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Abstract

This thesis investigates the rich and complex behaviour of nonlinear dynamical
systems through the lens of the Swing Equation, a fundamental model in power system
dynamics. The Swing Equation, characterised by its nonlinear properties, exhibits diverse
dynamical phenomena including period-doubling bifurcations, quasiperiodicity, chaos,
and intermittency. The primary aim of this study is to apply the principles of nonlinear
dynamics and perturbation theory to uncover the intricate patterns of stability and
instability that arise under varying system parameters and external excitations.

A comprehensive exploration of both analytical and numerical techniques is undertaken
to examine the system’s response to primary and subharmonic resonances, including
the transitions leading to chaos. Through methods such as the Floquet theory, method
of strained parameters, and tangent instability analysis, the study evaluates the swing
equation’s sensitivity to perturbations and external forcing.

The investigation further explores the effects of quasiperiodicity specifically, how
quasiperiodic forcing influences the system’s route to chaos and alters its basins of
attraction and Lyapunov exponents. These theoretical insights are supported by detailed
graphical simulations, including bifurcation diagrams and Poincaré maps, which visualise
the transitions and loss of synchronism.

Moreover, the study incorporates experimental modelling using Matlab Simulink,
simulating the swing equation under various resonance conditions and comparing the
results with the analytical predictions. Integrity diagrams are constructed to identify
regions of stability and quantify chaotic transitions.

An additional focus is placed on the phenomenon of intermittency, exploring how
the swing equation responds to small fluctuations in system parameters such as inertia
and voltage, and how these contribute to erratic switching between ordered and chaotic
states.

Finally, the thesis examines load shedding as a stabilisation strategy. Analytical
derivations are presented for both conventional and modified schemes, and their impact
on system behaviour is validated through numerical simulation.

This multifaceted approach provides a deeper understanding of nonlinear behaviour
in power systems and highlights the importance of robust analytical tools in predicting
and mitigating chaotic responses. The findings have direct applications in improving
resilience and control in modern electrical grids, particularly under conditions of high
variability and complexity.
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Chapter 1

Introduction

1.1 Background and Motivation

The increasing complexity of modern electrical grids, driven by a rising share of renewable
energy integration, distributed generation, and responsive loads, poses a substantial
challenge to ensuring grid stability and resilience. The operation of a power system
is inherently dynamic; even minute disturbances can trigger large-scale oscillations or
instabilities due to the nonlinear interactions between components [1, 2]. These phenomena
are no longer rare edge cases, they are becoming increasingly prevalent as systems operate
closer to their limits to meet modern demand profiles.

A key component of this dynamic behaviour lies in the interaction between mechanical
and electrical subsystems in synchronous machines. The swing equation, a second-order
nonlinear differential equation, models the rotor angle dynamics of synchronous generators
and serves as a fundamental framework in power system stability analysis [3]. While
originally developed in the context of small-signal stability, the swing equation has since
become a central model in the study of nonlinear dynamics within power systems [4].

Traditionally, power system analysis relied heavily on linearisation techniques, which
provide valuable insights under small disturbance assumptions. However, as systems
increasingly operate under stressed conditions, these linear methods often fall short
of capturing critical dynamical behaviours, such as period doubling, quasiperiodicity,
intermittency, and deterministic chaos [5]. These nonlinear phenomena considered, while

mathematically rich, pose real engineering risks including loss of synchronism, voltage
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collapse, and oscillatory instability.

This research is motivated by the need to apply nonlinear dynamics and perturbation
theory to enhance our understanding of these complex behaviours. By constructing an
extended formulation of the swing equation that incorporates parametric and external
excitations, this work provides a pathway to study how modern power systems respond
to disturbances beyond the linear regime. The aim is not only to contribute to theoretical
understanding but also to offer practical insights into modelling, prediction, and control

of instability in electrical grids.

1.2 Historical Development and Theoretical Context

The swing equation has a long-standing history in electrical engineering, tracing back to
the early 20th century. It was initially derived from Newton’s second law applied to the
rotational motion of synchronous machines, describing the angular acceleration of a rotor
in response to the imbalance between mechanical torque and electromagnetic torque. As
early as the 1930s, power system engineers recognised its utility in describing transient
stability, a system’s ability to maintain synchronism following a disturbance.

Over the decades, the swing equation evolved from a basic stability tool into a
canvas for nonlinear dynamic exploration. Particularly from the 1970s onward, with
the emergence of chaos theory and advances in computational mathematics, researchers
began to discover rich dynamical structures embedded within seemingly simple systems.
The swing equation, when subjected to periodic or quasiperiodic forcing, exhibits a wide
range of behaviours, including strange attractors, bifurcations, and fractal basins of
attraction [3].

These findings not only deepened the mathematical appeal of the swing equation
but also revealed practical implications for real-world systems. For instance, a generator
operating near a bifurcation point may suddenly lose synchronism even under nominal
load conditions [2]. Hence, understanding these transitions and their precursors is critical

for designing robust control and protection strategies.
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1.3 Challenges in Nonlinear Power System
Dynamics

The nonlinear nature of power system dynamics introduces several unique challenges.

These include:

e Non-uniqueness of solutions: Unlike linear systems, nonlinear systems can exhibit

multiple equilibria, some of which may be unstable.

e Sensitivity to initial conditions: Small differences in initial states can lead to vastly

different long-term behaviours, especially in chaotic regimes.

e Complex bifurcation structures: Power systems can undergo abrupt qualitative
changes in behaviour as parameters are varied, including Hopf, saddle-node, and

torus bifurcations.

e Computational burden: Nonlinear simulations require fine temporal resolution and
often large-scale computation, especially when including multiple generators and

control loops.

Moreover, the presence of non-conservative forces, time delays, and discontinuities
in control logic further complicates modelling efforts. To address these challenges, this
thesis adopts a hybrid methodology balancing analytical approximations via perturbation

theory with numerical simulations and experimental validations using Matlab Simulink.

1.4 Problem Statement and Research Gap

While numerous studies have addressed aspects of nonlinear behaviour in power systems,
there remains a critical gap in integrating analytical, numerical, and simulated perspectives
under a cohesive framework. Prior research often isolates one method either relying solely
on numerical simulations or employing abstract analytical tools without experimental
corroboration.

This thesis addresses this gap by:
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e Developing a generalised version of the swing equation that incorporates parametric

excitation, external forcing, and nonlinear damping.

e Applying multiple-scale perturbation methods to derive approximate solutions

under primary and subharmonic resonance conditions.
e Using bifurcation analysis and Lyapunov exponents to characterise stability boundaries.

e Implementing the extended model in Matlab Simulink to simulate and validate

behaviours such as chaotic attractors and intermittency.

e Exploring load shedding as a practical control strategy to mitigate instability and

chaotic transitions.

This holistic approach allows for the cross-validation of theory and simulation, offering

greater confidence in the findings and their applicability to real-world systems.

1.5 Research Objectives

The overarching goal of this research is to investigate the nonlinear dynamics inherent
in power systems through a rigorous and multifaceted analysis of the swing equation.
This study seeks to go beyond traditional linear approximations and delve into the
deeper mathematical structures that govern stability, resonance, and chaotic transitions
in dynamic power systems. By constructing an extended form of the swing equation that
incorporates parametric and external excitations, nonlinear damping, and time-varying
parameters, this work aims to uncover how small perturbations can propagate and evolve
into significant instability phenomena.

A key objective is to develop robust analytical methodologies for exploring the
dynamic response of the swing equation, particularly under primary and subharmonic
resonance conditions. Through the application of perturbation techniques such as the
method of strained parameters and multiple time scale analysis, this research aims
to derive approximate solutions and interpret their implications for system stability.
These analytical tools will be essential for identifying critical parameter thresholds where

bifurcations occur, enabling the classification of stability regimes and chaotic behaviour.
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Another significant focus is the use of numerical simulations to complement and
validate the analytical findings. By generating bifurcation diagrams, Poincaré sections,
and Lyapunov exponent plots, the research will provide a detailed map of the system’s
qualitative dynamics across a wide range of excitation frequencies and amplitudes.
These simulations are particularly valuable in regions where analytical solutions become
intractable, allowing for visualisation and deeper interpretation of complex dynamical
transitions.

Moreover, the research aims to explore the effects of quasiperiodicity, a phenomenon
where multiple incommensurate frequencies interact within the system. This component
is critical for understanding real-world scenarios in which power systems are subjected to
variable frequency disturbances, such as those caused by renewable energy sources. The
objective is to examine how quasiperiodic forcing alters the structure of the system’s
attractors and stability boundaries, and how it influences the routes to chaos, especially
in comparison to classical resonance induced transitions.

In addition to theoretical and numerical investigation, this work emphasises practical
modelling through the use of Matlab Simulink. The goal is to create an experimental
simulation environment that mimics the physical behaviour of the swing equation under
various conditions. This includes verifying chaotic behaviour, validating theoretical
predictions, and testing the robustness of different stability control strategies. Simulink
serves as a bridge between abstract mathematical models and real-world system behaviour,
making the findings of this study more applicable to engineering practice.

Finally, the research aims to assess the effectiveness of load shedding as a method of
stabilising power systems operating in the nonlinear regime. This includes developing
both conventional and modified load shedding schemes, formulating stability equations
for each, and analysing their impact on delaying or mitigating the transition to chaos.
By integrating these approaches into the overall study, the research aspires to contribute
actionable strategies for improving power system resilience in the face of nonlinear

disturbances.

1.6 Research Questions

To guide the investigation, the following research questions are posed:
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1. How do nonlinear interactions within the swing equation influence the onset of

chaotic dynamics?

2. What are the critical parameter regimes where the system transitions from stable

periodic motion to chaotic behaviour?

3. How do primary and subharmonic resonances compare in their impact on the

stability and response of the system?

4. What role does quasiperiodic forcing play in shaping system behaviour, particularly

in terms of bifurcations and attractor structures?

5. Can the swing equation be validated through circuit simulation models on Matlab

Simulink, and how well do these align with theoretical predictions?

6. How effective are load shedding strategies in modifying bifurcation structures and

delaying the transition to chaos?

1.7 Methodological Overview

The methodology adopted in this research is deliberately multidisciplinary and structured
to investigate the swing equation from multiple analytical, numerical, and simulated
perspectives. At the core of this approach is the mathematical formulation of an
extended swing equation, incorporating both parametric and external excitation terms,
damping, and voltage effects. This foundational step enables a more realistic and flexible
representation of power system dynamics under varying operational conditions. Once
the model is defined, analytical methods are employed to study its behaviour under
conditions of resonance. Techniques such as the method of strained parameters, multiple
scales, and Floquet theory are used to identify solutions that exhibit primary and
subharmonic resonances. These techniques allow the researcher to derive approximate
but insightful expressions that characterise the onset of complex behaviour, such as
oscillatory instabilities or bifurcations.

Complementing the analytical investigations are detailed numerical simulations, which
serve both to validate theoretical findings and to explore the full nonlinear character of the

system in parameter regions where analytical techniques lose applicability. Simulations are
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used to construct bifurcation diagrams, plot Lyapunov exponents, and generate Poincaré
maps, all of which provide critical visual and quantitative insights into the system’s
stability and its transition into chaos. The influence of forcing amplitude, frequency,
damping, and system bias is systematically studied, enabling the construction of integrity
diagrams that highlight regions of ordered and disordered dynamics.

Furthermore, Matlab Simulink is employed as a platform for experimental modelling
and dynamic simulation. This software environment allows for the construction of virtual
circuit models that mimic the behaviour of synchronous machines under dynamic stress.
The simulations closely mirror the theoretical formulations of the swing equation and
allow for real-time manipulation of system parameters. This step is crucial for validating
theoretical predictions and for understanding how chaotic or periodic behaviour manifests
in real-world power systems. Simulink simulations also form the basis for implementing
and testing stabilisation schemes, including various forms of load shedding. Overall, this
hybrid methodology encompassing mathematical derivation, numerical computation, and
experimental modelling ensures that the research remains theoretically sound while also

grounded in engineering reality.

1.8 Contribution and Originality

This research makes several significant contributions to the field of nonlinear dynamics in
power systems, both in terms of theoretical advancement and practical application. One of
the key contributions lies in the development and analysis of an extended swing equation
model that goes beyond traditional formulations by considering quasiperiodic forcing,
intermittency and non-ideal damping. These additions allow the system to capture a
broader range of realistic dynamic behaviours, including chaotic attractors and complex
bifurcation scenarios that are not readily observed in classical models. This refined
mathematical framework provides a more accurate and comprehensive representation of
the dynamic response of synchronous machines, particularly under extreme or unstable
operating conditions.

Another central contribution is the combined use of analytical, numerical, and
simulation-based techniques within a unified study. While many prior studies isolate these

approaches, this research demonstrates how their integration can produce richer and
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more reliable insights. The application of Floquet theory, method of strained parameters,
and tangent instability analysis to power system models remains relatively underexplored
in existing literature, and this work highlights their effectiveness in detecting critical
thresholds, stability regions, and dynamical transitions. In addition, this research presents
a systematic comparison between different types of resonances primary, subharmonic,
quasiperiodic and shows how each affects the swing equation’s stability in distinct ways.
This comparative analysis deepens our understanding of how resonance mechanisms lead
to chaotic dynamics and synchronisation loss.

Furthermore, the thesis provides a novel treatment of intermittency in the context of
power systems, examining how small changes in parameters such as inertia and voltage
can lead to unpredictable switching between periodic and chaotic regimes. The study of
intermittency and its characterisation using Lyapunov exponents and bifurcation diagrams
brings a fresh perspective to modelling power system instability. A particularly practical
contribution is the detailed evaluation of load shedding strategies as a means of suppressing
chaos and restoring synchrony. By deriving analytical expressions for both conventional
and modified load shedding schemes and validating their performance through simulation,
this research offers tangible strategies for improving system resilience. The originality
of this work also lies in the experimental modelling using Matlab Simulink, where the
theoretical models are brought to life and tested under virtual real-time conditions.
Taken together, these contributions position this thesis as a novel, interdisciplinary
investigation that enhances both theoretical knowledge and engineering practice in the

realm of nonlinear power system dynamics.

1.9 Significance of the Study

The findings of this research hold both theoretical and practical importance. From a
theoretical perspective, the thesis advances the mathematical understanding of nonlinear
dynamical systems within the context of power system models. It introduces refined
analytical tools such as multiple scale perturbation and Floquet analysis to characterise
bifurcations, stability boundaries, and transitions to chaos in driven systems.
Practically, the study contributes significantly to enhancing power system resilience.

As modern electrical grids become increasingly complex and are influenced by the
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variability of renewable energy sources, understanding the conditions that lead to
instability becomes critically important. The use of Matlab Simulink to experimentally
validate chaotic transitions provides a practical bridge between mathematical models
and real-world implementations, offering engineers new strategies for anticipating and
mitigating instability.

One of the most crucial contributions of this work is the investigation of load shedding
as a stabilisation technique within nonlinear power systems. Load shedding—defined as
the deliberate disconnection of certain loads from the grid in response to frequency or
voltage deviations, is a well-established control strategy. However, this thesis explores its
role from a nonlinear dynamical systems perspective, showing how it can influence the
structure of attractors, delay bifurcations, and suppress transitions to chaos.

Furthermore, this research demonstrates that load shedding is not merely a last-resort
emergency measure, but can be strategically employed as a preventive control mechanism.
It highlights the sensitivity of nonlinear systems to parameter changes and shows how
even minimal interventions, when optimally timed and placed, can significantly enhance
system robustness.

The insights gained from this work are expected to support the development of smarter,
more adaptive grid control strategies. These can integrate nonlinear predictive models
to identify early warning signs of instability and apply targeted load shedding to avert
cascading failures. As the grid evolves towards higher complexity and interconnectivity,
the role of load shedding, as reinterpreted through the lens of nonlinear dynamics will

become increasingly central in ensuring system security and operational continuity.

1.10 Structure of the thesis

This thesis is organised in a structured and progressive manner, designed to guide
the reader from foundational concepts to advanced analysis and practical applications.
Chapter 2 evolves with a comprehensive literature review that explores the key theoretical
concepts underpinning nonlinear dynamics, bifurcation theory, chaos, and power system
stability. This chapter provides the context and motivation for the study, highlighting
existing research gaps and establishing the relevance of the swing equation as a model

system.
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In Chapter 3, the formulation of the extended swing equation is presented. This
chapter derives the mathematical model from physical principles, elaborates on its
governing assumptions, and introduces the techniques used for its analysis, focussing on
primary resonance. A preliminary exploration into the behaviour of the system is also
provided here, laying the groundwork for deeper investigation. Chapters 4 focus on the
analytical and numerical examination of the subharmonic resonance, respectively. This
chapters detail the conditions under which the system transitions from periodic motion
to chaos, with extensive use of graphical tools such as phase portraits, Poincaré sections,
and bifurcation diagrams.

Chapter 5 advances the analysis further by introducing sophisticated mathematical
techniques, such as Floquet theory, tnagent instability and the method of strained
parameters to dissect the system’s stability structure. This is followed by Chapter 6,
which introduces quasiperiodic forcing into the swing equation, examining how this
complicates the system’s dynamics and alters its routes to chaos. The discussion includes
analysis of Lyapunov exponents, basins of attraction, and golden ratio forcing.

The practical implications of the model are then tested in Chapter 7, where the
swing equation is implemented in Matlab Simulink. Here, the theoretical and numerical
findings are validated, and new visual tools such as integrity diagrams are introduced.
Chapter 8 explores the phenomenon of intermittency, analysing how small fluctuations
in parameters can lead to unpredictable dynamic shifts, while Chapter 9 investigates the
potential of load shedding as a stabilisation mechanism. Various strategies are developed,
analysed, and tested for their effectiveness in delaying or suppressing chaotic behaviour.

The thesis concludes with Chapter 10 that summarises the research findings, implications
for both academic and industrial settings, and suggestions for future research. Finally,
Chapter 11 outlines the research timeline, project management, and ethical considerations.
Throughout the thesis, each chapter builds upon the last, forming a coherent and
comprehensive investigation into the nonlinear dynamics of the swing equation and its

implications for power system stability.
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Chapter 2

Literature Review

2.1 Introduction to Nonlinear Dynamics in Power
Systems

The modern power system has evolved into a complex network of highly interconnected
and dynamically responsive components. Traditional approaches to power system stability
were largely rooted in linear models and small-signal analysis, offering valuable but limited
insights into the system’s behaviour near equilibrium points [6, 7]. However, as the
operational boundaries of the grid are increasingly challenged due to high penetration of
renewables, fluctuating loads, and power-electronics-based components, the assumptions
underpinning linear models often fail. The resulting dynamics are governed by nonlinear
relationships, time-varying parameters, and feedback-driven instabilities, all of which
require a fundamentally different analytical approach. This has necessitated a shift in
focus toward the field of nonlinear dynamics, which provides the mathematical tools
and conceptual framework to understand, predict, and control complex behaviour in
engineering systems, particularly those involving oscillatory phenomena and sudden
transitions [8, 9].

In this context, nonlinear differential equations, such as the swing equation, emerge
as essential tools for investigating transient and long-term stability in power systems.
These models can capture behaviours such as limit cycles, bifurcations, chaos, and
intermittency, which are often impossible to predict using linear approximations [10, 11].

The nonlinear approach considers a system’s global behaviour, how it responds not

11
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just near its equilibrium, but across a broad range of initial conditions and parameter
variations. This is especially relevant for critical components like synchronous machines,
which play a pivotal role in maintaining synchronism across the grid [12].

Understanding nonlinear dynamics in power systems is not only of academic interest
but has direct implications for operational reliability and control strategy design. For
example, an operating point close to a bifurcation boundary may appear stable under
linear analysis, but can, in reality, be on the verge of transitioning into an unstable
or chaotic regime due to a slight parameter change or disturbance [13, 14]. In real
systems, such transitions can lead to phenomena like voltage collapse, frequency swings,
and cascading failures [15]. By studying these phenomena from a nonlinear standpoint,
system operators and engineers can better anticipate instabilities, design more effective
controllers, and implement stabilisation mechanisms such as load shedding or adaptive
damping [16, 17].

The adoption of nonlinear dynamics into power system analysis has accelerated
in recent years due to the increasing availability of computational tools, advanced
mathematical methods, and simulation platforms like Matlab Simulink [18, 19]. These
tools make it feasible to explore complex systems that were previously too analytically
intractable. In this research, the swing equation will be used as a case study to explore a
wide range of nonlinear behaviours, including resonances, bifurcations, quasiperiodicity,
and chaotic attractors [20]. The goal is not only to understand these behaviours theoretically,
but to also test their practical implications through simulations and propose strategies
for stabilisation. This literature review aims to contextualise this research within the
existing body of knowledge, identify gaps, and highlight where this work offers original

contributions.

2.2 Classical Approaches vs Nonlinear Modelling

Traditionally, the analysis of power system stability has relied heavily on classical
techniques rooted in linear system theory. These methods include linearisation around
equilibrium points, eigenvalue analysis, and frequency response techniques [1-3]. While
these approaches have been instrumental in shaping the early development of stability

assessment tools, they are inherently limited to small-signal behaviours and are applicable
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only under assumptions of near-equilibrium operation. Linearised models can capture
local behaviour accurately, but they fail to account for the rich spectrum of dynamics
exhibited by nonlinear systems, especially under large disturbances or in the presence of
system nonlinearities such as saturation, time-varying inputs, or nonlinear damping.

One of the major limitations of classical modelling lies in its inability to detect
and analyse phenomena like bifurcations, chaos, quasiperiodicity, and multistability
dynamics that emerge only when the full nonlinear nature of the system is considered. In
real-world power systems, particularly those operating near their critical loading points
or experiencing fluctuations in generation and demand, such behaviours are not only
possible but increasingly likely [6, 7]. This motivates the need for nonlinear dynamic
analysis, which is capable of describing both the local and global behaviours of power
systems across a wide range of parameter variations and initial conditions.

The swing equation provides a critical link between classical and nonlinear modelling
approaches. In its basic form, it resembles a damped second-order differential equation and
can be simplified under steady-state conditions. However, as soon as external excitations
such as fluctuating loads or varying generator inputs are introduced, the system reveals
complex behaviours that cannot be captured through linearisation. It is in this context
that nonlinear analysis becomes essential for analysis. For instance, as the damping
ratio or input amplitude changes, the swing equation may exhibit transitions from
periodic motion to quasiperiodic and even chaotic regimes, signalling the breakdown of
synchronism. These transitions are difficult, if not impossible, to observe using classical
tools alone [6, 8].

Moreover, classical models often assume time-invariant system parameters, which
no longer holds true in modern, renewable-integrated power systems. Today’s grids
experience rapid variations in generation from wind and solar sources, sudden changes in
load patterns, and non-negligible time delays in control systems. These factors introduce
a layer of complexity that classical models were never designed to handle. Nonlinear
methods, in contrast, are more flexible and can accommodate time-dependent coefficients,
forcing functions, and even discontinuities in system response.

Several of the recent studies have begun to adopt nonlinear analysis techniques such as
bifurcation theory, perturbation methods, and Lyapunov-based stability analysis to gain

deeper insights into power system behaviour [6, 7, 10]. These studies have demonstrated
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that nonlinear models provide a more accurate and predictive framework, especially in
identifying dangerous transitions that may precede instability or collapse. For example,
the presence of a Hopf or saddle-node bifurcation in a power system model may signal
an impending loss of synchronism or voltage collapse events that linear tools often miss
(17, 18].

The swing equation, when extended and analysed through nonlinear methods, becomes
a powerful model for capturing such transitions. It enables the study of resonance
phenomena (both primary and subharmonic), quasiperiodic attractors, and chaos through
tools such as Poincaré maps, Lyapunov exponents, and integrity diagrams. These nonlinear
constructs are essential for visualising and quantifying the onset of instability in power
systems under non-ideal, real-world conditions [6, 10].

In essence, while classical approaches have laid the groundwork for power system
analysis, they are insufficient for capturing the increasingly complex behaviours found in
modern power networks. Nonlinear modelling provides a richer, more accurate depiction of
system dynamics and is better equipped to address the challenges posed by instability, high
variability, and nonlinearity. This research builds on the nonlinear modelling paradigm,
using both analytical and numerical tools to examine the swing equation in regimes

where classical analysis fails to provide meaningful insights.

2.3 History and Evolution

The swing equation is one of the most fundamental and widely studied equations in power
system dynamics. It models the electromechanical interaction between a synchronous
generator’s rotor and the rest of the power grid. Its origin can be traced back to the early
20th century, when power system engineers sought to understand how machines behave
when subjected to disturbances such as sudden changes in load, generator disconnection,
or short circuits. The basic form of the swing equation is derived from Newton’s second
law for rotational motion, applied to the rotating mass of a synchronous generator [13].
In its classical form, the swing equation relates the acceleration of the rotor angle to the
imbalance between mechanical input power and electrical output power.
Mathematically the classical swing equation formulation reveals the dynamical balance

between mechanical and electrical forces and serves as the starting point for both transient
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and small-signal stability analysis [13, 14].

Historically, the swing equation was primarily used to analyse transient stability, i.e.,
whether a generator can remain synchronised after a sudden disturbance such as a fault
or switching event. For many years, this analysis relied on equal area criteria and other
graphical tools, and the model was often solved numerically due to its nonlinear nature.
However, with the development of computer simulations in the 1960s and 1970s, the
swing equation became central to the design of protection schemes and stability studies
in large interconnected grids [14, 15].

In its simplified linear form, the swing equation assumes small deviations from the
operating point and constant system parameters. This allows for the use of eigenvalue
analysis and linear control theory, which are still commonly employed in traditional
power system planning and operation [1, 3]. However, such linear approximations are
only valid under idealised conditions. As systems became more complex, particularly
with the integration of renewables, fast-switching power electronics, and variable loads, it
became increasingly clear that the swing equation’s nonlinear nature must be preserved
to accurately model and predict system behaviour [6, 7).

In recent decades, researchers have revisited the swing equation from the perspective of
nonlinear dynamics and chaos theory, especially in the context of forced oscillations and
resonance. By introducing external periodic or quasiperiodic forcing into the swing
equation, the model reveals a variety of complex dynamical behaviours, including
bifurcations, quasiperiodicity, and deterministic chaos [6, 10, 19]. These behaviours
are of particular interest because they closely mirror real-world phenomena observed in
power grids such as persistent oscillations, loss of synchronism, and multistable responses
that cannot be predicted using classical methods alone.

Furthermore, the swing equation has been extended and adapted to model multi-machine
systems, networks of generators, and systems incorporating power-electronic interfaces.
In these scenarios, additional terms are added to account for network topology, time
delays, and control loop dynamics. These extensions significantly increase the model’s
dimensionality and complexity, but also its realism and applicability to contemporary
grid challenges [6, 10, 19].

In this research, an extended version of the swing equation is studied, incorporating

parametric excitation, subharmonic forcing, quasiperiodic terms, and intermittent behaviour.
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This formulation allows the investigation of how the system transitions through various
dynamical regimes from steady-state synchronism to periodic motion, and ultimately to
chaotic oscillations under different configurations. The modified swing equation serves as
a gateway to explore nonlinear resonance, intermittency, and stability boundaries, all
of which are essential to understanding the performance and vulnerabilities of power
systems in the modern era.

Thus, the swing equation has evolved from a classical engineering model to a powerful
mathematical framework for nonlinear analysis. It continues to play a central role in
theoretical studies, numerical simulations, and experimental validations in the field of

power system dynamics.

2.4 Basic Concepts and Theories of Nonlinear

Dynamics

2.4.1 Equilibrium Points

Equilibrium points are of utmost importance in comprehending the behaviour of nonlinear
dynamical systems. An equilibrium point refers to a condition in which the state variables
of a system stay unchanged and stable across time and can exhibit either stability or
instability. A stable equilibrium point is characterised by the convergence of neighbouring
trajectories towards the point, suggesting the system’s inclination to revert to that
condition after experiencing minor disturbances. In contrast, an unstable equilibrium point
exhibits paths that diverge, demonstrating the system’s susceptibility to disturbances
and its ability to deviate from this condition. Stability study of equilibrium sites in
nonlinear systems entails investigating the eigenvalues of the system’s Jacobian matrix,
which offers valuable insights into the local dynamics surrounding these points. This is
crucial for forecasting the long-term behaviour of complex systems and is extensively
utilised in disciplines such as physics, biology, and engineering.

When it comes to determining whether or not power systems are stable within the
context of the swing equation, equilibrium points are an extremely important factor to
consider. Within the concept of a power grid, the swing equation is a mathematical model

that provides a description of the behaviour of synchronous generators. The analysis of
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how the system responds to interruptions is a common use of this phenomenon. The
stable operating circumstances that correspond to the equilibrium points in the swing
equation are those in which the generators are in complete balance with the load. For
the purpose of ensuring that the power system is resilient to interruptions, it is vital to
conduct stability studies around these equilibrium points. When a system is equated to
zero, the solution that becomes available is known as the equilibrium point. The equation
can be linearised, which might be helpful in determining whether or not the equilibrium
points are stable. In order to analyse a system that is neutrally stable, it is necessary to

conduct nonlinear analysis [1, 33, 49].

2.4.2 Bifurcation

Bifurcation takes place when a relatively minor alteration to a parameter value of a
system results in a change in the behaviour of the system, regardless of whether the
alteration is topological or qualitative in nature. Discrete and continuous systems both
have the potential to experience bifurcations. The phenomenon of bifurcation has an effect
on power systems and the associated topics, including oscillation and voltage collapse
[17, 18]. There is a connection between this subject and the concept of eigenvalues,
which can be generalised to be analysed in greater detail [19]. In this work, the primary
objective is to provide an explanation for the changes that occur in the bifurcations of
power systems and how these changes impact the electric circuits. Despite the fact that
bifurcation can be addressed with the assistance of a mathematical model, it can also be
described through computer experiments with the assistance of oscillators [20]. These
researchers are also aware of the potential drawbacks that may be encountered while
employing a physical oscillator. In order to circumvent this difficulty, they propose the
utilisation of a computer programme in order to acquire precise and effective results for
the purpose of doing additional research on bifurcations. Miles. W. (1984) has provided an
explanation of a computer software that works to analyse dynamical systems that contain
bifurcations [21]. As an additional point of interest, he mentions that Matlab possesses
a few numerical packages, such as MATCONT and CLMATCONT, that are suitable
for conducting this particular study on bifurcation [21]. In another research article, the

author discusses the peculiar characteristics of a parametrically compressed system and
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elucidates the mechanism behind the symmetry-breaking, pitchfork bifurcation that
occurs through the utilisation of a pinched cylinder device [22]. Both the stability and the
behaviour of the swing equation are influenced by a great number of factors. Additionally,
it was discovered that as the time delay is extended, the limit cycle branches expand
along the bigger delays, resulting in the combination of bifurcations [23].

In addition, bifurcation analysis has been performed on living beings, which is
an interesting development in the field of science. For the purpose of analysing the
transmission of malaria, the research conducted by N. Chitnis and colleagues in 2006 [18]
has focused on bifurcations. In this case, they take into consideration a mathematical
model that contains differential equations in order to determine the duration of the
infection and, consequently, the death rate by utilising equilibrium and bifurcations.
Bifurcation analysis has been utilised by authors such as Qi et al. (2020) for the purpose
of analysing the longitudinal motion of aircraft. By utilising bifurcation theory, they
study how the stability is affected in flight dynamics, specifically with regard to the F-8
Crusader [24]. With the assistance of criteria that are derived by Kishida et al. (2014), it
is possible to manage systems that are characterised by dynamic uncertainty [25]. This
is done in order to ensure that the models remain stable. By altering the values of the
variables in the Mathieu equation, the authors demonstrate the transition of bifurcations
on the pendulum in a manner that is both analytical and numerical [26].

According to Chin-woo Tan et al. (1993), the change in the load of a power system
is also examined after applying some algebraic constraints to the power systems [27].
The researchers come to the conclusion that voltage collapses take place prior to the
discovery of saddle-node bifurcation. As the power demand in the systems is increased,
it is possible to notice a certain degree of sensitivity in the vicinity of the saddle-node
bifurcation. This is because the Jacobian matrix is nearly unique [28]. In situations where
the n-dynamics is larger than 3, it is quite challenging to demonstrate the results. It is in
the work written by Guckenheimer (1983) that this intricate examination of bifurcations
is analysed and presented [29)].

In recent studies, bifurcation analysis is utilised to estimate the boundary of the
chaotic precursors of a parametrically excited pendulum system [26]. This estimation
takes into account the impact of a bias term inclusion in the model, which disrupts

the system’s symmetry. The objective of this analysis is to acquire more profound

18



CHAPTER 2. LITERATURE REVIEW

understanding of the bifurcations involved, with the ultimate goal of achieving a higher
level of realisation for any specific problem. Additionally, the authors indicate that the
simple uneven equation of movement that was proposed on the study results in a variety
of nonlinear events. These phenomena include cascades of period doubling bifurcations,

which were evaluated and compared with various models.

2.4.3 Limit Cycles

Limit cycles are a captivating and prevalent occurrence in non-linear dynamical systems,
wherein the system’s trajectory converges to a closed curve in phase space instead of
attaining a stable equilibrium. Limit cycles, in contrast to equilibrium points, signify
the presence of periodic behaviour within the system [21, 22]. It can exhibit stability,
characterised by the convergence of neighbouring trajectories towards it, or instability,
denoting divergence. Limit cycles commonly arise due to non-linearities that introduce
periodic forces or feedback processes. An essential task in multiple disciplines, including
physics, biology, and engineering, is to comprehend and define limit cycles. These cycles
play a vital role in elucidating the occurrence of oscillatory patterns in intricate systems.
The Van der Pol oscillator and the FitzHugh-Nagumo model are two examples of systems
that display limit cycles. These examples highlight the widespread occurrence and
significance of limit cycle dynamics in nonlinear systems [30, 31].

The existence of limit cycles in the swing equation of power systems can have
substantial consequences for the stability of the system. They can occur as a result of
non-linearities in the mechanical and electrical properties of generators, or owing to
interactions between generators in a connected grid. These limit cycles have the potential
to induce persistent oscillations in the power system, which can result in instability and
disruptions. An examination of limit cycles in the framework of the swing equation entails
scrutinising the system’s reaction to disruptions and comprehending the circumstances
under which limit cycles arise.

Limit cycles have been extensively investigated by researchers on the topic of
identifying local stability in nonlinear dynamical systems [31]. They are helpful in
determining the local stability of these systems and to establish the limits or boundaries

of a dynamical system [32]. When a limit cycle undergoes a qualitative shift, a phenomenon
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known as orbital bifurcation occurs, which is referred to as bifurcation for a limit cycle
[33]. An indirect numerical approach is also described by the researchers, and this is used
to derive the eigen values and stability for linearised equations [34]. For the purpose of
demonstrating periodic limit cycles and the behaviour of the bifurcation, authors also

have used the Bifurcation Theory System Identification (BiTSID) framework [35].

2.4.4 Quasiperiodic Attractors

Quasiperiodic attractors in nonlinear dynamical systems exhibit a more intricate type of
dynamics in contrast to the straightforward periodic behaviour observed in limit cycles.
This type of attractors display movement when the trajectory of the system does not
exactly repeat itself, but instead follows numerous frequencies that are not in a simple
ratio to each other, which leads to a more complex and detailed pattern. These attractors
frequently emerge in systems with several degrees of freedom and are distinguished by the
lack of a direct mathematical depiction, rendering them difficult to analyse. The KAM
theorem, also known as the Kolmogorov—-Arnold—Moser theorem, is a crucial outcome
in the field of quasiperiodic dynamics. It establishes the criteria that determine when a
system with almost integrable Hamiltonian dynamics would display quasiperiodic motion
[36].

In power systems, quasiperiodic attractors can emerge when the interactions and
electrical properties of the generators bring additional difficulties to the dynamics of
the system. This is something that can be noticed in the context of the swing equation.
Because of the complexity of the power system, there is a possibility that quasi-periodic
oscillations would occur, which will make stability analysis more challenging. For the
purpose of forecasting the long-term dynamics of power grids that have been disrupted,
it is vital to have a solid understanding of the origin and behaviours of quasiperiodic
attractors in the swing equation.

Quasiperiodic attractors are characterised by the presence of two or more frequencies
that are incommensurate over a time variation [33]. According to researchers, this
phenomenon can be investigated in power systems, more specifically in a DC-DC regulator
[34]. In a dynamical system, quasiperiodicity is a path that leads to chaos. Additionally,
A. R. Bishop and colleagues (1986) investigate the energy transfers that occur between
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the states in a nonlinear spectrum (nonlinear spectrum) [37].

2.4.5 Chaotic Attractor

Chaotic attractors in nonlinear dynamical systems exhibit a unique and complex pattern
of behaviour characterised by irregular and unpredictable paths. In contrast to periodic
attractors like limit cycles, they do not exhibit steady and repeating patterns. On the
contrary, they demonstrate a sensitivity to the starting conditions, where their paths
diverge rapidly over time, making it difficult to make accurate long-term forecasts.
The Lorenz attractor is a renowned illustration of chaotic dynamics, first seen by
Edward Lorenz during his investigation of atmospheric convection [32]. Chaotic attractors
frequently arise in systems characterised by non-linearities, many interacting components,
or feedback loops. They are essential for comprehending the intrinsic complexity of
dynamic systems. The examination of chaotic attractors has wide-ranging implications in
several scientific fields, including physics, biology, engineering, and economics, enhancing
our understanding of intricate events in nature and society.

In power networks, chaotic attractors can form when generators and the system’s
innate non-linearities interact in a complicated fashion, as seen in the swing equation.
This interaction can be viewed in the power network. It is possible for chaotic attractors
to arise under certain operating conditions or after interruptions, and the swing equation
is a representation of the dynamics of synchronous generators in a connected power
grid. It is possible for the reaction of the power system to display a high degree of
unpredictability and sensitivity to initial conditions, as shown by the presence of chaotic
attractors in the swing equation. In order to evaluate the stability and reliability of power
grids, it is vital to have a thorough understanding of the complexities of chaotic attractors
in the swing equation. This is especially true when dealing with complex interactions
between generators.

According to authors, a chaotic attractor is a type of attractor that does not have an
equilibrium point, a limit cycle, or a torus [33]. One sort of attractor is characterised
by a fractional dimension, which is further investigated in the works cited in [38, 39].
In addition to this, they state that the attractor is equipped with a broadband power

system and that it does not exist in any order that is lower than three.
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2.4.6 Chaos

The occurrence of chaos in nonlinear dynamical systems is a result of their sensitivity
to initial conditions and the existence of non-linearities, which can give rise to intricate
and unpredictable behaviours [26]. In such systems, even slight alterations in the initial
conditions might lead to substantially divergent paths over time, posing difficulties in
generating accurate long-term forecasts. An exemplary demonstration of chaos may be
found in the Lorenz system, which is characterised by the interplay of three interconnected
ordinary differential equations governing the behaviour of a dynamic system [3, 16].
Although the equations may appear simple, the system demonstrates chaotic behaviour,
which is defined by its sensitivity to initial circumstances, non-repetitive paths, and the
existence of a peculiar attractor. The applications of chaos theory span across diverse
domains, including weather forecasting, population dynamics, and financial markets.
These applications highlight the crucial significance of chaos in comprehending intricate
occurrences in both the natural world and civilization.

A nonlinear differential equation that is frequently used to represent the dynamics of
power systems is known as the swing equation [1]. It provides a detailed description of
the operating characteristics of generators that are part of a linked power system. When
the system is working close to its stability restrictions and receives abrupt shocks or load
fluctuations, the swing equation may exhibit chaotic behaviour. This can happen when
the system is running close to its limits. A description of the rotational movement of
generators and the interactions between them is provided by the swing equation. It is
possible for it to exhibit chaotic dynamics under certain conditions. The existence of
chaos in this equation can lead to adverse results, such as widespread power outages
or the onset of cascading malfunctions in the power system. In order to maintain the
dependability and stability of electrical networks, it is essential to comprehend and reduce
disorder in power systems. This highlights the significance of chaos theory in the process
of studying the behaviour of complex engineering systems.

Torus bifurcation, cascade of period doubling bifurcations, and intermittency are the
three paths that lead to chaos, according to Berge et al. (1984) [5]. Several studies have
been conducted to investigate the phenomenon of chaos in extremely complex power

systems. Additionally, an inquiry has been carried out to examine chaos in an autonomous
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nonlinear model in a fractional-order format [40, 41].

2.4.7 Lyapunov Exponents

When undertaking an analysis of nonlinear power systems, Lyapunov exponents are an
essential component. They offer vital insights into the stability and behaviour of these
intricate systems. The rate of exponential divergence or convergence of neighbouring
paths in the state space can be quantified using Lyapunov exponents, which are used in
the context of nonlinear power systems. The stability of the system may be evaluated
with the assistance of these exponents, which indicate whether or not minor changes in
the starting conditions will become more pronounced or less pronounced over the course
of time [1, 33]. In the process of analysing power systems, Lyapunov exponents can be
utilised to locate key points, such as bifurcations or regime transitions. This enables
a more comprehensive understanding of the behaviour of the system under a variety
of different operating conditions. Lyapunov exponent analysis is frequently utilised by
researchers in order to evaluate the stability and robustness of power systems, particularly
when nonlinearities and uncertainties are present.

When applied to the swing equation, Lyapunov exponents provide a strong instrument
that can be utilised for the purpose of describing the dynamic behaviour of synchronous
generators in power systems. The swing equation is used to explain the dynamics of the
rotor angle of these generators, and Lyapunov exponents are used to get insights into
the stability of the synchronous motion. Researchers are able to locate critical points,
bifurcations, and stability boundaries in the parameter space of the system by doing an
analysis of the Lyapunov exponents that are related with the swing equation [1, 21]. Tt is
necessary to have this information in order to build control techniques that will ensure
the steady operation of power systems and reduce the impact of disturbances. There is a
thorough method for understanding the nonlinear dynamics of synchronous generators in
power systems that may be obtained through the combination of the swing equation and
the Lyapunov exponent analysis.

Both Wolf et al. (1984) and Parker and Chua (1989) created techniques to find
Lyapunov exponents. These algorithms were produced through the use of experiments

and simulations [42, 43]. It was stated by Newhouse, Ruelle, and Takens (1978) that chaos
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occurs after a predetermined number of secondary hopf bifurcations [44]. In a system,
the exponents are responsible for monitoring the increase or decrease of disturbances
that are considered to be minute [45]. Due to the fact that Lyapunov exponents are
only specified for an unlimited length of time, the use of technology to solve them can
result in a significant number of inaccuracies. Consequently, the estimation of Lyapunov
exponents is performed by using the data of time series that has already been provided
[46]. Because they are formed from equations that are quite similar to one another,

Lyapunov exponents and floquet multipliers have a close link.

2.4.8 Period Doubling and Poincaré Mapping

The occurrence of period doubling in nonlinear dynamical systems is an important
phenomenon that suggests the existence of a path leading to chaos. The phenomenon
known as bifurcation takes place when a system goes through a sequence of changes that
leads to the doubling of the period of its oscillations. The occurrence of this phenomenon
is commonly associated with the presence of nonlinearities and occurs in a wide variety of
systems, ranging from straightforward mathematical models to observable physical events.
When a parameter is systematically changed, the behaviour of the system shifts from
stable periodicity to progressively complicated and chaotic dynamics. This phenomenon
is known as the period doubling road to chaos, and it is observed in systems that are
governed by logistic maps whenever a parameter is changed. A full explanation of this
bifurcation process is provided by the Feigenbaum constants, which were discovered by
Mitchell Feigenbaum. These constants also highlight the astonishing self-resemblance
that can be found in the period doubling cascade. The examination of period doubling
has significant repercussions for understanding the transition from order to chaos in
dynamic systems, and it is an essential component of chaos theory [32, 33].

The doubling of the period contained within the swing equation is an essential
component of stability analysis in power systems. The swing equation is a representation
of the dynamics of synchronous generators in a connected power grid [33]. In this context,
period doubling may occur as a result of fluctuations in the parameters of the system.
There is the potential for period doubling bifurcations to give rise to a series of occurrences

that become progressively more complex, which can ultimately result in the creation of
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chaotic dynamics. For the purpose of anticipating the stability thresholds of power systems
and analysing the possibility of chaotic responses under given operating circumstances,
it is vital to have a solid understanding of the phenomenon of period doubling in the
swing equation.

According to Perez et al. (1982), basic models have the ability to demonstrate the
existence of period doubling bifurcation and chaos [47]. In this scenario, period doubling
proceeds in a cascade that ultimately leads to chaos [48]. In addition to this, they talk
about the control of the degree of stability that affects chaos.

In the investigation of nonlinear dynamical systems, Poincaré maps, which were
developed by the well-known French mathematician Henri Poincaré, are a powerful
instrument that allows for the exploration of these systems. The maps that are displayed
here are able to efficiently express the essential dynamics of a continuous system by
depicting its intersections with a subspace of lower dimensions, which is generally referred
to as a Poincaré maps. When it comes to the dynamics of trajectories in phase space,
Poincaré’s maps provide valuable insights that may be utilised for the investigation of
complex systems and the identification of essential traits such as stable spots, periodic
routes, and chaotic attractors. As a result of their ability to provide a means to visually and
intellectually grasp the qualitative dynamics of nonlinear systems without the necessity of
solving complex differential equations, Poincaré maps have become an essential instrument
in the study of dynamical systems. Applications of Poincaré’ maps can be found in a
variety of domains, including engineering, biology, fluid dynamics, and celestial mechanics,
among others. Adaptability is demonstrated by their ability to disclose the intricacy of
non-inear occurrences, which is one of their most well-known accomplishments.

Poincaré maps are essential in comprehending the dynamics of power systems
and analysing the swing equation. Through the creation of a Poincaré map for the
swing equation, scientists can examine the system’s dynamics in a space with fewer
dimensions, resulting in a more distinct understanding of stability, bifurcations, and
attractor structures. Poincaré maps are highly valuable for discerning the influence of
parameter fluctuations and disruptions on the power system’s enduring dynamics.

Poincaré equation is when there is an intersection in the same direction between the
flow of the lines in a system [49]. One of the most significant benefits of using Poincaré

is that it reduces the amount of data and separates the time [50]. In addition to being
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of great assistance in distinguishing between the attractors, it also reveals the precise

number of equilibrium points that are present when plotted on a graph.

2.4.9 Basins of attractions

Basins of attraction are essential principles in the analysis of nonlinear dynamical
systems, offering vital understanding into the enduring dynamics and stability of system
trajectories. A basin of attraction in a nonlinear dynamical system refers to a specific
region in the state space [51]. This zone is characterised by the property that when initial
conditions are set within it, the paths of the system will eventually converge towards
a certain attractor. An attractor refers to a stable behaviour of a system, which might
take the form of a fixed point, periodic orbit, or a more intricate structure. The limits
of basins of attraction define the areas where trajectories converge towards different
attractors, thereby separating discrete sections of the state space that are linked with
diverse long-term behaviours. Comprehending the basins of attraction is essential for
forecasting how a system will react to different starting conditions and disturbances,
making it a fundamental tool in the examination of intricate dynamical systems.
Basins of attraction are of utmost importance in the analysis of the swing equation in
power systems as they significantly influence the stability and dynamics of synchronous
generators. The swing equation represents the rotational movement of the rotors in power
generators, while basins of attraction provide a visual representation of the areas in
the system’s state space where the trajectories of the system converge towards stable
synchronous operation. Examining the basins of attraction for the swing equation yields
valuable insights into how various initial conditions affect the stability of the power
system [33]. Researchers utilise this data to develop control algorithms that guarantee
the convergence of trajectories towards desirable operating points, hence improving the

overall stability and dependability of power systems.
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2.5 Quasiperiodicity and Intermittency in Power

Systems

Quasiperiodicity and intermittency are critical phenomena in nonlinear dynamics, particularly
in systems transitioning toward chaos. In the context of power systems, these behaviours
are increasingly observed due to interactions between generators, control systems, and
fluctuating sources such as solar and wind. Quasiperiodicity arises when a system is
driven by two or more incommensurate frequencies, leading to a motion that never exactly
repeats but remains bounded and structured. As discussed above, this behaviour often
emerges in systems subjected to dual or multi-frequency excitations, such as parametric
forcing and external periodic input acting simultaneously [6, 28, 36].

The importance of quasiperiodicity in power system modelling stems from its role as
a precursor to chaos. According to the Ruelle-Takens-Newhouse scenario, a system may
transition from periodic to quasiperiodic, and ultimately to chaotic behaviour through
successive bifurcations of invariant tori [39]. This pathway is especially relevant in swing
equation dynamics where input signals such as load fluctuations or distributed energy
control commands introduce additional frequency components. Several studies have
demonstrated that under quasiperiodic excitation, the swing equation exhibits complex
attractor structures, including toroidal and strange non-chaotic attractors [19, 28].

Another related and equally important concept is intermittency, which refers to
irregular switching between different dynamic states. In power systems, intermittency
can be triggered by minor variations in system parameters such as inertia, damping,
or excitation amplitude. This often leads to abrupt shifts between regular and chaotic
regimes, even when the system appears stable for long durations [6, 19]. Intermittency is
particularly dangerous because it reflects an underlying system operating near critical
thresholds, where small disturbances can trigger large-scale instability.

Three primary types of intermittency are commonly observed: Type I (saddle-node),
Type II (Hopf-related), and Type III (crisis-induced). Each corresponds to a different
route to chaos and can be detected using time series analysis and phase portraits. In
power system contexts, these transitions may result in generator desynchronisation or
frequency oscillations, which are difficult to anticipate using classical stability models.

This thesis explores the role of intermittency in nonlinear swing equation dynamics and
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investigates its occurrence using both numerical simulations and bifurcation tracking

techniques.

2.6 Load Shedding Strategies and Nonlinear

Stabilisation

Stabilisation of nonlinear power systems is a major engineering concern, especially in
systems operating near their bifurcation points or undergoing chaotic oscillations. Among
the various control techniques, load shedding remains one of the most widely applied
strategies for emergency control in power systems. Load shedding involves the deliberate
disconnection of electrical loads to restore power balance and prevent system collapse
during periods of stress or instability [47, 48].

While load shedding is typically considered a last-resort protection mechanism, its
design and timing are critical, especially in systems exhibiting nonlinear dynamics.
Traditional load shedding schemes are usually designed based on frequency thresholds
and do not account for the nonlinear trajectories of system states. However, recent
research has explored adaptive and model-based load shedding strategies that incorporate
bifurcation analysis, Lyapunov exponents, and integrity measures to predict and avoid
instability.

In nonlinear systems such as the swing equation under resonance or quasiperiodic
forcing, load shedding can be used not just for recovery but also for preventive control.
For instance, by reducing the total load at specific frequencies or phases of oscillation,
it is possible to shift the system away from a chaotic attractor or delay the onset of
a bifurcation. Several studies have proposed load shedding schemes based on phase
angle trajectories, damping indices, and chaos indicators, providing more accurate and
responsive control mechanisms [49].

This thesis investigates both conventional and modified load shedding models, deriving
analytical expressions to evaluate their effect on system stability. Simulations are used to
test how load shedding alters the bifurcation structure and basin geometry, and whether
it can expand the region of synchrony in phase space. The findings contribute to the

growing field of nonlinear control for power systems, where techniques like coordinated
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shedding, dynamic relay thresholds, and distributed response mechanisms are being

actively researched.

2.7 Experimental Modelling and Matlab Simulink

While theoretical and numerical analyses offer deep insight into nonlinear system
behaviour, simulation-based modelling plays a crucial role in validating predictions
and testing control strategies under realistic scenarios. Matlab Simulink has emerged as
a leading platform for this purpose, especially for power system applications involving
complex interdependencies between mechanical, electrical, and control subsystems [50, 51].

In this research, Simulink is used to construct an extended swing equation model,
including all nonlinear effects such as parametric excitation, bias, and quasiperiodic
forcing. The simulation environment allows for precise control of parameters and input
signals, enabling detailed exploration of resonance phenomena, bifurcations, and chaotic
transitions. Simulink’s graphical environment also facilitates the implementation of
feedback loops, load shedding mechanisms, and time-varying excitation sources, offering
a dynamic testbed for evaluating nonlinear system behaviour.

Recent studies have utilised Simulink to model synchronisation behaviour under
high renewable penetration, power-electronic control dynamics, and forced oscillation
analysis [49, 50]. These applications underscore the flexibility of the platform in handling
nonlinear, hybrid, and time-delayed systems. Moreover, experimental modelling provides
the opportunity to generate integrity diagrams, phase space portraits, and Poincaré
sections, which are essential for visualising the system’s long-term behaviour under
various configurations.

Here within, the Simulink-based model is used to validate the analytical and numerical
findings derived from perturbation theory, bifurcation analysis, and Lyapunov exponent
computation. The results confirm the presence of stable and unstable regimes, periodic
and chaotic attractors, and the influence of nonlinear damping and load modulation on
system response. This integrative modelling approach ensures that the theoretical results

are not only mathematically sound but also practically relevant.
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2.8 Gaps in the Literature and Relevance of the
Present Study

Despite the significant progress in nonlinear modelling of power systems, several gaps
remain in the literature. First, while many studies address bifurcations and chaos in
simplified systems, few offer a comprehensive integration of analytical, numerical, and
simulation-based approaches using extended versions of the swing equation. Second, most
existing load shedding strategies do not consider the dynamical landscape of the system,
such as basin geometry or attractor type, which limits their effectiveness in nonlinear
operating regimes.

Additionally, there is a lack of studies exploring quasiperiodicity and intermittency
in power systems in sufficient depth. These phenomena are often overlooked in favour of
more easily detectable chaos or bifurcation points, yet they offer critical early warning
signs of instability. Moreover, few works combine these analyses with practical modelling
tools like Simulink to validate theory with near-realistic scenarios.

This thesis addresses these gaps by offering a multi-method investigation of the swing
equation’s nonlinear behaviour. It contributes to the field by developing a generalised
equation that incorporates multiple excitation sources and damping models, applying
advanced perturbation techniques and chaos detection tools, and validating all results in
a simulation framework. Furthermore, it proposes and tests new load shedding strategies
rooted in the geometry of basins of attraction and bifurcation structures bridging the
gap between nonlinear theory and control engineering practice.

Through this integrative approach, the research provides not only novel theoretical
insights but also practical tools and strategies for predicting, visualising, and mitigating

instability in modern power systems.

2.9 Research Paradigm

Within the scope of this investigation, a positivist paradigm is adopted to provide the
research questions with a robust framework that is both analytical and empirically
grounded. In the context of the social and applied sciences, positivism has long served

as a foundational research philosophy. It asserts that reality is objective, external, and
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governed by immutable natural laws that can be discovered through observation and
reason. Positivist research is built on the belief that the world can be measured and
understood through quantitative analysis, and that facts exist independently of the
observer [52, 53].

According to authors, research in the scientific domain typically aligns with the
explanatory focus of the positivist paradigm [54]. The goal is to explain phenomena
through cause-effect relationships and generalisable laws. Importantly, researchers working
within this paradigm are expected to maintain a level of detachment from the study
subjects in order to minimise bias and uphold objectivity. As researchers note, the
philosophical stance of the researcher is embodied in their paradigm, which in turn
influences every methodological and analytical decision made throughout the research
process [54, 55].

In this study, the positivist approach is manifested through the adoption of a
quantitative methodology. Data will be collected through simulations, numerically
analysed, and interpreted through structured methods such as numerical simulations,
mathematical modelling, and computational analysis. By following a deductive logic,
hypotheses can be tested, predictions can be validated, and findings can be replicated,
thus ensuring scientific rigour.

Moreover, sufficient theoretical rationale will be presented to support the chosen
methods and to frame the interpretation of the results. The use of testable components
such as the swing equation and its nonlinear extensions serves as a solid foundation for
drawing comparisons, identifying patterns, and evaluating the consistency of outcomes
across different scenarios. This structured, methodical approach allows the researcher to
not only uncover significant dynamic behaviours (such as bifurcations and chaos), but
also to compare these behaviours with theoretical expectations, thereby reinforcing the
validity of the research.

Overall, the selected paradigm underpins a structured, measurable, and replicable
study that aims to contribute meaningfully to the understanding of nonlinear dynamics
in power systems. It provides a philosophical and practical guide for the entire research

process, from hypothesis formulation and model development to analysis and interpretation.
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Investigation into the Primary

Resonance

3.1 Formulation of the Swing Equation

The swing equation studied here depicts the motion of rotor of machine as shown below

in Figure 3.1.

Xg

Figure 3.1: Swing equation describing the motion of the rotor of the machine. Figure
reproduced from [33].

Initially the classical swing equation is derived in order to understand how the
mechanical realisation of the model leads to its formulation.

Considering the Law of rotation,

32



CHAPTER 3. INVESTIGATION INTO THE PRIMARY RESONANCE

d?0,,
dt?

where J is the moment of combined inertia.

J =1,=T,—-1T.

Om = Wemt + 6
The first derivative is given as:
do,, n df
- = wsm R
dt dt
The second derivative is:
d?6,, B d*0
ez de?

Substituting into the law of rotation:

d*0
dt?
Multiplying throughout by wg gives:

:Ta:Tm_Te

d*0

w = TawR = meR — TewR = Pm — Pe

JwR

where

0m: Mechanical rotor angle

6: Deviation from synchronous angle (i.e., 6,, = wgy,t + 0)

T,: Accelerating torque

T,: Mechanical torque supplied by the prime mover

T,: Electromagnetic torque developed by the generator

J: Combined moment of inertia of the rotor system

Wem: Synchronous angular velocity

e M = Jwg: Angular momentum
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o P, =T, wg: Electrical power output

P. = V)G(ZB sin (0 — 0p)
2H
J(,LJR =M=—
WR

Finally, converting the swing equation into per unit system leads to:

2H0 VoV
WR dt? oo XG

Allowing for a damping term, the full swing equation becomes:

sin (9 — 93)

2H d?*0 do VeV
4D =P, - in (6 — 0
WR dt? * dt XG Sln( B)
where:
VB = VBO + V31 COS (Qt + (bv)
63 = 930 + 931 COS (Qt + ¢0)
with:

wgr: Constant angular velocity

H: Inertia

D: Damping

P,,: Mechanical Power

Vi Generator voltage

Xq: Transient reactance

Vp: Bus voltage

fp: Phase of the bus
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The magnitudes Vp; and g, are assumed to be small.

For the purpose of conducting additional research, a mathematical analysis is
performed on this equation. Multiplication and other fundamental mathematical operations,
such as algebraic techniques for expanding brackets, are carried out at the beginning of
the process. Following that, the Taylor expansion and substitution are carried out in
order to generate the final equation that will be utilised for the perturbation experiment.

In the following step, the Floquet theory is taken into consideration for its numerical
application. In this step, some analytical work was done in order to extract the equations,
which were then utilised for graphical communication.

An additional way of strained parameters, as mentioned by Nayfeh (1981) [9], is the
subject of this discussion. Therefore, with the assistance of mathematical processes, the

equations are obtained in the appropriate manner.

3.2 Introduction

In the context of a power system, the concept of disturbances, which can be defined as
sudden or sequential changes to the system’s characteristics or operating quantities, is
intimately connected to the concept of stability. When it comes to the dynamics of a
system, even a relatively minor disruption can have an effect that is both interesting
and important. The process of studying the stability of a system can be accomplished
by employing several approaches, such as linearising the equations that represent the
system [1, 61], undertaking eigenvalue and frequency response methods [2, 3, 62].

For the purpose of this investigation, a system with a single degree of freedom is taken
into consideration. This system will make it possible to investigate nonlinear dynamics
and will also take into account chaotic attractors. The nonlinear component of solving
a system is the primary emphasis of this investigation. Methods such as perturbation
techniques and nonlinear methods are utilised in making this determination. The initial
phase of this investigation is the representation of an infinite busbar under the assumption
that both the voltage and frequency remain constant. A metallic strip or bar that is
utilised for the delivery of high-current power is known as a busbar system. Home circuits,
switchgear, and panel boards are the typical applications for this component. In most

cases, the busbars are not insulated, and they are supported by insulated pillars that
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are exposed to the air. This provides sufficient cooling for the conductors during the
process [63]. If a classical representation is taken into consideration, which means that
there is a constant voltage behind a transient reactance, then the busbar system can be
reduced to a second-order differential equation, but the coefficients will remain constant.
The analogous swing equation is considered here within, which includes parametric and
external excitations, allowing for the techniques of perturbation theory to be employed
under this new formulation of the extended busbar system [5, 6]. This is due to the fact
that the resulting equation does not offer a great deal of information that is either useful
or novel regarding the response of the system.

This newly formulated swing equation will be analysed analytically and numerically
to obtain a better understanding of the stability of the model.

A power system is stable at a particular operating condition when it is able to
maintain a steady state. When the system experiences a small disturbance, it is able
to return to its pre-disturbance operating conditions or achieve a steady state once
again. However, in the event of a large disturbance, the equations that describe the
system’s behaviour can no longer be linearised, and it becomes necessary to use numerical
simulation techniques based on geometric methods to analyse the system’s behaviour,
which is now considered to be a part of nonlinear dynamics [6, 7]. The focus of this paper
is the nonlinear aspect of systems which can be addressed through various dynamical and
perturbation techniques [8, 9]. Researchers have studied the swing equation which showed
the rotor of the machine’s motion [6, 7, 10]. Although power systems have been studied
for quite some time now, the growth of the topic is tremendous. The power system in
electric applications has seen ongoing development in many areas [11, 64]. With this
growth, the conservation of energy and renewing the existing energy have been under the
radar by many institutions. To help with the environmental concerns the power systems
must be studied further, and new techniques should be introduced [12, 65].

The swing equation which is studied initially in this research work will play a vital
part in the analysis of the dynamics of a power system [13, 66]. It does exhibit similar
characteristics as other power systems, but it is imperative to analyse it first in detail for a
better understanding of the concepts. Recent research has found that the generalised form
of the swing equation also helps with understanding transient stability in power-electronic

power systems [14, 67]. During any slight disturbance, the rotor of the machine will show
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some motion with respect to the synchronously rotating air gap. This in turn starts
a relative motion allowing for the swing equation to describe and model this relative
motion [15, 16, 68, 69]. Although Tamura et al.[10] initiated the quasi-infinite busbar
which is formulated in phase and magnitude, Hamdan and Nayfeh [3, 8] improved the
idea to have quadratic and cubic nonlinearities. This helps in applying techniques such
as perturbation analysis to the single-machine-quasi-infinite busbar system.

As it is well known, bifurcation occurs when a small change to a parameter value of a
system causes a change in the behaviour whether this is a topological or qualitative change
occurring in both discrete and continuous systems. A bifurcation has significant effects
on power systems, including oscillation and voltage collapse [17, 18, 70, 71]. Eigenvalue
analysis may be further utilised to consider stability and to determine the nature of
the system [19, 72]. Bifurcations can be studied using both mathematical models and
computer simulations involving oscillators [20, 73]. Some authors have pointed out the
limitations of using physical oscillators for this purpose and have suggested computer
algorithms as an alternative for more accurate and efficient analysis of bifurcations.
In a study [21, 22, 74, 75], the unique nature of a parametrically pressurised system
was characterised using a pinched cylinder, and the mechanism of symmetry-breaking
pitchfork bifurcation was examined. It has been shown that the stability and behaviour
of the swing equation can be affected by various factors, and that increasing the time
delay can cause limit cycle branches to move and combine through bifurcations [23, 33].

In some studies bifurcation analysis is employed to estimate the boundary of the
chaotic precursors of a parametrically excited pendulum system, considering the effect of
a bias term inclusion in the model that breaks the symmetry of the system, gaining deeper
insights into bifurcations entailed with the purpose of growing a higher realisation for
any unique problem [26, 30, 77]. The authors also explain that the easy uneven equation
of movement proposed in the study ends in diverse nonlinear phenomena, inclusive of
cascades of period doubling bifurcations, which had been tested and compared with

different models.

3.3 Analytical Work

Counsider the transformations:
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0 —0p =200+ (3.13)
0o = 6o — o (3.14)
n = A0 — Op; cos( + ¢y) (3.15)

From equation (3.13), it follows that:

sin(6 — Op) = sin(dy + n) (3.16)

Differentiating equation (3.13), the first and second derivatives are retrieved:

d)  dis  dsy _dn

g _ dfs 1
a - at at T (3.17)

20 205 d%,  d

O _ &0 d6 d' 1

2= e Tae T ae (3.18)

Substituting equations (3.13), (3.14), and (3.15) into the original swing equation

(3.10) and multiplying through by $%, it is obtained that:

d?6 N wpDdf  wg wr VaVa
dt2 - 2H dt 2H ™ 2H Xg

Now substituting the derivatives and rearranging terms, the following is:

sin(dg + 1) (3.19)

d277 i wRD d?] wRDP wRD d@B 4 d50 d250 d203 WR VGVB . (5 + )
— — = o — — | -— - —— — ———5in
d? " 2H dt  2H oH \dt = dt ) d  dr  2H Xg 0
(3.20)
Expanding sin(dp + 7) using the trigonometric identity:
sin(dy + 1) = sin §y cos 1 + cos dg sin 7, (3.21)
applying Taylor series expansion for small 7:
2 P
cosn%l—a, sing ~n — o (3.22)

and substituting these into the equation, there is a reduction of:
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d*n  wgDdn  wr VeVp s n’

S0 RYS KR ' 1 - _T )] =

o a T x| o ) +eosdo 31
WRDP wRD (d@B d_éo) d2(50 d293

oH "™ o \ a4t ' dt

dt? dt?

(3.23)

Next substituting the expressions for Vg = Vg + Vg cos(Qt + ¢,) and expanding

gives:

d2’l7 wRD @ @ ngBg

) wr VaVio n? wr VaVho
sindy — —————— — —
2H Xg

a2 "o dt T 2H Xe 0T 9H X, g mont

7 cos dg

WR VGVBO 7’]3 CL)RD wRD dQB d50 d2(50 d293
- — — cos 0y = P, — +— == -
2H Xg 6 2H 2H \ dt dt dt? dt?
VeV VeV 2
— ;U_f[ i{GBl cos(Q2t + ¢,) sin dg + ;d—g i(GBl cos(Qt + ¢U)% sin 6,
wr VeV wr VoV s

_ 0 hadid
SH X, cos( t+¢v)77COS50+2H Xo

cos(Q + ¢v)% cosdy (3.24)

Defining the following constants:

1 1
Qg — iKtan (50, 3 = EK (325)
Ve —Vm —Vm
G, = K, Gy= K tan §, Gs = K 3.26
1 Vo ) 2 Wro all oy, 3 6Va0 ( )
QDwRHBl _VBl
— 0% _ tTREBL — K tan 6, 3.27
1 B, Q2 oH . Qs Vo an 0g ( )
- Ve Veowr cos dg (3.28)

2H X,

and substituting these definitions gives the final form:

d? d
3+ 5D+ K = o’ + agn’ + Gineos(U + 6,) + G cos(2 + 6,)

+ G3n® cos(Qt + ¢y,) + Q1 cos(Q + ¢g) + Qo sin(Qt + ¢g) + Q3 cos(Qt + ¢,) (3.29)
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Here, the terms involving 7, n?, n® multiplied by periodic functions represent parametric
excitation, while the Q-terms represent the additive part of the excitation (i.e., effective
external forcing).

This nonlinear second order differential equation now forms the basis for perturbation

analysis.

3.3.1 Perturbation Analysis for Primary Resonance

To solve the nonlinear swing equation obtained earlier, perturbation analysis is used.

Assume:

n = 0le) (3.30)
This implies the damping term is:
wRD 2
- 31
Vi O(e%) (3.31)
Also, let:
VBI = 0(83), 931 = 0(63) (332)

Then the coefficients in the swing equation take the form:

Gi =g, Gy=£%q, Gy=¢e'gs, Q=¢% (3.33)

Introducing a detuning parameter ¢ using:

wi=Q*+ % (3.34)

the governing equation now becomes:

i + 282 ) + (2 + 20)n = aan® + oz’
+ g cos(QUt + ¢,) + £3gan? cos(QU + ¢,) + e3gsn® cos(QU + ¢,) + e3¢ cos(2t + ¢e)
(3.35)

Looking for a solution in the form:
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T](t, 8) = &M (To, Tl, TQ) + 52772<T0, Tl, TQ) + 53773<T0, Tl, TQ) —+ ... (336)

The time derivative expansions are defined as:

d
E = D() + €D1 + €2D2 + ... (337)
d2
o
where D,, = I
n=em+en+ein+ - (3.39)

Taking the first derivative with respect to ¢, and using equation (3.39):

n(Do+eDy +&*Dy +--+) =em (Do + €Dy + 2Dy + -+ )+
eno(Dy + €Dy +&*Dy + -+ +) + &°n3(Dy + €Dy + > Dy + - -+ ) (3.40)

Taking the second derivative with respect to ¢, and using equation (3.40):

n(DE+2eDyDy +e2(2DgDy+ D?) +- -+ ) = eny(Dj42e Dy Dy +£*(2Dg Dy + D?) 4+ - - )+
20y (D3 +2e Do Dy +€*(2Dg Do+ D)+ - - ) +-e®n3 (D426 Dy Dy +€2(2Dg Dy +D3) +- - )
(3.41)

Now substituting equations (3.39), (3.40), and (3.41) into equation (3.35), and squaring
equation (3.39) to substitute for n?:

em(D3+2eDyD1+€*(2DgDy+ D3 )+ - - ) = eny (Di+2e Dy D1 +€*(2Dg Do+ D3) +- - - )+
e°no(Dg+2e Do Dy +€*(2Do Dy + D7)+ - - ) +&°n3(Df +2e Dy Dy +€*(2Dg Dy + D7) 4+ - - )+
2e% 1 (8771<D0 +eDy+®Dy+ - )+ ®na(Dy+ €Dy + Dy + -+ ) 4+ e3n3(Dy + €Dy + 2Dy + - - - )) +
(P +E%) (em+e®p+en+ ) =ap(@nf +e'n + 52 4+ ) + asn®+
e2gin cos(Qt + ¢,) + £°gan® cos(Q + ¢,) + €°g3n° cos(QUt + ¢,) + £2g cos(Ut + ¢.)
(3.42)
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Comparing coefficients of e:

e: mDi+mQ* =0 (3.43)

e mDg + naS¥ + 2D Dy = gy (3.44)

e®: Dgns +2DoDina + (DF + 2Do Do)y + 2uDomy + ¥ns + oy =
2092 + asni + gcos(Qt + @) (3.45)

Solution to equation (3.43) is of the form:

m = A(Tl, Tg)@iQTo + A(Tl, Tg)eiiﬂTO (346)

Where A is an undetermined function and A is the complex conjugate. Given that

D, 9_ then Dy = -2, hence by integration Ty = L

- ﬁ’ 8_TO’ Do
Substituting equation (3.46)into (3.44):
M2 Dy + 1282* = —2Dy D, (AemTO + AeiiQTo) + Qg (AemTO + zzleﬂ'QTO)2 (3.47)

Expanding the brackets:

N2 DR + 1n,Q% = —2Dy Dy Ae™™ — 2Dy Dy Ae™ o4
o (AQGQiQTo + A2 20T 4 QAA) (3.48)

Using Dy = 8%0:

0(2D0D1A€iQTO)
Ty

; 2Dy Dy Ae= Mo .
_ QiQDlAGZQTO, a( 0 81T ¢ ) = —ZiQDlAG_ZQTO
0

Substituting and rearranging;:
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772D8 + 77292 — —2i0D; A 4 20D, Ae~1%To
aQ(AQBQiQTo + AQB—QiQT()) +ee (349)

Where cc denotes the complex conjugate. For a bounded solution, we require D1 A = 0,
implying A = A(T3).
Using equation (3.43) in (3.49) and simplifying:
i A2e2To o) A20-29T0 90, AA

M= a3 T (3.50)

Substituting equations (3.48) and (3.50) into equation (3.45):

D+ apop (- 2EETT A )
(D} + 2D Dy)(Ae'™™ + Ae™0) 4 2Dy (A0 + Ae™" o)+
025 + O(AeiQTo + AefiQTo) _ 2@2(AeiQT0 + AefiQTo)_
(_OJQAQG%QTO a2A2€—2iQTO N QOéQAA)

3022 302 02
) - 1 .
a3 (Ae™ Mo 4 Ae~HH0Yy3 4 596’¢ (3.51)

Expanding the cubic bracket:

Oég(AeiQTO + AefiQTo):g — a3A3e3iQTO + 3&3A2A€iQT0+

33 AAZe ™0 4 oy A3 7310 (3.52)

Eliminating secular terms and using D1 A = 0:

1 . _
2iuQ(A" + pA) + cA — §gez¢ + 8, A?A =0 (3.53)

where:

A" is the derivative of A (3.54)
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3 5

e =——03 — —— 3.55
Qe TR T e (8:55)

Now, express A and A in polar form:

1 —i(B+¢e) i L i(B+¢e)
A= 5ae o, A= gae (3.56)

Substituting into (3.53):

. 1, . 1 1 . 1
22/1/9 5@ e Z(B"‘d’e) + T 5@6 Z(ﬂ+¢e) + o - 5@6 i(B+e) _ ége“j’_i_

I 1
8ae <§a6_l(5+¢e)) (§ae’(5+¢e)) =0 (3.57)

Separating real and imaginary parts:

1
Q' + pa) + 59 sinf3 =0 (3.58)
/ 3 1 1
—Qaf + ae.a’ — 59 cos 3 + 500 = 0 (3.59)
To second approximation:
62a20z2

n=cacos(QU + S+ ¢e) + (3 —cos(2Q + 20 + 2¢¢)) + - - - (3.60)

6€22
Let e =1 and let a be the perturbation parameter. Then rewriting equation (3.17)

and equation (3.61) as:

2

Af = 0p, cos(2t + ¢y) + acos(QU + 5+ ¢c) + Cég; (3 — cos(2Qt + 26 + 2¢.)) (3.61)

a’ay

202

Equation (3.61) shows that the rotor deviates from the operating point and undergoes

drift term. (3.62)

oscillatory motion [54]. The drift term indicates that the motion is not centered due to

nonlinearity.
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To understand the character of the solutions of equations (3.57) and (3.58), it is
necessary to determine their singular or fixed points. The fixed points of equations (3.57)

and (3.58) correspond to @’ = 5/ = 0. They are given by:

gsin 8
pa=—"—7n (3.63)
ac  ae.a®  gcosf
20 + a - 20 (3.64)
Squaring and adding (3.62) and (3.63):

2\ 2 2

2 g Qe g
1+ <ﬁ 5 ) = i (3.65)

This gives an implicit expression for amplitude a as a function of the tuning parameter

Figure 3.2 and Figure 3.3 present both the phase portraits and time histories for
the case of primary resonance, that is when the excitation frequency of the system is
approximately equal to the natural frequency of the system, specifically at the angular
frequency 2 = 8.61 rads™! plotted from the equation (3.13). These plots are instrumental
in validating the analytical approximations by providing a direct comparison with the
results obtained through numerical simulation. The comparison focuses on evaluating the
accuracy of two numerical techniques used in the perturbation analysis: the Runge-Kutta
method and the Newton-Raphson method.

The excitation frequency = 8.61 rads™" was selected because it is approximately
equal to the system’s natural frequency, corresponding to the primary resonance condition.
This provides a representative case to validate the perturbation solutions against numerical
simulations. Additional frequencies (€2 = 8.43, 8.282, 8.275, and 8.2601 rad s_l) were also
investigated to illustrate the progression from periodic response to period-doubling and
chaos, as shown in Figures 3.4-3.8.

The fourth-order Runge-Kutta method was employed in this analysis due to its balance
between computational efficiency and numerical accuracy. It provides a higher-order
approximation compared to simpler methods such as Euler’s method, making it particularly

suitable for solving nonlinear differential equations like the swing equation. This method
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ensures stable and precise results across a wide range of system parameters, which is
essential for capturing complex dynamical behaviours.

A comparative analysis of the numerical outputs reveals that the Newton-Raphson
algorithm yields a closer approximation to the true numerical solution, as evidenced by
its lower error magnitude. Specifically, the calculated numerical error associated with
the Runge-Kutta method was found to be 0.0884, whereas the Newton-Raphson method
exhibited a reduced error of 0.0747. This quantifiable difference underscores the higher
accuracy of the Newton-Raphson approach for the particular class of problems addressed
in the study.

The observed discrepancy in error can be attributed to the inherent strengths of the
Newton-Raphson method in handling nonlinear algebraic systems with high precision,
especially near equilibrium points. In contrast, the Runge-Kutta method, while versatile
and widely applicable, may introduce accumulated numerical inaccuracies over longer
time integrations in nonlinear regimes.

In summary, the comparative results demonstrate that the Newton-Raphson method
provides a more reliable and accurate solution for capturing the dynamics near primary
resonance [30, 58]. This insight is valuable for guiding the selection of numerical techniques
in future investigations involving perturbation methods and nonlinear oscillatory systems.

In the simulation process, the Runge-Kutta method, a well-known explicit technique
for solving ordinary differential equations was employed to simulate the time evolution
of the system under nonlinear excitation. In parallel, the Newton-Raphson method was
applied to solve the nonlinear algebraic equations that emerged from the perturbation
expansion, particularly in the steady-state approximation. Both methods were tested
under identical initial conditions and system parameters to ensure consistency in the

evaluation.
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o)

Time (t)

Figure 3.2: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of primary resonance in time history
for Q = 8.61 rads™.
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Figure 3.3: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of primary resonance in phase plane
for Q = 8.61 rads™'.
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3.4 Numerical Analysis

For the purpose of determining the effect of increasing the excitation frequency €2, the
equations (3.10), (3.11), and (3.12) were set and solved in Matlab using the fourth-order
Runge-Kutta method for the parameters given in Appendix [33].

oG Phase portrait of period one - ] Frequency-Domain plot R
: ® 1
2 16
15 14 05
! 12
05 [} 0
_ 3 10 - .
s 0 = D
£ E . =
0.5 0.5
6
-1
1.5 & 4
2 2
25 0 15
05 0 0.5 1 15 2 25 3 35 4 0 02 04 06 08 1 12 14 16 18 2 15 -1 05 0 05
o Frequency(Hz) 0]

Figure 3.4: Phase portrait, frequency-domain plot and Poincaré map when €2 = 8.61
rads ™.
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Figure 3.5: Phase portrait, frequency-domain plot and Poincaré map when 2 = 8.43
rads ™.
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Figure 3.6: Phase portrait, frequency-domain plot and Poincaré map when 2 = 8.282
rads ™!
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Figure 3.7: Phase portrait, frequency-domain plot and Poincaré map when €2 = 8.275
rads ™!
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Figure 3.8: Phase portrait (loss of synchronism) when = 8.2601 rads ™.
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Plotting the phase portraits, frequency-domain plots, and Poincaré maps generated
by varying the excitation frequency in the swing equation (3.10) led to the creation of
Figures 3.4, 3.5, 3.6, 3.7, and 3.8. As the excitation frequency {2 decreases, the system
progressively loses stability and transitions into chaotic behaviour. Each figure illustrates
both the successive period-doubling bifurcations and the manner in which the system
loses synchronism.

Figure 3.4 demonstrates that when the excitation frequency is relatively large,
specifically 2 = 8.61 rads™!, the system exhibits a single steady-state attractor. The
corresponding phase portrait forms a closed loop, indicative of a period-one attractor.
This behaviour is further corroborated by the frequency-domain plot and the associated
Poincaré map, both of which confirm the periodic nature of the system at this excitation
level.

In the process of decreasing the value of €2, it is possible to see that the graphs
experience dynamical transformations, which may include period-doubling solutions.
Eventually, as the value of  is dropped to a greater extent, around 8.2601 rads™', a
chaotic attractor is displayed, as demonstrated in Figure 3.8.

Using the process of solving the swing equation for a particular value of Q = 8.27 rads ™"
and using numerical time integration utilising the traditional fourth order Runge-Kutta
technique, the bifurcation diagram that is depicted as Figure 3.9 was built. In the
meantime, the value of the forcing r is increased by a small amount, and the time
integration process continues to plot the maximum amplitude of the oscillatory solution

against r .

 VaVs
G

r

sin (6 — 0p) (3.66)

Figure 3.9 depicts the first instance of period doubling occurring just before r =
0.9, which is also supported by the Poincaré maps shown in Figure 3.10. Additionally,
at about r = 2.36, the first period doubling in a series of period doubles is displayed,
which results in chaotic behaviour. The results of this numerical analysis demonstrate
that as the value of r is increased, the swing equation gets closer and closer to losing its

synchronisation function.
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r

Figure 3.9: Bifurcation diagram when r value is varied and constant € = 8.27 rads™'.

The corresponding Poincaré maps are plotted as shown below, Figure 3.10. They

clearly depict the points where period doubling occurs and how as r is increased the

phenomenon of chaos is verified.
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Figure 3.10: Poincaré maps for the different r values.

It is observed that at approximately r» > 2.4, the chaotic region has commenced where

the Lyapunov exponent generally takes positive values. This behaviour is depicted and

presented as Figure 3.11, where it is the case when two nearby points, initially separated
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by an infinitesimal distance, typically diverge from each other over time and this is
quantitatively measured by the Lyapunov exponents. The bifurcation diagram of Figure
3.9, also verifies this behaviour, where at approximately the same value of r , the cascade
of period doubling sequence leads to chaos such that is suffices to say that a chaotic

attractor can be identified by a positive Lyapunov exponent.

0.5

Values of estimated Lyapunov exponent

0.5 1 1.5 2 2.5
r

Figure 3.11: Lyapunov exponents as r is varied.

3.5 Discussion

In this section of the chapter, the dynamical behaviour of the swing equation is analysed
with respect to variations in key control parameters. These parameters, such as damping,
excitation amplitude, and forcing frequency, are systematically altered to examine how
the system transitions through different regimes of motion from stable oscillations to

complex chaotic dynamics. The investigation integrates both analytical and numerical
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approaches, with a particular emphasis on perturbation techniques. The analytical
framework, developed using methods such as the method of multiple scales or the
Lindstedt—Poincaré technique, provides an approximate solution under the assumption of
weak nonlinearity. This solution is then validated against detailed numerical simulations,
especially under conditions of primary resonance, where the external forcing frequency is
close to the system’s natural frequency.

Numerical simulations serve as a critical tool for uncovering the rich and often
unpredictable behaviour of nonlinear systems. Among the most notable features observed
is the onset of period-doubling bifurcations, which act as a prelude to chaos. The
appearance of the first period-doubling event is particularly significant, it marks the
beginning of a cascade that can ultimately result in fully developed chaotic motion. This
progression is meticulously traced using a combination of diagnostic tools, including
numerically constructed bifurcation diagrams, Lyapunov exponents, phase portraits,
frequency domain analyses, and Poincaré maps.

Poincaré sections, in particular, provide a useful means of reducing the continuous flow
of the dynamical system into a discrete map, thereby revealing underlying patterns and
attractor structures that might be obscured in time-domain analysis. These visual tools
confirm that the route to chaos is not always linear or singular; although period-doubling
is the most commonly recognised scenario, chaos may also arise via other routes, such as
intermittency or the breakdown of quasiperiodic motion on a torus.

It is especially important to identify and understand the pre-chaotic motion, those
behavioural patterns that occur just before the onset of chaos as they can serve as early
warning indicators of instability in practical systems. In power systems, such as those
governed by the swing equation, the transition to chaotic behaviour can have serious
implications, including synchronisation loss, voltage collapse, and equipment failure.
Therefore, recognising the early signs of dynamic degradation is not only of theoretical
interest but also of significant practical relevance.

The broader objective of this research is to enrich the existing body of knowledge
surrounding the swing equation and its applications in electrical power networks. By
combining analytical and numerical tools to explore the onset of chaos, this work offers a
deeper understanding of the underlying nonlinear dynamics. In doing so, it provides a

foundation for future studies aimed at predicting, controlling, and ultimately mitigating

93



CHAPTER 3. INVESTIGATION INTO THE PRIMARY RESONANCE

chaotic phenomena in complex power systems.

3.6 Final Remarks

This section focuses on the analysis of primary resonance in the swing equation and its
critical influence on the stability of the underlying dynamical system. Primary resonance
occurs when the frequency of external forcing approaches the natural frequency of the
system, leading to amplified oscillatory responses that can significantly impact the
system’s behavior. In the context of power systems, such resonant interactions can give
rise to voltage fluctuations, loss of synchronism, or even widespread instability if not
properly managed.

The swing equation is studied under conditions that promote primary resonance, and
the resulting dynamics are investigated through both analytical and numerical techniques.
Analytical methods, such as the method of multiple scales and perturbation analysis,
provide approximate solutions that offer insight into the structure of resonance and the
associated bifurcation patterns. These are supplemented by numerical simulations, which
not only validate the analytical predictions but also allow for the observation of complex
phenomena such as limit cycles, quasiperiodic motion, and the transition to chaos, which
may not be easily captured by closed-form expressions.

A key focus of this analysis lies in exploring how variations in key system parameters,
such as damping, forcing amplitude, and excitation frequency, affect the onset and
progression of resonance. It is observed that even slight modifications in these parameters
can lead the system into regimes of nonlinear instability and chaotic behavior. The
emergence of chaos through primary resonance pathways underscores the sensitive
dependence of the system on initial conditions and parameter tuning.

Given the importance of maintaining stability in electrical power grids and interconnected
networks, it is imperative to prioritise the study of primary resonance and its dynamic
consequences. By identifying the thresholds and critical values that lead to instability,
system operators and engineers can develop robust control strategies to mitigate potential
failures. Thus, the analysis presented in this section contributes not only to a theoretical
understanding of nonlinear dynamics in the swing equation but also to the practical goal

of enhancing the resilience and reliability of modern power systems.
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Chapter 4

Understanding the Subharmonic

Resonance

4.1 Introduction

The swing equation is a basic model that can be explored for the purpose of studying the
dynamic behaviour of power systems, specifically the oscillatory motion of synchronous
generators. It is vital to have an understanding of the resonance phenomena that can
take place in this nonlinear system in order to maintain the dependability and stability
of power infrastructures. Within the context of the swing equation, two key types of
resonance that are experienced are primary resonance and subharmonic resonance. As
a means of providing an explanation for the subharmonic resonance, this section is an
expansion of previous chapter, Chapter 3 [77], and builds on the results that were reached
in that work.

When it comes to determining the stability of a dynamical system, primary and
subharmonic resonances are extremely important factors to consider. There is a close
connection between the concept of stability in a power system and the idea of disturbances,
which are characterised by sudden changes to the quantities that are being used by the
system. Even a relatively slight disturbance can have a rich effect on the dynamics of
a system [77]. The dynamical behaviour of this system can be examined by modifying
the variables in the equation while maintaining the status quo for the other parameters.

During the process of studying the swing equation, the fundamental resonance is regarded
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to be a significant resonance. When the criteria of primary resonance are met, a relatively
small-amplitude excitation can potentially result in a relatively large-amplitude response
if the forcing frequency is reasonably close to the linearised natural frequency, as stated in
[78]. Furthermore, it is possible that nonlinear dynamic behaviours, such as saddle-node
bifurcations, could be experienced in the steady-state forced response of the nonlinear
system, as stated in the reference [58].

When the frequency of the excitation is somewhat near to the frequency that the
system naturally produces, a phenomena that is known as primary resonance takes place.
The subharmonic resonance takes place when the frequency of the excitation is expressed
as a multiple of the frequency of the natural frequency [79]. This is in contrast to the
natural frequency, which acts as the frequency of the excitation. Numerous studies have
been conducted in order to examine the resonances that take place in nonlinear power
systems, to acquire a knowledge of the underlying principles that underpin them, and to
design control mechanisms that are effective enough to be implemented. As an illustration,
researchers have employed mathematical modelling, simulation studies, and experimental
validations in order to investigate the influence that primary and subharmonic resonance
have on the stability of power systems. Other methods that have been utilised include
experimental validations. Adaptive control, resilient control, and damping controllers
are some of the cutting-edge control approaches that have been developed as a result of
these research efforts. The purpose of these strategies is to reduce the negative impacts
of resonance as much as possible while simultaneously improving the system’s stability.

The stability of power systems is an essential component that plays a significant role
in ensuring the reliable and efficient operation of electric circuits [80]. A power system
is said to be stable when it is able to continue operating within tolerable parameters
and maintain its equilibrium in spite of disturbances. It is essential to have a solid
understanding of the swing equation in order to comprehend the dynamic behaviour of
power systems, in addition to other stability challenges, [33]. The resonance that occurs
at the primary and subharmonic levels is yet another significant factor that may have an
effect on the stability of the system. There are two primary varieties of power system
stability, which are known as transient stability and steady-state stability alike. Transient
stability is the capability of the system to recover to a stable operating point after a

severe disruption, such as a fault or a sudden loss load, [81]. This capacity ensures that
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the system is able to continue functioning normally. One of the topics that is discussed in
steady-state stability, which is often referred to as small-signal stability, is the capacity
of the system to maintain its stability in the face of little disturbances, such as minute
shifts in the amount of power that is required or generated [82].

The swing equation is an important dynamic equation that mimics the behaviour
of synchronous generators in a power system. It is used to simulate the behaviour of
systems. With regard to synchronous machines, it provides a description of the speed
dynamics and rotor angle stability that occur under transient conditions. According to
the swing equation, the electrical output of a generator is inversely proportional to the
angle between its rotor and the voltage at its terminal, [24]. This is the premise upon
which the swing equation is founded.

It is possible for a power system to experience primary resonance when the inherent
frequency of the system corresponds with the frequency of an external disturbance that
is administered. It is a phenomenon that has the potential to lead to oscillations that
are unstable and to bring about instability in the system [83]. The phenomenon of
primary resonance is usually associated with low-frequency electromechanical modes of
oscillation. These modes of oscillation are frequently demonstrated by the interaction
between generators and the control systems that correspond to them [84]. Significant
oscillations in generator rotor angles can be caused by it, and if these oscillations are not
caught and corrected, they could eventually lead to cascading failures and blackouts [85].
The phenomenon known as subharmonic resonance occurs when the response of a power
system exhibits oscillations at frequencies that are lower than the frequency of the external
disturbance that is being applied [86]. A power system experiences this phenomenon when
the inherent frequency of the system falls below the disturbance frequency. Through their
interaction with the power system, power electronic components, such as voltage source
converters or thyristor-controlled reactors, have the potential to induce subharmonic
resonance [87]. It has the potential to cause oscillations and instability that endure
for a long time if it is not minimised. The design and operation of power electronic
equipment that is connected to the grid must be carried out in a manner that takes into
consideration the phenomenon of subharmonic resonance [88].

When it comes to understanding the various properties of primary and subharmonic

resonance, as well as the consequences that these qualities have for the stability of a power
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system, it is vital to conduct a comparative examination of the two. For the purpose of
conducting a comparison between the two resonance phenomena, the authors utilised both
analytical and experimental methods [89] . The research conducted by them shed light
on the parallels and differences that exist between primary and subharmonic resonance,
hence emphasising the importance of doing a comprehensive analysis on the subject [89].
Improvements in the identification and distinction of primary and subharmonic resonance
have been made possible as a result of the development of classification algorithms. It
has been established that techniques for machine learning, such as neural networks and
support vector machines, are capable of reliably classifying resonance types. Using a
neural network-based method, the authors provided a method for the classification of
resonance occurrences in real time [90]. This method enables a rapid response to crucial
stability events. In their study, the researchers not only investigated the impact of control
strategies on subharmonic resonance, but they also underlined the significance of taking
into account variations in system parameters when assessing the dynamic behaviour of
primary and subharmonic resonances [91].

The stability of the power system is an important factor in determining the reliability
and effectiveness of the operation of electrical circuits and grids. The swing equation
is an essential tool for analysing the dynamic behaviour of power systems, particularly
when analysing the stability of the rotor angle and the dynamics of the speed. Among the
many phenomena that can have an effect on the stability of a power system, resonance
on the primary and subharmonic scales is a significant one [92]. Therefore, it is of utmost
importance when studying the stability of a system, as discussed in [93]. It is essential to
have a comprehensive understanding of these phenomena in order to conduct effective
stability analysis, regulation, and precautionary actions in power systems. It is vital to
conduct additional research and make significant advancements in these areas in order to
guarantee the stability and resilience of energy systems in the face of grid situations and
challenges that are constantly shifting.

Basins of attraction are geographic areas within the state space that are characterised
by the convergence of the paths of the system to specific attractors. Over the course of
this chapter, the basins of attraction that are associated with primary and subharmonic
resonance in power systems have been investigated. Various methodologies, including

bifurcation analysis, numerical simulations, and Lyapunov exponent calculations, have
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been utilised in these research to define the limits and properties of the basins of attraction
[94]. The impacts of system parameters, initial conditions, and control strategies on
systems have been examined by researchers in order to gain a better understanding of

the stability boundaries and robustness of power systems.

4.2 Analytical Work

4.2.1 Perturbation Analysis for Subharmonic Resonance

This method uses multiple scales to determine second order approximate expression for
period-two solutions for the case 2 ~ 2wy.

It is possible to use this solution to make a prediction regarding the beginning of the
complex dynamics and stability. Due to the fact that the solution is unable to take into
account the frequency shift that is caused by the external stimulation, the accuracy of
the solution decreases as the magnitude of the excitation grows. The introduction of a
minor dimensionless parameter called ¢, which is utilised as a mechanism for accurate
accounting.

Assume:

n=0() (4.1)

Then the damping term is of the order:

CURD
— = 4.2
A = 0) (42)
And similarly:
G1=0(), Q=0 (4.3)
The excitation magnitudes are also small:
VBI = O(&T), (931 = 0(6) (44)

This leads to the following coefficients in the final perturbed swing equation:
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G1 = e (4.5)
G = g (4.6)
Gy = g (4.7)
Q=¢eq (4.8)

After applying these assumptions and simplifying, the governing equation becomes:

ij 4 28 + win = aen® + azn® + egin cos(t + ¢,)
+ £gan? cos(Qt + ¢,,) + g3n® cos(QUt + ¢,) + eqcos(QUt + ¢.) (4.9)

where

wRD
Assuming a perturbative solution of the form:
n(t;e) = em(Ty, T, Ty) + e2no(To, Th, To) + 3n3(To, Th, To) + - ... (4.11)

The first and second derivatives of the solution are expanded using the chain rule:

d

o = Do+eDy+€*Dy + ... (4.12)
d2
i D3 +2eDyDy + £*(2DoDy + D?) + . .. (4.13)

where:

0
Do =57 (4.14)

Also, the natural frequency is detuned using:
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1
wi = 192 +eo (4.15)

Substituting equations (4.11), (4.12) and (4.13) into equation (3.29) gives,

. . 1
M+ 2epn + (ZQQ + 50) [8771(T07 1, To) + e*na(To, Th, Tn) + 203 (1o, Th, To) + - - ] =
oz (2t +e'ns + % + ) +as (%) + % + 03 + )
+eg1 (em + €°na + €°n3) cos (U + ¢,)
+ega (€207 + '3 + °n3) cos (U + ¢,)
+egs (%] 4+ %5 + e%n3 + -+ ) cos (U + ¢,) + eqcos (Qt + ¢.) (4.16)

Substituting these into the main equation and collecting like powers of ¢, the following

is obtained:

at order €:
2 1o
Dim + ZQ m = qcos(Qt + @) (4.17)
at order £2:
1
ng + 4_192772 +2DgDyny + ony = agn% + g1m cos(QTH + @) (4.18)
at order £°:

1
DSU:& +2DyD1ny + (D% + 2Dg Do)y + 2uDomy + 192773 +ony =

200mm2 + azni + g1z cos(QLy + ¢,) + gon; cos(QTy + ¢,)  (4.19)

Solving equation (4.17), it admits the following general form:

1
m = a(To, T1, Ts) cos (59T0 + B(Ty, T4, Tg)) + 2N cos(QTy + ¢e) (4.20)

or equivalently in exponential form:

m = ATy, Ty)ex™ + A(Ty, Tp)e™ 20 4 N 4 NemT0 (4.21)
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where A is the complex conjugate of A and :

9
N=25 e (4.22)

Comparing the coefficients in equations (4.20) and (4.21)

1 .
A= iaelﬁ (4.23)

Substituting equation (4.21) into equation (4.18) gives,

Dins + }192772 = —2uDy (Ae%mTO + Aem20 4 NeiOTo Ne—m%)
—2DyD; (AeémTO + Ae— 31070 + NeiTo 4 Ne—iQT())
-0 <Ae%iQT0 + Ae~ 790 4 N0 4 Ne—iQT())
+ g (AG%ZQTO + Ae— 31070 + Ne®To 4 NeiQTO>2

+ g1 cos(QTH + ¢y) (Ae%iQTO 1 Aem21T0 4 NiOTo ]\_fe_iQT°> (4.24)
Rearranging the terms,
Diny + 41102772 — 2107 |:—O'A + 205 NA — Qi(Dy A+ pA) + %glAew”]
+ 70 [—UN + apA? — 22',uQN} 1 31070 {%Aflei‘z’”} + %o [ongg + 1291Nei¢“}
+ [as(AA+ NN) + 12Ngie'®] + cc (4.25)

where cc is the complex conjugate.

Eliminating the secular terms,

—iQDA — iQuA — 0 A+ AT = (4.26)
where:
i 1 i¢
e = 20N + S’ (4.27)

The solution of equation (4.25) is of the form,

62



CHAPTER 4. UNDERSTANDING THE SUBHARMONIC RESONANCE

—4 ] i
e = @ [OQAQ — (2@MQ + O')N] e Qo
A Li(zorre) | 4 14 NN 0
—5ple? + gz [02(AA+ NN) + 12 Ne'®]

4 , A
BETE [aaN? + 12g1NeZ¢”} Mo L & (4.28)
where ¢ is the complex conjugate.

Substituting equations (4.21) and (4.28) into equation (4.19):

1
Dgng + —Qzﬁg = —ZQDQA - D%A - 2/,LD1A

4
—8rp . - . as AN ;
— W [—(2ZIMQ + O')NA + OCQAZA} - FF& Pee
8 - -1 . 4
+ % 20,44 + 20, ANN + S A(Ne'* + Ne™)
_ - Ayq, " . _ ,
+ 603 ANN + 3a3A4%A — LCLILZ (ilee=tu) 4 g2 A(Ne™ + Ne™ ™) + NST + ¢ (4.29)

4)?

where NST denotes non significant terms.

Now, we define,

W\ - 1o
DiA=— — ) A+ = Alee 4.30
1 (,M + Q) + 0 e ( )
5 o 2ipoc  T?—o? 2ift 5 i,
DiA=|pu — q + oE A+ ﬁAFe (4.31)

Eliminating the secular terms in equation (4.29), and substituting equations (4.26)

and (4.31),

2 — o2 NT . 1602 -
— QDA + {;ﬁ - Q2" - O‘QQ i 4 (6a3 + Q(;‘?) NN
— . dag f Cfi 4
1y iy 2J1 L i Pee ¢v)
+ (Ve 4+ Ne )( 02 —|—f2> —@e( ]A

400[% 9 7 80(2 . i
+ (3a3 5 ) A“A+ @(QWQ +0)NA=0 (4.32)
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Using method of reconstitution, the derivative of A with respect to ¢ is found and

substituting equation (4.26) and (4.32) into (4.12), setting ¢ = 1, we get,

QA + peA) + 0, A — 4o, A2A — Teide =0 (4.33)
where,
B 2aql” L'gq
He = b — 305 Sln(¢ee - ¢e) + 403 Sln<¢ee ¢U) (434)
[?— g2 2q 2 1602
_ 2 2
O =0 —pu° + 2 (392) <6a3+ 0 )
4q dangy 2qLay
+ @ ( QQ ) COS(¢U — ¢6) - 394 COS(¢66 (be) 492 COS<¢ee ¢y) (435)
_ 100 , 3 (4.36)
Qe = 392 4@3 .
Peite = Peiter — 10920100 1 ) cioe (4.37)
904

Separating into real and imaginary parts gives,

Q(a’ + pea) — al'siny = 0 (4.38)
—Qaf 4 o.a — a.a® — al’cosy = 0 (4.39)
Y= qge —2p (440)

Therefore,
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1 ~ 4 32uq?
N = acos <§Qt + ¢ — B) - 3—52 cos(Qt + ¢.) + 9—53 sin(Qt + ¢.)
160q

TS

202y ~ 32aq
cos(Qt + @) — =07 cos(QUt + ¢ — ) — 3500
agn

3 1 200 (5,  16¢
~ 702 0 <§Qt+ G + 5(9256 7)) +t (a + o0

8 2 3 1, -
14 COS(gbU - ¢e) + 204 COs (§Qt + Qbe + §(¢e - /7))

cos[2(Qt + ¢ )]

304 304
8919
4504

+ cos(2Q + ¢ + ¢,) + ... (4.41)

Similarly, the swing angle is,

1 N 4
A = Op1 cos(QUt + ¢g) + acos (5925 + ¢pp — 6) — 3—(;12 cos(Qt + )

T 39253? sin(Q2 + @) — 9655 cos(Qt + @) — % cos(Qt + ho — 7)
+ 2;(2;q cos <g§2t + 0 + %(qﬁe — 7)) - % cos (;Qt + ¢y + %(gbe — 7))
+ 25122 <a2 ;6_542) i‘%j cos(py — @) + 3123§§2q62 cos[2(Qx + ¢e)]
+ jg;ﬁ cos(2U + pe + ) + ... (4.42)

Letting o' = ' = 0 in equation (4.38), (4.39), (4.40) gives,

Qpea — Lasiny = 0 (4.43)
oot — e’ + Tacosy = 0 (4.44)
when a = 0, then:
4 32
AG = Opy cos(QUt + ¢g) — 3—52 cos(Qt + ) + 953(1 sin(Qt + ¢.)
160q 32a¢*  8gig
- Q - v Ye
o0 cos(Qx + ¢.) + 900 308 cos(py — Pe)
32a5¢> 8914
+ 13506 cos[2(Q + ¢.)] + 50 cos(20 + ¢e + ¢,) (4.45)
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Which is similarly echoed in [33].

When a # 0, eliminating v gives the frequency response equation,

1 ~
a’ = — [ae +4/12 — Q?ug] (4.46)
Qe

Taking into consideration equation (4.46), which presents both the numerical simulation
and the perturbation solution, the frequency response plot may be derived.

The accompanying figures, Figure 4.1 and Figure 4.2, display time histories and
phase portraits for the case when the excitation frequency is set to Q = 26.01 rad - s~
This specific value of 2 was selected because it corresponds to a subharmonic resonance
condition. More precisely, it is approximately twice the natural frequency of the system,
which leads to a one-half subharmonic resonance. Under such conditions, the system is
particularly sensitive to perturbations, and nonlinear interactions become prominent. This
makes it an ideal scenario to compare analytical predictions with numerical simulations,
as the effects of subharmonic excitation are clearly observable in both the time-domain
and phase-space behaviours. The use of this excitation frequency enables a thorough
validation of the perturbation methods employed and highlights the resonance-induced

instabilities present in the system.
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0 0.5 1 15 2 25 3 35 4

Figure 4.1: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of subahrmonic resonance in time
history for Q = 26.01 rads™'.

05—
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°
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Figure 4.2: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of subhamonic resonance in phase
plane for Q = 26.01 rads™.
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Simulating the perturbation analysis and comparing it to its numerical counterpart
was achieved using both the Runge-Kutta and Newton-Raphson numerical methods.
Upon evaluation, it was found that the Newton-Raphson method yields a more accurate
approximation of the numerical solution. Specifically, for the subharmonic resonance
case, the computed numerical errors for the Runge-Kutta and Newton-Raphson methods
were 0.0995 and 0.0419, respectively. This indicates that the Newton-Raphson method
provides a superior fit to the data due to its lower error value.

This finding is consistent with earlier results obtained for the case of primary resonance,
where a similar trend was observed: the Newton-Raphson method produced a closer
match to the analytical solution compared to Runge-Kutta. The enhanced accuracy of the
Newton-Raphson approach can be attributed to its iterative root-finding nature, which is
particularly effective in refining steady-state solutions obtained from nonlinear algebraic
equations derived via perturbation techniques. By contrast, the Runge-Kutta method,
while reliable for time-domain simulations, is more sensitive to step size and numerical
damping, which may affect its accuracy when matching long-term or steady-state
behaviours. Hence, the consistent performance of the Newton-Raphson method across
both resonance scenarios reinforces its suitability for validating perturbative analytical

results in nonlinear dynamic systems.

4.3 Numerical Analysis

4.3.1 Graphical Representation

Using the fourth-order Runge-Kutta method in Matlab, the equations (3.10), (3.11),
and (3.12) were set and solved for the parameters given in the Appendix. The primary
focus of the analysis was on the effect of altering the excitation frequency €2 for the

subharmonic resonance.
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Figure 4.3: Phase portrait, frequency-domain plot and Poincaré map when 2 = 26.01
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Figure 4.4: Phase portrait, frequency-domain plot and Poincaré map when €2 = 21.042

rads™.
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Figure 4.5: Phase portrait, frequency-domain plot and Poincaré map when 2 = 19.4162
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Figure 4.6: Phase portrait, frequency-domain plot and Poincaré map when €2 = 19.375
rads ™.
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Figure 4.7: Phase portrait (loss of synchronism) when Q = 19.37251 rads ™.

Figures 4.3, 4.4, 4.5, 4.6, and 4.7 were generated by plotting the phase portraits,
frequency-domain plots, and Poincaré maps for various excitation frequencies applied to
the swing equation (3.10). These visualisations illustrate how the system’s dynamics evolve
as the excitation frequency €2 is progressively decreased. As 2 is reduced, the system begins
to lose its stability and transitions through a sequence of period doubling bifurcations
before ultimately entering a chaotic regime. Each figure captures key dynamical features,
including time-doubling phenomena and the gradual loss of synchronism.

The excitation frequencies used in this analysis were carefully selected to explore the
onset and progression of subharmonic resonance in the system. These values are situated
near resonance conditions, where nonlinear effects become significant and are most easily

observable. In particular, Figure 4.3 illustrates the system response at a relatively high
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excitation frequency, = 26.01 rad - s~!, where the dynamics are stable and periodic. At
this frequency, the phase portrait reveals a closed trajectory corresponding to a period-one
attractor. This periodic behaviour is further confirmed by the frequency-domain plot,
which shows a dominant single frequency, and by the Poincaré map, which displays a
single fixed point.

In addition, as shown in Figure 4.4, the period-one orbit undergoes deformation until
the value of Q reaches 21.042 rads™!'. At this point, the period-one attractor loses its
stability and is replaced by a period-two attractor. The occurrence of the period doubling
bifurcation is demonstrated by the frequency-domain plot as well as the Poincaré map
illustration. When the value of  is reduced even further to 19.4162 rads™', the phase
picture depicts an attractor that consists of two loops.

In the process of decreasing the value of 2, it is possible to see that the graphs
experience dynamical transformations, which may include period-doubling solutions.
Eventually, as the value of Q is dropped to a greater extent, around 19.375 rads™ ', a
chaotic attractor is displayed, as demonstrated in Figure 4.6. On the other hand, when
the value of  is reduced to 19.37251 rads™ ", the system loses its synchronism, as depicted
in Figure 4.7.

In order to produce the bifurcation diagram depicted in Figure 4.8, the swing equation
was numerically solved for a specific excitation frequency of Q = 19.416 rads™!. The
numerical solution was obtained using the classical fourth-order Runge-Kutta method,
a widely accepted technique for time integration in nonlinear dynamical systems. This
method was chosen due to its accuracy and stability when handling stiff or oscillatory
systems such as the swing equation. The bifurcation diagram was constructed by recording
the maximum amplitude of the oscillatory response over time for each value of the forcing
parameter r as shown in equation (3.65). To achieve this, the value of r was progressively
increased, and for each increment, the system was integrated forward in time to ensure
that transient effects were excluded and steady-state dynamics were captured [1].

This process allowed for the identification of critical transitions in the system’s
behaviour, such as period-doubling bifurcations and the onset of chaos. By plotting the
maximum amplitude against the corresponding r values, the bifurcation structure of
the system became evident, revealing regions of stability, periodicity, and chaos. This

visual representation provides key insights into the sensitivity of the system to parameter
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variations and serves as a powerful tool for analysing nonlinear oscillatory dynamics. The
detailed structure visible in the bifurcation diagram validates the use of time-domain
simulations in exploring the system’s response under subharmonic resonance conditions,

reinforcing the findings presented in earlier sections.

o(t)

Figure 4.8: Bifurcation diagram when r value is varied and constant Q = 19.4162 rads™.

Figure 4.8 depicts the initial period doubling that takes place soon before r = 0.975.
This is further supported by the Poincaré’s maps shown in Figure 4.9. Additionally,
at about r approximately 2.1, the first period doubling in a series of period doubles is

displayed, which results in chaotic behaviour.
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Figure 4.9: Poincaré maps for the different r values.

The results of this numerical analysis demonstrate that as the value of r is increased,
the swing equation gets closer and closer to losing its synchronisation function. As can
be seen in Figure 4.9, the Poincaré maps that correspond to the coordinates are shown.
They provide a clear illustration of the sites at which period doubling takes place, as
well as the manner in which the phenomena of chaos is confirmed when r is increased.

When the subharmonic resonance is taken into consideration, it is noted that the
chaotic zone has begun at roughly r > 2.1. This is the region in which the Lyapunov
exponent typically takes on positive values. This behaviour is visualised and displayed
in Figure 4.10, which illustrates the situation in which two nearby points, which were
initially separated by an infinitesimal distance, normally drift from each other over time.
The Lyapunov exponents are used to statistically measure this behaviour. In addition,
this behaviour is confirmed by the bifurcation diagram shown in Figure 4.8. This diagram

shows that the cascade of period doubling sequence leads to chaos at nearly the same
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value of r . This chaos is sufficiently severe that it is sufficient to assert that a chaotic
attractor can be characterised by a positive Lyapunov exponent. The Poincaré maps,

which are displayed in Figure 4.9, provide additional validation for this assertion.

Values of estimated Lyapunov exponent

-1.8

0.5 1 1.5 2 2.9
r

Figure 4.10: Lyapunov exponents as r is varied.

A comparison is made between the analytical solution and the numerical simulation,
and the frequency domain plot for equation (4.46) is plotted as shown in Figure 4.11
below. This is done in order to determine whether or not the analytical solution is correct.
It is clear from this that the two analyses that were carried out on the swing equation
for the subharmonic resonance are in complete agreement with one another. As a result,

the analysis that was investigated in this work is validated.
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Figure 4.11: Frequency domain plot for subharmonic resonance.

4.4 Comparison of Basins of Attractions for

Primary and Subharmonic Resonances

4.4.1 Primary Resonance

This resonance plays a vital role in understanding the stability of a nonlinear system.
Hence it is important to study the basins of attraction of the primary resonance to obtain
more in-depth information about the system. Basins of attraction shows the stable and
unstable regions and helps to analyse the changes made to the system [95]. Plots show
the changes in the basins of attraction when variables are altered. It is also necessary to
consider boundary conditions when analysing these graphs when arriving at conclusions,
[96].

Important insights into the stability behaviour of power systems have been uncovered
by studies of the basins of attraction of primary resonance. The effect of parameter

variations, including system damping, excitation levels, and control gains, on the shape
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and magnitude of the basins of attraction associated with primary resonance has been
studied, [97], [98]. In addition, research efforts have concentrated on identifying the
critical boundaries separating stable and unstable regions in the state space, [99].

The figures below, Figure 4.12 and Figure 4.13, show the basins of attractions for
the primary resonance when the variable Vg, is varied whilst Q= 19.375 rads™*. As the
variable is increased the stability of the system changes. The red and green colour show
the stable region and the other colours represent the unstable regions of the system. As
the variable is increased the system enters a corrupt state with unstable regions, hence a
further analysis on the affect of other variables in the system should be considered for

sound results in this chapter.

Basins of Attraction

5 Basins of Attraction

Imaginary part of initial condition
Imaginary part of initial condition

Real part of initial condition Real part of initial condition

Figure 4.12: Basins of attractions when Vg is 0.051 rad and 0.062 rad respectively for
primary resonance.
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Basins of Attraction

Imaginary part of initial condition
Imaginary part of initial condition

Real part of initial condition Real part of initial condition

Figure 4.13: Basins of attractions when Vg is 0.071 rad and 0.151 rad respectively for
primary resonance.

4.4.2 Subharmonic Resonance

The subharmonic resonance analysed, further provides evidence on the stable regions of
the system. The basins of attractions for the subharmonic resonance depicts the stable
and unstable regions when the excitation frequency is approximately double the natural
frequency of the dynamical system, [100]. This analysis will show the chaos and instability
points of the system for further studies, [101].

Subharmonic resonance’s sources of attraction have also been studied extensively.
In [102], [103], the authors investigated the effects of various parameters, such as the
amplitude and frequency of the subharmonic component, on the basins of attraction.
Transitions between distinct subharmonic resonant states and the effect of control
strategies on the stability boundaries have been studied, [104], [105]. Hence further
investigation on the basins of attraction is necessary to analyse the stability when there
is a change in parameters, [56].

Figure 4.14 and Figure 4.15 represent the basins of attraction for the subharmonic
resonance when Vg, and g, are varied in the swing equation of the dynamical system.
As the variable is changed the system becomes fractal and it becomes corrupt.

Initially only the variable Vg, is varied when others are fixed to observe the effect of
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this particular variable. Even when Vg, = 0 the system is still corrupted and this is due

to the effect of 0p5,.

13.5

Imaginary part of initial condition
Imaginary part of initial condition

<15 -0 -5 li] -] 10
Real part of initial condition Real part of initial condition

Figure 4.14: Basins of attractions when Vg is 0 rad and 0.051 rad respectively
subharmonic resonance.

Imaginary part of initial condition
Imaginary part of initial condition

5
Real part of initial condition

Real part of initial condition

Figure 4.15: Basins of attractions when Vp; is 0.151 rad and 0.21 rad respectively for
subharmonic resonance.

Furthermore, the variable g, is changed to observe the transitions in the basins of

attractions for subharmonic resonance.
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Imaginary part of initial condition
Imaginary part of initial condition

Real part of initial condition Real part of initial condition

Figure 4.16: Basins of attractions when 0p; is 0.191 rad and 0.181 rad respectively for
subharmonic resonance.

Imaginary part of initial condition
Imaginary part of initial condition

=15 =10 -5 0 5 0 -15 -10 -5 0 5
Real part of initial condition Real part of initial condition

Figure 4.17: Basins of attractions when 6p; is 0.151 rad and 0.141 rad respectively for
subharmonic resonance.

Figure 4.16 and Figure 4.17 depict the system when the variable is varied whilst
others are kept constant. In this instance as 6p; is decreased the basins of attractions

change and the stable and unstable regions can be observed.
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4.5 Discussion

An investigation into the dynamic behaviour of the swing equation under a variety of
control situations is carried out in this section for the subharmonic resonance. In order to
check the correctness of the perturbed solution for subharmonic resonance and the basins
of attraction associated with these phenomena, perturbation techniques are compared to
numerical simulation. They are used to verify the accuracy of the perturbed solution.

By applying the swing equation to a variety of different circumstances, particularly
those involving load displacement, it is easier to make predictions about the behaviour
of the system. The administrators of the power system make use of this information in
order to ensure the system’s consistency and dependability is maintained. It is possible
to make use of this methodology in the process of developing and evaluating control
systems for power systems, namely in the areas of automatic generation control and load
frequency management. The major goal of this initiative is to lower the likelihood of
blackouts occurring and, more importantly, to lessen the potentially catastrophic effects
that they could have.

The comprehensive numerical analysis that was carried out in this investigation,
which made use of a wide range of mathematical tools including bifurcation diagrams,
Lyapunov exponents, phase portraits, frequency domain plots, and Poincaré maps, yield
significant insights into the way in which the swing equation behaves when subjected
to subharmonic resonance. The occurrence of the first period doubling in a sequence
has been identified as a significant indicator of oncoming chaos, warning possible risks
and operational challenges for power systems. This fact has been highlighted as a key
predictor of impending chaos. Furthermore, the research has demonstrated that other
phenomena, such as intermittency or the collapse of quasiperiodic torus structures, can
also result in systemic chaos. While period doubling is a well-known example of chaotic
behaviour, other events, such as these, can also result in chaotic behaviour.

It has effectively depicted both pre-chaotic and post-chaotic alterations by taking into
account the effects of various parameter adjustments on the dynamical behaviour of the
system. This demonstrates the significance of the work. Having a better understanding
of the transitional behaviour of a system before to its entry into a chaotic regime can

be achieved through the detection of pre-chaos motion patterns. A further validation
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of the system’s loss of stability, which leads to chaotic behaviour under conditions of
subharmonic resonance, was achieved by the investigation of basins of attraction for
primary and subharmonic resonances.

The primary and subharmonic resonances are the focus of this segment, which
contributes to a deeper comprehension of the fundamental components of the swing
equation and the consequences those aspects have for the maintenance of system stability.
Power system engineers and researchers are provided with valuable information as a
result of the findings, which enables them to design control systems and protective
measures that are more successful in mitigating the risks associated with subharmonic
resonance-induced chaos.

The findings of this thesis embedded in this chapter, contribute to a better understanding
of the dynamic behaviour of the swing equation and its reaction to subharmonic resonance.
Additionally, it sheds light on the essential parameters that govern the stability of the
system. The findings also have the potential to contribute to the advancement of the
creation of power infrastructures that are more resilient and secure. This is because power
systems are always evolving and will continue to face increasingly complex difficulties.

Under conditions of subharmonic resonance, it is possible that future research in this
field will investigate novel control methods and technologies with the goal of ensuring

the dependability and stability of power systems.

4.6 Final Remarks

Subharmonic resonance plays a critical role in understanding the dynamic stability of
nonlinear systems such as the swing equation. In the context of this chapter, a detailed
investigation of subharmonic resonance has been undertaken, with the aim of highlighting
its influence on the overall system behaviour and its potential to induce instability.
Subharmonic resonance occurs when the external forcing frequency is a fraction of the
system’s natural frequency, and this interaction can give rise to complex oscillatory
patterns, including periodic windows, bifurcations, and chaotic attractors.

This chapter has provided a comprehensive explanation of subharmonic resonance and
has served to bridge the theoretical insights found in existing literature with the practical

analysis of the swing equation. By simulating and analysing the system under various
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subharmonic conditions, the chapter has demonstrated how seemingly small parametric
variations can lead to significant qualitative changes in the system’s dynamics. The
inclusion of analytical techniques alongside numerical simulations has further strengthened
the validity of the findings and has offered multiple lenses through which the phenomenon
can be understood.

Moreover, the study of subharmonic resonance serves as a critical stepping stone
toward exploring more complex dynamic behaviours, including the emergence of chaos.
Understanding the mechanisms through which energy is transferred across frequencies in
nonlinear systems provides key insight into the broader narrative of dynamic instability.
As this research has shown, the appearance of subharmonic oscillations often precedes
more erratic behaviour and can act as a precursor to bifurcation cascades and the onset
of chaos.

Therefore, a thorough comprehension of subharmonic resonance is not merely an
academic exercise but a necessary foundation for investigating chaotic behaviour in power
system models. It equips researchers and engineers with the theoretical tools and practical
awareness needed to predict and mitigate instability in electrical networks. By deepening
our understanding of these resonant interactions, this chapter contributes meaningfully
to the broader goals of stability analysis and control in nonlinear dynamical systems,

particularly in the context of modern power grids.
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Chapter 5

Analysing the Dynamical Behaviour
using different Mathematical

techniques

5.1 Introduction

This section explains different mathematical techniques to analyse the case of bifurcation
in the swing equation. Floquet method, Method of strained parameters and Tangent
Instability are analysed in depth to understand the intricate behaviour of the system
when a disturbance is introduced.

The Floquet approach is a significant tool in the analysis of power system stability,
particularly in the context of tiny disruptions, [23], [106]. The mathematical methodology
employed in assessing the stability of periodic solutions, such as those seen in the
swing equation, involves the examination of the eigenvalues of the linearised equations
governing the system. Tangent instability, conversely, refers to a phenomena in which
minor disturbances in the operational parameters of a power system can result in
prolonged oscillations or instability, [107]. The strained parameters method is a strategy
in control theory that is employed to mitigate tangent instability by modifying system
characteristics in order to uphold stability, [108]. Collectively, these notions offer a
comprehensive theoretical structure for examining and managing the stability of a

mathematical problem, thereby guaranteeing their dependable functioning in the presence
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of dynamic disturbances.

5.2 Floquet Method

Let u(t) be a small disturbance (arbitrary), then:

0(t) = n(t) + u(t) (5.1)

The stability of 7(t) depends on the growth or decay of the perturbation u(t). If u(t)
increases over time, the system is unstable around 7(t); if it decays, the system is stable.
Substituting equation (5.1) into equation (3.10) and eliminating any nonlinear terms

with (), we obtain the variational equation governing the evolution of w(t):

d*u N wrD du
dt? 2H dt

The behaviour of u(t) can be analysed using Floquet theory, which is suitable for

+u (K = 20om — 3a3n®) =0 (5.2)

studying the stability of periodic solutions in linear differential equations with periodic
coefficients.

If uy(t), ua(t) are two independent solutions to equation (5.2), then due to the
periodicity of the coefficients, the shifted functions u,(t +T), us(t + 1) are also solutions.

Therefore, they can be expressed as linear combinations of w;(t) and uy(t) as follows:

(751 (t + T) = 11U (t) -+ CL12U2(t)
Ug(t + T) = (Iglul(t) + a22u2(t)

To construct the monodromy matrix, two linearly independent solutions are computed

using the following initial conditions:

0

1, 11(0)
0, U9(0)

Ul(O)
UQ(O)

1

After solving the differential equation (5.2) with the above initial conditions over one

period T', we evaluate the solutions at ¢ = T" to form the monodromy matrix A:
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(5.3)

The eigenvalues of the monodromy matrix A, referred to as Floquet multipliers,
govern the stability of the periodic solution n(t). If all Floquet multipliers lie strictly
within the unit circle in the complex plane, the solution is stable. Conversely, if any
multiplier lies on or outside the unit circle, the periodic orbit becomes unstable.

A saddle-node bifurcation of a periodic solution occurs when a pair of fixed points
(or periodic orbits) coalesce and eliminate each other as a system parameter varies. In
the context of Floquet theory, this bifurcation is analytically predicted when one of the
Floquet multipliers approaches and crosses the unit circle at +1 on the real axis. This
indicates the loss of stability and the disappearance of the periodic orbit.

In the analytical approach used in this thesis, perturbation methods are applied to
approximate the solution and derive a linearised variational equation around the periodic
orbit. The resulting monodromy matrix captures the fundamental solution over one
period. By computing its eigenvalues analytically, it is possible to track when a multiplier
reaches the critical value of +1, signalling a saddle-node bifurcation. Therefore, the
analytical solution accurately predicts the bifurcation point by identifying the parameter
value at which the Floquet multiplier crosses the stability threshold, confirming the onset

of the bifurcation.

5.3 Method of strained Parameters

Considering equation (3.60) and substituting it into equation (5.2) leads to:

2.2

£a o (3 — cos(2Qt + 28 + 2%))}

D
u_i_wLu—l—u(K—QaQ [sacos(Qt+ﬁ+goe)+ R

2H

22 2
cad (3 — cos(20t + 20 + 2@6))] =0

—3a3 [8@ cos(Qt + 5+ p.) + 62

(5.4)
Expanding the brackets:
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e2a’ua  %aual

Q2 30?2
3asuats®as asuela’ay
02 cos(QU+L+pe )+ 02

(9 + cos(2Qt + 28 + 2p,) — 6 cos(2Qt + 208 + 2p,.)) =0 (5.5)

D
i+ Q;R—Ha + uK — 2uasea cos(Q + 6+ @) +

cos(2Q + 28 + 2¢p.)

3

—3azus’a® cos® (Qt+B+p, ) — cos(QU+F+pe) cos(2Qt+25+2p, )

azue?atal
1204

From equation (3.29), it is known:

= 2e%u (5.6)

and letting:

O =Qt+ 0+ ¢ (5.7)

In the above expression, ® represents the total phase of the oscillatory solution.
The term 2t denotes the time-dependent phase component, where (2 is the excitation
frequency and ¢ is time. The symbol [ is a constant phase shift introduced by the system’s
nonlinear response, typically arising from the perturbation analysis. Finally, . represents
the external or initial phase offset, often associated with the excitation signal or imposed
boundary conditions. Together, these components define the instantaneous phase of the

system’s response.

Then the equation becomes:

2,22 2,2 2
. . QsuE“a asuUESQ
U+ 252uu + uK — 2uaseacos ® + —2 - 2 cos 2® — 3azuc’a’® cos? @

02 302
3azuae? oy asue’a’ o 3azuciatas  azue?atad azus?atal
- b+——= d 20— — 24— — = —
oE cos ¢+ 02 cos P cos ML 1205 cos + 204 0
(5.8)
Now cancelling out €2 and simplifying gives:
i+ 2ut + uK™ = xucos ® + Aucos 2P (5.9)

where:
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3as a2\ , 19a3a.a’
K*— K4 (228 _ 92 ) 2 100200 1

* ( > 3Q2> 2401 (5.10)
— da+ da3a (5.11)

X = 2000 + — = :

3as a3 , a3aza

A=|—-—= — 5.12
< 2 3Q2> TR (5.12)
O=Qt+ 8+, (5.13)

Introducing € as a bookkeeping parameter, and damping and forcing terms at O(e),

equation (5.9) is rewritten as:

i+ 2uet + uK™ = exucos ® + eAucos 29 (5.14)

Assuming a uniform expansion of the solution:

u(t;e) = euy(t) + e2ug(t) + . .. (5.15)

And writing:

1
K* = Z92 + &0+ + ... (5.16)

Comparing the powers of £

iio + imuo =0 (5.17)

Comparing the powers of e!:
iy + %Q%l = —2u1y — d1ug + xug cos  + Aug cos 20 (5.18)

Comparing the powers of £%:
i + iQQW = =2ty — duy — Sty + YU cos P + Auq cos 2P (5.19)

Taking the solution:
1 .1

Uy = acos §<D+bsm §<I> (5.20)
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Substituting equation (5.20) into equation (5.18)

1
i + ZQzul = —2u1g — 01 (a cos %QD + bcos %CD)

+ x cos ®(acos 1@ + bsin 1) + A cos2®(acos & + bsin 1®) (5.21)

Replacing with,

— b
Uy = 7@ sin 3 + 5 cos ;0 (5.22)

gives,

1
i1 + ZQQM = paflsin %(I) — pbS) cos %CID
— 01a cos %@ — 01bsin %CI) + a)x cos P cos %@

+ by cos @ sin 3@ + a cos 20 cos 1@ + bA cos 2P sin 1P (5.23)

Employing trigonometric identities,

ax cos P cos & = % (cos 2@ + cos 3 D) (5.24)
bx cos ®sin & = Z%X (sin 3¢ — sin ;) (5.25)
al cos 2® cos 3P = % (cos 3@ + cos 2@) (5.26)
bA cos 2P sin 3P = % (sin 2® —sin 39) (5.27)

Substituting the above into the equation and rearranging,

1 1
i1 + ZQQM = cos %CID [(5)( — 51) a— ubQ}

1
+ sin %@ [uaﬂ — (§X + 51> b}

b
+ g(x + A)cos 3 + 5()( —A)sin 3o
A bA
+ S cos 30— sind0 (5.28)
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For eliminating secular terms in equation (5.28), consider

1
<§X — 51) a— pbQ) =0 (5.29)
1
pal) — (§X + (51) b=0 (5.30)

It is also given that for non-trivial solution to exist, the following should be satisfied,

1
6 = ZXQ — 12 (5.31)

Using equations (5.29) and (5.30), equation (5.28) becomes

(X +Aa
4Q)?

(X — A)b

UIZDCOS%@—FES&H%@— T

cos 30 — sin2d + ... (5.32)

where D and F are constants.

Substituting equations (5.28) and (5.32) into equation (5.27) the following equations

are obtained,

(%X - 51) D — uQF — {52 + (X;TQ)A} . (5.33)
QD — %(X +6)E = {52 + (X;Tﬁm] b (5.34)

Given that equations (5.33) and (5.34) have non-trivial solution, the inhomogeneous
equations have solution if and only if consistency (solvability) condition is satisfied,
2+ 46, + A?

0o = e (5.35)

Hence the equation (5.16) depicts the transition curves determining period doubling

as shown below,

1/2 2 2
K*:19215(1X2—M2Q2) — ¢ <X 440, + A >+ (5.36)

4 4 8022
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5.4 Tangent Instabilities

Initially the points corresponding to vertical tangents are in the frequency-response
curves given by the equation below, [1],

Beginning with the equation:

2\ 2 2
2 g | Gl g
pe+ <2§2+ q > = 10 (5.37)

and rearranging the above equation gives:

4p20% + (a + 2a6a2)2 = <g>2

5.38
’ (5.39)
For ease of analysis, the following variable substitutions are defined
s=a’, =0 o=wi—0° (5.39)
Then equation (5.38) is written as,
ApPas + s (wg —x — 20463)2 = ¢ (5.40)
Next, taking the derivative of the above equation with respect to x:
ds 2 ds ds
4/1%% + (wg —T— 2%5) e 4, s (wg —T— 2aes) I (5.41)
+4u25 — 25 (wg —x — 2aes) =0
Now, to determine the turning point (i.e., where j—i = 0), equating the coefficient of
ds .
7. to zero:
4plx + (wg -z — 2aes)2 — 4o s (wg —x— 20463) =0 (5.42)
Now, recall from earlier that:
9> = daes (W — z — 20s) (5.43)
Let us define:
2= wh — T — 20,8 (5.44)
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Then, rearranging:

2(z 4z — wl) = 4aes (5.45)

Now substitute equation (5.44) into (5.42) for z back into the earlier turning-point

equation:

Aitr + 22 Fdaesz =0 (5.46)

Now use the identity above again to replace 4a,s by 2(z + x — w?), leading to:

e+ 22+ 220z 4+ —wy) =0 (5.47)

Expanding the brackets and simplifying:

322+ 2z(z — W) + 4p’z =0 (5.48)

In order to calculate the tangent instability using Matlab, the variable z is determined
by solving equation (5.48) with specific values assigned to the parameter ). Subsequently,
by solving equation (5.44) for the variable s and substituting the obtained value into

equation (5.43), the variable g can be determined.

5.5 Results

A comprehensive comparison between numerical simulation results and various analytical
approaches namely, the Floquet method, the method of strained parameters, and the
tangent instability technique is illustrated in Figure 5.1. This figure highlights the
accuracy and limitations of each method in predicting the nonlinear dynamic behaviour
and bifurcation characteristics of the swing equation.

A detailed investigation of the system’s stability and dynamic response has been
performed using the Floquet method, implemented numerically via Matlab. This approach
facilitates a deep understanding of transient stability phenomena in power systems by
examining the periodic nature of small perturbations and their evolution over time. The

Floquet method is found to be particularly effective in predicting the onset of saddle-node
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bifurcation. However, when its results are compared with those from numerical simulations,
a relative error of approximately 9.21% is observed in locating the bifurcation point.

In parallel, analytical solutions derived using the method of strained parameters have
been computed by evaluating equation (5.36), which approximates the period-doubling
bifurcation curve. This method offers a perturbation-based closed-form expression that
provides both qualitative and quantitative insight into the swing equation’s nonlinear
oscillatory behaviour. Nevertheless, it introduces a prediction error of 10.32% when
compared to the numerical benchmark.

The tangent instability criterion has also been applied through the analysis of
equation (5.46), offering another perspective on identifying saddle-node bifurcations.
While analytically elegant, this method yields a deviation of 12.5% from the numerically
determined critical point.

In summary, although all three analytical methods provide valuable predictive
capability and theoretical understanding of the system dynamics, each exhibits a certain
level of discrepancy relative to the numerically obtained values. Among them, the Floquet
method demonstrates the highest accuracy, making it especially useful for applications
requiring precise stability assessment. These findings underscore the importance of
cross-validating analytical methods with numerical simulations to ensure robust analysis

of power system stability.
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Similarly, Figure 5.2 presents a comparative analysis between the results obtained
from numerical simulations and those derived using various analytical methodologies for
the case of subharmonic resonance. In this context, the analysis considers a time scale
that is twice that of the primary resonance, allowing for the examination of second-order
resonant phenomena such as period doubling and saddle-node bifurcations.

To predict the onset of bifurcations under subharmonic excitation, both the Method
of Strained Parameters and the Tangent Instability approach have been employed.
These analytical tools are applied to derive expressions that characterise the transition
boundaries of the system’s dynamic stability. The Method of Strained Parameters
demonstrates exceptional agreement with the numerical data, predicting the saddle-node
bifurcation with a remarkably low error of only 0.091%. Similarly, the Tangent Instability
method forecasts the bifurcation point with a moderate error of 5.43%, reflecting its
applicability despite a slightly reduced accuracy in this scenario.

Furthermore, the Floquet method, renowned for its effectiveness in capturing the
periodic structure of solutions and their stability, is also applied in this analysis. It
successfully predicts the period-doubling bifurcation, yielding an impressively low error
of 0.102% when benchmarked against numerical simulation results.

These analytical predictions are not only consistent with the numerical findings but
also show strong coherence with specific results presented in the literature, particularly
in [86]. The close agreement across methods affirms the robustness of the analytical
frameworks and their utility in accurately capturing complex nonlinear behaviours such

as subharmonic resonance and bifurcation dynamics in power systems.

5.6 Discussion

The objective of this section of this chapter is to analyse the dynamic characteristics of
the swing equation under different variations of control parameters. It compares analytical
methods, particularly perturbation techniques, with numerical simulation in order to
verify the accuracy of the perturbed solution for subharmonic resonance and the basins
of attraction associated with these phenomena.

The examination of the primary and subharmonic resonances of the swing equation
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involves the utilisation of many analytical methods, namely the Floquet method, method
of strained parameters, and analytical techniques. These approaches give unique perspectives
and contribute significant knowledge to the understanding of the stability of the power
system in this chapter. The analytical approach generally depends on the utilisation
of mathematical modelling and manual computations, resulting in accurate outcomes
within the context of simplified assumptions. However, it may encounter difficulties in
accurately representing the many interconnections and nonlinear dynamics that manifest
in power systems found in real-world scenarios.

On the other hand, the Floquet method and the method of strained parameters utilise
numerical and computational techniques to effectively address complex dynamics. These
methodologies provide a methodical investigation of the system’s reaction to diverse
conditions and external disturbances, which can be effectively depicted through graphical
illustrations. Researchers can enhance their comprehension of the system’s behaviour in
the vicinity of the primary resonance by graphing the response of the swing equation
across various parameter values or forcing frequencies. Graphical analyses serve as a vital
supplement to analytical techniques, providing a more holistic perspective on the stability
attributes. This aids power system engineers in making well-informed judgements to
guarantee the dependable functioning of the grid.

The anticipated response of the system is determined by employing the swing equation
in diverse scenarios, including instances involving load alterations. The data is utilised
by power system management in order to guarantee the stability and reliability of the
system. The use of this approach extends to the design and analysis of control systems for
power systems, namely in the areas of autonomous generation control and load frequency
management. For instance in the case to mitigate the occurrence of blackouts and the

consequential catastrophic consequences they may entail.

5.7 Final Remarks

This chapter has examined the influence of parameter variations on the dynamic behaviour
of the swing equation, with particular emphasis on the transitions observed before and
after the onset of chaos. Analytical methods, including the Floquet technique, the method

of strained parameters, and tangent instability analysis, were employed to assess the

95



CHAPTER 5. ANALYSING THE DYNAMICAL BEHAVIOUR USING
DIFFERENT MATHEMATICAL TECHNIQUES

system’s stability characteristics. These techniques offered valuable insights into the
mechanisms underpinning the emergence of complex dynamical behaviours.

The identification of pre-chaotic motion proved especially useful in enhancing our
understanding of the transient dynamics that precede chaotic regimes. Moreover, the
investigation of the basins of attraction associated with both primary and subharmonic
resonances confirmed the system’s inherent instability under certain excitation conditions
particularly those linked to subharmonic resonance, which tends to provoke chaotic
responses.

This work makes a significant contribution to the current academic literature on the
swing equation, building on recent studies, notably [77] and [115]. By focusing specifically
on primary and subharmonic resonances, the findings offer a deeper understanding of
the nonlinear dynamics and stability margins in power systems. These insights are of
practical relevance to power engineers and researchers seeking to develop advanced control
strategies for mitigating chaotic behaviour.

The findings highlight key aspects of system stability and provide a foundation for
future research aimed at improving the resilience and reliability of power infrastructures,
an increasingly critical objective given the growing complexity and demands placed on
modern power networks.

Looking forward, the integration of quasiperiodic forcing into the swing equation
framework represents a promising avenue for further investigation. Such an approach
could yield important insights into the long-term stability and adaptability of power

systems subject to multifrequency disturbances and non-periodic excitations.
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Chapter 6

Studying the Effects of
Quasiperiodicity on the Swing

Equation

6.1 Introduction

The concept of quasiperiodicity describes a type of motion that is characterised by the
presence of two or more frequencies that are not rational multiples of one another, which
results in the frequencies being incommensurate with one another. In light of this, it may
be deduced that the system does not completely return to its initial state, although it
does come close to doing so on occasion. The phenomenon of quasiperiodic motion is
widely observed in dynamical systems that display perturbations of integrable systems
[109]. An illustration of this can be found in the situation of a double pendulum, where
the motion displays quasiperiodicity when the amplitudes are at their lowest [110].

The idea of quasiperiodicity is a multidimensional phenomenon that does not have a
description that is universally accepted by everyone. Nevertheless, a methodology that is
widely utilised entails the construction of a definition for quasiperiodic motion in the
manner that is described below: An example of a dynamical system that is considered to
be quasiperiodic is one that possesses a solution that can be described as the combination
of two or more frequencies that are not in a rational ratio with each other [111].

One other way of thinking about quasiperiodicity is to consider it as a type of motion
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that has features that are very similar to those of periodicity. According to the definition
provided by authors, a periodic signal is a signal that displays repeating behaviour,
meaning that it occurs exactly after a predetermined amount of time has passed [112].
When compared to a perfect periodic signal, a quasiperiodic signal does not exhibit
perfect repetition yet, it does exhibit approximate repetition at consistent intervals [113].

Within the area of dynamical systems theory, the idea of quasiperiodicity is thought
to be of significant importance. A wide variety of systems, including economic, biological,
and physical systems, are all examples of the phenomenon that can be observed. There
are a number of events that can serve as examples of quasiperiodicity. These include the
motion of the planets within the solar system, as well as the rhythmic patterns that are
displayed by the human heartbeat and respiratory cycle [114].

Over the past few years, there has been a substantial amount of focus placed on
the investigation of quasiperiodicity in the swing equation. A non-linear differential
equation known as the swing equation is a mathematical representation of the dynamics
of a machine when it is subjected to the action of a periodic driving force [77, 115].
It is possible that the solution to the swing equation is a combination of two or more
frequencies that are not in a clear ratio. This is because the swing equation exhibits
quasiperiodic features when specific values are provided to the parameters. Despite the
fact that it does get near to returning to its starting state at regular intervals, implying
that the system does not completely return to its basic state.

Within the context of the swing equation, the ability of quasiperiodicity to induce
chaotic dynamics is the primary reason for its significance. The settings under which
chaos begins to take place have a significant impact on the type of movement occurring.
It is clear that when two trajectories begin so close to each other, their future divergence
follows an exponential growth pattern over a particular length [116]. This is something
that can be observed immediately. In order to fully comprehend the fundamental variables,
it is necessary to have a comprehensive understanding of chaotic behaviour. This is due
to the fact that chaotic behaviour is inherently unpredictable and impossible to manage
[23]. Moreover, the capability of this phenomena to produce intricate patterns is another
factor that contributes to its relevance. It has been demonstrated through empirical
evidence that the utilisation of quasiperiodic solutions to the swing equation can result

in the generation of spiral patterns, which are frequently observed in natural systems.
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Within the scope of their research work, Chen and Xu [117] investigate the quasiperiodic
solutions of discrete dynamical systems that are characterised by mixed-type functional
equations. An example of the presence of quasiperiodic solutions is provided by the authors
through the application of a fixed-point theorem. In addition to this, they provide instances
of systems that are able to fulfil the conditions that are outlined in their proposition.
A further inquiry was carried out by the authors, which focused on the examination of
quasiperiodic solutions within the context of a fractional differential equation [118]. After
that, they make use of a variational approach to show that quasiperiodic solutions do
exist, and they also give numerical examples to make their results more clear.

In addition, research is conducted to explore the occurrence of quasiperiodic motion,
which is distinguished by two frequencies that are not proportionate, within the context
of a non-autonomous differential equation [119]. For the purpose of determining whether
or not quasiperiodic solutions are present, the researchers employ a methodology that is
founded on the concept of averaging. In addition to that, they provide qualitative and
quantitative visualisations to illustrate the findings of their research. In their study, Li
and Zhang analyse the existence of quasiperiodic solutions for a fractional differential
equation that is not autonomous and has a nonlinear component [120]. In order to verify
the presence of quasiperiodic solutions, the researchers employ a methodology that is
observed on the concept of fixed points.

An investigation has been carried out that explicitly explores quasiperiodic solutions
in a certain category of non-autonomous differential equations that incorporate impulsive
effects [121]. For the purpose of demonstrating the existence of quasiperiodic solutions,
the authors make use of a methodology that is structured around the concepts of
lower and upper solutions theory. Furthermore, in order to make their conclusions more
understandable, they include numerical examples.

The method of averaging is utilised to investigate the existence of quasiperiodicity
in the swing equation when it is influenced by a sinusoidal driving force [122]. In this
chapter, the author demonstrated that the swing equation is capable of displaying
quasiperiodic dynamics throughout a broad spectrum of driving force amplitudes and
frequencies. In addition, the aforementioned author expanded his research to encompass
the influence of damping in a different paper [123]. The author demonstrated that

the application of damping can simultaneously generate new sorts of quasiperiodic
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behaviour while simultaneously reducing the amount of quasiperiodic behaviour that is
observed. A researcher has offered a detailed description of his research on the presence
of quasiperiodicity in the swing equation [9]. As an additional point of interest, the
author investigated a number of interesting applications of the averaging method in the
investigation of nonlinear dynamical systems.

In the context of quasiperiodicity in the swing equation, the term intermittency refers
to the rapid and unpredictable shifts that occur between regular and chaotic patterns that
are observed in the system [124]. It is distinguished by sporadic episodes of chaos that
alternate with periods of regular, quasiperiodic motion, which stands in contrast to the
constant irregularities that are observed in traditional chaotic dynamics [125]. Within the
framework of the swing equation, these sporadic patterns can be experienced as abrupt
transitions between stable quasiperiodic trajectories and chaotic behaviour, emphasising
the system’s susceptibility to specific changes in parameters or beginning circumstances
[126]. Because it can create sudden and unexpected oscillations in the pendulum-like
motion, intermittentness in the swing equation has significant repercussions for power
systems. These repercussions require careful consideration. According to the researchers,
the unforeseen changes that occur during these transitions pose challenges in terms of
maintaining system stability and have the potential to have effects that are perceptible
on the operations of electrical grids [127]. It is possible to gain a valuable understanding
of the underlying processes that regulate the behaviour of the system by doing an
examination of the irregular patterns that are present in the periodic motion of the swing
equation [33]. This knowledge contributes to the development of control techniques and
preventative measures that are more reliable, with the goal of minimising the possibilities
of disruptive repercussions resulting from irregularities in power systems.

During the course of the inquiry into quasiperiodicity in the swing equation, it
was discovered that the appearance of torus structures is indicative of a distinct and
intricate form of dynamic behaviour. A torus is a difficult trajectory that exhibits both
periodic and non-periodic properties in the motion of the system [128]. In this context,
a torus represents a trajectory that is intricate. It is possible for the swing equation
to undergo bifurcations; these bifurcations can lead to the formation of torus shapes
when the equation approaches quasiperiodic states. The forms in question are indicative

of a fragile equilibrium between regular oscillations and chaotic disturbances being
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present. These torus structures provide valuable insights into the complicated interaction
of parameters that bring about patterns of motion that are both stable and intricate
[129]. An investigation of torus structures is essential for gaining an understanding of the
system’s potential to withstand and adapt to a variety of conditions. This is because torus
structures offer a nuanced perspective on the system’s response to shifting conditions.
This information is helpful in the development of sophisticated control systems that
can make use of the favourable aspects of quasiperiodic dynamics while simultaneously
minimising the risks associated with chaotic transitions [130].

When it comes to the field of quasiperiodicity in the swing equation, chaos refers to
the occurrence of behaviour that is erratic and appears to be unexpected in a system
that, under certain conditions, is expected to exhibit motion that is more organised
and periodic [26]. In the swing equation, chaos is characterised by the disturbance
of the anticipated quasiperiodic trajectories, which results in movement that is both
unpredictable and non-repetitive [89]. As an illustration of the system’s susceptibility to
disruptions, the creation of this disorderly behaviour can be linked to relatively minor
changes in the characteristics of the system or the conditions under which it was initially
established. A gripping phenomenon that highlights the inherent complexity of dynamic
systems and demonstrates the delicate interaction between deterministic and chaotic
dynamics is the phenomenon of transitioning to chaos in quasiperiodic systems, such as
the swing equation [131]. This phenomenon is a captivating occurrence that highlights
the inherent complexity of dynamic systems. Gaining a full grasp of the chaotic behaviour
in the quasiperiodic dynamics of the swing equation is of highest significance, particularly
within the field of power systems [132]. It is possible for unpredictable behaviour to lead
to unfavourable results, such as increased vulnerability to disruptions and difficulties in
maintaining system equilibrium [103]. By examining the conditions under which chaos
emerges in the swing equation, one can gain a valuable understanding of the factors that
influence the transition from organised to chaotic movement [133]. For the purpose of
establishing effective control strategies and preventative actions to manage and decrease
the potentially disruptive implications of chaos in power system dynamics, it is essential to
have a thorough understanding of this information. The dependable and secure operation

of the entire power grid is ensured as a result of this [23, 134].
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6.2 Analytical Work

The swing equation is derived from the Law of Rotation, which governs the motion
of rotating systems. Specifically, it is formulated by applying Newton’s second law to
the dynamics of a synchronous generator rotor, as shown in the derivation presented
in Chapter 3. This foundational analysis considers the net accelerating torque as the
difference between the mechanical input torque and the electrical output torque acting
on the rotor.

The analytical framework outlined below builds upon that derivation by further
examining the contributions of both mechanical and electrical torques. The resulting
swing equation, a second order nonlinear differential equation, describes the evolution of
the rotor angle relative to the synchronous reference frame over time. Previous studies
addressing this formulation and its applications include the works of [33, 77, 115, 133],
which have laid the groundwork for exploring the nonlinear dynamics of the swing
equation.

This section extends the initial formulation by considering additional influences
such as damping, external excitation, and nonlinear effects, thereby enabling a more
comprehensive analysis of system stability and resonance phenomena in power systems.

In order to acquire a deeper comprehension of the intricate nature of quasiperiodicity,
it is of the utmost importance to engage in a thorough mathematical investigation
of the swing equation. For the purpose of this all-encompassing research, a variety
of mathematical approaches, including algebraic algorithms, Taylor series expansion,
and substitution, are utilised. Consistently, these methodologies are employed in order
to comprehend the intricacies of the swing equation and uncover the subtle effects of
quasiperiodicity [77, 115, 134].

The purpose of this section is to make use of the mathematical tools that have
been mentioned in order to conduct a thorough investigation of the consequences and
ramifications of quasiperiodic behaviour. Through the strategic application of algebraic
methods, the purpose is to obtain an understanding of the fundamental patterns and
structures that are present in the swing equation. The Taylor expansion is a mathematical
technique that is extremely effective and is used to acquire a methodical and precise

estimation of an equation. This allows for a more in-depth understanding of the dynamics
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of the equation [77, 115].

Furthermore, the strategic application of substitution techniques is introduced into the
analytical framework. This has made it possible to investigate alternate representations
and transformations, which may disclose elements of quasiperiodic occurrences that were
previously hidden. Through the utilisation of mathematical techniques, the objective of
this work is to discover the fundamental mechanisms that govern quasiperiodic behaviour
in the swing equation [134]. This will be accomplished by revealing the intricate link that

exists between variables.

6.3 The Swing Equation Model

One of the most important frameworks for understanding the dynamics of rotor systems
in electrical power equipment, specifically synchronous generators, is provided by the
swing equation model. In its most basic form, the equation is a representation of the
equilibrium that exists between the mechanical inertia and the electrical torque that
are present within the rotor. An explanation of how perturbations in the power grid
or mechanical forces can cause deviations from the synchronous speed is provided by
this equation. These deviations, in turn, can cause oscillations in the rotor angle and
speed. Using the language of mathematics, it is possible to characterise it as a differential
equation of the second order. Additionally, it is applicable to the acceleration of the rotor
angle in relation to the disparity between the mechanical torque and the electrical torque,
which is then divided by the inertia of the system [23]. When it comes to evaluating the
stability and dynamic response of power systems, the usage of this model is absolutely
necessary. This model gives engineers the capacity to build control techniques that are
resilient, hence reducing interruptions and ensuring reliable operation.

The rotor of the machine used by the swing equation, explains the intricate behaviour
of both electrical and mechanical elements of the system. Hence studying the stability
of this machine is vital to comprehend the abrupt alterations to the parameters of the
equation. Stability can be observed through changing the load and inputs of the systems
over time and hence reducing the cascade of chaos within power systems [133]. Examples

of such changes include grid faults and load fluctuations. For the purpose of maintaining
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grid stability and preventing cascading failures on account of disturbances, gaining an
understanding of these processes is absolutely necessary. The swing equation makes it
possible to carry out an accurate analysis of the dynamics of the rotor, which helps to

develop complex control systems.

6.4 Hamilton’s Principle

Hamilton’s principle studies the dynamics of the swing equation system and considering
this for the case of quasiperiodicity, this principle uses Lagrangian multiples to formulate
the equation [135, 136]. It also provides deeper insight into the behaviour of the
variable change within the nonlinear systems [137]. Hence this principle provides a
better understanding of the parameters and chaos theory of the swing equation [138].

Over time, within the quasiperiodic domain governed by Hamilton’s principle, the
swing equation may experience a transition towards chaotic dynamics. Chaos arises when
the system’s response becomes very sensitive to initial conditions, leading to unpredictable
and erratic behaviour. Quasiperiodicity involves a transition to chaos that is marked by
the disturbance of stable periodic orbits, the appearance of bifurcations, and the start
of complex, non-repetitive paths. The system’s vulnerability to disruptions, combined
with the incongruous frequencies present in quasiperiodic environments, results in the
rapid transition towards chaos. Hamilton’s principle, which focuses on minimising action
and determining the trajectory of a system, is a valuable tool for understanding how
quasiperiodicity can lead to chaotic dynamics in the swing equation over time.

Consider equation (3.10) represents the general form of the swing equation, accounting
for damping, mechanical power input, and the electrical power output represented through
the sinusoidal term.

Next, we substitute equations (3.11) and (3.12) into the swing equation above and

expand the resulting expression. This gives:
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Now, simplifying equation (6.1) under the assumption that the quantities 6gg, Vo,
¢g and fp; are sufficiently small (perturbative terms), we can reduce the expression to a

more standard form:

d*0 do

el +q—rsinf + fsin(Q) (6.2)
where the constants are defined as:
D Vi VeV,
p= “R q= “R P, r= WRYG f= WRYGVB1 cos(QU + ¢y) (6.3)

2H T 2H T 2HXS T 2HX,
In order to apply Hamilton’s Principle, we first define the Lagrangian L(#, 0, t) which
consists of kinetic and potential energy terms, as well as non-conservative forces (such as

damping) and external periodic excitation:

L(0,0,1) — %92 +q— pll — cos6 + fsin(QF) sin 0 (6.4)

We then apply the Euler-Lagrange equation:

d (0L oL

After evaluating the derivatives and simplifying the result, we arrive at the following

non-linear differential equation which governs the motion of the system:

0 —sinf + fsin(2t) cosf =0 (6.6)

After plotting equation (6.6) with angle against time for the case of Hamilton’s
Principle, comparing this with Method of Strained Parameters and Floquet Theory for
further analysis within the context of quasiperiodicity is the next step in the process.

Figure 6.1 is a graph that illustrates the gradual decrease in stability that occurs over

the course of time, which ultimately leads to a condition of instability that is characterised
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by quasiperiodicity. Throughout the course of time, the movement of the system becomes
increasingly erratic and unpredictable, which demonstrates the system’s sensitivity to
the quasiperiodicity for all of the approaches that are taken into consideration. Based
on the behaviour that was seen, it appears that the complex interaction between the
system’s inherent dynamics and the forces that are located outside of it could potentially

result in chaotic motion.

Angle
o)
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-12

Method of Strained Parameters
14 L Floquet Theory
Hamilton's Principle

_1 6 | | | | | | |
0 10 20 30 40 50 60 70 80

Time

Figure 6.1: Simulation of the Swing Equation with the Hamilton’s Principle comparing
with Method of Strained Parameters and Floquet Theory when Q = 7/2 rads™" [115, 134].
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6.5 Basins of Attractions for the case of

Quasiperiodicity

The phenomenon of quasiperiodicity is of the utmost relevance when it comes to
comprehending the characteristics of stability that are associated with a nonlinear
system. Therefore, in order to get a comprehensive understanding of the system, it is
absolutely necessary to carry out an in-depth investigation of the basins of attraction
that are connected to the core resonance. The utilisation of basins of attraction makes it
possible to distinguish between stable and unstable regions within a system, which in
turn makes it easier to analyse the modifications that have been made to the system in
question [139]. The charts depict the changes that occur in the basins of attraction as a
result of the modifications made to the variables. In the process of generating conclusions
from these graphs, it is of utmost importance to have the boundary conditions taken
into consideration as well [140].

There have been major discoveries made on the stability characteristics of power
systems as a result of research conducted on the basins of attraction of quasiperiodicity. An
investigation has been conducted to examine the influence of parameter variations, which
encompass system damping, excitation levels, and control gains, on the configuration and
amplitude of the basins of attraction [98, 140]. Additionally, the majority of the research
conducted by academics has concentrated on the discovery of critical borders that serve

to differentiate between stable and unstable regions within the state space [99, 141].

6.6 Numerical Analysis

6.6.1 Graphical Representation

Through the use of the fourth-order Runge-Kutta method in Matlab, the equations (3.10),
(3.11), and (3.12) were successfully solved. The primary objective was to investigate the
impact of altering the excitation frequency {2 on the occurrence of quasiperiodicity with

irrational values [77, 115].
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Figure 6.2: Phase portrait, frequency-domain plot and Poincaré map when 2 = 27 rads™ .
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Figure 6.3: Phase portrait, frequency-domain plot and Poincaré map when €2 = 7 rads™".
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Figure 6.4: Phase portrait, frequency-domain plot and Poincaré map when 2 = 27/3
rads !
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Figure 6.5: Phase portrait, frequency-domain plot and Poincaré map when Q = 7/2
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Figure 6.6: Phase portrait, frequency-domain plot and Poincaré map when 2 = 27/8
rads !

The swing equation (3.10) was used to examine the system’s response to variations
in excitation frequency, and Figures 6.2 through 6.6 were constructed to visualise these
changes. Each figure includes the corresponding phase portrait, frequency-domain plot,
and Poincaré map. The dynamic effects of changing excitation frequency have also been
documented in previous studies such as [110].

The selected excitation frequency values for this analysis were chosen to investigate
the emergence of quasiperiodic motion and its transition into chaos. In particular, the
values of €2 used in Figures 6.2 to 6.5 were carefully set to lie near incommensurate ratios
with the system’s natural frequency. This encourages the onset of quasiperiodicity, where
the system’s trajectory evolves on a torus in phase space. As depicted in these figures,

the resulting attractors exhibit closed, nested loops indicative of toroidal motion rather
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than simple periodic behaviour.

These torus structures suggest that the rotor dynamics of the synchronous generator
are governed by two or more incommensurate frequencies, which is a defining characteristic
of quasiperiodic motion. The excitation frequencies were gradually lowered in a controlled
manner to capture the breakdown of these tori. Figure 6.6 demonstrates this progression,
where the attractor degenerates into a strange attractor, confirming the transition to

chaos. The chaotic attractor is identified at approximately 27 /8 rad - s~1

, marking the
endpoint of this route to chaos.

By selecting these specific 2 values, the study aims to illustrate the route to chaos,
in which a system transitions from periodic to quasiperiodic dynamics, and eventually to
chaos, through torus breakdown. Each frequency step was deliberately chosen to highlight
a key phase in this transition, thereby offering insight into the delicate interplay between

excitation frequency and nonlinear system behaviour.

6.6.2 Golden Ratio Number

The golden ratio (1.61803398875...), has captivated scientists and mathematicians due
to its visually appealing qualities and distinctive mathematical importance [142]. Using
the golden ratio as the angular frequency (§2) in the swing equation makes it possible to
conduct an insightful inquiry into the dynamics of quasiperiodicity. A number that is
irrational is known as the golden ratio. When it is utilised as the driving frequency, it
generates a relationship with other system properties that is not proportional to either
dimension. Because of this, there is a possibility that complex quasiperiodic motion will
occur. It is envisaged that the reaction of the system will exhibit compelling patterns and
frequencies as a result of the introduction of the golden ratio, which will demonstrate
the inherent complexity of quasiperiodic behaviour.

A graphical representation of the impact that the golden ratio has on the swing
equation may be found in Figure 6.7. A perceptive picture of the system’s trajectory as
it evolves over time is provided by the phase portrait. This representation highlights the
transitions that occur in the system’s tilt and angular velocity across time. It is also an

illustration of the torus phenomenon for the situation that is being considered. Poincaré
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maps offer a concise representation of the behaviour of the system by illustrating the
points at which the trajectory interacts with a specific plane through the use of mapping.
Furthermore, frequency domain charts make it easier to investigate the spectrum features
of the system by illuminating prominent frequencies and potential resonance in the
system. The utilisation of the golden ratio in these analyses provides a unique viewpoint
that enables one to observe and appreciate the intricate quasiperiodic patterns that
emerge in the swing equation. This, in turn, allows a fascinating analysis of the dynamic

behaviour of the system.
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Figure 6.7: Phase portrait, frequency-domain plot and Poincaré map when ) =
1.61803398875... rads ™.

6.7 Bifurcation and Lyapunov Exponents

Diagrammatic representation of the bifurcation that is connected with the phenomena
of quasiperiodicity is shown in Figure 6.8. After determining the swing equation for a
particular angular frequency value of Q = 7/2 rads™', the building procedure involved
doing numerical time integration using the widely recognised fourth order Runge-Kutta
method. This was done in order to construct the structure. The forcing parameter, which
is denoted by the symbol 7 as shown in equation (3.65), is gradually increased, and the
time integration procedure is subsequently extended as a result of this. According to the
authors, the data that was acquired is then utilised to build a graph that illustrates the

largest amplitude of the oscillatory solution in relation to 7 as in equation (4.53) [77].
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Figure 6.8: Bifurcation diagram for the case of Quasiperiodicity where Q = /2 rads™".

Figure 6.8 also illustrates the occurrence of the initial period doubling just before to
reaching a value of r that is equal to 1.085 in the case of quasiperiodicity. This is shown
in the figure above. Additionally, it is clear that the first instance of period doubling in
a series of repeated period doublings is observed at around r = 1.94, which ultimately
results in the emergence of chaotic behaviour. This is the result of a chain of period
doublings that occur in succession. The findings of this numerical component indicate
that an increase in the value of parameter r leads to a progressive loss of synchronisation
in the swing equation, particularly in regard to quasiperiodicity. This is demonstrated by
the fact that the synchronisation gradually deteriorates.

To a large extent, the Lyapunov exponent, as depicted in Figure 6.9, exhibits positive
values in the region surrounding the values of » = 1.9. Within the context of this
scenario, two locations that are initially very close to one another and are separated by an

incredibly short distance eventually move further apart from one another over the course

112



CHAPTER 6. STUDYING THE EFFECTS OF QUASIPERIODICITY ON THE
SWING EQUATION

of time. The utilisation of Lyapunov exponents is what allows for the quantification of
this divergence to be achieved. Additional corroboration of the phenomenon that was
reported earlier is provided by the behaviour that was found in the bifurcation diagram.
To provide a more exact explanation, when the value of r hits a specific threshold, a series
of period doublings takes place, which ultimately leads to chaotic behaviour. Therefore,
it is possible to draw the conclusion that the existence of a chaotic attractor is indicated

by the presence of a positive Lyapunov exponent within the system.

Lyapunov Exponent
o

Figure 6.9: Lyapunov exponents as r is varied for quasiperiodicity.
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6.8 Comparison of Routes to Chaos for the case of

Quasiperiodicity and Primary Resonance

In the process of contrasting the disorder in quasiperiodicity with the primary resonance
in the swing equation, it is possible to detect distinct variations in the manner in which
the system reacts to the influence of external factors. The term quasiperiodicity describes
a circumstance in which the frequency of driving is not a clear rational multiple of the
frequency obtained from the natural frequency. In these kinds of situations, the swing
equation exhibits patterns that are both complicated and non-repetitive. It is important
to note that the complexity of quasiperiodic behaviour is highlighted by the fact that the
system is responsive to starting conditions and eventually separates on its courses. On
the other hand, when the external frequency coincides with a natural frequency mode,
the swing equation can undergo period-doubling bifurcations and ultimately move into

chaos. This occurs in primary resonance.
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Comparison of Chaos: Quasi-Periodic vs. Primary Resonance

Primary Resonance
Quasi-Periodic

_80 | | | |
0 100 200 300 400 500

Time

Figure 6.10: Comparison of chaos in the case of Quasiperiodicity(Q = 8.27+7/2 rads )
vs the Primary Resonance (2 = 8.27 rads™).

Figure 6.10 is a graph that provides a visual representation of the temporal progression
of chaos in quasiperiodicity as contrasted to primary resonance in the swing equation.
The primary resonance is believed to be at Q = 8.27 rads ™!, and for the quasiperiodicity,
it is therefore considered to be closer to the primary resonance at Q = 8.27 4 7/2 rads™".
The graph depicts the irregular trajectories and the early emergence of chaotic behaviour
in the quasiperiodic scenario. It also highlights the enhanced susceptibility of the system
to slight variations in parameters, which is a characteristic of quasiperiodic dynamics.
Compared to the more organised and predictable behaviour associated with primary
resonance, this result reveals a tendency for faster transitions into chaotic states, which
underscores the necessity of comprehending and tracking the quasiperiodic regime. This
is because it demonstrates quicker transitions into chaotic states. When conducting an
analysis of the dynamics of the swing equation, it is important to take into consideration

both of the possibilities, as the graph illustrates. It provides an in-depth analysis of the
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intricate link that exists between the external force and the response of the system.

6.9 Basins of attractions for the case of
Quasiperiodicity

The basins of attraction for the case of quasiperiodicity are depicted in Figure 6.11,
Figure 6.12, Figure 6.13, and Figure 6.14, respectively. The graphics presented here
illustrate the fluctuations that occur in the variables Vg, and 6z, while maintaining
the value of Q at 7/2 rads™'. As the variable is increased, there is a possibility that
the stability of the system will be altered. It is clear that the areas of the system that
are stable are represented by the presence of the colours red and green, while the other
colours are indicative of the regions that are unstable. As the value of the independent
variable increases, the system goes through a stage of degradation that is characterised
by the presence of unstable zones. For this reason, it is very necessary to conduct an
exhaustive investigation into the influence of other components inside the system in order
to guarantee the validity and robustness of the conclusions that were reached in this

particular research.

Basins of Attraction

Basins of Attraction

Imaginary part of initial condition
Imaginary part of initial condition

-15 <10 -5 0 5 10
Real part of initial condition

Real part of initial condition

Figure 6.11: Basins of attractions when Vp; is 0.051 rad and 0.062 rad respectively for
Q= 7/2 rads™".
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Basins of Attraction
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Figure 6.12: Basins of attractions when Vg is 0.071 rad and 0.151 rad respectively for
Q= 7/2 rads™".

Basins of Attraction Basins of Attraction
10 5 10
45
c [=
k<3 b=}
8 8
] 135 o
E E
u 3 k]
= =
] o}
a | a
bl 25 >
@ @
£ =
g 2 g
E E
15
1
-5 0
Real part of initial condition Real part of initial condition

Figure 6.13: Basins of attractions when 6p; is 0.101 rad and 0.05 rad respectively for Q=
7/2 rads™".
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Figure 6.14: Basins of attractions when g, is 0.07 rad and 0.181 rad respectively for (2=
7/2 rads™".
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6.10 Stability Reduction
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Figure 6.15: Comparing the reduction in stability region for Primary Resonance (2=8.27
rads™') and the case of Quasiperiodicity (2 = 27/8 rads™").
The Lyapunov exponents are utilised in the analysis of two different instances of stability
degradation in the swing equation, which is depicted in Figure 6.15. When considering
the first situation, the estimated value of € is to be 8.27 rads™", which is the frequency
that represents the primary resonance. The system is subjected to a driving force that
corresponds to its resonant frequency, which results in a gradual reduction in its amplitude.
In this case, the value of () is investigated by utilising the expression %” rads™'. This
particular expression represents a quasiperiodicity frequency that is distinct from the
natural frequency of the system. Within this context, the machine displays a quasiperiodic
response as a result of the frequency at which the driving force is given.

According to authors, the Lyapunov exponents offer valuable insights into the stability

of a dynamical system, namely the rate at which nearby trajectories either converge
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or diverge over the course of time [46]. Within the framework of the swing equation,
which is a mathematical expression that represents the movement of a system that is
influenced by an external force denoted by Vg1, Lyapunov exponents can be utilised to
assess the impact of increasing Vz; on the stability of the system. Through the process
of incrementing Vg1, it becomes feasible to compute the Lyapunov exponents at each
and every iteration. It is possible to see a loss in stability when there is a transition from
negative exponents to less negative or even positive exponents. This is an indication of
diminished stability. A steady path is shown by a negative exponent, which indicates
that the perturbations in the system are decreasing with time [23, 143]. Consequently,
if the Lyapunov exponents fall in size or change sign as the value of Vg increases, this
indicates that there is a significant decline in stability. The fact that this is the case
suggests that the system is more susceptible to the beginning conditions and that its
conduct is less predictable.

As the variable Vg, is changed, the Lyapunov exponents provide a precise measurement
of the stability of the swing equation. This is important since the swing equation is stable.
An observable decline in stability is implied by changes in the exponents, which imply

an increased sensitivity of the system to shocks as Vg1 grows.

6.11 Discussion

The fundamental purpose of this segment is to carry out an in-depth analysis of the
dynamic features that are displayed by the swing equation when the control parameters
are changed, with a specific emphasis on the complex phenomena of quasiperiodicity as
the key area of investigation. An examination of the similarities and differences between
analytical methods, particularly perturbation techniques, and numerical simulations is
carried out in the course of this investigation. The goal of this comparison is to determine
whether or not the perturbed solutions and the basins of attraction that correspond to
them are accurate. The purpose is to obtain a full understanding of the quasiperiodic
dynamics and the influence that these dynamics have on the stability of the power system.
This was accomplished through the use of the analytical technique known as Hamilton’s
Principle.

It is necessary to make use of analytical techniques and methodologies in order to

120



CHAPTER 6. STUDYING THE EFFECTS OF QUASIPERIODICITY ON THE
SWING EQUATION

conduct an analysis of the resonances that are intrinsically present in the swing equation.
Specific insights that are seen on fewer assumptions can be obtained by the utilisation of
these techniques, which involve the use of mathematical modelling and computations. It
is possible, on the other hand, that their efficiency will decrease when they are confronted
with the complexity of actual power networks. By combining numerical and computational
tools into Hamilton’s Principle, it is possible to solve this limitation, which in turn makes
it possible to conduct a more in-depth investigation of how the system reacts to a range
of the many scenarios that may arise. Utilising graphical representations, which are
obtained from numerical calculations, it is possible to produce a visual depiction of how
the swing equation performs under various parameter values and forcing frequencies
for the scenario of quasiperiodicity. This may be accomplished by using the process of
graphical representations. In order to acquire a more profound understanding of the
information that was collected using analytical approaches, these graphical representations
are of great use. Using this all-encompassing methodology, power system engineers are
able to make well-informed decisions, which is necessary for the purpose of ensuring the
grid’s reliable functioning in the face of quasiperiodic dynamics.

When it comes to scenarios that occur in real life, it is of the utmost importance
to have a solid understanding of the predicted reactions of the system, particularly
when quasiperiodicity is present. An illustration that is pertinent is provided by load
fluctuations, which are something that regularly occur in power systems. The information
that is gathered from these events is extremely important for the management of the
power system, as it contributes to the upkeep of the system’s dependability and stability.
Furthermore, the conclusions that were gained from this research have consequences
for the development and evaluation of control systems, namely in the fields of loading
frequency management and autonomous generation control. When it comes to efficiently
lowering the risk of blackouts and the terrible ramifications that they can have, having a
solid understanding of the quasiperiodic dynamics that are involved in the swing equation

is absolutely necessary.
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6.12 Final Remarks

In order to carry out an in-depth investigation into the complex dynamics of the swing
equation within the realm of quasiperiodicity, this extensive analysis utilised a wide range
of analytical methods, such as bifurcation diagrams, Lyapunov exponents, phase portraits,
frequency domain plots, and Poincaré maps. An oncoming shift towards turbulence is
indicated by the introduction of complex behaviours, such as the repetition of periods in
sequences of bifurcations. This shift may result in the formation of operational issues and
may potentially represent hazards to power systems depending on the circumstances.

The results provided light on the relevance of chaos induction, which is caused by the
collapse of quasiperiodic torus structures and the presence of intermittency in the swing
equation. The findings of the research shed light on the significance of chaos induction.
One example of the system’s vulnerability to quasiperiodic transitions is the phenomenon
known as period doubling, which is widely recognised. This occurrence is an example of
the system’s instability. the goal is to investigate such effects in order to better understand
how the behaviour of the system is affected by changes in parameters. The outcomes of
this inquiry will provide insights into the alterations that are observed both before and
after the onset of chaotic behaviour from the perspective of the observers.

It expands upon the recent academic research conducted by the same group of
researchers, further developing their previous findings. It aims to enhance existing
approaches by offering a more profound understanding of the underlying mathematics,
rather than replacing them. This research contributes to the improvement of control
strategies and preventive measures for power systems by enhancing the understanding
of fundamental principles and system stability, with a specific focus on quasiperiodicity.
It aims to mitigate the chaotic effects caused by the phenomena of quasiperiodicity
benefiting power system engineers and researchers.

The findings obtained from this work provide a clear grasp of how the swing
equation behaves in the presence of quasiperiodic conditions, thereby making significant
contributions to the comprehension of system stability. These discoveries could lead to
improvements in the creation of power infrastructures that are more durable and safe,
especially as power systems face more intricate issues throughout expansion.

In the future, scholars might look at how to include quasiperiodic circumstances in
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the framework of swing equations. This may provide important new information about
the long-term stability and flexibility of electricity systems. These initiatives have the
potential to deepen the knowledge of these intricate nonlinear systems and produce

improvements that increase their robustness.
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Chapter 7

Analysing the Swing Equation using
Matlab Simulink

7.1 Introduction

Matlab is a widely recognised software application employed by numerous researchers
for data analysis. In addition, it facilitates the solution of differential equations and
the generation of graphical representations, thereby establishing a strong foundation for
deeper understanding. Among its various components, the most frequently utilised is
Simulink.

Simulink enables the modelling of circuit equations and supports the simulation of
reliable data using user-defined inputs. The electrical and electronics industries have
undergone significant transformation in recent years, in part due to the capability to
simulate a wide range of circuit behaviours.

To accommodate users’ specific design requirements, Simulink offers a block diagram
interface. This allows users to select and utilise various block diagrams available within
its library to construct their desired models for analytical purposes. In the context of this
investigation, the swing equation is modelled using Matlab Simulink to conduct both
analytical and numerical analyses of the results from a practical standpoint .

Although Matlab Simulink was developed relatively recently, it is currently employed
across a wide range of industries and disciplines [144]. It is also used to simulate digital

power systems, enabling the examination of data derived from complex post-processing
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results [145]. Several authors have developed a simulation toolbox based on power systems
that features a user-friendly interface and functionality [146].

Furthermore, a power system model has been proposed by researchers that can be
extended for use in various electrical and mechanical systems to explore the interactions
between them [147]. In the context of electromechanical systems, multiphase models can
also be effectively described and simulated using the Matlab programming environment
[148]. Additionally, Matlab has played a significant role in the modelling and design of
various fault conditions, facilitating the analysis of their impacts in order to mitigate
such adverse effects [149].

The modelling of wireless networks and the investigation of distortion have both
been accomplished with the help of Simulink in the setting of nonlinear dynamics [150].
Researchers now have the opportunity to expand their understanding of a variety of
systems as a result of this event. A case study is used to highlight the practicability of
implementation in the simulation environment in terms of representation and control of
nonlinear processes [151]. The authors also employed the adaptive cruise control model
as the main focus of the study. The models of any arbitrary nonlinear system are also
subjected to an analysis for the purpose of analysing them in Matlab [152]. For the
purpose of gaining an understanding of the principles of transfer functions, research is
carried out on the computer simulation of nonlinear control systems that are specified in
the form of so-called generalised transfer functions [153].

Figure 7.1 presents an example circuit simulation of a synchronous power system,
developed by the authors in [154] using Matlab Simulink. This diagram illustrates a
model of a transmission system supplying a gearbox line over a distance of 300 kilometres.
A shunt inductor is placed at the receiving end to compensate for reactive power. The
system parameters, including a voltage level of 735 kV, are based on realistic high-voltage
transmission system values typically used in long-distance power delivery networks, such
as those in North America or large-scale grid infrastructure projects.

These specific values were adopted from the referenced study to serve as a practical
and illustrative benchmark for modelling power systems in Simulink. The 735 kV voltage
level is commonly used in extra-high voltage (EHV) transmission networks, as it allows
for efficient long-distance power transfer with reduced line losses. Similarly, the 300 km

transmission length represents a realistic scenario where line inductance and capacitance
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significantly influence system dynamics, making it suitable for studying phenomena such
as transient stability and resonance topics central to the swing equation.

This figure was included in the thesis to demonstrate how such a system can be
translated into a Simulink model, and to highlight the components relevant to the swing
equation analysis presented in this research. The diagram helps to visualise key elements
of the power system, including synchronous generators, transmission lines, compensating
devices (e.g., shunt inductors), and loads. Understanding the layout and interactions
of these components is crucial for correctly configuring the simulation model. This
ensures that the swing equation-based model accurately reflects the physical behaviour
of real-world power systems, thereby improving the validity and applicability of the

numerical results obtained in subsequent chapters.
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Figure 7.1: Example of a synchronous circuit produced on Matlab Simulink [154].

Simulink offers a flexible platform for modelling intricate dynamical systems, enabling
researchers to precisely simulate the behaviour of power circuits and analyse the real-time
dynamics of the swing equation. Researchers can utilise the swing equation circuit in
Simulink to investigate different situations, modify system parameters, and visually
analyse the power system’s transient response to shocks.

Furthermore, Simulink provides a user-friendly interface that includes a wide range of
pre-built blocks for electrical components. This greatly simplifies the task of developing

and simulating the swing equation circuit model. Scientists may incorporate different
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components of the power system, including generators, transmission lines, and loads, into
their simulations, conducting a thorough examination of system dynamics. Moreover,
Simulink offers sophisticated data visualisation tools that allow researchers to properly
understand simulation results and obtain significant insights into the power system’s
behaviour.

Additionally, it simplifies the process of verifying theoretical models and experimental
results by conducting simulation-based experiments. Researchers can assess the correctness
and dependability of the swing equation model by comparing simulation results with
empirical data or analytical answers. This verification process ensures that the model is
suitable for forecasting the behaviour of real-world power systems. The validation phase
is essential for establishing the legitimacy of the findings and demonstrating the practical
applicability of the swing equation technique in addressing stability and reliability issues
in power circuits.

The circuit simulation developed in Matlab will be used to support and guide the
modelling and analysis conducted in this research. Hence this research should focus on
building a circuit model for the synchronous generator considered for the rotor of the
machine explaining the swing equation to study the dynamical behaviours.

Matlab Simulink is used to verify the swing equation, which has been examined
numerically and analytically in this research. This will strengthen understanding of the
equation with analytical results. This will establish a safe foundation for doing an analysis
of the differential equation model and keeping track of changes in the parameters in
Simulink. In order to discover the results that were anticipated, it is possible to investigate
the intricate behaviour of the system by manipulating the simulated model with very
tiny disruptions. The findings that are provided by the models will indicate the rate at
which the system becomes unstable as well as the precise moment when it takes place.

The swing equation, illustrating the nonlinear behaviour of synchronous generators,
has been extensively analysed in many research papers in recent years. These models are
essential for assessing the stability of intricate synchronous machines within dynamical
systems. Researchers have employed Simulink to develop advanced swing equation models
that eliminate simplifying assumptions, yielding a more accurate representation of system
dynamics [77, 155]. The enhanced models have been utilised to assess the performance of

synchronous generators under diverse conditions, including connections to steady loads

127



CHAPTER 7. ANALYSING THE SWING EQUATION USING MATLAB
SIMULINK

or infinite buses, providing critical insights into stability and frequency regulation, [156],
[157]. Moreover, Matlab Simulink offers explicit visualisation when various excitation
frequencies are analysed within the systems [158].

The swing equation analyses the dynamic behaviour of the machine’s rotor and
minor external disturbances [77, 155]. Research has demonstrated that adjusting specific
variables in the equation yields distinct behavioural patterns inside the system. Consequently,
the system encounters challenges in reverting to its former state, displaying minimal
changes that ultimately result in chaos within the structure [116]. Examining the
fundamental tenets of chaos theory will provide essential understanding for the management
of the nonlinear system [23].

The swing equation is initially modelled in Matlab Simulink, where primary resonance,
subharmonic resonance, and quasiperiodicity are studied by varying the system’s excitation
frequency. The generated results were subsequently examined and validated against the
analytical and numerical findings from prior works by the same authors [77, 115, 134, 159].
Various choices of €2 were examined, and Poincaré maps were generated to juxtapose the
analytical approaches with the Simulink model, so deriving robust findings for this study.

This chapter seeks to understand the modelling of the swing equation using Simulink
and to validate the analytical methods employed to enhance comprehension for academics
and researchers. Therefore, the aim is to emphasise progress in the examination of the
swing equation through a Matlab model and to concentrate on comprehending this
model to provide novel insights into persistent issues related to the stability of dynamical
systems.

Matlab Simulink models are essential for analysing the complex behaviour of nonlinear
systems. It facilitates the modelling, simulation, and comprehensive analysis of intricate
power systems, [160]. This enables engineers and researchers in the electrical domain to
visualise the system on a digital computer prior to executing the procedures on actual
power grids [161, 162]. Storage facilities utilise Simulink models to analyse processes at
varying speeds and loads, hence ensuring system safety [163]. It facilitates the modelling
and simulation of systems, hence enabling the creation of innovative chaotic systems
exhibiting diverse dynamic behaviours [164].

Numerous studies have explored various uses and approaches within the realm

of Simulink modelling. Simulink models have been employed for detecting defects in
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control systems and simulating power systems by deconstructing complicated components
[165—-168]. These models have also been employed in the examination of vehicle gearboxes
and memristors within chaotic systems [169-171].

This work additionally analyses the integrity diagrams for primary resonance, subharmonic
resonance, and the case of quasiperiodicity when the variable is modified. An analytical
method utilising the isolated resonance approximation can be employed to derive integrity
diagrams and ascertain their limits before the onset of period doublings [172, 173].
Stochastic bifurcation limits are established by this method, taking into account various
amplitudes and beginning circumstances [174, 175]. Attractors lose stability in the absence
of chaos when a system enters a bistable state [176, 177].

Primary resonance occurs when the excitation frequency of the system closely matches
its natural frequency, whereas subharmonic resonance transpires when disturbances are
integer multiples of the natural frequencies. Both resonances may lead to system instability
and equipment damage [79, 178]. Techniques like the incremental averaging method
and various scales provide accurate analytical solutions that elucidate the resonant
behaviour of nonlinear systems, including Duffing oscillators with diverse damping
processes [179, 180]. Furthermore, the examination of subharmonic resonance is utilised
for diagnostic imaging with ultrasonic contrast agents [181]. Quasiperiodicity occurs when
the frequency ratio is an irrational number. All three scenarios are analysed using the
Simulink model. Studying all three situations is essential for a comprehensive knowledge
of the dynamics of the swing equation system.

Bifurcation diagrams serve as an effective instrument for analysing integrity diagrams
in dynamics, as noted in numerous research publications. They furnish essential insights
about the dynamical behaviour of the system and its stability [182-184]. Hamiltonian
systems employ bifurcation diagrams to analyse the complex and chaotic behaviour within
this field [185]. Therefore, it is essential to analyse and acquire bifurcation diagrams
for nonlinear systems to comprehend the intricacies of the structure, facilitating a

comprehensive examination for future research.
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7.2 The Swing Equation Model from the Matlab

Simulink

The swing equation, denoted as equation (3.10), elucidates the electrical and mechanical
torque of the machine’s rotor and examines the behaviour of the rotor’s angle and speed
in response to a minor perturbation. Analysing the machine’s acceleration and torques
establishes a robust basis for engineers to address challenges inside the systems [172].
Therefore, modelling this concept to acquire real-time values will be optimal for a detailed
examination of the equation.

The rotor of the machine, as described by the swing equation, elucidates the complex
interactions between the electrical and mechanical components of the system. Therefore,
examining the stability of this machine is essential to understand the sudden changes in
the parameters of the equation. Stability can be assessed by varying the load and inputs
of the systems over time, hence mitigating the cascade of chaos inside power systems,
[180].

The Simulink model depicted in Figure 7.2 was employed to investigate the swing

equation for this investigation.

Figure 7.2: MATLAB Simulink model used to represent the Swing Equation.
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7.3 Integrity Diagrams

Integrity diagrams are essential in nonlinear dynamics since they facilitate the assessment
of the dynamic integrity of systems. These diagrams are essential for assessing the safe
basin and erosion profiles, which are critical instruments for studying dynamic integrity,
[186]. The concept of dynamical integrity has emerged as a crucial factor in structural
design, with extensive study focused on the management of basin erosion processes,
[187]. The notion of global safety, an innovative methodology for assessing systems, has
significantly impacted the study, regulation, and design of mechanical and structural
systems. The integrity diagrams are essential for preserving the stability and performance
of the nonlinear system, [188]. This is demonstrated by studying vibrational systems,
both with and without discontinuities, [189]. Nonlinear robust control techniques require
integrity diagrams to illustrate solutions when several variables are influenced by external
disturbances, [190].

These diagrams employ surrogate models to reduce simulation time, maintain accuracy,
and facilitate integration into circuit simulators for comprehensive setup analysis throughout
the design phase. Adjustable dead bands are examined in networked control systems
to reduce network traffic. The main focus is on stability analysis with robust stability
theory, [191]. Furthermore, nonlinear robust control techniques that depend on integrity
are utilised to tackle unmodeled dynamics and uncertainties in multivariable systems,

hence ensuring both robustness and feasibility, [192].

7.4 Results from the Simulink Model

7.4.1 Primary Resonance

The results for primary resonance was obtained for the Simulink model. Figure 7.3,
Figure 7.4, Figure 7.5, Figure 7.6 and Figure 7.7 show time series, phase portraits and
Poincaré maps that were plotted and compared to the analytical results obtained from
the previous research work, [77]. The produced figures from Matlab Simulink show similar

behaviour to the analytical work hence providing a strong validation to this study.
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Figure 7.6: Time series, Phase portrait and Poincaré map from Simulink when €2 = 8.275
rads ™.
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Figure 7.7: Time series and Phase portrait from Simulink when € = 8.2601 rads ™.

7.4.2 Subharmonic Resonance

Similarly, Figure 7.8, Figure 7.9, Figure 7.10, Figure 7.11 and Figure 7.12 were obtained
for subharmonic resonance from the Simulink model. Results obtained for subharmonic
resonance were compared to the analytical findings from previous research [115]. The
graphs show similar behaviour to the analytical work, hence providing strong confirmation
for this study [115, 134].

Subharmonic resonance is when the excitation frequency is twice the natural frequency
of the system. This results in the occurrence of low-frequency oscillations and the
possibility of equipment damage [115, 134]. Studies have demonstrated that by employing
Melnikov methods, chaos in the pendulum equation may be mitigated during ultra-subharmonic
resonance. This allows for the manipulation of chaos patterns, enabling them to be

regulated into period-n orbits by making precise adjustments to certain parameters, [193].
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The €2 was reduced and it was observed that the system was losing its stability and

entering into chaos.
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Figure 7.10: Time series, Phase portrait and Poincaré map from
19.4162 rads™".
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