

UWL REPOSITORY

repository.uwl.ac.uk

Advancing ESG reporting through life cycle assessment in semiconductor manufacturing: tools, frameworks, and opportunities

Leo, C.P., Yu, Kok Hwa, Jaafar, Mariatti, Dao Ho,, Ngo Anh and Saeed, Nagham ORCID logoORCID: https://orcid.org/0000-0002-5124-7973 (2025) Advancing ESG reporting through life cycle assessment in semiconductor manufacturing: tools, frameworks, and opportunities. In: The 13 International Conference on Robotics, Vision, Signal Processing and Power Applications (RoViSP 2025), 2-3 Sept 2025, Penang, Malaysia. (Submitted)

This is the Presentation of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/14051/

Alternative formats: If you require this document in an alternative format, please contact: open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at open.research@uwl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

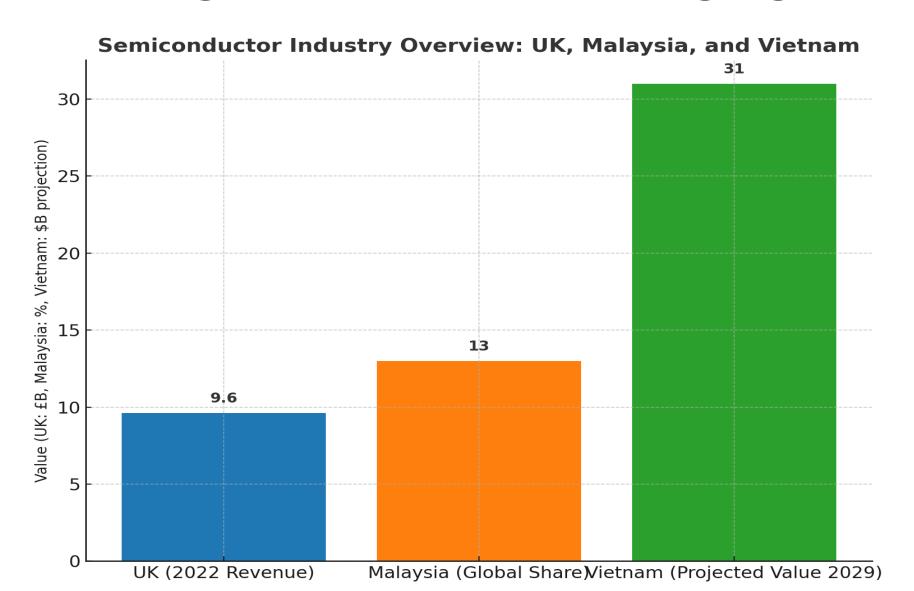
Advancing Environmental, Social Governmental (ESG) Reporting through Life Cycle Assessment in Semiconductor Manufacturing

C.P. Leo^{1,*}, Kok Hwa Yu¹, Mariatti Jaafar¹, Ngo Anh Dao Ho², Nagham Saeed³

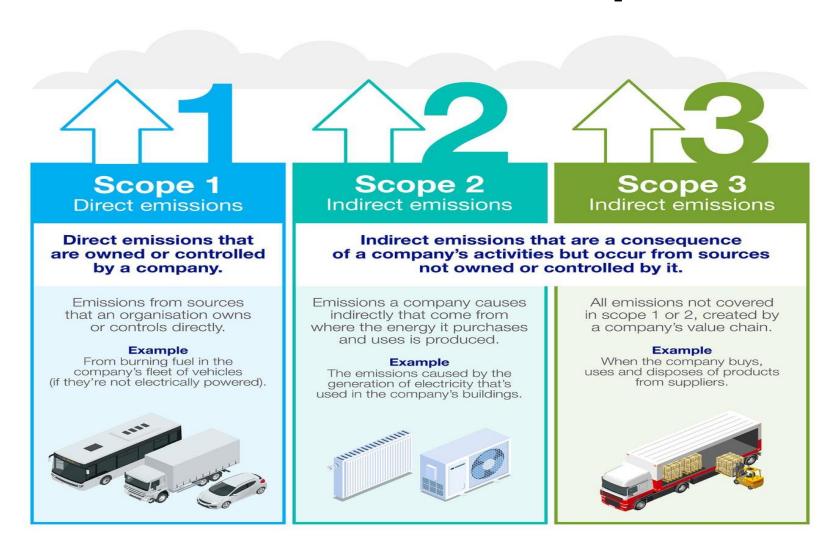
¹Univeresiti Sains Malaysia

²Ton Duc Thang University

³University of West London



Global & Regional Semiconductor Highlights


ESG Reporting Standards in Semiconductor Industry

Standard / Regulation	Scope	Applicability	Ref.
Global Reporting Initiative (GRI)	Broad sustainability disclosure (environmental, social, governance)	Encourages transparency in energy, emissions, and supply chain impacts	[1]
Sustainability Accounting Standards Board (SASB)	Industry-specific ESG metrics	Provides tailored metrics for hardware and semiconductor companies	[2]
Task Force on Climate-related Financial Disclosures (TCFD)	Climate-related financial risk and governance disclosure	Helps assess and report carbon risks in operations and value chain	[3]
Corporate Sustainability Reporting Directive (CSRD) (EU)	Mandatory ESG reporting for large companies operating in the EU	Requires EU-based fabs and suppliers to report in a standardised format	[4]

ESG Reporting Standards in Semiconductor Industry

Standard / Regulation	Scope	Applicability	Ref.
Carbon Disclosure Project (CDP)	Voluntary disclosure of carbon, water, and forest risks	Semiconductor firms report emissions and energy sourcing transparency	[5]
Greenhouse Gas Protocol (GHG Protocol)	Emissions accounting across Scope 1, 2, and 3	Enables tracking of fab emissions, purchased electricity, and suppliers	[6]
ISO 14001: Environmental Management Systems	Certification for environmental management practices	Promotes systematic control of environmental impacts in manufacturing	[7]
Responsible Business Alliance (RBA) Code of Conduct	Standards for labour, ethics, environment, and health/safety	Widely adopted in the electronics supply chain	[8]
Product Environmental Footprint (PEF) (EU)	Method for measuring the environmental performance of products	Supports LCA-based evaluation of semiconductor components	[9]

GHG Protocol – Emission Scopes

Major elements of ESG reporting (GRI)

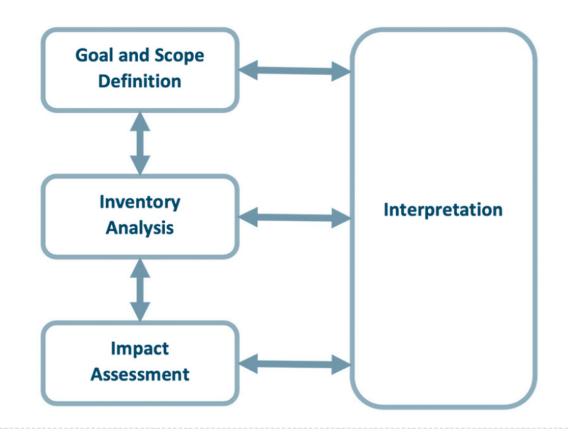


Fig. 1. Major elements of ESG report according to GRI standards [1].

Life Cycle Assessment for the Semiconductor Industry

Role of LCA

- Identifies carbon hotspots and optimizes resource use.
- Addresses Scope 1–3 emissions with better accuracy.
- Enhances compliance with regulations like the EU Green Claims Directive.
- Supports eco-design and sustainable manufacturing strategies.
- The ISO 14040 standard introduces LCA and contains applicable definitions and background information.
- The ISO 14044 describes the process of conducting an LCA.

source: https://www.cem-wave.eu/blog/life-cycle-analysis-great-tool-greener-future

Comparative Analysis of Semiconductor Companies' ESG Strategies

Company	Key ESG Initiatives & Highlights
Intel	 RISE 2030 strategy embedding ESG into business operations Aggressive net-zero target by 2040 Investments in renewable energy and advanced water reuse initiatives [10]
TSMC	 Rigorous supplier ESG audits ISO-certified environmental and safety systems Dedicated human rights reporting Internal ESG innovation programs [11]
Samsung Semiconductor	 ESG disclosures aligned with GRI and TCFD Focus on energy efficiency and responsible materials sourcing Strong emissions monitoring practices [12]
GlobalFoundries	 Emphasis on environmental health & safety, diversity, and equity Recognized ESG ratings Roadmap to achieve net-zero emissions by 2050 [13]
Micron	 - Major strides in emissions reduction - Target of 100% renewable energy in key regions by 2025 - Active in circular economy initiatives (e.g., Semiconductor Climate Consortium) [14]

Past LCA Studies for Semiconductor Industry

Study (Author, Year)	Focus / Methodology	Key Findings
Deng et al. [17]	Hybrid economic-input-output LCA for laptops	Identified energy-intensive processes in IC packaging; highlighted uncertainties in data and boundary definitions
Asadi et al. [18]	Comprehensive LCA framework for semiconductor value chain	Considered upstream material extraction, fabrication, and end-of-life stages
Huang et al. [19]	Parametric carbon footprint model for wafer fabrication	Technology nodes, mask layers, and metal layers identified as key predictors of emissions
Belkhir & Elmeligi [20]	Broad LCA of ICT industry	Estimated global carbon footprint of ICT sector
Kang et al. [21]	Life cycle analysis of smartphones in China using site-specific data	Found component manufacturing (esp. semiconductor devices) dominated environmental impacts
Sivaraman et al. [22]	Modular carbon footprint modeling tool for semiconductor facilities (regressionbased)	Enabled real-time emissions tracking, sensitivity analysis, and gate-to-gate scenario evaluation for process optimisation and ESG reporting

Past LCA Studies for Semiconductor Industry

Study (Author, Year)	Focus / Methodology	Key Findings
Liu et al. [23]	Environmental implications of nanomaterials in electronics	Showed nanomaterials both improve performance and reduce energy/material footprints; critical for sustainable next-gen semiconductor manufacturing
Microsoft LCA v2.1 [24]	Al-driven, digitalized LCA methodology integrating supplier data, IMEC inventory, and full material declarations	Allowed precise, part-level cradle- to-grave impact assessments; improved hotspot identification and low-carbon design strategies
Schischke et al. [25] & Proske et al. [26]	Development of Product Category Rule (PCR) for electronics	Critiqued ISO 14040/44 and EN 50693; supported harmonized data collection and reporting across manufacturers and suppliers
Liu et al. [27]	Empirical validation of lifecycle emissions for smartphones and data servers	Confirmed dominant impact of semiconductor fabrication; stressed importance of Scope 3 data integration

Conclusions

LCA in the Semiconductor Industry: Challenges, Opportunities & Future

Challenges

- Inconsistent data
- Complex supply chains
- Scope 3 quantification

Opportunities

- Semiconductor-specific PCRs
- Standardized data platforms
 - Supplier engagement

Enablers

- Digitalization & Al
- Real-time LCA tracking
- Credible ESG reporting

Future Outlook

- Harmonized standards
 - Better Scope 3 data
- Supply chain collaboration

→ Positioning the semiconductor industry as a leader in green manufacturing

References

- 1. Global Reporting Initiative: GRI Standards. https://www.globalreporting.org, last ac-cessed 2025/08/11.
- 2. SASB: Semiconductors Sustainability Accounting Standard. Value Reporting Foundation. https://sasb.org, last accessed 2025/08/11.
- 3. TCFD: Recommendations of the Task Force on Climate-related Financial Disclosures. https://www.fsb-tcfd.org, last accessed 2025/08/11.
- 4. European Commission: Corporate Sustainability Reporting Directive (CSRD). https://ec.europa.eu, last accessed 2025/08/11.
- 5. Carbon Disclosure Project: CDP Disclosure Framework. https://www.cdp.net, last ac-cessed 2025/08/11.
- 6. World Resources Institute, World Business Council for Sustainable Development: GHG Protocol Corporate Standard. https://ghgprotocol.org, last accessed 2025/08/11.
- 7. International Organization for Standardization: ISO 14001:2015 Environmental manage-ment systems Requirements with guidance for use. https://www.iso.org, last accessed 2025/08/11.
- 8. Responsible Business Alliance: RBA Code of Conduct. https://www.responsiblebusiness.org, last accessed 2025/08/11.
- 9. European Commission: Recommendation on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. https://ec.europa.eu/environment/eussd/smgp, last accessed 2025/08/11.
- 10. Intel Corporation: Intel ESG Strategy (RISE 2030). https://www.intel.com/content/www/us/en/corporate-responsibility/rise.html, last accessed 2025/08/11.
- 11. TSMC: ESG Highlights and Human Rights Report. https://esg.tsmc.com/download/e-humanrightsreport, last accessed 2025/08/11.
- 12. Samsung Electronics: Environmental Policy. https://semiconductor.samsung.com/sustainability/environmental-policy/, last accessed 2025/08/11.
- 13. GlobalFoundries: ESG Report. https://gf.com/about-us/environmental-social-governance, last accessed 2025/08/11.
- 14. GlobalFoundries: Corporate Responsibility. https://gf.com, last accessed 2025/08/11.
- 15. Micron Technology: ESG and Sustainability Report 2023. https://www.micron.com/about/esg, last accessed 2025/08/11.

- 16. International Organization for Standardization: ISO 14040:2006 Environmental man-agement Life cycle assessment Principles and framework. ISO, Geneva (2006).
- 17. International Organization for Standardization: ISO 14044:2006 Environmental man-agement Life cycle assessment Requirements and guidelines. ISO, Geneva (2006).
- 18. Deng, L., Babbitt, C.W., Williams, E., Matthews, H.S.: Economic-balance hybrid LCA extended with uncertainty analysis: Case study of a laptop computer. J. Clean. Prod. 107, 319–331 (2015).
- 19. Asadi, S., Asadi, E., Wong, K.V.: A sustainability framework for the semiconductor man-ufacturing industry. Environ. Sci. Pollut. Res. 22, 17159–17171 (2015).
- 20. Huang, Y.-F., Shiue, A., Chen, C.-W., Hsu, C.-C., Chen, C.-F.: Parametric carbon foot-print model for semiconductor wafer fabrication. Environ. Sci. Pollut. Res. 23, 17288–17296 (2016). https://doi.org/10.1007/s11356-016-6871-6
- 21. Belkhir, L., Elmeligi, A.: Assessing ICT global emissions footprint: Trends to 2040 & recommendations. J. Clean. Prod. 177, 448–463 (2018).
- 22. Kang, J., Lee, S., Hwang, Y.: Life cycle assessment of a smartphone. J. Clean. Prod. 241, 118404 (2019).
- 23. Sivaraman, D., Uhl, M., Jenkins, K., Whitefoot, K.: A carbon footprint modeling tool for semiconductor industry applications. Water Res. Ind. 21, 100115 (2019).
- 24. Liu, X., Cao, Y., Yang, Y., Zhang, J.: Nanomaterials and electronics: Energy and envi-ronmental perspectives. Nanomaterials 11(5), 1085 (2021).
- 25. Vital, B., Roose, A., Ronacher, F.: LCA Methodology for Semiconductors and Al-enabled Electronics: Microsoft Methodology v2.1. Microsoft Research and IMEC (2024).
- 26. Schischke, K., Nissen, N.F., Liu, Z., Butz, R., Hameed, T., Proske, M.: Towards a Product Category Rule for Electronics. Fraunhofer IZM, TU Braunschweig (2024).
- 27. Proske, M., Schischke, K., Nissen, N.F., Liu, Z., Hameed, T.: Simplifying LCA in Elec-tronics Supply Chains. Fraunhofer IZM (2024).
- 28. Liu, Z., Schischke, K., Nissen, N.F., Proske, M.: Lifecycle Carbon Footprinting of Elec-tronic Products. TU Braunschweig, Fraunhofer IZM (2024).

Thank you!

If you have any question, please contact Project Lead Prof. Ir. Dr. Leo Choe Peng chcpleo@usm.my

Acknowledgement

The authors would like to acknowledge the Royal Academy of Engineering for providing Distinguised International Associates – Round 4 to support this work.