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A B S T R A C T

Effective anomaly management of wastewater treatment plants (WWTPs) is crucial for environmental conser
vation and public health security. Traditional monitoring methods often struggle with challenges such as 
multivariate coupling, nonlinear dynamics, and external interferences inherent in wastewater treatment pro
cesses, which has driven growing interest towards artificial intelligence (AI)-based anomaly management solu
tions. This paper critically reviews recent advancements in AI-based anomaly management strategies for WWTPs, 
emphasizing three integral aspects: sensor data quality control and self-calibration, early anomaly detection and 
diagnosis, and fault-tolerant control and resilience enhancement. Systematic comparisons are made among su
pervised, unsupervised, and transfer learning methods, highlighting the strengths and weaknesses of deep 
learning, ensemble learning, and intelligent optimization algorithms in addressing practical engineering issues 
such as sensor noise, multimodal data distributions, imbalanced datasets, and limited cross-facility generaliz
ability. The review further highlights real-world performance metrics beyond conventional accuracy, such as 
application scalability, anomaly detection timeliness, and technological adaptability. Key findings reveal 
research gaps hindering for the progress and application of AI-based anomaly management approaches in model 
interpretability, computational intensity, data quality controls, cross-facility generalization, and cost- 
effectiveness. More importantly, future research directions cover adaptive learning techniques, explainable AI, 
integration of AI with digital twin platforms, lightweight infrastructures for real-time edge computing, and 
environmental and economic analysis of AI deployments in WWTPs.

1. Introduction

Wastewater treatment plants (WWTPs) need to be highly efficient 
and operationally flexible with the employment of advanced treatment 
processes and management strategies, which are capable of addressing 
different water quality and external disturbance conditions in order to 
consistently comply with treatment standards (Cairone et al., 2024; 
Cassidy et al., 2020; Pandit and Sharma, 2024). A comprehensive and 
stable wastewater treatment process enabled by efficient management is 
essential in protecting ecosystems and maintaining public health 
(Obaideen et al., 2022). It ensures effective elimination of pollutants, 
prevents harm to ecosystems, and avoids risks from harmful substances 

to human health (Silva, 2023).
However, wastewater treatment plants consistently face anomalies, 

as illustrated in Table 1, such as large fluctuations in water quality pa
rameters (e.g., Chemical Oxygen Demand (COD), Biochemical Oxygen 
Demand five-day (BOD5), pH), process malfunctions (e.g., sludge bulk
ing, abnormal conditions of aeration equipment or membrane system, or 
equipment such as sensor and pump failures), or external environmental 
disturbances (e.g., intensive rainfall or seasonal flow and temperature 
changes) (Bellamoli et al., 2023; Liu et al., 2023d). Delayed detection 
and inefficient management of such anomalies can negatively affect 
system stability, process efficiency, and effluent conformity, causing 
serious economic and environmental impacts (Chandola et al., 2009). 
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Thus, timely detection of anomalies, accurate diagnosis, and immediate 
remedial action have become the main technology requirements in 
wastewater treatment implementation (Wang et al., 2025).

Anomaly management in WWTPs is an integral lifecycle framework 
with three closely related aspects: sensor data quality management and 
self-calibration, early anomaly detection and diagnosis, and fault- 
tolerant control and resilience enhancement (Liu et al., 2023d; Wang 
et al., 2025). These complementary aspects together can maintain the 
robustness and operational stability of wastewater treatment systems. 
Early anomaly detection and diagnosis prioritise the use of online 
monitoring, big data analytics, and intelligent diagnostic techniques to 
promptly detect and accurately identify anomalies so that timely 
corrective actions can alleviate the impact of faults, ensuring compli
ance and safe operation (Bellamoli et al., 2023; Cassidy et al., 2020). 
Conversely, fault-tolerant control and resilience enhancement aim to 
enhance system adaptability and recovery through redundancy designs, 
rapid response mechanisms, and optimized operation strategies. This 
will help WWTPs achieve stable operation or rapid recovery in situations 
such as water quality fluctuations, equipment failures or extreme 
weather events (Fasanotti et al., 2018; Z. Liu et al., 2024). Moreover, 
sensor data quality management and self-calibration provide the 
fundamental support for the above two aspects by combining 
multi-sensor data fusion, anomaly detection, and dynamic calibration 
techniques to effectively eliminate hazards of data distortion and 
improve the accuracy and responsiveness of the anomaly detection 
systems (Ba-Alawi et al., 2023a; Yan et al., 2019). These three aspects 
collectively form a closed-loop process to ensure effective, safe, and 
sustainable operation of wastewater treatment systems (Khurshid and 
Pani, 2023; D. Yang et al., 2024a), as shown in Fig. 1.

The conventional anomaly monitoring approaches usually adopt 
fixed-threshold strategies or rule-based systems, which are difficult to 
use in addressing the complex dynamics of wastewater treatment. For 
example, wastewater treatment processes are characterized by 
nonlinear coupling interactions between numerous variables, which 
restrict the effectiveness of linear or simple statistical models in real- 
world anomaly management (Alvi et al., 2023). Furthermore, external 
disturbances such as heavy rains or industrial discharges make anomaly 
detection and diagnosis more difficult. As a result, increasing research in 
recent years has focused on exploring AI-based solutions to anomaly 
management in wastewater treatment plants. These solutions aim to 
utilize the advanced data processing and pattern learning capabilities of 
AI. Specifically, AI models can be trained with historical monitoring 
data to distinguish normal and abnormal states and, more importantly, 
identify anomalies in real time with higher accuracy and reliability 
(Bahramian et al., 2023; Duarte et al., 2024).

Although a few review studies have examined the current state of AI 

applications in wastewater treatment anomaly detection systems 
(Khurshid and Pani, 2023; Liu et al., 2023d; Wang et al., 2025), as 
summarized in Table 2, they primarily focus on specific scenarios such 
as benchmark simulation models (e.g., BSM1 for biological treatment 
processes) or isolated process fault detection cases. Existing review 
studies that mainly summarize approaches based on mechanistic models 
and theoretical scenarios can no longer meet the needs of current 
technological development, as the methods covered in these reviews 
often struggle to accurately capture and identify anomalies under 
complex, real-world operational conditions. More importantly, these 
studies have not thoroughly addressed the integrated application sce
narios and practical challenges across the full anomaly management 
lifecycle. In contrast, a review exploring the diverse operational condi
tions based on real-world operational data found in real, industrial-scale 
WWTPs can be more meaningful for guiding future research.

There are noticeable research gaps, in particular regarding cross- 
facility generalizability, real-time responsiveness, and the cost- 
effectiveness of AI-based systems (Ba-Alawi et al., 2023a; D. Yang 
et al., 2024a). The current study intends to systematically review and 
critically summarize recent developments and applications of AI-based 
approaches to anomaly management based on industrial-scale WWTP 
data and theoretical simulations, specifically evaluating their contribu
tion in critical phases such as self-calibration of sensors, anomaly 
detection and diagnosis, and fault-tolerant control to increase the sys
tem’s robustness. Moreover, the applicability, merits, limitations, and 
deployment aspects of different AI approaches are highlighted in 
real-world applications, including supervised learning, unsupervised 
learning, transfer learning, ensemble learning, and other AI-based al
gorithms. The current study presents the first review systematically 
investigating AI-based approaches in the full anomaly management 
cycle in WWTPs.

The objective of this paper is to offer theoretical insights and tech
nological advice for promoting smart transformation in the wastewater 
treatment industry while also addressing the current literature gaps by 
focusing on true industrial application contexts, methodological gener
alizability, and cost evaluations, thus specifying the directions of future 
research accordingly.

2. Research design and bibliometric analysis

This paper systematically summarizes and examines literature from 
the last decade (2015–2024) in the field of anomaly management in 
wastewater treatment systems using AI. The literature review is focused 
on three important lifecycle phases: data quality and self-calibration of 
sensors, anomaly detection and diagnosis, fault-tolerant control and 
resilience enhancement. Research specifically on forecasting water 

Table 1 
Description of common anomalies in wastewater treatment plants.

No. Anomaly Type Process Stage Root Causes Typical Impact Reference

1 Influent quality shock Pre-treatment Storm events, industrial 
discharge

Overload downstream, 
process upset

T. Cheng et al. (2019); Xu et al. (2017); Yin et al. 
(2017)

2 Chemical dosing error Primary treatment Pump failure, human error Insufficient/over-dosing, 
permit fail

Dairi et al. (2019); Q. Wu et al. (2022a)

3 Aeration system 
malfunction

Biological treatment Blower breakdown, valve 
fault

Loss of nitrification, High 
NH4

+

D. Yang et al. (2024a); Yin et al. (2017)

4 Sludge bulking Secondary treatment Filamentous bacteria, 
nutrients

High effluent solids, clarifier 
upset

Gulshin and Kuzina (2024); H.-G. Han et al. (2019); 
Xu et al. (2017)

5 Effluent ammonia/ 
nitrogen high

Secondary/Tertiary 
treatment

Nitrification failure, toxic 
shock

Permit violation Guo et al. (2016); Mamandipoor et al. (2020)

6 Sludge digester 
malfunction

Sludge treatment Overload, toxic input, 
temp drop

Gas drop, unstable sludge, 
Odors

Y. Liu et al. (2015); Xu et al. (2017); Yin et al. 
(2017)

7 Sensor fault All stages Sensor drift, fouling, 
calibration

Data errors, false alarms Mali and Laskar (2020); Newhart et al. (2024); 
Samuelsson et al. (2017)

8 Equipment mechanical 
failure

All stages Aging, wear, electrical/ 
mechanical

Downtime, bypass, process 
loss

Dairi et al. (2019); Sunal et al. (2024)

9 SCADA/communication 
error

All stages Network/PLC issue Loss of automation, operator 
workload

H. Han et al. (2024)
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quality parameters (e.g., COD, BOD, NH4
+, TN) under different scenarios 

using AI was not considered in this survey. But research on enhanced 
wastewater treatment process resilience and operation optimization by 
anomaly management was incorporated in this survey.

As illustrated in Fig. 2, the literature search was carried out with a 
systematic approach. Starting with relevant literature published from 
2015 to 2024, a search was performed in the Scopus database. The initial 
search terms were different combinations of keywords such as anomaly, 
abnormality, irregularity, outlier(s), fault(s), deviation, and wastewater. 
But the first-round search generated a vast number of publications. Then 
in the second step (refer to Fig. 2), the search was narrowed down with 
the addition of more AI-specific keywords such as artificial intelligence, 
machine learning, and deep learning, which significantly reduced the 

number of articles retrieved. From the remaining steps (includes the 
third, the fourth, and the fifth steps), online screening with keyword 
search combined with manual review through abstract reading was used 
to eliminate the studies mainly concerning water quality forecasts but 
not anomaly identification. Particularly, the studies were also screened 
further with the following specific criteria: (1) exclusion of the studies 
mainly concentrating on water quality forecasting; (2) exclusion of the 
papers with no clear indications of anomaly identification or related 
terms in wastewater treatment; and (3) exclusion of purely theoretical 
perspectives with no validation data. Finally, the gathered papers were 
systematically classified and screened once more to complete the se
lection. Online search engines and databases like Web of Science and 
Google Scholar were also cross-checked to achieve comprehensive 
coverage and correct categorization of the related literature.

2.1. Bibliometric analysis

In this study, bibliometric analytical techniques such as keyword 
clustering analysis, thematic evolution analysis, and publication trend 
analysis were utilized to indicate research hotspots and trends in the 
topic of AI-based anomaly management in wastewater treatment sys
tems. This research ensured rigour and reproducibility by using VOS
viewer software to carry out keyword co-occurrence analysis, create a 
clustering diagram and keyword time evolution diagram, and statisti
cally plot the number of publications and trend diagram using Excel 
tools.

The keyword co-occurrence network (shown in Fig. 3) illustrates 
research hotspots and thematic distributions for the application of AI to 
anomaly detection and diagnosis in wastewater treatment. Keywords in 
the graph are grouped into three different clusters, represented by green, 
red, and blue. The green cluster focuses on keywords including "anomaly 
detection/diagnosis", "process control", and "learning systems" and 
shows that research emphasis is placed on the use of data-driven 
anomaly detection techniques and intelligent optimization strategies 
(e.g., principal component analysis, Bayesian networks, autoencoders) 
for monitoring and diagnosis of wastewater treatment processes. The red 
cluster highlights keywords including "machine learning", "deep 
learning", "forecasting", and "water quality" and displays the key role 

Fig. 1. Closed-loop flowchart of the anomaly management system.

Table 2 
Survey of the review works focusing on anomaly management in WWTPs.

Reference Review 
Focus

Target System Technique 
Classification

Application 
Scenarios

Y. Liu 
et al. 
(2023)

AI and data 
analytics 
for fault 
detection, 
diagnosis, 
and 
prognosis

Entire urban 
wastewater 
system (sewer 
networks, 
WWTPs, and 
resource 
management)

• Data-driven 
approaches

• Mechanistic 
and 
knowledge- 
based hybrid 
approaches

• Digital Twins

Process 
anomalies 
(sludge bulking, 
sewer corrosion), 
instrumentation 
faults (sensor 
and actuators 
faults)

Khurshid 
and 
Pani 
(2023)

Machine 
learning 
for process 
monitoring

Biological 
treatment 
processes 
(Benchmark 
Simulation 
Model No. 1 - 
BSM1)

• Simple 
univariate 
(control 
charts)

• Multivariate 
techniques

• Deep 
learning 
techniques

Sensor faults (e. 
g., dissolved 
oxygen), process 
anomalies 
(reaction 
parameters, 
oxygen transfer 
rates, influent 
BOD changes)

Wang 
et al. 
(2025)

Data- 
driven fault 
detection 
and 
diagnosis 
methods

General 
wastewater 
treatment 
systems 
(theoretical 
and real)

• Multivariate 
statistical

• Machine 
learning

• Hybrid 
methods

General process 
faults, sensor 
faults
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played by deep learning and machine learning techniques in forecasting 
water quality, energy management, and algorithm development. The 
blue cluster includes keywords like "fuzzy neural networks", "dissolved 
oxygen", and "activated sludge process" and reflects the current appli
cations and development status of fuzzy control and neural network 
techniques for monitoring key process parameters in wastewater treat
ment. Generally, the clustering of keywords has revealed the hot areas of 
prior research and the distribution of multi-dimensional AI applications 
in wastewater treatment and indicates a vast research value on inte
grating these subject clusters in subsequent studies.

From the timeline diagram (shown in Fig. 4), we can further un
derstand the temporal development of research keywords in wastewater 
treatment anomaly detection. Even though "process control" and 
"learning systems" have always occupied the main role in the theme of 

"anomaly detection/diagnosis", the methodologies involved have 
changed from classical algorithms such as "artificial neural network", 
"fuzzy inference", "principal component analysis" and "Bayesian net
works" to data-driven approaches like "fuzzy neural networks" and 
"machine learning" and more advanced AI-driven ones like "deep 
learning" and "autoencoders" in recent years. Particularly, research 
related to the keywords "forecasting", "adaptive control system", "deep 
learning" and "autoencoders" has significantly increased since 2021, 
which reflects an important research transformation from the develop
ment of single AI algorithm to the development of intelligent optimi
zation and real-time control (RTC) systems.

In addition, the publication trend analysis (2015–2024) illustrated in 
Fig. 5 reveals a sharply rising research interest in the field of AI-based 
anomaly detection in WWTPs. Fault-tolerant control research has also 

Fig. 2. Flow diagram of the search and screening for key references.

Fig. 3. Keyword clustering diagram based on research themes.
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gradually increased, but more slowly, presumably because of its 
complexity and implementation issues. Also, more simulation-scale and 
laboratory-scale research has emerged probably due to a cost- 
effectiveness preference, increased flexibility, and faster iteration 
enabled by advances in technology. However, the approaches proposed 
by simulation-scale studies are generally not adequate for industrial 
application in full-scale WWTPs, thus bridging the gap between theo
retical validation and industry deployment remains a key issue for up
coming research.

The heat map of different types of AI (in Fig. 6) indicates that su
pervised learning is used most extensively in wastewater anomaly 
detection with the highest intensity over different years. Deep learning 
has also attracted strong interest in recent years as the industry looks to 
use the power of deep neural networks to improve the accuracy and 

reliability of anomaly detection. Some areas with lower intensity may 
offer opportunities for deeper research in the areas of adaptive decision- 
making and intelligent optimization, which means the drive to innovate 
and apply AI is not fading but continuing.

On the basis of the above bibliometric analysis, studies of anomaly 
management in wastewater treatment are increasingly shifting from 
early algorithm verification to systematic intelligence optimization and 
operational real-time control. Multi-method combination with AI tech
nology is becoming the research trend in the mainstream, and emerging 
AI approaches like explainable AI and reinforcement learning that have 
not yet attracted sufficient research attention currently have tremen
dous potential and can become the new research frontier in solving 
complex decision-making issues.

3. Discussion

3.1. Sensor data quality management and self-calibration

With the large-scale application of sensors in WWTP equipment, 
sensor failure, drift, noise, and dirt blockage often lead to data distortion 
or loss, which in turn affects process control and decision optimization. 

Fig. 4. Temporal evolution of keywords in timeline diagram.

Fig. 5. Annual number of publications (bars) and cumulative number of pub
lications (lines) on AI-based anomaly management in wastewater treatment 
plants from 2015 to 2024. The stacked bars represent the annual number of 
publications by dataset type (Full-scale, Sim-scale, Lab-scale) used in each 
study. The green and purple lines show the cumulative number of publications 
related to "anomaly detection" and "fault-tolerant control", respectively.

Fig. 6. Heat map of publications for AI model types.
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In order to solve these problems, researchers have begun to explore the 
introduction of AI, as shown in Table A.1, to improve the integrity and 
credibility of sensor data through methods such as anomaly detection, 
data interpolation, and automatic calibration.

Considering the differences in core technical frameworks and 
application scenarios, the studies in this area can be roughly divided into 
four categories. The first category is the time series deep learning 
method based on Long Short-Term Memory (LSTM) autoencoder (AE), 
which focuses on using the recurrent neural network structure to capture 
the complex dependencies of time series and performs well in short-term 
anomaly correction and prediction, such as a parallel model combining 
particle swarm optimization (PSO) with LSTM (Yan et al., 2019), and 
short-term and long-term dynamic LSTM-AE models (Seshan et al., 
2024). The second category is multi-task learning and explainable 
AI-based approaches, which can not only complete fault diagnosis and 
data reconstruction in parallel in the same network, but also provide 
more intuitive diagnostic bases through attention mechanisms and 
explainable AI (XAI) models, e.g. explainable deep multi-task learning 
autoencoder network (DMTL-UNet) (Ba-Alawi et al., 2023a), and 
multi-sensor fusion-based automated data reconciliation and imputation 
(MSF-ARI) (Ba-Alawi et al., 2023b). Their study found that multi-task 
explainable AI technology can be used to enhance fault-diagnosis effi
ciency with an F1 score up to 99.08 %, and gain energy consumption 
reduction of 37.44 % compared to conventional methods. The third 
category is unsupervised learning methods. For example, Local Outlier 
Factor (LOF) and self-organizing map (SOM) are applied to solve sce
narios with missing or insufficient large-scale annotations and can 
provide high-precision anomaly detection and data interpolation when 
the missing rate is not high (Hansen et al., 2022; Mng’ombe et al., 2023). 
The fourth category is the fusion of deep neural networks and proba
bilistic models, among which the stacked denoising autoencoder (SDAE) 
and variational autoencoder based on a deep residual network structure 
(ResNet-VAE) show robustness and generalization potential in multidi
mensional nonlinear anomalies and high-noise environments by inte
grating deep representation learning with distribution modelling 
(Ba-Alawi et al., 2021, 2022). Ba-Alawi et al. (2022) applied the VAE to 
model the complex, non-Gaussian distribution of process data, which 
achieved better identification of sensor faults and reconstruction of 
faulty signals. They successfully predicted missing sensor readings with 
their VAE model through the synthesis of data compatible with learned 
distributions. The above models have been successfully verified with 

actual wastewater treatment plant data and are generally superior to 
traditional statistical or shallow machine learning methods in terms of 
the model’s reconstruction and imputation performance measurements, 
as shown in Table A.1.

As can be seen from Fig. 7, when applying AI models in missing data 
interpolation and faulty data reconciliation for sensors in wastewater 
treatment processes, there are quite different performances among each 
model, with mean absolute percentage error (MAPE) used to measure 
the differences. In the imputation of missing data, the ResNet-VAE 
model performed excellently, particularly for the internal sludge flow 
(Qr), with the MAPE as low as 1.04 %, but for the dissolved oxygen (Do- 
aer) in the aerobic pool, its performance declined sharply (the MAPE 
was as high as 10.44 %). However, the Parallel PSO-LSTM model kept a 
well-balanced and credible ability to fill the data for the entire set of 
parameters, with the MAPE ranging between about 5 % and 7 %. In the 
faulty data reconciliation scenario, the MAPE differences between the 
different AI models increased significantly, due to the higher complexity 
involved in processing faulty sensor data. For example, the DMTL-UNet 
model, even with its improved interpretability and fault diagnosis 
ability, presented comparatively high MAPE values, especially for 
influent total nitrogen (TN-in) at 20.31 %. The SDAE model was 
comparatively more robust with MAPE ranging from 12 % to 14 %, 
indicating its potential in the multidimensional anomaly correction 
process. These results reflect the need to carefully select AI models ac
cording to specific parameter requirements and targeted application 
scenarios with a proper balance between accuracy, robustness, and 
computational cost. Nevertheless, a more important issue has also been 
revealed, that the quantitative comparative evaluation of different 
models remains a key bottleneck in this research field.

3.2. Anomaly early detection and diagnosis

The evolution of AI-based anomaly detection methods is a progres
sion from simple statistical methods towards more complex and 
computationally costly AI-driven techniques. Classical methods like PCA 
and ICA prevailed because of computational simplicity and interpret
ability but were limited in accuracy and flexibility. Supervised and un
supervised learning algorithms improved the performance of anomaly 
detection and classification, and the adaptability of extensive data in
puts with new challenges in computational intensity, model interpret
ability, and high-quality data. Hybrid methods combining the 

Fig. 7. MAPE of different AI models for sensor data quality management and self-calibration.
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robustness of classical statistical methods and the power of deep neural 
networks to balance accuracy, efficiency, and interpretability are a 
recent trend.

3.2.1. Supervised learning-based AI methods
Wastewater treatment processes usually exhibit characteristics such 

as nonlinearity, dynamic coupling, and complex data noise. Therefore, 
compared to traditional anomaly detection methods based on mecha
nistic models or simple statistical assumptions, supervised learning- 
based AI models offer a promising alternative by utilizing prior label 
information. This section reviews the application scenarios and perfor
mance results of anomaly detection strategies based on such models (see 
Table A.2), and further detailed discussions are given below.

Some early studies have adopted supervised classical machine 
learning methods such as locally weighted projection regression 
(LWPR), relevance vector machines (RVM), and Gaussian process 
regression (GPR) to address challenges related to multivariable coupling 
and data imbalance in wastewater treatment monitoring. LWPR has 
been applied to nonlinear process monitoring in WWTPs to improve the 
detection of anomalies in key parameters such as dissolved oxygen (DO), 
flow rates, and substrate concentrations (Yin et al., 2017). The inte
gration of Fast RVM with pre-processing methods, specifically the syn
thetic minority over-sampling technique (SMOTE), was shown to 
notably enhance the diagnostic performance of fault classification in 
imbalanced wastewater treatment datasets (Xu et al., 2017). Neverthe
less, the effectiveness of this approach was still affected by the under
lying data characteristics and the specific modelling and pre-processing 
configurations, and its generalizability and industrial application pros
pects still need further investigation. GPR combined with sequential 
Monte Carlo (SMC) has demonstrated superior capability for interpo
lating noisy flow signals and detecting ammonium sensor drift in WWTP 
applications, but its effectiveness depends heavily on the selection of the 
kernel function, tunning of parameters, and sufficient prior knowledge 
of the monitored processes (Samuelsson et al., 2017). Its practical 
deployment should be rigorously evaluated against simpler methods.

In contrast to deep architectures, other supervised AI approaches 
using shallow neural networks have also proven to be effective for fault 
detection in WWTPs due to their model simplicity, online adaptability, 
as well as robust nonlinear feature representation. For common sludge 
bulking faults, H.-G. Han et al. (2018) presented an intelligent approach 
using a self-organizing recurrent radial basis function neural network, 
which is effective in detecting bulking events as well as their respective 
reasons such as insufficient DO and high COD. Extending this, H.-G. Han 
et al. (2019) developed a self-organizing type-2 fuzzy neural network 
coupled with a target-related identification algorithm, which effectively 
distinguished various types of bulking depending upon real-time process 
data such as those caused by insufficient DO, nutrient deficiency, or 
inadequate sludge loading. In the interest of effective and accurate 
identification of anomalies under dynamic conditions, P. Chang et al. 
(2024) introduced a broad slow feature neural network (BSFNN) with 
incremental learning capability, which was effective in extracting slowly 
varying and nonlinear features online to fit rapid structural adjustment 
in real time monitoring.

Apart from shallow neural networks, ensemble learning algorithms 
specifically founded on gradient boosting and tree-based ensemble ap
proaches have also attracted the interest of some researchers due to their 
capacity to increase robustness in classification, address data imbalance, 
and generalize to varied wastewater treatment conditions. In the case of 
small sample size and infrequent abnormal events, the CatBoost gradient 
boosting model was excellent in regression and classification tasks for 
wastewater treatment data with SMAPE values of critical effluent pa
rameters below 10 % and a ROC-AUC value of detecting filamentous 
bulking events up to 1.0 (Gulshin and Kuzina, 2024). In multiclass 
anomaly classification of intermittent aeration wastewater treatment 
processes, the performances of XGBoost-SMOTE and LightGBM-SMOTE 
were better in comparison to other strategies with macro-recall reaching 

0.84 and macro-F1-scores up to 0.72 in cross-validation experiments and 
maintaining satisfactory performance (macro-recall as high as 0.62) in 
fully independent test plants (Bellamoli et al., 2023).

In addition to the above supervised classical machine learning 
methods, supervised deep learning approaches have been widely 
applied to wastewater treatment anomaly detection and fault diagnosis 
due to their powerful data-driven modelling capabilities in recent years. 
Methods such as the time-stacked broad learning system (Time-SBLS) 
(Peng et al., 2023) and Gaussian mixture model (GMM) under-sampling 
(Zadkarami et al., 2024) have proven effective in reducing computa
tional overheads and enabling real-time fault detection in large-scale 
and imbalanced datasets. An LSTM-based approach proposed by 
Mamandipoor et al. (2020) has significantly improved the detection of 
collective faults in key influent sensors within biological treatment 
processes by capturing complex time-series dependencies. Deep neural 
network architectures have been introduced as important tools for 
robust anomaly detection. For example, the Monte Carlo deep dropout 
neural network (MC-DDNN) developed by Mali and Laskar (2020) en
ables earlier detection of incipient sensor faults with minimal confusion 
with noise on both BSM2 and real industrial plant data, supporting 
timely maintenance by reliably identifying even low-magnitude faults 
that are often missed by traditional methods. Peng et al. (2021) pro
posed a deep recurrent network integrated with high-order statistical 
information (HSI-DRN) to address simultaneously nonlinear and non-
Gaussian WWTP data. On the BSM1 benchmark, this method achieved 
average false alarm and missed detection rates as low as 0.0215 % and 
0.586 % respectively. Hu et al. (2024) developed a multiscale con
volutional neural network (MSCNN) that effectively captures spatio
temporal features in multivariate process data, achieving robust fault 
diagnosis performance in dynamic wastewater treatment environments. 
Some other advanced deep learning models such as YOLOv5 with his
togram equalization for microbial detection (Inbar et al., 2023) and 
DeepLabv3+ for real-time foam segmentation (Carballo Mato et al., 
2024) have been applied to visual data from WWTPs, achieving 
improved precision and robustness in visual anomaly monitoring. Car
ballo Mato et al. (2024) established an AI-driven foam monitoring sys
tem for a Moving Bed Biofilm Reactor (MBBR) process at a full-scale 
municipal WWTP in Spain. The system applied deep-learning models 
(DeepLabv3+ and OSTS) trained with operational images to automati
cally track foam coverage every 10 min. The segmentation performed 
well, showing that Dice scores were over 86 % and IoU values were 
above 75 %. Alerts were triggered automatically to notify operators if 
foam concentrations exceeded the thresholds (e.g., 20 % coverage of the 
surface). Practical operational improvements included a substantial 
reduction in maintenance frequency, approximately 15–25 % energy 
savings due to improved oxygen transfer efficiency, and prevention of 
biomass washout events. Separately, a Transformer-based model with 
multi-head attention (Peng and FanChao, 2024) enables effective 
modelling of dynamic couplings and long-term dependencies among key 
process variables (e.g., aeration and ammonia-nitrogen), thereby effec
tively reducing false alarm and missed detection rates on BSM1, which 
shows more promise for future applications compared with traditional 
RNN and LSTM.

Owing to the variation in reported evaluation indicators across 
studies (see Table A.2), this review predominantly uses Accuracy and 
Fault Detection Rate (FDR)/Recall for subsequent comparison of per
formances in Fig. 8. Accuracy describes the overall model classification 
ability, while FDR or Recall highlights its capacity to detect abnormal 
events. Both of them can provide complementary but limited insight into 
model effectiveness in the scenario of class imbalance. Fig. 8 reveals that 
supervised deep learning approaches that leverage temporal depen
dence (e.g., LSTM, Transformer) can consistently maintain good recall 
and accuracy, indicating superior adaptability to complex, multivariate, 
and big sensor datasets. For example, LSTM-based approaches had the 
highest recall of up to 93.9 %, which obviously outperformed traditional 
methods whose recall typically ranges from 73 % to 85 % (Mamandipoor 
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et al., 2020). Ensemble learning algorithms such as XGBoost and Cat
Boost also demonstrate good and well-balanced performances with both 
high accuracy and detection rates in imbalanced and multiclass sce
narios, with accuracy improvements of 5–15 % compared to traditional 
methods in various case studies. By contrast, supervised classical ma
chine learning approaches can attain competitive accuracy, but their 
recall or rates of detection are typically comparatively poor and fluc
tuate, particularly in unfavourable data conditions. For instance, the 
recall of SVM and Random Forest models may drop below 80 % in highly 
imbalanced datasets and missed alarm rates can rise above 15 %. It is 
worth mentioning that recent novel methods such as MC-DDNN, 
HSI-DRN, and MSCNN presented very low false positive and false 
negative rates, indicating improvements in feature extraction and un
certainty modelling.

Based on the above discussion, the advantage of supervised learning 
lies in its ability to utilize labelled data, which not only improves 
anomaly detection accuracy, but more importantly enables the classifi
cation of abnormal events and identification of root causes. This attri
bute provides support for operators to implement interventions and 
ensure the stable operation of wastewater treatment plants. Further
more, various improvement strategies such as higher-order statistical 
features, multi-scale convolution, and Transformer architectures have 
proven feasible for reducing false positives and false negatives while 
enhancing the timeliness of fault identification. Although there are 
several evident strengths, supervised learning methods inherently pre
sent several limitations. First, labelled data were often scarce, expensive, 
or biased in real WWTPs, but these methods depend on the availability 
and quality of such data. Additionally, the computational intensity of 
supervised deep learning models like LSTM and Transformer makes 
them difficult to implement in real-time operations. Furthermore, su
pervised models trained with limited or imbalanced datasets can easily 
lead to overfitting, which can weaken generalization performance when 
conditions or operational environments change. Future research should 
therefore focus on network compression, cross-platform collaborative 
training, and data diversity enhancement, to facilitate large-scale 
implementation in WWTP anomaly management.

3.2.2. Unsupervised learning-based AI methods
Our work shows a performance comparison of different unsupervised 

learning-based AI approaches in recent studies on anomaly monitoring 
in WWTPs (see Table A.3) in terms of fault detection rate, false alarm 
rate, fault warning time, and application conditions. Based on the review 
of the above-mentioned case studies, the feasibility and limitations of 
unsupervised learning AI approaches for wastewater treatment anomaly 

monitoring under different data volumes, operating complexities, and 
noise levels are presented.

Unsupervised classical machine learning shows great benefits in 
processing multivariable-coupled, nonlinear, and high-dimensional data 
because of its independence from data labels. Principal component 
analysis (PCA) and its advanced versions, including kernel principal 
component analysis (KPCA) and adaptive principal component analysis 
(AD-PCA), can serve in dimensionality reduction, denoising, and fault 
identification. These methods can detect diverse sudden anomalies (e.g., 
aeration and influent quality variations) in real WWTPs and issue early 
warnings following drift faults as well as short-term anomalies (T. Cheng 
et al., 2019; Haimi et al., 2016; Y. Liu et al., 2015; Newhart et al., 2024). 
Haimi et al. (2016) implemented an adaptive PCA-based anomaly 
detection system in Viikinmäki WWTP, Finland’s largest municipal 
wastewater treatment plant (800,000 population equivalents). The 
system continuously recalibrated PCA models using real-time opera
tional data, effectively detecting sensor faults (e.g., ammonia sensor 
drift exceeding 1 mg/L) and process disturbances (such as influent 
suspended solids spikes from 200 mg/L to over 500 mg/L). Industrial 
application results exhibited fast anomaly detection and a high false 
alarm rate reduction from conventional static thresholds. On a practical 
level, the system allowed for the timely identification of declines in pH 
and interruption of nitrification, improving the reliability of the treat
ment and the stability of the operation. To improve adaptability to 
complex and non-Gaussian processes, some works combined genetic 
algorithms (GA) with Bayesian inference, or increased fault detection 
rates and decreased false alarm rates via adaptive selective independent 
component analysis (ASEICA) and multi-model fusion (Z. Li and Yan, 
2018, 2019, 2020). At the same time, clustering algorithms (e.g., 
K-means) have exhibited distinctive merits in rapidly capturing of 
influent fluctuation and sludge bulking patterns (Chow et al., 2018; 
Navato and Mueller, 2021). Moreover, Gaussian process models main
tain a balance between timely fault detection and stability (Zambrano 
et al., 2019), while the coupling of kernel techniques with dimension
ality reduction (e.g., Improved Variable Importance in the Projection 
(IVIP) + KPCA with Multivariate Exponentially Moving Average 
(MEKPCA), Uniform Manifold Approximation and Projection (UMAP) +
Support Vector Data Description (SVDD)) can further enhance the ac
curacy and robustness of anomaly detection for the high-dimensional 
data (T. Chang et al., 2024; J. Yang et al., 2023).

Deep learning-based unsupervised AI methods have been more 
effective in handling nonlinear, non-Gaussian, and multimodal waste
water treatment anomaly monitoring data. For instance, the use of the 
Enhanced Bottleneck Neural Network (EBNN) model with adaptive 

Fig. 8. ACC and FDR/Recall for supervised AI methods in wastewater treatment anomaly monitoring.
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confidence bounds can more significantly lower false alarms in multi
modal situations and detect faults in ammonia nitrogen (NH4+) and 
nitrate (NO3-) sensor readings compared to fixed threshold (Bouzenad 
and Ramdani, 2017). The Deep Belief Network (DBN) in combination 
with One-Class Support Vector Machine (OCSVM) provided operators 
with the possibility to establish anomaly warnings five days in advance 
under high-dimensional noisy conditions (Harrou et al., 2018). Mean
while, the combination of a Recurrent Neural Network (RNN) and 
Restricted Boltzmann Machine (RBM) with an unsupervised classifier 
OCSVM demonstrated robust performance with the best AUC reaching 
0.98 in identifying a few influent anomalies such as seawater intrusion 
using real WWTP data (Dairi et al., 2019). The Part Interval Stacked 
Autoencoder (PISAE)-SVDD model can reduce the number of false 
alarms and enhance the detection capabilities in complex real-world 
wastewater treatment processes through introducing uncertainty in 
the form of tolerant reconstruction errors in sensor measurements (Q. 
Wu et al., 2022b). Compared to baseline autoencoders, the Multi-stage 
Variational Autoencoder (M-VAE) can improve the detection accuracy 
by 37.8 % and reduce the false alarm rate to 4.83 % for sludge bulking 
and toxic shock faults (Peng et al., 2022a). The VAE plays a key role in 
modelling the probability distributions of process data for each stage 
and in extracting essential Gaussian features from non-Gaussian mea
surements. The probabilistic interpretation allows the VAE-based model 
to distinguish normal with faulty conditions more effectively. The 
combination of automatic stage-wise division with VAE-based feature 
learning can enable anomaly detection well across different stages in 
real-world WWTPs. Lastly, Ren et al. (2024) presented the idea of a 
DAE-PCA model that incorporates a deep autoencoder (DAE) and a 
learnable kernel mapping strategy as an alternative to the classical KPCA 
strategy. It raised fault detection rates by 4.69 % on the TE dataset and 
0.27 % on the WWTP data against the baselines, with the additional 
advantage of reducing online computational time to enable real-time 
monitoring.

As can be seen from Fig. 9, the results have demonstrated both 
classical machine learning-based and deep learning-based unsupervised 
approaches with great potential in monitoring anomalies in WWTPs. 
Unsupervised classical machine learning algorithms (e.g., PCA-based, 
ICA-based, Manifold-based) are superior in automatically summarizing 
data features, extracting possible patterns, and exposing hidden data 
structures, and can achieve fast and sensitive anomaly detection in the 
absence of data labels. However, those classical machine learning ap
proaches usually suffer from comparatively higher false alarm rates and 
lower fault detection rates with typically FAR exceeding 2.5 % and FDR 
below 95 %, largely due to their limitations in dealing with nonlinear 

and multimodal situations in wastewater treatment processes. In 
contrast, the corresponding unsupervised deep learning methods such as 
EBNN, DBN, RNN-RBM, PISAE, and M-VAE can provide higher detection 
accuracy and efficiency with reported improvements in FDR ranging 
from 3 to 12 percentage points and reductions in FAR to below 2 % in 
several studies. Although unsupervised learning does not require 
labelled data, it has additional needs in other aspects that involve model 
complexity and computational burden, real-time deployment, and 
model interpretation. In the coming work, strategies such as adaptive 
model updating, multi-model fusion, and parallel computation in 
distributed framework need to be developed to address these short
comings and stimulate further advances.

3.2.3. Transfer learning and other AI-based models
Limited labelled data under varying operational conditions often 

prevent AI models trained for WWTPs’ anomaly monitoring exclusively 
in a target domain from generalizing effectively. Because of this, several 
studies have considered to use transfer learning methods to take 
advantage of the knowledge from similar domains for fault diagnosis 
tasks. Table A.4 summarizes these transfer learning-related studies and 
their respective application points and performance metrics. The 
Enhanced Adaptive Sparse Bayesian Transfer Learning Machine 
(EAdspB-TLM) integrates TrAdaBoost-based instance weighting and 
Bayesian hyperparameter updating with the probabilistic relevance 
vector machine (PrRVM) model (H. Cheng et al., 2020). This approach 
reported that anomaly detection accuracy increased 13 %–35 % over 
traditional models, and was successfully used to detect aeration anom
alies, ammonia nitrogen deviations, and nitrate concentration variances 
in WWTPs as well as in the Tennessee Eastman Chemical Process 
(TECP). M et al. (2023) and Sunal et al. (2024) proofed that pre-trained 
convolutional neural networks (CNNs) such as ResNet-50 and ResNet-34 
can identify the presence of cavitation, bearing wear, or impeller dam
age in centrifugal pumps. These methods facilitated knowledge transfer 
from image datasets (e.g., ImageNet) into engineering signal images and 
recorded high classification accuracies up to 100 % (ResNet-50) and 
85.98 % (ResNet-34), outperforming traditional handcrafted feature 
approaches by margins of 5–20 %. D. Yang et al. (2024) presented an 
unsupervised transfer learning method that combined Regularized 
Wasserstein Distance with Joint Distribution Adaptation (JDARWD). In 
experiments on alternative inflow conditions (dry, rain, and storm) on 
BSM1, the introduced model outperformed the baseline methods 
considerably, with the model’s classification accuracy improved by 20.9 
%–108.9 %.

Other AI related methods falling outside the category of supervised, 

Fig. 9. FAR and FDR for unsupervised AI methods in wastewater treatment anomaly monitoring.
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unsupervised, or transfer learning are also considered, such as particle 
filtering, Bayesian inference, hybrid optimization, and self/semi- 
supervised methods. As listed in Table A.4, these methods were suc
cessful in extracting nonlinear and dynamic characteristics of waste
water treatment processes. To deal with the complex nonlinear 
behaviour, self-supervised and semi-supervised models have been 
considered. H. Han et al. (2024) introduced the SMEL model, which 
combines stacked autoencoders and dual memory units for unsupervised 
anomaly detection. It achieved 97.1 % accuracy on the ST dataset and an 
F1-score of 92.4 % on the Yuqing River dataset, demonstrating strong 
generalization to nonlinear multi-source data. Under limited labelled 
data and multi-fault conditions, Ghinea et al. (2023) evaluated five 
semi-supervised models and found the convolutional autoencoder 
(Conv-AE) achieved the highest accuracy up to 98.64 % on the BSM2 
datasets. For sensor drift faults, their system detected anomalies with a 
delay of only 3.84 h, highlighting its real-time capability. For robust 
state estimation in dynamic systems, Kenyeres and Abonyi (2023) pro
posed an intelligent particle filter (IPF) by integrating a genetic algo
rithm into the resampling step of the standard PF. Compared to 
traditional PF, the IPF improves estimation accuracy and enhances fault 
detection performance for bias and impact sensor faults, without 
increasing computational cost. Bayesian networks, as probabilistic 
graphical models, offer interpretable fault reasoning. Guo et al. (2016)
developed a Bayesian network model using expert knowledge and his
torical data to support fault inference in WWTPs and handle uncertainty 
effectively in complex influent scenarios. Hybrid optimization-enhanced 
models have also gained attention. A fuzzy-chaos enhanced binary 
whale optimization algorithm (CF-BWOA) proposed by Anter et al. 
(2020) utilized fuzzy c-means clustering and chaotic initialization for 
feature selection and sensor fault classification. C.-L. Li et al. (2022)
proposed the combination of the Mallat (MA) algorithm, 
weight-elimination (WE) algorithm, conjugate gradient (CG) algorithm, 
and multi-dimensional Taylor network (MTN) dynamic model 
(MA-WE-CG-MTN) to build residual-based fault indicators for light
weight deployment. Zhou et al. (2023) introduced the improved bald 
eagle search for KELM parameter tuning with kernel density estimation 
(IMBES-KELM-KDE). This model achieved 100 % FDR and 0 % FAR on 

sensor faults, much better than CNN, LSTM, and other baseline models 
in their research.

Currently, transfer learning and other AI models are mainly applied 
to cope with sparsely labelled data, nonlinear dynamics, and variable 
operational conditions in anomaly monitoring. Importantly, transfer 
learning exploits knowledge from similar domains to increase the 
generalizability of models and minimize dependence on labelled data. 
On the other hand, particle filtering, Bayesian inference, hybrid opti
mization, and self/semi-supervised techniques can offer flexibility, 
interpretability, and adaptability for real-time, multi-fault, and sto
chastic conditions. Hence, future studies should focus on the develop
ment of hybrid and integrated AI approaches to improve the robustness 
and usability for anomaly monitoring in real full-scale WWTPs.

3.3. Fault-tolerant control and resilience improvements

Fault-tolerant control and resilience enhancement technologies for 
WWTPs are designed to ensure stable operation and timely recovery 
from anomalies or suboptimal conditions. Due to the complexity and 
diversification of WWTPs, fixed parameter or semi-adaptive control 
methods are facing serious challenges. But AI-based methods with ca
pabilities of adaptation, prediction, and intelligent decision support 
have been proven to be promising in enhancing fault tolerance and 
system resilience over the past few years. Fig. 10 summarizes the 
respective uses and relevant features of the methods validated either in 
simulation or real industrial environments. Recent studies in this field 
are centred on adaptive and self-healing control, soft sensor and fault- 
tolerant reconfiguration, predictive diagnosis and warning, and digital 
twins and virtual enhancement techniques. Fig. 10 divides the literature 
in this field into these four key topics and summarizes each topic from 
three aspects, including key features, application scenarios, and repre
sentative methods/models.

Recent studies on adaptive and self-healing control in WWTPs have 
focused on the employment of neural network-based models such as 
adaptive neuro-fuzzy inference systems (ANFIS), radial basis function 
neural networks (RBFNN), and broad learning systems (BLS). These 
approaches allow proactive adaptation as well as rapid post-fault 

Fig. 10. Knowledge map of AI-based fault-tolerant control and resilience improvement methods in WWTPs.

S. Yang et al.                                                                                                                                                                                                                                    Journal of Environmental Management 392 (2025) 126886 

10 



recovery by automatically detecting anomalies and adjusting opera
tional parameters in real time. For example, Z. Liu et al. (2024) intro
duced a knowledge-guided adaptive neuro-fuzzy self-healing control 
(KG-ANFSHC) strategy for sludge bulking mitigation. By tightly regu
lating DO and nitrate concentration, the scheme showed better accuracy 
and responsiveness on BSM2. Analogously, the Adaptive Performance 
Self-Recovery Control (APSrC) framework proposed by Du et al. (2024)
controlled actuator faults effectively, and the Adaptive Neural 
Fault-Tolerant Control-Nonlinear Mapping (ANFTC-NM) strategy 
introduced by Qiao et al. (2024) was able to solve both actuator faults 
and actuator saturation. More importantly, BLS has now been adopted 
by Z. Liu et al. (2023a) to develop a broad learning based self-healing 
predictive control strategy (BL-SHPC), which increased resilience 
under sludge bulking conditions by quickly correcting anomalies and 
minimizing the need for manual intervention.

Soft sensors based on data-driven and fault-tolerant reconfiguration 
strategies are essential for provide process stability when sensor failures 
occur. For instance, ANFIS soft sensors have great potential in managing 
DO sensor faults and maintaining stable operations despite malfunctions 
in the sensor (Belchior et al., 2018). An improved particle swarm opti
mization (PSO) algorithm integrated with the self-organizing fuzzy 
neural network (SOFNN) can detect and classify sensor faults and pro
cess anomalies (e.g., sludge bulking and sensor drift), thereby giving 
WWTPs better abilities to respond rapidly as well as recover from such 
faults (Dai et al., 2024).

Machine learning predictive diagnosis and warning systems enhance 
WWTP resilience by fault anticipation and proactive intervention. Sri
vastava et al. (2018) employed artificial neural networks and embedded 
systems for fault prediction in reverse osmosis (RO) membranes to 
optimize maintenance. X. Wu et al. (2021) designed an intelligent online 
expert diagnosis system that used moving average convergence and 
divergence (MACD) indicators for anaerobic processes to rapidly iden
tify and proactively intervene in toxic impacts and organic overloads. 
Further, Kulkarni et al. (2023) developed an AI-based Pre
diction-Protection-Optimization (P2O) framework that combined 
LSTM-based water level prediction, anomaly classification, and pump 
station optimization to manage overflow threats as well as sensor 
anomalies. Korodi et al. (2024) also proposed a decentralized proactive 
historian using LSTM networks for effective prediction of sludge pump 
malfunctions and influent quality anomalies. Additionally, Z. Liu et al. 
(2023b) developed a knowledge-aided data-driven fuzzy 
decision-making model (KD-FDM), which improved the accuracy of 
sludge bulking diagnosis and the timeliness of subsequent operational 
adjustments.

Digital twin technology is another effective tool to increase fault 
tolerance with the aid of virtual-physical integration. Icke et al. (2020)
proposed a ML-based autopilot system utilizing quantile regression with 
multi-layer perceptron (QR-MLP) for the enhancement of operational 
stability and resilience under a range of disturbance conditions in a real 
WWTP. W. Liu et al. (2023) also developed a Digital Twin Fault 
Detection (DTFD) model based on convolutional autoencoders for 
real-time simulation and monitoring of sludge bulking and toxic impact 
faults. This model still performed well in anomaly detection accuracy as 
well as in false alarm rates with limited real-world fault information. 
Fasanotti et al. (2018) proposed an Artificial Immune Intelligent Main
tenance System (AI2MS), where artificial immune systems (AIS) and 
multi-agent systems (MAS) were integrated together to maximize fault 
detection, isolation, and recovery capabilities in distributed WWTP 
networks.

In short, intelligent decision-support systems based on mathematical 
modelling and residual analysis can effectively solve complex issues 
such as sludge bulking and process instability in WWTPs and show better 
interpretability and faster anomaly detection (W. Liu et al., 2023; Z. Liu 
et al., 2023c; X. Wu et al., 2021). By coupling multi-source data fusion 
with advanced modelling methods, the above AI-based techniques have 
transformed the passive control mode into a proactive, 

knowledge-driven management framework, which can improve the 
system’s robustness, operational efficiency, and decision-making 
autonomy.

3.4. Challenges, limitations, and future trends

Development and application of AI-based approaches for managing 
anomalies in WWTPs face various challenges and limitations. The first 
challenge involves data quality and reliability. Maloperation and fouling 
of sensors, calibration drift, and noise disturbance can deteriorate the 
data stream and lead to distorted or lost inputs (Ba-Alawi et al., 2023a). 
If AI-driven systems are trained on these abnormal datasets, their reli
ability can be undermined due to defective anomaly detection or diag
nosis. Cross-facility variation brings another significant challenge. Since 
the operating conditions and influent characteristics in different WWTPs 
vary, AI models that perform well for one facility may work poorly if 
applied to another due to changes in data distributions and process 
dynamics (D. Yang et al., 2024b). Most existing models are not yet 
adaptable enough to transfer knowledge among the WWTPs. This fa
cility variability and overall data integrity issues, indicate the necessity 
of more powerful and more adaptive AI solutions for the application.

Apart from these challenges, the current AI strategies also exhibit 
several intrinsic limitations, which present practical application in
efficiencies. The first major limitation concerns the transparency and 
interpretability of those state-of-the-art models. Complex deep learning 
algorithms can act as “black boxes” making it difficult for on-site oper
ators to comprehend and trust AI-generated alarms or diagnostic results 
when making operational decisions (Ba-Alawi et al., 2023b). Second, the 
limited ability of AI-based methods for real-time processing at large 
scale due to the high computational demand is another constraint. 
Models such as transformers or VAEs possess tremendous power, but 
computational complexity prevents their application in real-time under 
resource-scarce conditions (Peng et al., 2022b). These kinds of models 
that run well in the lab may struggle to meet the online feedback speed 
requirements of WWTP monitoring and control. Furthermore, the cost of 
deploying AI-driven anomaly management systems at an industrial scale 
is uncertain. While positive influence can be inferred from early research 
findings, the additional costs associated with sensors, data infrastruc
ture, model training, and maintenance are not yet well quantified 
(Ba-Alawi et al., 2021; Cassidy et al., 2020). With all these limitations, 
water utilities may currently be reluctant to take the risk of investing in 
or adopting AI-based anomaly management solutions at full scale in 
WWTPs.

Future innovations will be helpful in overcoming these challenges 
and limitations. Improving sensor data should be of primary importance, 
which can be achieved by the integration of real-time data quality 
assessment and adaptive signal processing modules into Supervisory 
Control and Data Acquisition (SCADA) systems. Accordingly, devel
oping resilient preprocessing and automated self-calibration techniques 
will help ensure AI algorithms operate on accurate, high-quality inputs. 
Advanced multi-sensor data fusion and outlier detection methods can 
also be employed to filter noise and correct sensor drift in real time, 
preventing “garbage-in”, “garbage-out” situations. Another critical di
rection will be the improvement of model generalizability across facil
ities. The collaborative AI model training across multiple sites can be 
achieved based on the information from multiple WWTPs. Transfer 
learning, domain adaptation, and federated learning can be used to 
transfer knowledge from plant to plant. Adaptive learning strategies 
should also be sought so that the model can update or recalibrate 
promptly as new data arrives. AI-based systems can adapt to varied 
influent patterns and anomaly types by means of online learning or in
cremental models to perform well under different conditions. Further
more, generative adversarial networks (GANs) demonstrate a new way 
of generating additional anomaly samples, which can be employed for 
extending the size of the training datasets as well as the capability of the 
model to interpret previously unrecognized types of faults (Xia et al., 
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2022). GAN-based data augmentation can enhance adaptive learning 
frameworks, especially in cases where labelled anomaly data is limited. 
Explainability and large-scale deployment of AI solutions should be 
among other future research priorities. Attention-based models excel at 
capturing complex dependencies and salient features in multivariate 
time series, which may enhance early detection and interpretation of 
process anomalies (Niu et al., 2021). Future studies are encouraged to 
investigate the adaptation and implementation of these techniques 
within the WWTP context, as data availability and computational ca
pabilities continue to advance. Incorporating explainable tools (e.g., 
SHapley Additive exPlanations (SHAP) or Local Interpretable 
Model-agnostic Explanations (LIME)) into AI-based anomaly detection 
and diagnosis models or operational systems will be one of the potential 
ways to reduce the “black box” nature of AI models (Ravi et al., 2021; 
Zou and Petrosian, 2020). It should be noted that while explainable or 
interpretable AI methods can provide valuable insights into model 
behaviour and support validation with existing domain knowledge, they 
do not directly reveal real-world mechanistic or causal relationships 
(Antwarg et al., 2019; Ravi et al., 2021). Instead, such measures are 
appropriate ways of assessing model consistency with expertise and 
generating hypotheses for future research, but they do not provide 
causally explanatory results. Integration of AI models with digital twin 
platforms is also a promising direction. A digital twin is a virtual visu
alization of the treatment plant, so coupling AI with such simulations 
allows for the safe testing of anomaly scenarios and control strategies in 
a risk-free environment. Through computer simulation experiments, 
researchers can generate worthwhile results employing the synthetic 
data of rare events in order to improve fault detection algorithms and 
resilience strategies before they can be used in real systems. To meet 
real-time operational requirements, the design of lightweight AI archi
tecture and the use of edge computing are also research directions that 
deserve more attention. Future studies should pay more attention to 
model compression, the design of lightweight neural networks, and 
distributed computation frameworks, since these methods can reduce 
hardware load and inference latency without losing accuracy. Finally, 
the practicality of AI-based anomaly management systems should be 
determined through cost–benefit analyses along with industrial pilots. 
Quantifying the trade-offs between performance improvements (e.g. 
fewer effluent violations, energy savings, and environmental protection) 
and the implementation costs will help demonstrate a clear commercial 
landscape. If these paths are followed, future research can fill the 
noteworthy gaps we have highlighted in the survey. These multi-faceted 
efforts will be of great benefit in the evolution of more resilient, trans
parent, and cost-effective AI uses for anomaly management of WWTPs.

4. Conclusions

This work critically reviewed the theoretical development and in
dustrial application of AI across the life cycle of anomaly management in 
WWTPs, identifying important opportunities and current limitations. 
Findings revealed that AI-based approaches significantly improved the 
management of sensor data quality and self-calibration, thus providing 
robust support for downstream anomaly detection and diagnosis. 
Different AI approaches and tools exhibited varied and specialized de
velopments in anomaly detection and fault diagnosis, well responding to 
the multimodal, highly noisy nature of wastewater treatment processes 
and enabling real-time, accurate monitoring and decision-making. 
Concurrently, the important contribution of AI approaches to fault- 
tolerant control and improvement of system resilience was also high
lighted, where adaptive learning and intelligent decision-support 
significantly improved the speed of system recovery in the face of 
complex disturbances. However, the implementation of AI technologies 
faces various critical constraints. Data quality remains a major chal
lenge, where the drift and failure of sensors induce data distortions that 
can compromise model accuracy and reliability. Generalizability of AI 
across different WWTPs was another big issue, considering the diversity 

in operating conditions and influent properties across facilities. Lack of 
interpretability by AI models also limited their adoption and trust in 
real-world applications. The high computational demands of complex AI 
algorithms also came in conflict with the real-time monitoring re
quirements of WWTPs. For the future, research ought to focus on the use 
of hybridised data fusion, lightweight and real-time model architectures, 
transparency through explainable AI approaches, and more flexible 
transfer learning frameworks. Overcoming these constraints is expected 
to enable generalised, responsive, cost-effective intelligent anomaly 
management systems, thus improving the sustainability and operational 
efficiency of the wastewater treatment industry in real-world 
operations.
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