was 
65.7%, precision 63.6%, recall 73.2%, F1 68.1% and ROC 65.7%, which were lower than the 
performance of the ML model when trained and tested with the entire data set. This observation 
gave reason to conclude that there is a high probability that increasing the number of samples 
will increase the robustness and reliability of the ML model. 

The CID_SID ML model (21), which was not a primary object of exploration in the presented study, 
was developed in favour of the researchers interested in human dopamine D1 receptor 
antagonists. The best-presented estimator was XGBC achieving Accuracy 80.2%, Precision 
86.3%, Recall 70.4%, F1 77.6%, ROC 79.9% (Table 7)  and cross-validation score 0.8071 with 
0.0047 Standard deviation (Table 8), followed by GBC with Accuracy 80.1%, Precision 88.5%, 
Recall 67.7%, F1 76.7%, ROC79.7%  (Table 7), and a five-fold cross-validation score 0.8031 with 
0.0038 standard deviation (Table 8). Thus, a drug developer can check if their compound is also 
a human dopamine D1 receptor antagonist using only its PubChem CID and SID.  Given the 
methodology requirements (21), the dataset contained only CIDs, SIDs and targets of the 
considered compounds. The CID_SID ML model was trained with 19,438 samples and tested 
with 4,723. Standardisation of data was processed by scikit-learn (23) standard scalar function, 
which transformed data so that each feature has a mean of 0 and a standard deviation of 1, 
preventing the occurrence of feature prioritising. Balancing of train data was performed with a 
random over sampler (33) approach randomly selecting instances from the target 1 and creating 
duplicates of them in order to handle the imbalanced dataset. The ML model was 
hyperparameter tuned by grid search, and the resulting hyperparameter values were as follows: 

(i) colsample_bytree=1.0 (that randomly selects a subset of features for each tree, 
reducing the correlation between trees in the ensemble and thus preventing 
overfitting and improving the generalisation) 

(ii) learning_rate = 0.1 (determine how much the model`s parameters are adjusted 
during each iteration of the training process)  

(iii) max_depth=5 (limits the number of levels or nodes the model has from the root 
node to the leaf nodes) 

(iv) min_child_weight=5 (control the minimum number of samples required to create a 
new node in a tree) 

(v) n_estimators=200 (denotes the number of decision trees within SVC) 
(vi) subsamples=0.9 (It controls the fraction of training data randomly sampled for each 

tree in the ensemble) 

Tracing the deviation between test and train accuracy was performed, and it was found that the 
overfitting started for max_depth > 12 where the test accuracy was 80%, revealing that the ML 



model was not overfitted (Figure 8). The final CID_SID ML model was visualised by plotting the 
learning curve (Figure 9), AUC (Figure 10), confusion matrix (Figure 11), and classification report 
(Table 9).  

Conclusion  

Although the spectroscopic data used in the study was obtained by software, the expectations 
are that the methodology presented in the paper would be applicable when the data is obtained 
through actual 13C NMR spectroscopy. Although the paper was considered D1 DAR antagonists, 
the methodology can be applied for predicting any functionality of any small biomolecule when 
the data necessary for ML meets the data generation requirements. It was observed that the 
increase in the samples positively influenced the ML model, which gave a hint that increasing the 
dataset would improve the ML model. The additionally developed CID_SID ML model can give an 
insight into whether a compound is a human D1 DAR antagonist solely based on its PubChem 
identifiers. Further investigations are in process to improve the presented ML models. 
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Table1. Results of ML with 13C NMR data of human dopamine D1 receptor antagonists.  

 

 

Table 2. Five-fold cross-validation results of ML with 13CNMR data of human dopamine D1 
receptor antagonists.  

 

Table 3. Results of ML with 13C NMR data of human dopamine D1 receptor antagonists 
reduced by PCA.  

 

 



Table 4. Five-fold cross-validation results of ML with 13CNMR data of human dopamine D1 
receptor antagonists reduced by PCA.  

 

 

Table 5. Classification report of the SVC ML model with 13CNMR data of human dopamine 
D1 receptor antagonists reduced by PCA.  

 

 

 

Table 6. Classification report of the SVC ML model with 13CNMR data of human dopamine 
D1 receptor antagonists.  

 

 

 



Table 7. Results of CID_SID ML models with 13C NMR data of human dopamine D1 
receptor antagonists.  

 

 

Table 8. Five-fold cross-validation results of the CID_SID ML models with 13CNMR data of 
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