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Abstract

This thesis investigates the rich and complex behaviour of nonlinear dynamical
systems through the lens of the Swing Equation, a fundamental model in power system
dynamics. The Swing Equation, characterised by its nonlinear properties, exhibits diverse
dynamical phenomena including period-doubling bifurcations, quasiperiodicity, chaos,
and intermittency. The primary aim of this study is to apply the principles of nonlinear
dynamics and perturbation theory to uncover the intricate patterns of stability and
instability that arise under varying system parameters and external excitations.

A comprehensive exploration of both analytical and numerical techniques is undertaken
to examine the system’s response to primary and subharmonic resonances, including
the transitions leading to chaos. Through methods such as the Floquet theory, method
of strained parameters, and tangent instability analysis, the study evaluates the swing
equation’s sensitivity to perturbations and external forcing.

The investigation further explores the effects of quasiperiodicity specifically, how
quasiperiodic forcing influences the system’s route to chaos and alters its basins of
attraction and Lyapunov exponents. These theoretical insights are supported by detailed
graphical simulations, including bifurcation diagrams and Poincaré maps, which visualise
the transitions and loss of synchronism.

Moreover, the study incorporates experimental modelling using Matlab Simulink,
simulating the swing equation under various resonance conditions and comparing the
results with the analytical predictions. Integrity diagrams are constructed to identify
regions of stability and quantify chaotic transitions.

An additional focus is placed on the phenomenon of intermittency, exploring how
the swing equation responds to small fluctuations in system parameters such as inertia
and voltage, and how these contribute to erratic switching between ordered and chaotic
states.

Finally, the thesis examines load shedding as a stabilisation strategy. Analytical
derivations are presented for both conventional and modified schemes, and their impact
on system behaviour is validated through numerical simulation.

This multifaceted approach provides a deeper understanding of nonlinear behaviour
in power systems and highlights the importance of robust analytical tools in predicting
and mitigating chaotic responses. The findings have direct applications in improving
resilience and control in modern electrical grids, particularly under conditions of high
variability and complexity.
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4.9 Poincaré maps for the different r values . . . . . . . . . . . . . . . . . . . . . 73

4.10 Lyapunov exponents as r is varied . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Frequency domain plot for subharmonic resonance . . . . . . . . . . . . . . . 75

4.12 Basins of attractions when VB1 is 0.051 rad and 0.062 rad respectively. . . . 76

4.13 Basins of attractions when VB1 is 0.071 rad and 0.151 rad respectively. . . . 77

4.14 Basins of attractions when VB1 is 0 rad and 0.051 rad respectively. . . . . . . 78

4.15 Basins of attractions when VB1 is 0.151 rad and 0.21 rad respectively. . . . . 78

4.16 Basins of attractions when θB1 is 0.191 rad and 0.181 rad respectively. . . . . 79

4.17 Basins of attractions when θB1 is 0.151 rad and 0.141 rad respectively. . . . . 79

5.1 Bifurcation diagram showing a comparison of different analytical methods for

Primary Resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Bifurcation diagram showing a comparison of different analytical methods for

Subharmonic Resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Simulation of the Swing Equation with the Hamilton’s Principle and comparing

with Method of Strained Parameters and Floquet Theory [115, 134]. . . . . . 106

6.2 Phase portrait, frequency-domain plot and Poincaré map when Ω = 2π rads−1.108
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9.16 Poincaré maps from the Simulink model showing the delay in chaos after the

load shedding term is included for Ω = 18.9 rads−1. . . . . . . . . . . . . . . 205

9.17 Time series and Phase portraits for the rotor speed with load shedding and

without load shedding for Ω = 7.5 rads−1. . . . . . . . . . . . . . . . . . . . 206

9.18 Time series and Phase portraits for the rotor speed with load shedding and

without load shedding for for Ω = 18.9 rads−1. . . . . . . . . . . . . . . . . . 207

9.19 Phase portraits when damping is altered when the load shedding term is

included in the swing equation for Ω = 8.61 rads−1. . . . . . . . . . . . . . . 210

9.20 Phase portraits when inertia is altered when the load shedding term is included

in the swing equation for Ω = 8.61 rads−1. . . . . . . . . . . . . . . . . . . . 211

9.21 Phase portraits when sudden disturbance is altered introduced without and

with the load shedding term in the swing equation for Ω = 8.61 rads−1. . . . 213

11.1 Gantt Chart: Time Frame for PhD research . . . . . . . . . . . . . . . . . . 230

xi



List of Tables

9.1 Comparison of Load Shedding Strategies . . . . . . . . . . . . . . . . . . . . 176

9.2 Quantitative Performance Comparison: Proposed Method vs. Conventional

(UFLS) method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

xii



Chapter 1

Introduction

1.1 Background and Motivation

The increasing complexity of modern electrical grids, driven by a rising share of renewable

energy integration, distributed generation, and responsive loads, poses a substantial

challenge to ensuring grid stability and resilience. The operation of a power system

is inherently dynamic; even minute disturbances can trigger large-scale oscillations or

instabilities due to the nonlinear interactions between components [1, 2]. These phenomena

are no longer rare edge cases, they are becoming increasingly prevalent as systems operate

closer to their limits to meet modern demand profiles.

A key component of this dynamic behaviour lies in the interaction between mechanical

and electrical subsystems in synchronous machines. The swing equation, a second-order

nonlinear differential equation, models the rotor angle dynamics of synchronous generators

and serves as a fundamental framework in power system stability analysis [3]. While

originally developed in the context of small-signal stability, the swing equation has since

become a central model in the study of nonlinear dynamics within power systems [4].

Traditionally, power system analysis relied heavily on linearisation techniques, which

provide valuable insights under small disturbance assumptions. However, as systems

increasingly operate under stressed conditions, these linear methods often fall short

of capturing critical dynamical behaviours, such as period doubling, quasiperiodicity,

intermittency, and deterministic chaos [5]. These nonlinear phenomena considered, while

mathematically rich, pose real engineering risks including loss of synchronism, voltage
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collapse, and oscillatory instability.

This research is motivated by the need to apply nonlinear dynamics and perturbation

theory to enhance our understanding of these complex behaviours. By constructing an

extended formulation of the swing equation that incorporates parametric and external

excitations, this work provides a pathway to study how modern power systems respond

to disturbances beyond the linear regime. The aim is not only to contribute to theoretical

understanding but also to offer practical insights into modelling, prediction, and control

of instability in electrical grids.

1.2 Historical Development and Theoretical Context

The swing equation has a long-standing history in electrical engineering, tracing back to

the early 20th century. It was initially derived from Newton’s second law applied to the

rotational motion of synchronous machines, describing the angular acceleration of a rotor

in response to the imbalance between mechanical torque and electromagnetic torque. As

early as the 1930s, power system engineers recognised its utility in describing transient

stability, a system’s ability to maintain synchronism following a disturbance.

Over the decades, the swing equation evolved from a basic stability tool into a

canvas for nonlinear dynamic exploration. Particularly from the 1970s onward, with

the emergence of chaos theory and advances in computational mathematics, researchers

began to discover rich dynamical structures embedded within seemingly simple systems.

The swing equation, when subjected to periodic or quasiperiodic forcing, exhibits a wide

range of behaviours, including strange attractors, bifurcations, and fractal basins of

attraction [3].

These findings not only deepened the mathematical appeal of the swing equation

but also revealed practical implications for real-world systems. For instance, a generator

operating near a bifurcation point may suddenly lose synchronism even under nominal

load conditions [2]. Hence, understanding these transitions and their precursors is critical

for designing robust control and protection strategies.
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1.3 Challenges in Nonlinear Power System

Dynamics

The nonlinear nature of power system dynamics introduces several unique challenges.

These include:

• Non-uniqueness of solutions: Unlike linear systems, nonlinear systems can exhibit

multiple equilibria, some of which may be unstable.

• Sensitivity to initial conditions: Small differences in initial states can lead to vastly

different long-term behaviours, especially in chaotic regimes.

• Complex bifurcation structures: Power systems can undergo abrupt qualitative

changes in behaviour as parameters are varied, including Hopf, saddle-node, and

torus bifurcations.

• Computational burden: Nonlinear simulations require fine temporal resolution and

often large-scale computation, especially when including multiple generators and

control loops.

Moreover, the presence of non-conservative forces, time delays, and discontinuities

in control logic further complicates modelling efforts. To address these challenges, this

thesis adopts a hybrid methodology balancing analytical approximations via perturbation

theory with numerical simulations and experimental validations using Matlab Simulink.

1.4 Problem Statement and Research Gap

While numerous studies have addressed aspects of nonlinear behaviour in power systems,

there remains a critical gap in integrating analytical, numerical, and simulated perspectives

under a cohesive framework. Prior research often isolates one method either relying solely

on numerical simulations or employing abstract analytical tools without experimental

corroboration.

This thesis addresses this gap by:
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• Developing a generalised version of the swing equation that incorporates parametric

excitation, external forcing, and nonlinear damping.

• Applying multiple-scale perturbation methods to derive approximate solutions

under primary and subharmonic resonance conditions.

• Using bifurcation analysis and Lyapunov exponents to characterise stability boundaries.

• Implementing the extended model in Matlab Simulink to simulate and validate

behaviours such as chaotic attractors and intermittency.

• Exploring load shedding as a practical control strategy to mitigate instability and

chaotic transitions.

This holistic approach allows for the cross-validation of theory and simulation, offering

greater confidence in the findings and their applicability to real-world systems.

1.5 Research Objectives

The overarching goal of this research is to investigate the nonlinear dynamics inherent

in power systems through a rigorous and multifaceted analysis of the swing equation.

This study seeks to go beyond traditional linear approximations and delve into the

deeper mathematical structures that govern stability, resonance, and chaotic transitions

in dynamic power systems. By constructing an extended form of the swing equation that

incorporates parametric and external excitations, nonlinear damping, and time-varying

parameters, this work aims to uncover how small perturbations can propagate and evolve

into significant instability phenomena.

A key objective is to develop robust analytical methodologies for exploring the

dynamic response of the swing equation, particularly under primary and subharmonic

resonance conditions. Through the application of perturbation techniques such as the

method of strained parameters and multiple time scale analysis, this research aims

to derive approximate solutions and interpret their implications for system stability.

These analytical tools will be essential for identifying critical parameter thresholds where

bifurcations occur, enabling the classification of stability regimes and chaotic behaviour.
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Another significant focus is the use of numerical simulations to complement and

validate the analytical findings. By generating bifurcation diagrams, Poincaré sections,

and Lyapunov exponent plots, the research will provide a detailed map of the system’s

qualitative dynamics across a wide range of excitation frequencies and amplitudes.

These simulations are particularly valuable in regions where analytical solutions become

intractable, allowing for visualisation and deeper interpretation of complex dynamical

transitions.

Moreover, the research aims to explore the effects of quasiperiodicity, a phenomenon

where multiple incommensurate frequencies interact within the system. This component

is critical for understanding real-world scenarios in which power systems are subjected to

variable frequency disturbances, such as those caused by renewable energy sources. The

objective is to examine how quasiperiodic forcing alters the structure of the system’s

attractors and stability boundaries, and how it influences the routes to chaos, especially

in comparison to classical resonance induced transitions.

In addition to theoretical and numerical investigation, this work emphasises practical

modelling through the use of Matlab Simulink. The goal is to create an experimental

simulation environment that mimics the physical behaviour of the swing equation under

various conditions. This includes verifying chaotic behaviour, validating theoretical

predictions, and testing the robustness of different stability control strategies. Simulink

serves as a bridge between abstract mathematical models and real-world system behaviour,

making the findings of this study more applicable to engineering practice.

Finally, the research aims to assess the effectiveness of load shedding as a method of

stabilising power systems operating in the nonlinear regime. This includes developing

both conventional and modified load shedding schemes, formulating stability equations

for each, and analysing their impact on delaying or mitigating the transition to chaos.

By integrating these approaches into the overall study, the research aspires to contribute

actionable strategies for improving power system resilience in the face of nonlinear

disturbances.

1.6 Research Questions

To guide the investigation, the following research questions are posed:
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1. How do nonlinear interactions within the swing equation influence the onset of

chaotic dynamics?

2. What are the critical parameter regimes where the system transitions from stable

periodic motion to chaotic behaviour?

3. How do primary and subharmonic resonances compare in their impact on the

stability and response of the system?

4. What role does quasiperiodic forcing play in shaping system behaviour, particularly

in terms of bifurcations and attractor structures?

5. Can the swing equation be validated through circuit simulation models on Matlab

Simulink, and how well do these align with theoretical predictions?

6. How effective are load shedding strategies in modifying bifurcation structures and

delaying the transition to chaos?

1.7 Methodological Overview

The methodology adopted in this research is deliberately multidisciplinary and structured

to investigate the swing equation from multiple analytical, numerical, and simulated

perspectives. At the core of this approach is the mathematical formulation of an

extended swing equation, incorporating both parametric and external excitation terms,

damping, and voltage effects. This foundational step enables a more realistic and flexible

representation of power system dynamics under varying operational conditions. Once

the model is defined, analytical methods are employed to study its behaviour under

conditions of resonance. Techniques such as the method of strained parameters, multiple

scales, and Floquet theory are used to identify solutions that exhibit primary and

subharmonic resonances. These techniques allow the researcher to derive approximate

but insightful expressions that characterise the onset of complex behaviour, such as

oscillatory instabilities or bifurcations.

Complementing the analytical investigations are detailed numerical simulations, which

serve both to validate theoretical findings and to explore the full nonlinear character of the

system in parameter regions where analytical techniques lose applicability. Simulations are
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used to construct bifurcation diagrams, plot Lyapunov exponents, and generate Poincaré

maps, all of which provide critical visual and quantitative insights into the system’s

stability and its transition into chaos. The influence of forcing amplitude, frequency,

damping, and system bias is systematically studied, enabling the construction of integrity

diagrams that highlight regions of ordered and disordered dynamics.

Furthermore, Matlab Simulink is employed as a platform for experimental modelling

and dynamic simulation. This software environment allows for the construction of virtual

circuit models that mimic the behaviour of synchronous machines under dynamic stress.

The simulations closely mirror the theoretical formulations of the swing equation and

allow for real-time manipulation of system parameters. This step is crucial for validating

theoretical predictions and for understanding how chaotic or periodic behaviour manifests

in real-world power systems. Simulink simulations also form the basis for implementing

and testing stabilisation schemes, including various forms of load shedding. Overall, this

hybrid methodology encompassing mathematical derivation, numerical computation, and

experimental modelling ensures that the research remains theoretically sound while also

grounded in engineering reality.

1.8 Contribution and Originality

This research makes several significant contributions to the field of nonlinear dynamics in

power systems, both in terms of theoretical advancement and practical application. One of

the key contributions lies in the development and analysis of an extended swing equation

model that goes beyond traditional formulations by considering quasiperiodic forcing,

intermittency and non-ideal damping. These additions allow the system to capture a

broader range of realistic dynamic behaviours, including chaotic attractors and complex

bifurcation scenarios that are not readily observed in classical models. This refined

mathematical framework provides a more accurate and comprehensive representation of

the dynamic response of synchronous machines, particularly under extreme or unstable

operating conditions.

Another central contribution is the combined use of analytical, numerical, and

simulation-based techniques within a unified study. While many prior studies isolate these

approaches, this research demonstrates how their integration can produce richer and
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more reliable insights. The application of Floquet theory, method of strained parameters,

and tangent instability analysis to power system models remains relatively underexplored

in existing literature, and this work highlights their effectiveness in detecting critical

thresholds, stability regions, and dynamical transitions. In addition, this research presents

a systematic comparison between different types of resonances primary, subharmonic,

quasiperiodic and shows how each affects the swing equation’s stability in distinct ways.

This comparative analysis deepens our understanding of how resonance mechanisms lead

to chaotic dynamics and synchronisation loss.

Furthermore, the thesis provides a novel treatment of intermittency in the context of

power systems, examining how small changes in parameters such as inertia and voltage

can lead to unpredictable switching between periodic and chaotic regimes. The study of

intermittency and its characterisation using Lyapunov exponents and bifurcation diagrams

brings a fresh perspective to modelling power system instability. A particularly practical

contribution is the detailed evaluation of load shedding strategies as a means of suppressing

chaos and restoring synchrony. By deriving analytical expressions for both conventional

and modified load shedding schemes and validating their performance through simulation,

this research offers tangible strategies for improving system resilience. The originality

of this work also lies in the experimental modelling using Matlab Simulink, where the

theoretical models are brought to life and tested under virtual real-time conditions.

Taken together, these contributions position this thesis as a novel, interdisciplinary

investigation that enhances both theoretical knowledge and engineering practice in the

realm of nonlinear power system dynamics.

1.9 Significance of the Study

The findings of this research hold both theoretical and practical importance. From a

theoretical perspective, the thesis advances the mathematical understanding of nonlinear

dynamical systems within the context of power system models. It introduces refined

analytical tools such as multiple scale perturbation and Floquet analysis to characterise

bifurcations, stability boundaries, and transitions to chaos in driven systems.

Practically, the study contributes significantly to enhancing power system resilience.

As modern electrical grids become increasingly complex and are influenced by the
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variability of renewable energy sources, understanding the conditions that lead to

instability becomes critically important. The use of Matlab Simulink to experimentally

validate chaotic transitions provides a practical bridge between mathematical models

and real-world implementations, offering engineers new strategies for anticipating and

mitigating instability.

One of the most crucial contributions of this work is the investigation of load shedding

as a stabilisation technique within nonlinear power systems. Load shedding—defined as

the deliberate disconnection of certain loads from the grid in response to frequency or

voltage deviations, is a well-established control strategy. However, this thesis explores its

role from a nonlinear dynamical systems perspective, showing how it can influence the

structure of attractors, delay bifurcations, and suppress transitions to chaos.

Furthermore, this research demonstrates that load shedding is not merely a last-resort

emergency measure, but can be strategically employed as a preventive control mechanism.

It highlights the sensitivity of nonlinear systems to parameter changes and shows how

even minimal interventions, when optimally timed and placed, can significantly enhance

system robustness.

The insights gained from this work are expected to support the development of smarter,

more adaptive grid control strategies. These can integrate nonlinear predictive models

to identify early warning signs of instability and apply targeted load shedding to avert

cascading failures. As the grid evolves towards higher complexity and interconnectivity,

the role of load shedding, as reinterpreted through the lens of nonlinear dynamics will

become increasingly central in ensuring system security and operational continuity.

1.10 Structure of the thesis

This thesis is organised in a structured and progressive manner, designed to guide

the reader from foundational concepts to advanced analysis and practical applications.

Chapter 2 evolves with a comprehensive literature review that explores the key theoretical

concepts underpinning nonlinear dynamics, bifurcation theory, chaos, and power system

stability. This chapter provides the context and motivation for the study, highlighting

existing research gaps and establishing the relevance of the swing equation as a model

system.
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In Chapter 3, the formulation of the extended swing equation is presented. This

chapter derives the mathematical model from physical principles, elaborates on its

governing assumptions, and introduces the techniques used for its analysis, focussing on

primary resonance. A preliminary exploration into the behaviour of the system is also

provided here, laying the groundwork for deeper investigation. Chapters 4 focus on the

analytical and numerical examination of the subharmonic resonance, respectively. This

chapters detail the conditions under which the system transitions from periodic motion

to chaos, with extensive use of graphical tools such as phase portraits, Poincaré sections,

and bifurcation diagrams.

Chapter 5 advances the analysis further by introducing sophisticated mathematical

techniques, such as Floquet theory, tnagent instability and the method of strained

parameters to dissect the system’s stability structure. This is followed by Chapter 6,

which introduces quasiperiodic forcing into the swing equation, examining how this

complicates the system’s dynamics and alters its routes to chaos. The discussion includes

analysis of Lyapunov exponents, basins of attraction, and golden ratio forcing.

The practical implications of the model are then tested in Chapter 7, where the

swing equation is implemented in Matlab Simulink. Here, the theoretical and numerical

findings are validated, and new visual tools such as integrity diagrams are introduced.

Chapter 8 explores the phenomenon of intermittency, analysing how small fluctuations

in parameters can lead to unpredictable dynamic shifts, while Chapter 9 investigates the

potential of load shedding as a stabilisation mechanism. Various strategies are developed,

analysed, and tested for their effectiveness in delaying or suppressing chaotic behaviour.

The thesis concludes with Chapter 10 that summarises the research findings, implications

for both academic and industrial settings, and suggestions for future research. Finally,

Chapter 11 outlines the research timeline, project management, and ethical considerations.

Throughout the thesis, each chapter builds upon the last, forming a coherent and

comprehensive investigation into the nonlinear dynamics of the swing equation and its

implications for power system stability.
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Chapter 2

Literature Review

2.1 Introduction to Nonlinear Dynamics in Power

Systems

The modern power system has evolved into a complex network of highly interconnected

and dynamically responsive components. Traditional approaches to power system stability

were largely rooted in linear models and small-signal analysis, offering valuable but limited

insights into the system’s behaviour near equilibrium points [6, 7]. However, as the

operational boundaries of the grid are increasingly challenged due to high penetration of

renewables, fluctuating loads, and power-electronics-based components, the assumptions

underpinning linear models often fail. The resulting dynamics are governed by nonlinear

relationships, time-varying parameters, and feedback-driven instabilities, all of which

require a fundamentally different analytical approach. This has necessitated a shift in

focus toward the field of nonlinear dynamics, which provides the mathematical tools

and conceptual framework to understand, predict, and control complex behaviour in

engineering systems, particularly those involving oscillatory phenomena and sudden

transitions [8, 9].

In this context, nonlinear differential equations, such as the swing equation, emerge

as essential tools for investigating transient and long-term stability in power systems.

These models can capture behaviours such as limit cycles, bifurcations, chaos, and

intermittency, which are often impossible to predict using linear approximations [10, 11].

The nonlinear approach considers a system’s global behaviour, how it responds not
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just near its equilibrium, but across a broad range of initial conditions and parameter

variations. This is especially relevant for critical components like synchronous machines,

which play a pivotal role in maintaining synchronism across the grid [12].

Understanding nonlinear dynamics in power systems is not only of academic interest

but has direct implications for operational reliability and control strategy design. For

example, an operating point close to a bifurcation boundary may appear stable under

linear analysis, but can, in reality, be on the verge of transitioning into an unstable

or chaotic regime due to a slight parameter change or disturbance [13, 14]. In real

systems, such transitions can lead to phenomena like voltage collapse, frequency swings,

and cascading failures [15]. By studying these phenomena from a nonlinear standpoint,

system operators and engineers can better anticipate instabilities, design more effective

controllers, and implement stabilisation mechanisms such as load shedding or adaptive

damping [16, 17].

The adoption of nonlinear dynamics into power system analysis has accelerated

in recent years due to the increasing availability of computational tools, advanced

mathematical methods, and simulation platforms like Matlab Simulink [18, 19]. These

tools make it feasible to explore complex systems that were previously too analytically

intractable. In this research, the swing equation will be used as a case study to explore a

wide range of nonlinear behaviours, including resonances, bifurcations, quasiperiodicity,

and chaotic attractors [20]. The goal is not only to understand these behaviours theoretically,

but to also test their practical implications through simulations and propose strategies

for stabilisation. This literature review aims to contextualise this research within the

existing body of knowledge, identify gaps, and highlight where this work offers original

contributions.

2.2 Classical Approaches vs Nonlinear Modelling

Traditionally, the analysis of power system stability has relied heavily on classical

techniques rooted in linear system theory. These methods include linearisation around

equilibrium points, eigenvalue analysis, and frequency response techniques [1–3]. While

these approaches have been instrumental in shaping the early development of stability

assessment tools, they are inherently limited to small-signal behaviours and are applicable

12



CHAPTER 2. LITERATURE REVIEW

only under assumptions of near-equilibrium operation. Linearised models can capture

local behaviour accurately, but they fail to account for the rich spectrum of dynamics

exhibited by nonlinear systems, especially under large disturbances or in the presence of

system nonlinearities such as saturation, time-varying inputs, or nonlinear damping.

One of the major limitations of classical modelling lies in its inability to detect

and analyse phenomena like bifurcations, chaos, quasiperiodicity, and multistability

dynamics that emerge only when the full nonlinear nature of the system is considered. In

real-world power systems, particularly those operating near their critical loading points

or experiencing fluctuations in generation and demand, such behaviours are not only

possible but increasingly likely [6, 7]. This motivates the need for nonlinear dynamic

analysis, which is capable of describing both the local and global behaviours of power

systems across a wide range of parameter variations and initial conditions.

The swing equation provides a critical link between classical and nonlinear modelling

approaches. In its basic form, it resembles a damped second-order differential equation and

can be simplified under steady-state conditions. However, as soon as external excitations

such as fluctuating loads or varying generator inputs are introduced, the system reveals

complex behaviours that cannot be captured through linearisation. It is in this context

that nonlinear analysis becomes essential for analysis. For instance, as the damping

ratio or input amplitude changes, the swing equation may exhibit transitions from

periodic motion to quasiperiodic and even chaotic regimes, signalling the breakdown of

synchronism. These transitions are difficult, if not impossible, to observe using classical

tools alone [6, 8].

Moreover, classical models often assume time-invariant system parameters, which

no longer holds true in modern, renewable-integrated power systems. Today’s grids

experience rapid variations in generation from wind and solar sources, sudden changes in

load patterns, and non-negligible time delays in control systems. These factors introduce

a layer of complexity that classical models were never designed to handle. Nonlinear

methods, in contrast, are more flexible and can accommodate time-dependent coefficients,

forcing functions, and even discontinuities in system response.

Several of the recent studies have begun to adopt nonlinear analysis techniques such as

bifurcation theory, perturbation methods, and Lyapunov-based stability analysis to gain

deeper insights into power system behaviour [6, 7, 10]. These studies have demonstrated
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that nonlinear models provide a more accurate and predictive framework, especially in

identifying dangerous transitions that may precede instability or collapse. For example,

the presence of a Hopf or saddle-node bifurcation in a power system model may signal

an impending loss of synchronism or voltage collapse events that linear tools often miss

[17, 18].

The swing equation, when extended and analysed through nonlinear methods, becomes

a powerful model for capturing such transitions. It enables the study of resonance

phenomena (both primary and subharmonic), quasiperiodic attractors, and chaos through

tools such as Poincaré maps, Lyapunov exponents, and integrity diagrams. These nonlinear

constructs are essential for visualising and quantifying the onset of instability in power

systems under non-ideal, real-world conditions [6, 10].

In essence, while classical approaches have laid the groundwork for power system

analysis, they are insufficient for capturing the increasingly complex behaviours found in

modern power networks. Nonlinear modelling provides a richer, more accurate depiction of

system dynamics and is better equipped to address the challenges posed by instability, high

variability, and nonlinearity. This research builds on the nonlinear modelling paradigm,

using both analytical and numerical tools to examine the swing equation in regimes

where classical analysis fails to provide meaningful insights.

2.3 History and Evolution

The swing equation is one of the most fundamental and widely studied equations in power

system dynamics. It models the electromechanical interaction between a synchronous

generator’s rotor and the rest of the power grid. Its origin can be traced back to the early

20th century, when power system engineers sought to understand how machines behave

when subjected to disturbances such as sudden changes in load, generator disconnection,

or short circuits. The basic form of the swing equation is derived from Newton’s second

law for rotational motion, applied to the rotating mass of a synchronous generator [13].

In its classical form, the swing equation relates the acceleration of the rotor angle to the

imbalance between mechanical input power and electrical output power.

Mathematically the classical swing equation formulation reveals the dynamical balance

between mechanical and electrical forces and serves as the starting point for both transient

14



CHAPTER 2. LITERATURE REVIEW

and small-signal stability analysis [13, 14].

Historically, the swing equation was primarily used to analyse transient stability, i.e.,

whether a generator can remain synchronised after a sudden disturbance such as a fault

or switching event. For many years, this analysis relied on equal area criteria and other

graphical tools, and the model was often solved numerically due to its nonlinear nature.

However, with the development of computer simulations in the 1960s and 1970s, the

swing equation became central to the design of protection schemes and stability studies

in large interconnected grids [14, 15].

In its simplified linear form, the swing equation assumes small deviations from the

operating point and constant system parameters. This allows for the use of eigenvalue

analysis and linear control theory, which are still commonly employed in traditional

power system planning and operation [1, 3]. However, such linear approximations are

only valid under idealised conditions. As systems became more complex, particularly

with the integration of renewables, fast-switching power electronics, and variable loads, it

became increasingly clear that the swing equation’s nonlinear nature must be preserved

to accurately model and predict system behaviour [6, 7].

In recent decades, researchers have revisited the swing equation from the perspective of

nonlinear dynamics and chaos theory, especially in the context of forced oscillations and

resonance. By introducing external periodic or quasiperiodic forcing into the swing

equation, the model reveals a variety of complex dynamical behaviours, including

bifurcations, quasiperiodicity, and deterministic chaos [6, 10, 19]. These behaviours

are of particular interest because they closely mirror real-world phenomena observed in

power grids such as persistent oscillations, loss of synchronism, and multistable responses

that cannot be predicted using classical methods alone.

Furthermore, the swing equation has been extended and adapted to model multi-machine

systems, networks of generators, and systems incorporating power-electronic interfaces.

In these scenarios, additional terms are added to account for network topology, time

delays, and control loop dynamics. These extensions significantly increase the model’s

dimensionality and complexity, but also its realism and applicability to contemporary

grid challenges [6, 10, 19].

In this research, an extended version of the swing equation is studied, incorporating

parametric excitation, subharmonic forcing, quasiperiodic terms, and intermittent behaviour.
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This formulation allows the investigation of how the system transitions through various

dynamical regimes from steady-state synchronism to periodic motion, and ultimately to

chaotic oscillations under different configurations. The modified swing equation serves as

a gateway to explore nonlinear resonance, intermittency, and stability boundaries, all

of which are essential to understanding the performance and vulnerabilities of power

systems in the modern era.

Thus, the swing equation has evolved from a classical engineering model to a powerful

mathematical framework for nonlinear analysis. It continues to play a central role in

theoretical studies, numerical simulations, and experimental validations in the field of

power system dynamics.

2.4 Basic Concepts and Theories of Nonlinear

Dynamics

2.4.1 Equilibrium Points

Equilibrium points are of utmost importance in comprehending the behaviour of nonlinear

dynamical systems. An equilibrium point refers to a condition in which the state variables

of a system stay unchanged and stable across time and can exhibit either stability or

instability. A stable equilibrium point is characterised by the convergence of neighbouring

trajectories towards the point, suggesting the system’s inclination to revert to that

condition after experiencing minor disturbances. In contrast, an unstable equilibrium point

exhibits paths that diverge, demonstrating the system’s susceptibility to disturbances

and its ability to deviate from this condition. Stability study of equilibrium sites in

nonlinear systems entails investigating the eigenvalues of the system’s Jacobian matrix,

which offers valuable insights into the local dynamics surrounding these points. This is

crucial for forecasting the long-term behaviour of complex systems and is extensively

utilised in disciplines such as physics, biology, and engineering.

When it comes to determining whether or not power systems are stable within the

context of the swing equation, equilibrium points are an extremely important factor to

consider. Within the concept of a power grid, the swing equation is a mathematical model

that provides a description of the behaviour of synchronous generators. The analysis of
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how the system responds to interruptions is a common use of this phenomenon. The

stable operating circumstances that correspond to the equilibrium points in the swing

equation are those in which the generators are in complete balance with the load. For

the purpose of ensuring that the power system is resilient to interruptions, it is vital to

conduct stability studies around these equilibrium points. When a system is equated to

zero, the solution that becomes available is known as the equilibrium point. The equation

can be linearised, which might be helpful in determining whether or not the equilibrium

points are stable. In order to analyse a system that is neutrally stable, it is necessary to

conduct nonlinear analysis [1, 33, 49].

2.4.2 Bifurcation

Bifurcation takes place when a relatively minor alteration to a parameter value of a

system results in a change in the behaviour of the system, regardless of whether the

alteration is topological or qualitative in nature. Discrete and continuous systems both

have the potential to experience bifurcations. The phenomenon of bifurcation has an effect

on power systems and the associated topics, including oscillation and voltage collapse

[17, 18]. There is a connection between this subject and the concept of eigenvalues,

which can be generalised to be analysed in greater detail [19]. In this work, the primary

objective is to provide an explanation for the changes that occur in the bifurcations of

power systems and how these changes impact the electric circuits. Despite the fact that

bifurcation can be addressed with the assistance of a mathematical model, it can also be

described through computer experiments with the assistance of oscillators [20]. These

researchers are also aware of the potential drawbacks that may be encountered while

employing a physical oscillator. In order to circumvent this difficulty, they propose the

utilisation of a computer programme in order to acquire precise and effective results for

the purpose of doing additional research on bifurcations. Miles. W. (1984) has provided an

explanation of a computer software that works to analyse dynamical systems that contain

bifurcations [21]. As an additional point of interest, he mentions that Matlab possesses

a few numerical packages, such as MATCONT and CLMATCONT, that are suitable

for conducting this particular study on bifurcation [21]. In another research article, the

author discusses the peculiar characteristics of a parametrically compressed system and
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elucidates the mechanism behind the symmetry-breaking, pitchfork bifurcation that

occurs through the utilisation of a pinched cylinder device [22]. Both the stability and the

behaviour of the swing equation are influenced by a great number of factors. Additionally,

it was discovered that as the time delay is extended, the limit cycle branches expand

along the bigger delays, resulting in the combination of bifurcations [23].

In addition, bifurcation analysis has been performed on living beings, which is

an interesting development in the field of science. For the purpose of analysing the

transmission of malaria, the research conducted by N. Chitnis and colleagues in 2006 [18]

has focused on bifurcations. In this case, they take into consideration a mathematical

model that contains differential equations in order to determine the duration of the

infection and, consequently, the death rate by utilising equilibrium and bifurcations.

Bifurcation analysis has been utilised by authors such as Qi et al. (2020) for the purpose

of analysing the longitudinal motion of aircraft. By utilising bifurcation theory, they

study how the stability is affected in flight dynamics, specifically with regard to the F-8

Crusader [24]. With the assistance of criteria that are derived by Kishida et al. (2014), it

is possible to manage systems that are characterised by dynamic uncertainty [25]. This

is done in order to ensure that the models remain stable. By altering the values of the

variables in the Mathieu equation, the authors demonstrate the transition of bifurcations

on the pendulum in a manner that is both analytical and numerical [26].

According to Chin-woo Tan et al. (1993), the change in the load of a power system

is also examined after applying some algebraic constraints to the power systems [27].

The researchers come to the conclusion that voltage collapses take place prior to the

discovery of saddle-node bifurcation. As the power demand in the systems is increased,

it is possible to notice a certain degree of sensitivity in the vicinity of the saddle-node

bifurcation. This is because the Jacobian matrix is nearly unique [28]. In situations where

the n-dynamics is larger than 3, it is quite challenging to demonstrate the results. It is in

the work written by Guckenheimer (1983) that this intricate examination of bifurcations

is analysed and presented [29].

In recent studies, bifurcation analysis is utilised to estimate the boundary of the

chaotic precursors of a parametrically excited pendulum system [26]. This estimation

takes into account the impact of a bias term inclusion in the model, which disrupts

the system’s symmetry. The objective of this analysis is to acquire more profound

18



CHAPTER 2. LITERATURE REVIEW

understanding of the bifurcations involved, with the ultimate goal of achieving a higher

level of realisation for any specific problem. Additionally, the authors indicate that the

simple uneven equation of movement that was proposed on the study results in a variety

of nonlinear events. These phenomena include cascades of period doubling bifurcations,

which were evaluated and compared with various models.

2.4.3 Limit Cycles

Limit cycles are a captivating and prevalent occurrence in non-linear dynamical systems,

wherein the system’s trajectory converges to a closed curve in phase space instead of

attaining a stable equilibrium. Limit cycles, in contrast to equilibrium points, signify

the presence of periodic behaviour within the system [21, 22]. It can exhibit stability,

characterised by the convergence of neighbouring trajectories towards it, or instability,

denoting divergence. Limit cycles commonly arise due to non-linearities that introduce

periodic forces or feedback processes. An essential task in multiple disciplines, including

physics, biology, and engineering, is to comprehend and define limit cycles. These cycles

play a vital role in elucidating the occurrence of oscillatory patterns in intricate systems.

The Van der Pol oscillator and the FitzHugh-Nagumo model are two examples of systems

that display limit cycles. These examples highlight the widespread occurrence and

significance of limit cycle dynamics in nonlinear systems [30, 31].

The existence of limit cycles in the swing equation of power systems can have

substantial consequences for the stability of the system. They can occur as a result of

non-linearities in the mechanical and electrical properties of generators, or owing to

interactions between generators in a connected grid. These limit cycles have the potential

to induce persistent oscillations in the power system, which can result in instability and

disruptions. An examination of limit cycles in the framework of the swing equation entails

scrutinising the system’s reaction to disruptions and comprehending the circumstances

under which limit cycles arise.

Limit cycles have been extensively investigated by researchers on the topic of

identifying local stability in nonlinear dynamical systems [31]. They are helpful in

determining the local stability of these systems and to establish the limits or boundaries

of a dynamical system [32]. When a limit cycle undergoes a qualitative shift, a phenomenon
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known as orbital bifurcation occurs, which is referred to as bifurcation for a limit cycle

[33]. An indirect numerical approach is also described by the researchers, and this is used

to derive the eigen values and stability for linearised equations [34]. For the purpose of

demonstrating periodic limit cycles and the behaviour of the bifurcation, authors also

have used the Bifurcation Theory System Identification (BiTSID) framework [35].

2.4.4 Quasiperiodic Attractors

Quasiperiodic attractors in nonlinear dynamical systems exhibit a more intricate type of

dynamics in contrast to the straightforward periodic behaviour observed in limit cycles.

This type of attractors display movement when the trajectory of the system does not

exactly repeat itself, but instead follows numerous frequencies that are not in a simple

ratio to each other, which leads to a more complex and detailed pattern. These attractors

frequently emerge in systems with several degrees of freedom and are distinguished by the

lack of a direct mathematical depiction, rendering them difficult to analyse. The KAM

theorem, also known as the Kolmogorov–Arnold–Moser theorem, is a crucial outcome

in the field of quasiperiodic dynamics. It establishes the criteria that determine when a

system with almost integrable Hamiltonian dynamics would display quasiperiodic motion

[36].

In power systems, quasiperiodic attractors can emerge when the interactions and

electrical properties of the generators bring additional difficulties to the dynamics of

the system. This is something that can be noticed in the context of the swing equation.

Because of the complexity of the power system, there is a possibility that quasi-periodic

oscillations would occur, which will make stability analysis more challenging. For the

purpose of forecasting the long-term dynamics of power grids that have been disrupted,

it is vital to have a solid understanding of the origin and behaviours of quasiperiodic

attractors in the swing equation.

Quasiperiodic attractors are characterised by the presence of two or more frequencies

that are incommensurate over a time variation [33]. According to researchers, this

phenomenon can be investigated in power systems, more specifically in a DC-DC regulator

[34]. In a dynamical system, quasiperiodicity is a path that leads to chaos. Additionally,

A. R. Bishop and colleagues (1986) investigate the energy transfers that occur between
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the states in a nonlinear spectrum (nonlinear spectrum) [37].

2.4.5 Chaotic Attractor

Chaotic attractors in nonlinear dynamical systems exhibit a unique and complex pattern

of behaviour characterised by irregular and unpredictable paths. In contrast to periodic

attractors like limit cycles, they do not exhibit steady and repeating patterns. On the

contrary, they demonstrate a sensitivity to the starting conditions, where their paths

diverge rapidly over time, making it difficult to make accurate long-term forecasts.

The Lorenz attractor is a renowned illustration of chaotic dynamics, first seen by

Edward Lorenz during his investigation of atmospheric convection [32]. Chaotic attractors

frequently arise in systems characterised by non-linearities, many interacting components,

or feedback loops. They are essential for comprehending the intrinsic complexity of

dynamic systems. The examination of chaotic attractors has wide-ranging implications in

several scientific fields, including physics, biology, engineering, and economics, enhancing

our understanding of intricate events in nature and society.

In power networks, chaotic attractors can form when generators and the system’s

innate non-linearities interact in a complicated fashion, as seen in the swing equation.

This interaction can be viewed in the power network. It is possible for chaotic attractors

to arise under certain operating conditions or after interruptions, and the swing equation

is a representation of the dynamics of synchronous generators in a connected power

grid. It is possible for the reaction of the power system to display a high degree of

unpredictability and sensitivity to initial conditions, as shown by the presence of chaotic

attractors in the swing equation. In order to evaluate the stability and reliability of power

grids, it is vital to have a thorough understanding of the complexities of chaotic attractors

in the swing equation. This is especially true when dealing with complex interactions

between generators.

According to authors, a chaotic attractor is a type of attractor that does not have an

equilibrium point, a limit cycle, or a torus [33]. One sort of attractor is characterised

by a fractional dimension, which is further investigated in the works cited in [38, 39].

In addition to this, they state that the attractor is equipped with a broadband power

system and that it does not exist in any order that is lower than three.
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2.4.6 Chaos

The occurrence of chaos in nonlinear dynamical systems is a result of their sensitivity

to initial conditions and the existence of non-linearities, which can give rise to intricate

and unpredictable behaviours [26]. In such systems, even slight alterations in the initial

conditions might lead to substantially divergent paths over time, posing difficulties in

generating accurate long-term forecasts. An exemplary demonstration of chaos may be

found in the Lorenz system, which is characterised by the interplay of three interconnected

ordinary differential equations governing the behaviour of a dynamic system [3, 16].

Although the equations may appear simple, the system demonstrates chaotic behaviour,

which is defined by its sensitivity to initial circumstances, non-repetitive paths, and the

existence of a peculiar attractor. The applications of chaos theory span across diverse

domains, including weather forecasting, population dynamics, and financial markets.

These applications highlight the crucial significance of chaos in comprehending intricate

occurrences in both the natural world and civilization.

A nonlinear differential equation that is frequently used to represent the dynamics of

power systems is known as the swing equation [1]. It provides a detailed description of

the operating characteristics of generators that are part of a linked power system. When

the system is working close to its stability restrictions and receives abrupt shocks or load

fluctuations, the swing equation may exhibit chaotic behaviour. This can happen when

the system is running close to its limits. A description of the rotational movement of

generators and the interactions between them is provided by the swing equation. It is

possible for it to exhibit chaotic dynamics under certain conditions. The existence of

chaos in this equation can lead to adverse results, such as widespread power outages

or the onset of cascading malfunctions in the power system. In order to maintain the

dependability and stability of electrical networks, it is essential to comprehend and reduce

disorder in power systems. This highlights the significance of chaos theory in the process

of studying the behaviour of complex engineering systems.

Torus bifurcation, cascade of period doubling bifurcations, and intermittency are the

three paths that lead to chaos, according to Berge et al. (1984) [5]. Several studies have

been conducted to investigate the phenomenon of chaos in extremely complex power

systems. Additionally, an inquiry has been carried out to examine chaos in an autonomous
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nonlinear model in a fractional-order format [40, 41].

2.4.7 Lyapunov Exponents

When undertaking an analysis of nonlinear power systems, Lyapunov exponents are an

essential component. They offer vital insights into the stability and behaviour of these

intricate systems. The rate of exponential divergence or convergence of neighbouring

paths in the state space can be quantified using Lyapunov exponents, which are used in

the context of nonlinear power systems. The stability of the system may be evaluated

with the assistance of these exponents, which indicate whether or not minor changes in

the starting conditions will become more pronounced or less pronounced over the course

of time [1, 33]. In the process of analysing power systems, Lyapunov exponents can be

utilised to locate key points, such as bifurcations or regime transitions. This enables

a more comprehensive understanding of the behaviour of the system under a variety

of different operating conditions. Lyapunov exponent analysis is frequently utilised by

researchers in order to evaluate the stability and robustness of power systems, particularly

when nonlinearities and uncertainties are present.

When applied to the swing equation, Lyapunov exponents provide a strong instrument

that can be utilised for the purpose of describing the dynamic behaviour of synchronous

generators in power systems. The swing equation is used to explain the dynamics of the

rotor angle of these generators, and Lyapunov exponents are used to get insights into

the stability of the synchronous motion. Researchers are able to locate critical points,

bifurcations, and stability boundaries in the parameter space of the system by doing an

analysis of the Lyapunov exponents that are related with the swing equation [1, 21]. It is

necessary to have this information in order to build control techniques that will ensure

the steady operation of power systems and reduce the impact of disturbances. There is a

thorough method for understanding the nonlinear dynamics of synchronous generators in

power systems that may be obtained through the combination of the swing equation and

the Lyapunov exponent analysis.

Both Wolf et al. (1984) and Parker and Chua (1989) created techniques to find

Lyapunov exponents. These algorithms were produced through the use of experiments

and simulations [42, 43]. It was stated by Newhouse, Ruelle, and Takens (1978) that chaos
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occurs after a predetermined number of secondary hopf bifurcations [44]. In a system,

the exponents are responsible for monitoring the increase or decrease of disturbances

that are considered to be minute [45]. Due to the fact that Lyapunov exponents are

only specified for an unlimited length of time, the use of technology to solve them can

result in a significant number of inaccuracies. Consequently, the estimation of Lyapunov

exponents is performed by using the data of time series that has already been provided

[46]. Because they are formed from equations that are quite similar to one another,

Lyapunov exponents and floquet multipliers have a close link.

2.4.8 Period Doubling and Poincaré Mapping

The occurrence of period doubling in nonlinear dynamical systems is an important

phenomenon that suggests the existence of a path leading to chaos. The phenomenon

known as bifurcation takes place when a system goes through a sequence of changes that

leads to the doubling of the period of its oscillations. The occurrence of this phenomenon

is commonly associated with the presence of nonlinearities and occurs in a wide variety of

systems, ranging from straightforward mathematical models to observable physical events.

When a parameter is systematically changed, the behaviour of the system shifts from

stable periodicity to progressively complicated and chaotic dynamics. This phenomenon

is known as the period doubling road to chaos, and it is observed in systems that are

governed by logistic maps whenever a parameter is changed. A full explanation of this

bifurcation process is provided by the Feigenbaum constants, which were discovered by

Mitchell Feigenbaum. These constants also highlight the astonishing self-resemblance

that can be found in the period doubling cascade. The examination of period doubling

has significant repercussions for understanding the transition from order to chaos in

dynamic systems, and it is an essential component of chaos theory [32, 33].

The doubling of the period contained within the swing equation is an essential

component of stability analysis in power systems. The swing equation is a representation

of the dynamics of synchronous generators in a connected power grid [33]. In this context,

period doubling may occur as a result of fluctuations in the parameters of the system.

There is the potential for period doubling bifurcations to give rise to a series of occurrences

that become progressively more complex, which can ultimately result in the creation of
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chaotic dynamics. For the purpose of anticipating the stability thresholds of power systems

and analysing the possibility of chaotic responses under given operating circumstances,

it is vital to have a solid understanding of the phenomenon of period doubling in the

swing equation.

According to Perez et al. (1982), basic models have the ability to demonstrate the

existence of period doubling bifurcation and chaos [47]. In this scenario, period doubling

proceeds in a cascade that ultimately leads to chaos [48]. In addition to this, they talk

about the control of the degree of stability that affects chaos.

In the investigation of nonlinear dynamical systems, Poincaré maps, which were

developed by the well-known French mathematician Henri Poincaré, are a powerful

instrument that allows for the exploration of these systems. The maps that are displayed

here are able to efficiently express the essential dynamics of a continuous system by

depicting its intersections with a subspace of lower dimensions, which is generally referred

to as a Poincaré maps. When it comes to the dynamics of trajectories in phase space,

Poincaré’s maps provide valuable insights that may be utilised for the investigation of

complex systems and the identification of essential traits such as stable spots, periodic

routes, and chaotic attractors. As a result of their ability to provide a means to visually and

intellectually grasp the qualitative dynamics of nonlinear systems without the necessity of

solving complex differential equations, Poincaré maps have become an essential instrument

in the study of dynamical systems. Applications of Poincaré’ maps can be found in a

variety of domains, including engineering, biology, fluid dynamics, and celestial mechanics,

among others. Adaptability is demonstrated by their ability to disclose the intricacy of

non-inear occurrences, which is one of their most well-known accomplishments.

Poincaré maps are essential in comprehending the dynamics of power systems

and analysing the swing equation. Through the creation of a Poincaré map for the

swing equation, scientists can examine the system’s dynamics in a space with fewer

dimensions, resulting in a more distinct understanding of stability, bifurcations, and

attractor structures. Poincaré maps are highly valuable for discerning the influence of

parameter fluctuations and disruptions on the power system’s enduring dynamics.

Poincaré equation is when there is an intersection in the same direction between the

flow of the lines in a system [49]. One of the most significant benefits of using Poincaré

is that it reduces the amount of data and separates the time [50]. In addition to being
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of great assistance in distinguishing between the attractors, it also reveals the precise

number of equilibrium points that are present when plotted on a graph.

2.4.9 Basins of attractions

Basins of attraction are essential principles in the analysis of nonlinear dynamical

systems, offering vital understanding into the enduring dynamics and stability of system

trajectories. A basin of attraction in a nonlinear dynamical system refers to a specific

region in the state space [51]. This zone is characterised by the property that when initial

conditions are set within it, the paths of the system will eventually converge towards

a certain attractor. An attractor refers to a stable behaviour of a system, which might

take the form of a fixed point, periodic orbit, or a more intricate structure. The limits

of basins of attraction define the areas where trajectories converge towards different

attractors, thereby separating discrete sections of the state space that are linked with

diverse long-term behaviours. Comprehending the basins of attraction is essential for

forecasting how a system will react to different starting conditions and disturbances,

making it a fundamental tool in the examination of intricate dynamical systems.

Basins of attraction are of utmost importance in the analysis of the swing equation in

power systems as they significantly influence the stability and dynamics of synchronous

generators. The swing equation represents the rotational movement of the rotors in power

generators, while basins of attraction provide a visual representation of the areas in

the system’s state space where the trajectories of the system converge towards stable

synchronous operation. Examining the basins of attraction for the swing equation yields

valuable insights into how various initial conditions affect the stability of the power

system [33]. Researchers utilise this data to develop control algorithms that guarantee

the convergence of trajectories towards desirable operating points, hence improving the

overall stability and dependability of power systems.
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2.5 Quasiperiodicity and Intermittency in Power

Systems

Quasiperiodicity and intermittency are critical phenomena in nonlinear dynamics, particularly

in systems transitioning toward chaos. In the context of power systems, these behaviours

are increasingly observed due to interactions between generators, control systems, and

fluctuating sources such as solar and wind. Quasiperiodicity arises when a system is

driven by two or more incommensurate frequencies, leading to a motion that never exactly

repeats but remains bounded and structured. As discussed above, this behaviour often

emerges in systems subjected to dual or multi-frequency excitations, such as parametric

forcing and external periodic input acting simultaneously [6, 28, 36].

The importance of quasiperiodicity in power system modelling stems from its role as

a precursor to chaos. According to the Ruelle–Takens–Newhouse scenario, a system may

transition from periodic to quasiperiodic, and ultimately to chaotic behaviour through

successive bifurcations of invariant tori [39]. This pathway is especially relevant in swing

equation dynamics where input signals such as load fluctuations or distributed energy

control commands introduce additional frequency components. Several studies have

demonstrated that under quasiperiodic excitation, the swing equation exhibits complex

attractor structures, including toroidal and strange non-chaotic attractors [19, 28].

Another related and equally important concept is intermittency, which refers to

irregular switching between different dynamic states. In power systems, intermittency

can be triggered by minor variations in system parameters such as inertia, damping,

or excitation amplitude. This often leads to abrupt shifts between regular and chaotic

regimes, even when the system appears stable for long durations [6, 19]. Intermittency is

particularly dangerous because it reflects an underlying system operating near critical

thresholds, where small disturbances can trigger large-scale instability.

Three primary types of intermittency are commonly observed: Type I (saddle-node),

Type II (Hopf-related), and Type III (crisis-induced). Each corresponds to a different

route to chaos and can be detected using time series analysis and phase portraits. In

power system contexts, these transitions may result in generator desynchronisation or

frequency oscillations, which are difficult to anticipate using classical stability models.

This thesis explores the role of intermittency in nonlinear swing equation dynamics and
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investigates its occurrence using both numerical simulations and bifurcation tracking

techniques.

2.6 Load Shedding Strategies and Nonlinear

Stabilisation

Stabilisation of nonlinear power systems is a major engineering concern, especially in

systems operating near their bifurcation points or undergoing chaotic oscillations. Among

the various control techniques, load shedding remains one of the most widely applied

strategies for emergency control in power systems. Load shedding involves the deliberate

disconnection of electrical loads to restore power balance and prevent system collapse

during periods of stress or instability [47, 48].

While load shedding is typically considered a last-resort protection mechanism, its

design and timing are critical, especially in systems exhibiting nonlinear dynamics.

Traditional load shedding schemes are usually designed based on frequency thresholds

and do not account for the nonlinear trajectories of system states. However, recent

research has explored adaptive and model-based load shedding strategies that incorporate

bifurcation analysis, Lyapunov exponents, and integrity measures to predict and avoid

instability.

In nonlinear systems such as the swing equation under resonance or quasiperiodic

forcing, load shedding can be used not just for recovery but also for preventive control.

For instance, by reducing the total load at specific frequencies or phases of oscillation,

it is possible to shift the system away from a chaotic attractor or delay the onset of

a bifurcation. Several studies have proposed load shedding schemes based on phase

angle trajectories, damping indices, and chaos indicators, providing more accurate and

responsive control mechanisms [49].

This thesis investigates both conventional and modified load shedding models, deriving

analytical expressions to evaluate their effect on system stability. Simulations are used to

test how load shedding alters the bifurcation structure and basin geometry, and whether

it can expand the region of synchrony in phase space. The findings contribute to the

growing field of nonlinear control for power systems, where techniques like coordinated
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shedding, dynamic relay thresholds, and distributed response mechanisms are being

actively researched.

2.7 Experimental Modelling and Matlab Simulink

While theoretical and numerical analyses offer deep insight into nonlinear system

behaviour, simulation-based modelling plays a crucial role in validating predictions

and testing control strategies under realistic scenarios. Matlab Simulink has emerged as

a leading platform for this purpose, especially for power system applications involving

complex interdependencies between mechanical, electrical, and control subsystems [50, 51].

In this research, Simulink is used to construct an extended swing equation model,

including all nonlinear effects such as parametric excitation, bias, and quasiperiodic

forcing. The simulation environment allows for precise control of parameters and input

signals, enabling detailed exploration of resonance phenomena, bifurcations, and chaotic

transitions. Simulink’s graphical environment also facilitates the implementation of

feedback loops, load shedding mechanisms, and time-varying excitation sources, offering

a dynamic testbed for evaluating nonlinear system behaviour.

Recent studies have utilised Simulink to model synchronisation behaviour under

high renewable penetration, power-electronic control dynamics, and forced oscillation

analysis [49, 50]. These applications underscore the flexibility of the platform in handling

nonlinear, hybrid, and time-delayed systems. Moreover, experimental modelling provides

the opportunity to generate integrity diagrams, phase space portraits, and Poincaré

sections, which are essential for visualising the system’s long-term behaviour under

various configurations.

Here within, the Simulink-based model is used to validate the analytical and numerical

findings derived from perturbation theory, bifurcation analysis, and Lyapunov exponent

computation. The results confirm the presence of stable and unstable regimes, periodic

and chaotic attractors, and the influence of nonlinear damping and load modulation on

system response. This integrative modelling approach ensures that the theoretical results

are not only mathematically sound but also practically relevant.
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2.8 Gaps in the Literature and Relevance of the

Present Study

Despite the significant progress in nonlinear modelling of power systems, several gaps

remain in the literature. First, while many studies address bifurcations and chaos in

simplified systems, few offer a comprehensive integration of analytical, numerical, and

simulation-based approaches using extended versions of the swing equation. Second, most

existing load shedding strategies do not consider the dynamical landscape of the system,

such as basin geometry or attractor type, which limits their effectiveness in nonlinear

operating regimes.

Additionally, there is a lack of studies exploring quasiperiodicity and intermittency

in power systems in sufficient depth. These phenomena are often overlooked in favour of

more easily detectable chaos or bifurcation points, yet they offer critical early warning

signs of instability. Moreover, few works combine these analyses with practical modelling

tools like Simulink to validate theory with near-realistic scenarios.

This thesis addresses these gaps by offering a multi-method investigation of the swing

equation’s nonlinear behaviour. It contributes to the field by developing a generalised

equation that incorporates multiple excitation sources and damping models, applying

advanced perturbation techniques and chaos detection tools, and validating all results in

a simulation framework. Furthermore, it proposes and tests new load shedding strategies

rooted in the geometry of basins of attraction and bifurcation structures bridging the

gap between nonlinear theory and control engineering practice.

Through this integrative approach, the research provides not only novel theoretical

insights but also practical tools and strategies for predicting, visualising, and mitigating

instability in modern power systems.

2.9 Research Paradigm

Within the scope of this investigation, a positivist paradigm is adopted to provide the

research questions with a robust framework that is both analytical and empirically

grounded. In the context of the social and applied sciences, positivism has long served

as a foundational research philosophy. It asserts that reality is objective, external, and
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governed by immutable natural laws that can be discovered through observation and

reason. Positivist research is built on the belief that the world can be measured and

understood through quantitative analysis, and that facts exist independently of the

observer [52, 53].

According to authors, research in the scientific domain typically aligns with the

explanatory focus of the positivist paradigm [54]. The goal is to explain phenomena

through cause-effect relationships and generalisable laws. Importantly, researchers working

within this paradigm are expected to maintain a level of detachment from the study

subjects in order to minimise bias and uphold objectivity. As researchers note, the

philosophical stance of the researcher is embodied in their paradigm, which in turn

influences every methodological and analytical decision made throughout the research

process [54, 55].

In this study, the positivist approach is manifested through the adoption of a

quantitative methodology. Data will be collected through simulations, numerically

analysed, and interpreted through structured methods such as numerical simulations,

mathematical modelling, and computational analysis. By following a deductive logic,

hypotheses can be tested, predictions can be validated, and findings can be replicated,

thus ensuring scientific rigour.

Moreover, sufficient theoretical rationale will be presented to support the chosen

methods and to frame the interpretation of the results. The use of testable components

such as the swing equation and its nonlinear extensions serves as a solid foundation for

drawing comparisons, identifying patterns, and evaluating the consistency of outcomes

across different scenarios. This structured, methodical approach allows the researcher to

not only uncover significant dynamic behaviours (such as bifurcations and chaos), but

also to compare these behaviours with theoretical expectations, thereby reinforcing the

validity of the research.

Overall, the selected paradigm underpins a structured, measurable, and replicable

study that aims to contribute meaningfully to the understanding of nonlinear dynamics

in power systems. It provides a philosophical and practical guide for the entire research

process, from hypothesis formulation and model development to analysis and interpretation.
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Investigation into the Primary

Resonance

3.1 Formulation of the Swing Equation

The swing equation studied here depicts the motion of rotor of machine as shown below

in Figure 3.1.

Figure 3.1: Swing equation describing the motion of the rotor of the machine. Figure
reproduced from [33].

Initially the classical swing equation is derived in order to understand how the

mechanical realisation of the model leads to its formulation.

Considering the Law of rotation,

32



CHAPTER 3. INVESTIGATION INTO THE PRIMARY RESONANCE

J
d2δm
dt2

= Ta = Tm − Te (3.1)

where J is the moment of combined inertia.

δm = ωsmt+ θ (3.2)

The first derivative is given as:

dδm
dt

= ωsm +
dθ

dt
(3.3)

The second derivative is:

d2δm
dt2

=
d2θ

dt2
(3.4)

Substituting into the law of rotation:

J
d2θ

dt2
= Ta = Tm − Te (3.5)

Multiplying throughout by ωR gives:

JωR
d2θ

dt2
= TaωR = TmωR − TeωR = Pm − Pe (3.6)

where

• δm: Mechanical rotor angle

• θ: Deviation from synchronous angle (i.e., δm = ωsmt+ θ)

• Ta: Accelerating torque

• Tm: Mechanical torque supplied by the prime mover

• Te: Electromagnetic torque developed by the generator

• J : Combined moment of inertia of the rotor system

• ωsm: Synchronous angular velocity

• M = JωR: Angular momentum
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• Pe = TeωR: Electrical power output

Pe =
VGVB

XG

sin (θ − θB) (3.7)

JωR = M =
2H

ωR

(3.8)

Finally, converting the swing equation into per unit system leads to:

2H

ωR

d2θ

dt2
= Pm − VGVB

XG

sin (θ − θB) (3.9)

Allowing for a damping term, the full swing equation becomes:

2H

ωR

d2θ

dt2
+D

dθ

dt
= Pm − VGVB

XG

sin (θ − θB) (3.10)

where:

VB = VB0 + VB1 cos (Ωt+ ϕv) (3.11)

θB = θB0 + θB1 cos (Ωt+ ϕ0) (3.12)

with:

• ωR: Constant angular velocity

• H: Inertia

• D: Damping

• Pm: Mechanical Power

• VG: Generator voltage

• XG: Transient reactance

• VB: Bus voltage

• θB: Phase of the bus
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The magnitudes VB1 and θB1 are assumed to be small.

For the purpose of conducting additional research, a mathematical analysis is

performed on this equation. Multiplication and other fundamental mathematical operations,

such as algebraic techniques for expanding brackets, are carried out at the beginning of

the process. Following that, the Taylor expansion and substitution are carried out in

order to generate the final equation that will be utilised for the perturbation experiment.

In the following step, the Floquet theory is taken into consideration for its numerical

application. In this step, some analytical work was done in order to extract the equations,

which were then utilised for graphical communication.

An additional way of strained parameters, as mentioned by Nayfeh (1981) [9], is the

subject of this discussion. Therefore, with the assistance of mathematical processes, the

equations are obtained in the appropriate manner.

3.2 Introduction

In the context of a power system, the concept of disturbances, which can be defined as

sudden or sequential changes to the system’s characteristics or operating quantities, is

intimately connected to the concept of stability. When it comes to the dynamics of a

system, even a relatively minor disruption can have an effect that is both interesting

and important. The process of studying the stability of a system can be accomplished

by employing several approaches, such as linearising the equations that represent the

system [1, 61], undertaking eigenvalue and frequency response methods [2, 3, 62].

For the purpose of this investigation, a system with a single degree of freedom is taken

into consideration. This system will make it possible to investigate nonlinear dynamics

and will also take into account chaotic attractors. The nonlinear component of solving

a system is the primary emphasis of this investigation. Methods such as perturbation

techniques and nonlinear methods are utilised in making this determination. The initial

phase of this investigation is the representation of an infinite busbar under the assumption

that both the voltage and frequency remain constant. A metallic strip or bar that is

utilised for the delivery of high-current power is known as a busbar system. Home circuits,

switchgear, and panel boards are the typical applications for this component. In most

cases, the busbars are not insulated, and they are supported by insulated pillars that
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are exposed to the air. This provides sufficient cooling for the conductors during the

process [63]. If a classical representation is taken into consideration, which means that

there is a constant voltage behind a transient reactance, then the busbar system can be

reduced to a second-order differential equation, but the coefficients will remain constant.

The analogous swing equation is considered here within, which includes parametric and

external excitations, allowing for the techniques of perturbation theory to be employed

under this new formulation of the extended busbar system [5, 6]. This is due to the fact

that the resulting equation does not offer a great deal of information that is either useful

or novel regarding the response of the system.

This newly formulated swing equation will be analysed analytically and numerically

to obtain a better understanding of the stability of the model.

A power system is stable at a particular operating condition when it is able to

maintain a steady state. When the system experiences a small disturbance, it is able

to return to its pre-disturbance operating conditions or achieve a steady state once

again. However, in the event of a large disturbance, the equations that describe the

system’s behaviour can no longer be linearised, and it becomes necessary to use numerical

simulation techniques based on geometric methods to analyse the system’s behaviour,

which is now considered to be a part of nonlinear dynamics [6, 7]. The focus of this paper

is the nonlinear aspect of systems which can be addressed through various dynamical and

perturbation techniques [8, 9]. Researchers have studied the swing equation which showed

the rotor of the machine’s motion [6, 7, 10]. Although power systems have been studied

for quite some time now, the growth of the topic is tremendous. The power system in

electric applications has seen ongoing development in many areas [11, 64]. With this

growth, the conservation of energy and renewing the existing energy have been under the

radar by many institutions. To help with the environmental concerns the power systems

must be studied further, and new techniques should be introduced [12, 65].

The swing equation which is studied initially in this research work will play a vital

part in the analysis of the dynamics of a power system [13, 66]. It does exhibit similar

characteristics as other power systems, but it is imperative to analyse it first in detail for a

better understanding of the concepts. Recent research has found that the generalised form

of the swing equation also helps with understanding transient stability in power-electronic

power systems [14, 67]. During any slight disturbance, the rotor of the machine will show
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some motion with respect to the synchronously rotating air gap. This in turn starts

a relative motion allowing for the swing equation to describe and model this relative

motion [15, 16, 68, 69]. Although Tamura et al.[10] initiated the quasi-infinite busbar

which is formulated in phase and magnitude, Hamdan and Nayfeh [3, 8] improved the

idea to have quadratic and cubic nonlinearities. This helps in applying techniques such

as perturbation analysis to the single-machine-quasi-infinite busbar system.

As it is well known, bifurcation occurs when a small change to a parameter value of a

system causes a change in the behaviour whether this is a topological or qualitative change

occurring in both discrete and continuous systems. A bifurcation has significant effects

on power systems, including oscillation and voltage collapse [17, 18, 70, 71]. Eigenvalue

analysis may be further utilised to consider stability and to determine the nature of

the system [19, 72]. Bifurcations can be studied using both mathematical models and

computer simulations involving oscillators [20, 73]. Some authors have pointed out the

limitations of using physical oscillators for this purpose and have suggested computer

algorithms as an alternative for more accurate and efficient analysis of bifurcations.

In a study [21, 22, 74, 75], the unique nature of a parametrically pressurised system

was characterised using a pinched cylinder, and the mechanism of symmetry-breaking

pitchfork bifurcation was examined. It has been shown that the stability and behaviour

of the swing equation can be affected by various factors, and that increasing the time

delay can cause limit cycle branches to move and combine through bifurcations [23, 33].

In some studies bifurcation analysis is employed to estimate the boundary of the

chaotic precursors of a parametrically excited pendulum system, considering the effect of

a bias term inclusion in the model that breaks the symmetry of the system, gaining deeper

insights into bifurcations entailed with the purpose of growing a higher realisation for

any unique problem [26, 30, 77]. The authors also explain that the easy uneven equation

of movement proposed in the study ends in diverse nonlinear phenomena, inclusive of

cascades of period doubling bifurcations, which had been tested and compared with

different models.

3.3 Analytical Work

Consider the transformations:
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θ − θB = δ0 + η (3.13)

δ0 = θ0 − θB0 (3.14)

η = ∆θ − θB1 cos(Ωt+ ϕ0) (3.15)

From equation (3.13), it follows that:

sin(θ − θB) = sin(δ0 + η) (3.16)

Differentiating equation (3.13), the first and second derivatives are retrieved:

dθ

dt
=

dθB
dt

+
dδ0
dt

+
dη

dt
(3.17)

d2θ

dt2
=

d2θB
dt2

+
d2δ0
dt2

+
d2η

dt2
(3.18)

Substituting equations (3.13), (3.14), and (3.15) into the original swing equation

(3.10) and multiplying through by ωR

2H
, it is obtained that:

d2θ

dt2
+

ωRD

2H

dθ

dt
=

ωR

2H
Pm − ωR

2H

VGVB

XG

sin(δ0 + η) (3.19)

Now substituting the derivatives and rearranging terms, the following is:

d2η

dt2
+

ωRD

2H

dη

dt
=

ωRD

2H
Pm − ωRD

2H

(
dθB
dt

+
dδ0
dt

)
− d2δ0

dt2
− d2θB

dt2
− ωR

2H

VGVB

XG

sin(δ0 + η)

(3.20)

Expanding sin(δ0 + η) using the trigonometric identity:

sin(δ0 + η) = sin δ0 cos η + cos δ0 sin η, (3.21)

applying Taylor series expansion for small η:

cos η ≈ 1− η2

2!
, sin η ≈ η − η3

3!
(3.22)

and substituting these into the equation, there is a reduction of:
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d2η

dt2
+

ωRD

2H

dη

dt
+

ωR

2H

VGVB

XG

[
sin δ0

(
1− η2

2!

)
+ cos δ0

(
η − η3

3!

)]
=

ωRD

2H
Pm − ωRD

2H

(
dθB
dt

+
dδ0
dt

)
− d2δ0

dt2
− d2θB

dt2
(3.23)

Next substituting the expressions for VB = VB0 + VB1 cos(Ωt + ϕv) and expanding

gives:

d2η

dt2
+

ωRD

2H

dη

dt
+

ωR

2H

VGVB0

XG

sin δ0 −
ωR

2H

VGVB0

XG

η2

2
sin δ0 +

ωR

2H

VGVB0

XG

η cos δ0

− ωR

2H

VGVB0

XG

η3

6
cos δ0 =

ωRD

2H
Pm − ωRD

2H

(
dθB
dt

+
dδ0
dt

)
− d2δ0

dt2
− d2θB

dt2

− ωR

2H

VGVB1

XG

cos(Ωt+ ϕv) sin δ0 +
ωR

2H

VGVB1

XG

cos(Ωt+ ϕv)
η2

2
sin δ0

− ωR

2H

VGVB1

XG

cos(Ωt+ ϕv)η cos δ0 +
ωR

2H

VGVB1

XG

cos(Ωt+ ϕv)
η3

6
cos δ0 (3.24)

Defining the following constants:

α2 =
1

2
K tan δ0, α3 =

1

6
K (3.25)

G1 =
−VB1

VB0

K, G2 =
−VB1

2VB0

K tan δ0, G3 =
−VB1

6VB0

K (3.26)

Q1 = Ω2θB1, Q2 =
ΩDωRθB1

2H
, Q3 =

−VB1

VB0

K tan δ0 (3.27)

K =
VGVB0ωR cos δ0

2HXG

(3.28)

and substituting these definitions gives the final form:

d2η

dt2
+

ωR

2H
D
dη

dt
+Kη = α2η

2 + α3η
3 +G1η cos(Ωt+ ϕv) +G2η

2 cos(Ωt+ ϕv)

+G3η
3 cos(Ωt+ ϕv) +Q1 cos(Ωt+ ϕθ) +Q2 sin(Ωt+ ϕθ) +Q3 cos(Ωt+ ϕv) (3.29)
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Here, the terms involving η, η2, η3 multiplied by periodic functions represent parametric

excitation, while the Q-terms represent the additive part of the excitation (i.e., effective

external forcing).

This nonlinear second order differential equation now forms the basis for perturbation

analysis.

3.3.1 Perturbation Analysis for Primary Resonance

To solve the nonlinear swing equation obtained earlier, perturbation analysis is used.

Assume:

η = O(ε) (3.30)

This implies the damping term is:

ωRD

2H
= O(ε2) (3.31)

Also, let:

VB1 = O(ε3), θB1 = O(ε3) (3.32)

Then the coefficients in the swing equation take the form:

G1 = ε3g1, G2 = ε3g2, G3 = ε3g3, Q = ε3q (3.33)

Introducing a detuning parameter σ using:

ω2
0 = Ω2 + ε2σ (3.34)

the governing equation now becomes:

η̈ + 2ε2µη̇ + (Ω2 + ε2σ)η = α2η
2 + α3η

3

+ ε3g1η cos(Ωt+ ϕv) + ε3g2η
2 cos(Ωt+ ϕv) + ε3g3η

3 cos(Ωt+ ϕv) + ε3q cos(Ωt+ ϕe)

(3.35)

Looking for a solution in the form:
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η(t; ε) = εη1(T0, T1, T2) + ε2η2(T0, T1, T2) + ε3η3(T0, T1, T2) + . . . (3.36)

The time derivative expansions are defined as:

d

dt
= D0 + εD1 + ε2D2 + . . . (3.37)

d2

dt2
= D2

0 + 2εD0D1 + ε2(2D0D2 +D2
1) + . . . (3.38)

where Dn = ∂
∂Tn

.

η = εη1 + ε2η2 + ε3η3 + · · · (3.39)

Taking the first derivative with respect to t, and using equation (3.39):

η(D0 + εD1 + ε2D2 + · · · ) = εη1(D0 + εD1 + ε2D2 + · · · )+

ε2η2(D0 + εD1 + ε2D2 + · · · ) + ε3η3(D0 + εD1 + ε2D2 + · · · ) (3.40)

Taking the second derivative with respect to t, and using equation (3.40):

η(D2
0+2εD0D1+ε2(2D0D2+D2

1)+ · · · ) = εη1(D
2
0+2εD0D1+ε2(2D0D2+D2

1)+ · · · )+

ε2η2(D
2
0+2εD0D1+ε2(2D0D2+D2

1)+· · · )+ε3η3(D
2
0+2εD0D1+ε2(2D0D2+D2

1)+· · · )
(3.41)

Now substituting equations (3.39), (3.40), and (3.41) into equation (3.35), and squaring

equation (3.39) to substitute for η2:

εη1(D
2
0+2εD0D1+ε2(2D0D2+D2

1)+· · · ) = εη1(D
2
0+2εD0D1+ε2(2D0D2+D2

1)+· · · )+

ε2η2(D
2
0+2εD0D1+ε2(2D0D2+D2

1)+· · · )+ε3η3(D
2
0+2εD0D1+ε2(2D0D2+D2

1)+· · · )+

2ε2µ
(
εη1(D0 + εD1 + ε2D2 + · · · ) + ε2η2(D0 + εD1 + ε2D2 + · · · ) + ε3η3(D0 + εD1 + ε2D2 + · · · )

)
+

(Ω2 + E2σ)(εη1 + ε2η2 + ε3η3 + · · · ) = α2(ε
2η21 + ε4η22 + ε6η23 + · · · ) + α3η

3+

ε3g1η cos(Ωt+ ϕv) + ε3g2η
2 cos(Ωt+ ϕv) + ε3g3η

3 cos(Ωt+ ϕv) + ε3g cos(Ωt+ ϕe)

(3.42)

41



CHAPTER 3. INVESTIGATION INTO THE PRIMARY RESONANCE

Comparing coefficients of ε:

ε : η1D
2
0 + η1Ω

2 = 0 (3.43)

ε2 : η1D
2
0 + η2Ω

2 + 2D0D1η1 = α2η
2
1 (3.44)

ε3 : D2
0η3 + 2D0D1η2 + (D2

1 + 2D0D2)η1 + 2µD0η1 + Ω2η3 + ση1 =

2α2η1η2 + α3η
3
1 + g cos(Ωt+ ϕe) (3.45)

Solution to equation (3.43) is of the form:

η1 = A(T1, T2)e
iΩT0 + Ā(T1, T2)e

−iΩT0 (3.46)

Where A is an undetermined function and Ā is the complex conjugate. Given that

Dn = ∂
∂Tn

, then D0 =
∂

∂T0
, hence by integration T0 =

1
D0

.

Substituting equation (3.46)into (3.44):

η2D
2
0 + η2Ω

2 = −2D0D1

(
AeiΩT0 + Āe−iΩT0

)
+ α2

(
AeiΩT0 + Āe−iΩT0

)2
(3.47)

Expanding the brackets:

η2D
2
0 + η2Ω

2 = −2D0D1Ae
iΩT0 − 2D0D1Āe

−iΩT0+

α2

(
A2e2iΩT0 + Ā2e−2iΩT0 + 2AĀ

)
(3.48)

Using D0 =
∂

∂T0
:

∂(2D0D1Ae
iΩT0)

∂T0

= 2iΩD1Ae
iΩT0 ,

∂(2D0D1Āe
−iΩT0)

∂T0

= −2iΩD1Āe
−iΩT0

Substituting and rearranging:
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η2D
2
0 + η2Ω

2 = −2iΩD1Ae
iΩT0 + 2iΩD1Āe

−iΩT0+

α2(A
2e2iΩT0 + Ā2e−2iΩT0) + cc (3.49)

Where cc denotes the complex conjugate. For a bounded solution, we require D1A = 0,

implying A = A(T2).

Using equation (3.43) in (3.49) and simplifying:

η2 = −α2A
2e2iΩT0

3Ω2
− α2Ā

2e−2iΩT0

3Ω2
+

2α2AĀ

Ω2
(3.50)

Substituting equations (3.48) and (3.50) into equation (3.45):

D2
0η3 + 2D0D1

(
−α2A

2e2iΩT0

3Ω2
− α2Ā

2e−2iΩT0

3Ω2
+

2α2AĀ

Ω2

)
+

(D2
1 + 2D0D2)(Ae

iΩT0 + Āe−iΩT0) + 2µD0(Ae
iΩT0 + Āe−iΩT0)+

Ω2η3 + σ(AeiΩT0 + Āe−iΩT0) = 2α2(Ae
iΩT0 + Āe−iΩT0)·(

−α2A
2e2iΩT0

3Ω2
− α2Ā

2e−2iΩT0

3Ω2
+

2α2AĀ

Ω2

)
+

α3(Ae
iΩT0 + Āe−iΩT0)3 +

1

2
geiϕ (3.51)

Expanding the cubic bracket:

α3(Ae
iΩT0 + Āe−iΩT0)3 = α3A

3e3iΩT0 + 3α3A
2ĀeiΩT0+

3α3AĀ
2e−iΩT0 + α3Ā

3e−3iΩT0 (3.52)

Eliminating secular terms and using D1A = 0:

2iµΩ(A′ + µA) + σA− 1

2
geiϕ + 8αeA

2Ā = 0 (3.53)

where:

A′ is the derivative of A (3.54)
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αe = −3

8
α3 −

5α2
2

12Ω2
(3.55)

Now, express A and Ā in polar form:

A =
1

2
ae−i(β+ϕe), Ā =

1

2
aei(β+ϕe) (3.56)

Substituting into (3.53):

2iµΩ

(
1

2
a′e−i(β+ϕe) + µ · 1

2
ae−i(β+ϕe)

)
+ σ · 1

2
ae−i(β+ϕe) − 1

2
geiϕ+

8αe

(
1

2
ae−i(β+ϕe)

)2(
1

2
aei(β+ϕe)

)
= 0 (3.57)

Separating real and imaginary parts:

Ω(a′ + µa) +
1

2
g sin β = 0 (3.58)

−Ωaβ′ + αea
3 − 1

2
g cos β +

1

2
σa = 0 (3.59)

To second approximation:

η = εa cos(Ωt+ β + ϕe) +
ε2a2α2

6Ω2
(3− cos(2Ωt+ 2β + 2ϕe)) + · · · (3.60)

Let ε = 1 and let a be the perturbation parameter. Then rewriting equation (3.17)

and equation (3.61) as:

∆θ = θB1 cos(Ωt+ ϕθ) + a cos(Ωt+ β + ϕe) +
a2α2

6Ω2
(3− cos(2Ωt+ 2β + 2ϕe)) (3.61)

a2α2

2Ω2
: drift term. (3.62)

Equation (3.61) shows that the rotor deviates from the operating point and undergoes

oscillatory motion [54]. The drift term indicates that the motion is not centered due to

nonlinearity.
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To understand the character of the solutions of equations (3.57) and (3.58), it is

necessary to determine their singular or fixed points. The fixed points of equations (3.57)

and (3.58) correspond to a′ = β′ = 0. They are given by:

µa = −g sin β

2Ω
(3.63)

aσ

2Ω
+

αea
3

Ω
=

g cos β

2Ω
(3.64)

Squaring and adding (3.62) and (3.63):

µ2 +

(
σ

2Ω
+

αea
2

Ω

)2

=
g2

4Ω2a2
(3.65)

This gives an implicit expression for amplitude a as a function of the tuning parameter

σ.

Figure 3.2 and Figure 3.3 present both the phase portraits and time histories for

the case of primary resonance, that is when the excitation frequency of the system is

approximately equal to the natural frequency of the system, specifically at the angular

frequency Ω = 8.61 rads−1 plotted from the equation (3.13). These plots are instrumental

in validating the analytical approximations by providing a direct comparison with the

results obtained through numerical simulation. The comparison focuses on evaluating the

accuracy of two numerical techniques used in the perturbation analysis: the Runge-Kutta

method and the Newton-Raphson method.

The excitation frequency Ω = 8.61 rad s−1 was selected because it is approximately

equal to the system’s natural frequency, corresponding to the primary resonance condition.

This provides a representative case to validate the perturbation solutions against numerical

simulations. Additional frequencies (Ω = 8.43, 8.282, 8.275, and 8.2601 rad s−1) were also

investigated to illustrate the progression from periodic response to period-doubling and

chaos, as shown in Figures 3.4–3.8.

The fourth-order Runge-Kutta method was employed in this analysis due to its balance

between computational efficiency and numerical accuracy. It provides a higher-order

approximation compared to simpler methods such as Euler’s method, making it particularly

suitable for solving nonlinear differential equations like the swing equation. This method
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ensures stable and precise results across a wide range of system parameters, which is

essential for capturing complex dynamical behaviours.

A comparative analysis of the numerical outputs reveals that the Newton-Raphson

algorithm yields a closer approximation to the true numerical solution, as evidenced by

its lower error magnitude. Specifically, the calculated numerical error associated with

the Runge-Kutta method was found to be 0.0884, whereas the Newton-Raphson method

exhibited a reduced error of 0.0747. This quantifiable difference underscores the higher

accuracy of the Newton-Raphson approach for the particular class of problems addressed

in the study.

The observed discrepancy in error can be attributed to the inherent strengths of the

Newton-Raphson method in handling nonlinear algebraic systems with high precision,

especially near equilibrium points. In contrast, the Runge-Kutta method, while versatile

and widely applicable, may introduce accumulated numerical inaccuracies over longer

time integrations in nonlinear regimes.

In summary, the comparative results demonstrate that the Newton-Raphson method

provides a more reliable and accurate solution for capturing the dynamics near primary

resonance [30, 58]. This insight is valuable for guiding the selection of numerical techniques

in future investigations involving perturbation methods and nonlinear oscillatory systems.

In the simulation process, the Runge-Kutta method, a well-known explicit technique

for solving ordinary differential equations was employed to simulate the time evolution

of the system under nonlinear excitation. In parallel, the Newton-Raphson method was

applied to solve the nonlinear algebraic equations that emerged from the perturbation

expansion, particularly in the steady-state approximation. Both methods were tested

under identical initial conditions and system parameters to ensure consistency in the

evaluation.
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Figure 3.2: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of primary resonance in time history
for Ω = 8.61 rads−1.

Figure 3.3: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of primary resonance in phase plane
for Ω = 8.61 rads−1.
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3.4 Numerical Analysis

For the purpose of determining the effect of increasing the excitation frequency Ω, the

equations (3.10), (3.11), and (3.12) were set and solved in Matlab using the fourth-order

Runge-Kutta method for the parameters given in Appendix [33].

Figure 3.4: Phase portrait, frequency-domain plot and Poincaré map when Ω = 8.61
rads−1.

Figure 3.5: Phase portrait, frequency-domain plot and Poincaré map when Ω = 8.43
rads−1.
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Figure 3.6: Phase portrait, frequency-domain plot and Poincaré map when Ω = 8.282
rads−1.

Figure 3.7: Phase portrait, frequency-domain plot and Poincaré map when Ω = 8.275
rads−1.

Figure 3.8: Phase portrait (loss of synchronism) when Ω = 8.2601 rads−1.
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Plotting the phase portraits, frequency-domain plots, and Poincaré maps generated

by varying the excitation frequency in the swing equation (3.10) led to the creation of

Figures 3.4, 3.5, 3.6, 3.7, and 3.8. As the excitation frequency Ω decreases, the system

progressively loses stability and transitions into chaotic behaviour. Each figure illustrates

both the successive period-doubling bifurcations and the manner in which the system

loses synchronism.

Figure 3.4 demonstrates that when the excitation frequency is relatively large,

specifically Ω = 8.61 rads−1, the system exhibits a single steady-state attractor. The

corresponding phase portrait forms a closed loop, indicative of a period-one attractor.

This behaviour is further corroborated by the frequency-domain plot and the associated

Poincaré map, both of which confirm the periodic nature of the system at this excitation

level.

In the process of decreasing the value of Ω, it is possible to see that the graphs

experience dynamical transformations, which may include period-doubling solutions.

Eventually, as the value of Ω is dropped to a greater extent, around 8.2601 rads−1, a

chaotic attractor is displayed, as demonstrated in Figure 3.8.

Using the process of solving the swing equation for a particular value of Ω = 8.27 rads−1

and using numerical time integration utilising the traditional fourth order Runge-Kutta

technique, the bifurcation diagram that is depicted as Figure 3.9 was built. In the

meantime, the value of the forcing r is increased by a small amount, and the time

integration process continues to plot the maximum amplitude of the oscillatory solution

against r .

r =
VGVB

XG

sin (θ − θB) (3.66)

Figure 3.9 depicts the first instance of period doubling occurring just before r =

0.9, which is also supported by the Poincaré maps shown in Figure 3.10. Additionally,

at about r = 2.36, the first period doubling in a series of period doubles is displayed,

which results in chaotic behaviour. The results of this numerical analysis demonstrate

that as the value of r is increased, the swing equation gets closer and closer to losing its

synchronisation function.
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Figure 3.9: Bifurcation diagram when r value is varied and constant Ω = 8.27 rads−1.

The corresponding Poincaré maps are plotted as shown below, Figure 3.10. They

clearly depict the points where period doubling occurs and how as r is increased the

phenomenon of chaos is verified.

Figure 3.10: Poincaré maps for the different r values.

It is observed that at approximately r > 2.4, the chaotic region has commenced where

the Lyapunov exponent generally takes positive values. This behaviour is depicted and

presented as Figure 3.11, where it is the case when two nearby points, initially separated
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by an infinitesimal distance, typically diverge from each other over time and this is

quantitatively measured by the Lyapunov exponents. The bifurcation diagram of Figure

3.9, also verifies this behaviour, where at approximately the same value of r , the cascade

of period doubling sequence leads to chaos such that is suffices to say that a chaotic

attractor can be identified by a positive Lyapunov exponent.

Figure 3.11: Lyapunov exponents as r is varied.

3.5 Discussion

In this section of the chapter, the dynamical behaviour of the swing equation is analysed

with respect to variations in key control parameters. These parameters, such as damping,

excitation amplitude, and forcing frequency, are systematically altered to examine how

the system transitions through different regimes of motion from stable oscillations to

complex chaotic dynamics. The investigation integrates both analytical and numerical
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approaches, with a particular emphasis on perturbation techniques. The analytical

framework, developed using methods such as the method of multiple scales or the

Lindstedt–Poincaré technique, provides an approximate solution under the assumption of

weak nonlinearity. This solution is then validated against detailed numerical simulations,

especially under conditions of primary resonance, where the external forcing frequency is

close to the system’s natural frequency.

Numerical simulations serve as a critical tool for uncovering the rich and often

unpredictable behaviour of nonlinear systems. Among the most notable features observed

is the onset of period-doubling bifurcations, which act as a prelude to chaos. The

appearance of the first period-doubling event is particularly significant, it marks the

beginning of a cascade that can ultimately result in fully developed chaotic motion. This

progression is meticulously traced using a combination of diagnostic tools, including

numerically constructed bifurcation diagrams, Lyapunov exponents, phase portraits,

frequency domain analyses, and Poincaré maps.

Poincaré sections, in particular, provide a useful means of reducing the continuous flow

of the dynamical system into a discrete map, thereby revealing underlying patterns and

attractor structures that might be obscured in time-domain analysis. These visual tools

confirm that the route to chaos is not always linear or singular; although period-doubling

is the most commonly recognised scenario, chaos may also arise via other routes, such as

intermittency or the breakdown of quasiperiodic motion on a torus.

It is especially important to identify and understand the pre-chaotic motion, those

behavioural patterns that occur just before the onset of chaos as they can serve as early

warning indicators of instability in practical systems. In power systems, such as those

governed by the swing equation, the transition to chaotic behaviour can have serious

implications, including synchronisation loss, voltage collapse, and equipment failure.

Therefore, recognising the early signs of dynamic degradation is not only of theoretical

interest but also of significant practical relevance.

The broader objective of this research is to enrich the existing body of knowledge

surrounding the swing equation and its applications in electrical power networks. By

combining analytical and numerical tools to explore the onset of chaos, this work offers a

deeper understanding of the underlying nonlinear dynamics. In doing so, it provides a

foundation for future studies aimed at predicting, controlling, and ultimately mitigating
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chaotic phenomena in complex power systems.

3.6 Final Remarks

This section focuses on the analysis of primary resonance in the swing equation and its

critical influence on the stability of the underlying dynamical system. Primary resonance

occurs when the frequency of external forcing approaches the natural frequency of the

system, leading to amplified oscillatory responses that can significantly impact the

system’s behavior. In the context of power systems, such resonant interactions can give

rise to voltage fluctuations, loss of synchronism, or even widespread instability if not

properly managed.

The swing equation is studied under conditions that promote primary resonance, and

the resulting dynamics are investigated through both analytical and numerical techniques.

Analytical methods, such as the method of multiple scales and perturbation analysis,

provide approximate solutions that offer insight into the structure of resonance and the

associated bifurcation patterns. These are supplemented by numerical simulations, which

not only validate the analytical predictions but also allow for the observation of complex

phenomena such as limit cycles, quasiperiodic motion, and the transition to chaos, which

may not be easily captured by closed-form expressions.

A key focus of this analysis lies in exploring how variations in key system parameters,

such as damping, forcing amplitude, and excitation frequency, affect the onset and

progression of resonance. It is observed that even slight modifications in these parameters

can lead the system into regimes of nonlinear instability and chaotic behavior. The

emergence of chaos through primary resonance pathways underscores the sensitive

dependence of the system on initial conditions and parameter tuning.

Given the importance of maintaining stability in electrical power grids and interconnected

networks, it is imperative to prioritise the study of primary resonance and its dynamic

consequences. By identifying the thresholds and critical values that lead to instability,

system operators and engineers can develop robust control strategies to mitigate potential

failures. Thus, the analysis presented in this section contributes not only to a theoretical

understanding of nonlinear dynamics in the swing equation but also to the practical goal

of enhancing the resilience and reliability of modern power systems.
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Chapter 4

Understanding the Subharmonic

Resonance

4.1 Introduction

The swing equation is a basic model that can be explored for the purpose of studying the

dynamic behaviour of power systems, specifically the oscillatory motion of synchronous

generators. It is vital to have an understanding of the resonance phenomena that can

take place in this nonlinear system in order to maintain the dependability and stability

of power infrastructures. Within the context of the swing equation, two key types of

resonance that are experienced are primary resonance and subharmonic resonance. As

a means of providing an explanation for the subharmonic resonance, this section is an

expansion of previous chapter, Chapter 3 [77], and builds on the results that were reached

in that work.

When it comes to determining the stability of a dynamical system, primary and

subharmonic resonances are extremely important factors to consider. There is a close

connection between the concept of stability in a power system and the idea of disturbances,

which are characterised by sudden changes to the quantities that are being used by the

system. Even a relatively slight disturbance can have a rich effect on the dynamics of

a system [77]. The dynamical behaviour of this system can be examined by modifying

the variables in the equation while maintaining the status quo for the other parameters.

During the process of studying the swing equation, the fundamental resonance is regarded
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to be a significant resonance. When the criteria of primary resonance are met, a relatively

small-amplitude excitation can potentially result in a relatively large-amplitude response

if the forcing frequency is reasonably close to the linearised natural frequency, as stated in

[78]. Furthermore, it is possible that nonlinear dynamic behaviours, such as saddle-node

bifurcations, could be experienced in the steady-state forced response of the nonlinear

system, as stated in the reference [58].

When the frequency of the excitation is somewhat near to the frequency that the

system naturally produces, a phenomena that is known as primary resonance takes place.

The subharmonic resonance takes place when the frequency of the excitation is expressed

as a multiple of the frequency of the natural frequency [79]. This is in contrast to the

natural frequency, which acts as the frequency of the excitation. Numerous studies have

been conducted in order to examine the resonances that take place in nonlinear power

systems, to acquire a knowledge of the underlying principles that underpin them, and to

design control mechanisms that are effective enough to be implemented. As an illustration,

researchers have employed mathematical modelling, simulation studies, and experimental

validations in order to investigate the influence that primary and subharmonic resonance

have on the stability of power systems. Other methods that have been utilised include

experimental validations. Adaptive control, resilient control, and damping controllers

are some of the cutting-edge control approaches that have been developed as a result of

these research efforts. The purpose of these strategies is to reduce the negative impacts

of resonance as much as possible while simultaneously improving the system’s stability.

The stability of power systems is an essential component that plays a significant role

in ensuring the reliable and efficient operation of electric circuits [80]. A power system

is said to be stable when it is able to continue operating within tolerable parameters

and maintain its equilibrium in spite of disturbances. It is essential to have a solid

understanding of the swing equation in order to comprehend the dynamic behaviour of

power systems, in addition to other stability challenges, [33]. The resonance that occurs

at the primary and subharmonic levels is yet another significant factor that may have an

effect on the stability of the system. There are two primary varieties of power system

stability, which are known as transient stability and steady-state stability alike. Transient

stability is the capability of the system to recover to a stable operating point after a

severe disruption, such as a fault or a sudden loss load, [81]. This capacity ensures that
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the system is able to continue functioning normally. One of the topics that is discussed in

steady-state stability, which is often referred to as small-signal stability, is the capacity

of the system to maintain its stability in the face of little disturbances, such as minute

shifts in the amount of power that is required or generated [82].

The swing equation is an important dynamic equation that mimics the behaviour

of synchronous generators in a power system. It is used to simulate the behaviour of

systems. With regard to synchronous machines, it provides a description of the speed

dynamics and rotor angle stability that occur under transient conditions. According to

the swing equation, the electrical output of a generator is inversely proportional to the

angle between its rotor and the voltage at its terminal, [24]. This is the premise upon

which the swing equation is founded.

It is possible for a power system to experience primary resonance when the inherent

frequency of the system corresponds with the frequency of an external disturbance that

is administered. It is a phenomenon that has the potential to lead to oscillations that

are unstable and to bring about instability in the system [83]. The phenomenon of

primary resonance is usually associated with low-frequency electromechanical modes of

oscillation. These modes of oscillation are frequently demonstrated by the interaction

between generators and the control systems that correspond to them [84]. Significant

oscillations in generator rotor angles can be caused by it, and if these oscillations are not

caught and corrected, they could eventually lead to cascading failures and blackouts [85].

The phenomenon known as subharmonic resonance occurs when the response of a power

system exhibits oscillations at frequencies that are lower than the frequency of the external

disturbance that is being applied [86]. A power system experiences this phenomenon when

the inherent frequency of the system falls below the disturbance frequency. Through their

interaction with the power system, power electronic components, such as voltage source

converters or thyristor-controlled reactors, have the potential to induce subharmonic

resonance [87]. It has the potential to cause oscillations and instability that endure

for a long time if it is not minimised. The design and operation of power electronic

equipment that is connected to the grid must be carried out in a manner that takes into

consideration the phenomenon of subharmonic resonance [88].

When it comes to understanding the various properties of primary and subharmonic

resonance, as well as the consequences that these qualities have for the stability of a power
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system, it is vital to conduct a comparative examination of the two. For the purpose of

conducting a comparison between the two resonance phenomena, the authors utilised both

analytical and experimental methods [89] . The research conducted by them shed light

on the parallels and differences that exist between primary and subharmonic resonance,

hence emphasising the importance of doing a comprehensive analysis on the subject [89].

Improvements in the identification and distinction of primary and subharmonic resonance

have been made possible as a result of the development of classification algorithms. It

has been established that techniques for machine learning, such as neural networks and

support vector machines, are capable of reliably classifying resonance types. Using a

neural network-based method, the authors provided a method for the classification of

resonance occurrences in real time [90]. This method enables a rapid response to crucial

stability events. In their study, the researchers not only investigated the impact of control

strategies on subharmonic resonance, but they also underlined the significance of taking

into account variations in system parameters when assessing the dynamic behaviour of

primary and subharmonic resonances [91].

The stability of the power system is an important factor in determining the reliability

and effectiveness of the operation of electrical circuits and grids. The swing equation

is an essential tool for analysing the dynamic behaviour of power systems, particularly

when analysing the stability of the rotor angle and the dynamics of the speed. Among the

many phenomena that can have an effect on the stability of a power system, resonance

on the primary and subharmonic scales is a significant one [92]. Therefore, it is of utmost

importance when studying the stability of a system, as discussed in [93]. It is essential to

have a comprehensive understanding of these phenomena in order to conduct effective

stability analysis, regulation, and precautionary actions in power systems. It is vital to

conduct additional research and make significant advancements in these areas in order to

guarantee the stability and resilience of energy systems in the face of grid situations and

challenges that are constantly shifting.

Basins of attraction are geographic areas within the state space that are characterised

by the convergence of the paths of the system to specific attractors. Over the course of

this chapter, the basins of attraction that are associated with primary and subharmonic

resonance in power systems have been investigated. Various methodologies, including

bifurcation analysis, numerical simulations, and Lyapunov exponent calculations, have
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been utilised in these research to define the limits and properties of the basins of attraction

[94]. The impacts of system parameters, initial conditions, and control strategies on

systems have been examined by researchers in order to gain a better understanding of

the stability boundaries and robustness of power systems.

4.2 Analytical Work

4.2.1 Perturbation Analysis for Subharmonic Resonance

This method uses multiple scales to determine second order approximate expression for

period-two solutions for the case Ω ≃ 2ω0.

It is possible to use this solution to make a prediction regarding the beginning of the

complex dynamics and stability. Due to the fact that the solution is unable to take into

account the frequency shift that is caused by the external stimulation, the accuracy of

the solution decreases as the magnitude of the excitation grows. The introduction of a

minor dimensionless parameter called ε, which is utilised as a mechanism for accurate

accounting.

Assume:

η = O(ε) (4.1)

Then the damping term is of the order:

ωRD

2H
= O(ε) (4.2)

And similarly:

G1 = O(ε), Q = O(ε) (4.3)

The excitation magnitudes are also small:

VB1 = O(ε), θB1 = O(ε) (4.4)

This leads to the following coefficients in the final perturbed swing equation:
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G1 = εg1 (4.5)

G2 = εg2 (4.6)

G3 = εg3 (4.7)

Q = εq (4.8)

After applying these assumptions and simplifying, the governing equation becomes:

η̈ + 2εµη̇ + ω2
0η = α2η

2 + α3η
3 + εg1η cos(Ωt+ ϕv)

+ εg2η
2 cos(Ωt+ ϕv) + εg3η

3 cos(Ωt+ ϕv) + εq cos(Ωt+ ϕe) (4.9)

where

µ =
ωRD

4H
(4.10)

Assuming a perturbative solution of the form:

η(t; ε) = εη1(T0, T1, T2) + ε2η2(T0, T1, T2) + ε3η3(T0, T1, T2) + . . . (4.11)

The first and second derivatives of the solution are expanded using the chain rule:

d

dt
= D0 + εD1 + ε2D2 + . . . (4.12)

d2

dt2
= D2

0 + 2εD0D1 + ε2(2D0D2 +D2
1) + . . . (4.13)

where:

Dn =
∂

∂Tn

(4.14)

Also, the natural frequency is detuned using:
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ω2
0 =

1

4
Ω2 + εσ (4.15)

Substituting equations (4.11), (4.12) and (4.13) into equation (3.29) gives,

η̈ + 2εµη̇ +

(
1

4
Ω2 + εσ

)[
εη1(T0, T1, T2) + ε2η2(T0, T1, T2) + ε3η3(T0, T1, T2) + · · ·

]
=

α2

(
ε2η21 + ε4η22 + ε6η23 + · · ·

)
+ α3

(
ε3η31 + ε6η32 + ε9η33 + · · ·

)
+ εg1

(
εη1 + ε2η2 + ε3η3

)
cos (Ωt+ ϕv)

+ εg2
(
ε2η21 + ε4η22 + ε6η23

)
cos (Ωt+ ϕv)

+ εg3
(
ε3η31 + ε6η32 + ε9η33 + · · ·

)
cos (Ωt+ ϕv) + εq cos (Ωt+ ϕe) (4.16)

Substituting these into the main equation and collecting like powers of ε, the following

is obtained:

at order ε:

D2
0η1 +

1

4
Ω2η1 = q cos(Ωt+ ϕe) (4.17)

at order ε2:

D2
0η2 +

1

4
Ω2η2 + 2D0D1η1 + ση1 = α2η

2
1 + g1η1 cos(ΩT0 + ϕv) (4.18)

at order ε3:

D2
0η3 + 2D0D1η2 + (D2

1 + 2D0D2)η1 + 2µD0η1 +
1

4
Ω2η3 + ση2 =

2α2η1η2 + α3η
3
1 + g1η2 cos(ΩT0 + ϕv) + g2η

2
1 cos(ΩT0 + ϕv) (4.19)

Solving equation (4.17), it admits the following general form:

η1 = a(T0, T1, T2) cos

(
1

2
ΩT0 + β(T0, T1, T2)

)
+ 2N cos(ΩT0 + ϕe) (4.20)

or equivalently in exponential form:

η1 = A(T1, T2)e
1
2
iΩT0 + Ā(T1, T2)e

− 1
2
iΩT0 +NeiΩT0 + N̄e−iΩT0 (4.21)
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where Ā is the complex conjugate of A and :

N =
−2q

3Ω2
eiϕe (4.22)

Comparing the coefficients in equations (4.20) and (4.21)

A =
1

2
aeiβ (4.23)

Substituting equation (4.21) into equation (4.18) gives,

D2
0η2 +

1

4
Ω2η2 = −2µD0

(
Ae

1
2
iΩT0 + Āe−

1
2
iΩT0 +NeiΩT0 + N̄e−iΩT0

)
− 2D0D1

(
Ae

1
2
iΩT0 + Āe−

1
2
iΩT0 +NeiΩT0 + N̄e−iΩT0

)
− σ

(
Ae

1
2
iΩT0 + Āe−

1
2
iΩT0 +NeiΩT0 + N̄e−iΩT0

)
+ α2

(
Ae

1
2
iΩT0 + Āe−

1
2
iΩT0 +NeiΩT0 + N̄e−iΩT0

)2
+ g1 cos(ΩT0 + ϕv)

(
Ae

1
2
iΩT0 + Āe−

1
2
iΩT0 +NeiΩT0 + N̄e−iΩT0

)
(4.24)

Rearranging the terms,

D2
0η2 +

1

4
Ω2η2 = e

1
2
iΩT0

[
−σA+ 2α2NĀ− Ωi(D1A+ µA) +

1

2
g1Āe

iϕv

]
+ eiΩT0

[
−σN + α2A

2 − 2iµΩN
]
+ e

3
2
iΩT0

[
1

2
Af1e

iϕv

]
+ e2iΩT0

[
α2N2 + 12g1Neiϕv

]
+
[
α2(AĀ+NN̄) + 12Ng1e

iϕv
]
+ cc (4.25)

where cc is the complex conjugate.

Eliminating the secular terms,

−iΩD1A− iΩµA− σA+ ĀΓeiϕee = 0 (4.26)

where:

Γeiϕee = 2α2N +
1

2
g1e

iϕv (4.27)

The solution of equation (4.25) is of the form,
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η2 =
−4

3Ω2

[
α2A

2 − (2iµΩ + σ)N
]
eiΩT0

− A

2Ω2
Γei(

3
2
ΩT0+ϕee) +

4

Ω2

[
α2(AĀ+NN̄) + 12g1Neiϕv

]
− 4

15Ω2

[
α2N

2 + 12g1Neiϕv
]
ei2ΩT0 + c̄ (4.28)

where c̄ is the complex conjugate.

Substituting equations (4.21) and (4.28) into equation (4.19):

D2
0η3 +

1

4
Ω2η3 = −iΩD2A−D2

1A− 2µD1A

− −8α2

3Ω2

[
−(2iµΩ + σ)NĀ+ α2A

2Ā
]
− α2AΛ̄

Ω2
Γeiϕee

+
8α2

Ω2

[
2α2A

2Ā+ 2α2ANN̄ +
1

2
g1A(N̄eiϕv +Ne−iϕv)

]
+ 6α3ANN̄ + 3α3A

2Ā− A1g1Γ

4Ω2
ei(ϕee−ϕv) + g2A(N̄eiϕv +Ne−iϕv) + NST + c̄ (4.29)

where NST denotes non significant terms.

Now, we define,

D1A = −
(
µ+

iσ

Ω

)
Ā+

i

Ω
ĀΓeiϕee (4.30)

D2
1A =

(
µ2 − 2iµσ

Ω
+

Γ2 − σ2

Ω2

)
A+

2iµ

Ω
ĀΓeiϕee (4.31)

Eliminating the secular terms in equation (4.29), and substituting equations (4.26)

and (4.31),

− iΩD2A+

[
µ2 − Γ2 − σ2

Ω2
− α2N̄Γ

Ω2
eiϕee +

(
6α3 +

16α2
2

Ω2

)
NN̄

+ (N̄eiϕv +Ne−iϕv)

(
4α2f1
Ω2

+ f2

)
−Γf1
4Ω2

ei(ϕee−ϕv)

]
A

+

(
3α3 +

40α2
2

3Ω2

)
A2Ā+

8α2

3Ω2
(2iµΩ + σ)NĀ = 0 (4.32)
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Using method of reconstitution, the derivative of A with respect to t is found and

substituting equation (4.26) and (4.32) into (4.12), setting ε = 1, we get,

iΩ(A′ + µeA) + σeA− 4αeA
2Ā− Γ̂eiϕ̂e = 0 (4.33)

where,

µe = µ− 2α2qΓ

3Ω5
sin(ϕee − ϕe) +

Γg1
4Ω3

sin(ϕee − ϕv) (4.34)

σe = σ − µ2 +
Γ2 − σ2

Ω2
−
(

2q

3Ω2

)2(
6α3 +

16α2
2

Ω2

)
+

4q

3Ω2

(
g2 +

4α2g1
Ω2

)
cos(ϕv − ϕe)−

2qΓα2

3Ω4
cos(ϕee − ϕe) +

Γg1
4Ω2

cos(ϕee − ϕv) (4.35)

αe =
10α2

2

3Ω2
+

3

4
α3 (4.36)

Γ̂eiϕ̂e = Γeiϕee − 16α2q

9Ω4
(2iµΩ + σ)eiϕe (4.37)

Separating into real and imaginary parts gives,

Ω(a′ + µea)− aΓ̂ sin γ = 0 (4.38)

−Ωaβ′ + σea− αea
3 − aΓ̂ cos γ = 0 (4.39)

γ = ϕ̂e − 2β (4.40)

Therefore,
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η = a cos

(
1

2
Ωt+ ϕ̂e − β

)
− 4q

3Ω2
cos(Ωt+ ϕe) +

32µq2

9Ω3
sin(Ωt+ ϕe)

− 16σq

9Ω4
cos(Ωt+ ϕe)−

2a2α2

3Ω2
cos(Ωt+ ϕ̂e − γ)− 32α2q

135Ω6
cos[2(Ωt+ ϕe)]

− ag1
4Ω2

cos

(
3

2
Ωt+ ϕv +

1

2
(ϕe − γ)

)
+

2α2

Ω2

(
a2 +

16q2

9Ω4

)
− 8g1q

3Ω4
cos(ϕv − ϕe) +

2α2aq

3Ω4
cos

(
3

2
Ωt+ ϕe +

1

2
(ϕ̂e − γ)

)
+

8g1q

45Ω4
cos(2Ωt+ ϕe + ϕv) + . . . (4.41)

Similarly, the swing angle is,

∆θ = θB1 cos(Ωt+ ϕθ) + a cos

(
1

2
Ωt+ ϕ̂e − β

)
− 4q

3Ω2
cos(Ωt+ ϕe)

+
32µq

9Ω3
sin(Ωt+ ϕe)−

16σq

9Ω4
cos(Ωt+ ϕe)−

2a2α2

3Ω2
cos(Ωt+ ϕ̂e − γ)

+
2α2aq

3Ω4
cos

(
3

2
Ωt+ ϕ̂e +

1

2
(ϕe − γ)

)
− ag1

4Ω2
cos

(
3

2
Ωt+ ϕv +

1

2
(ϕe − γ)

)
+

2α2

Ω2

(
a2 +

16q2

9Ω4

)
+

8g1q

3Ω4
cos(ϕv − ϕe) +

32α2q
2

135Ω6
cos[2(Ωt+ ϕe)]

+
8g1q

45Ω4
cos(2Ωt+ ϕe + ϕv) + . . . (4.42)

Letting a′ = β′ = 0 in equation (4.38), (4.39), (4.40) gives,

Ωµea− Γ̂a sin γ = 0 (4.43)

σea− αea
3 + Γ̂a cos γ = 0 (4.44)

when a = 0, then:

∆θ = θB1 cos(Ωt+ ϕθ)−
4q

3Ω2
cos(Ωt+ ϕe) +

32µq

9Ω3
sin(Ωt+ ϕe)

− 16σq

9Ω4
cos(Ωt+ ϕe) +

32α2q
2

9Ω6
− 8g1q

3Ω4
cos(ϕv − ϕe)

+
32α2q

2

135Ω6
cos[2(Ωt+ ϕe)] +

8g1q

45Ω4
cos(2Ωt+ ϕe + ϕv) (4.45)
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Which is similarly echoed in [33].

When a ̸= 0, eliminating γ gives the frequency response equation,

a2 =
1

αe

[
σe ±

√
Γ̂2 − Ω2µ2

e

]
(4.46)

Taking into consideration equation (4.46), which presents both the numerical simulation

and the perturbation solution, the frequency response plot may be derived.

The accompanying figures, Figure 4.1 and Figure 4.2, display time histories and

phase portraits for the case when the excitation frequency is set to Ω = 26.01 rad · s−1.

This specific value of Ω was selected because it corresponds to a subharmonic resonance

condition. More precisely, it is approximately twice the natural frequency of the system,

which leads to a one-half subharmonic resonance. Under such conditions, the system is

particularly sensitive to perturbations, and nonlinear interactions become prominent. This

makes it an ideal scenario to compare analytical predictions with numerical simulations,

as the effects of subharmonic excitation are clearly observable in both the time-domain

and phase-space behaviours. The use of this excitation frequency enables a thorough

validation of the perturbation methods employed and highlights the resonance-induced

instabilities present in the system.
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Figure 4.1: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of subahrmonic resonance in time
history for Ω = 26.01 rads−1.

Figure 4.2: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of subhamonic resonance in phase
plane for Ω = 26.01 rads−1.
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Simulating the perturbation analysis and comparing it to its numerical counterpart

was achieved using both the Runge-Kutta and Newton-Raphson numerical methods.

Upon evaluation, it was found that the Newton-Raphson method yields a more accurate

approximation of the numerical solution. Specifically, for the subharmonic resonance

case, the computed numerical errors for the Runge-Kutta and Newton-Raphson methods

were 0.0995 and 0.0419, respectively. This indicates that the Newton-Raphson method

provides a superior fit to the data due to its lower error value.

This finding is consistent with earlier results obtained for the case of primary resonance,

where a similar trend was observed: the Newton-Raphson method produced a closer

match to the analytical solution compared to Runge-Kutta. The enhanced accuracy of the

Newton-Raphson approach can be attributed to its iterative root-finding nature, which is

particularly effective in refining steady-state solutions obtained from nonlinear algebraic

equations derived via perturbation techniques. By contrast, the Runge-Kutta method,

while reliable for time-domain simulations, is more sensitive to step size and numerical

damping, which may affect its accuracy when matching long-term or steady-state

behaviours. Hence, the consistent performance of the Newton-Raphson method across

both resonance scenarios reinforces its suitability for validating perturbative analytical

results in nonlinear dynamic systems.

4.3 Numerical Analysis

4.3.1 Graphical Representation

Using the fourth-order Runge-Kutta method in Matlab, the equations (3.10), (3.11),

and (3.12) were set and solved for the parameters given in the Appendix. The primary

focus of the analysis was on the effect of altering the excitation frequency Ω for the

subharmonic resonance.
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Figure 4.3: Phase portrait, frequency-domain plot and Poincaré map when Ω = 26.01
rads−1.

Figure 4.4: Phase portrait, frequency-domain plot and Poincaré map when Ω = 21.042
rads−1.

Figure 4.5: Phase portrait, frequency-domain plot and Poincaré map when Ω = 19.4162
rads−1.
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Figure 4.6: Phase portrait, frequency-domain plot and Poincaré map when Ω = 19.375
rads−1.

Figure 4.7: Phase portrait (loss of synchronism) when Ω = 19.37251 rads−1.

Figures 4.3, 4.4, 4.5, 4.6, and 4.7 were generated by plotting the phase portraits,

frequency-domain plots, and Poincaré maps for various excitation frequencies applied to

the swing equation (3.10). These visualisations illustrate how the system’s dynamics evolve

as the excitation frequency Ω is progressively decreased. As Ω is reduced, the system begins

to lose its stability and transitions through a sequence of period doubling bifurcations

before ultimately entering a chaotic regime. Each figure captures key dynamical features,

including time-doubling phenomena and the gradual loss of synchronism.

The excitation frequencies used in this analysis were carefully selected to explore the

onset and progression of subharmonic resonance in the system. These values are situated

near resonance conditions, where nonlinear effects become significant and are most easily

observable. In particular, Figure 4.3 illustrates the system response at a relatively high

70



CHAPTER 4. UNDERSTANDING THE SUBHARMONIC RESONANCE

excitation frequency, Ω = 26.01 rad · s−1, where the dynamics are stable and periodic. At

this frequency, the phase portrait reveals a closed trajectory corresponding to a period-one

attractor. This periodic behaviour is further confirmed by the frequency-domain plot,

which shows a dominant single frequency, and by the Poincaré map, which displays a

single fixed point.

In addition, as shown in Figure 4.4, the period-one orbit undergoes deformation until

the value of Ω reaches 21.042 rads−1. At this point, the period-one attractor loses its

stability and is replaced by a period-two attractor. The occurrence of the period doubling

bifurcation is demonstrated by the frequency-domain plot as well as the Poincaré map

illustration. When the value of Ω is reduced even further to 19.4162 rads−1, the phase

picture depicts an attractor that consists of two loops.

In the process of decreasing the value of Ω, it is possible to see that the graphs

experience dynamical transformations, which may include period-doubling solutions.

Eventually, as the value of Ω is dropped to a greater extent, around 19.375 rads−1, a

chaotic attractor is displayed, as demonstrated in Figure 4.6. On the other hand, when

the value of Ω is reduced to 19.37251 rads−1, the system loses its synchronism, as depicted

in Figure 4.7.

In order to produce the bifurcation diagram depicted in Figure 4.8, the swing equation

was numerically solved for a specific excitation frequency of Ω = 19.416 rad s−1. The

numerical solution was obtained using the classical fourth-order Runge-Kutta method,

a widely accepted technique for time integration in nonlinear dynamical systems. This

method was chosen due to its accuracy and stability when handling stiff or oscillatory

systems such as the swing equation. The bifurcation diagram was constructed by recording

the maximum amplitude of the oscillatory response over time for each value of the forcing

parameter r as shown in equation (3.65). To achieve this, the value of r was progressively

increased, and for each increment, the system was integrated forward in time to ensure

that transient effects were excluded and steady-state dynamics were captured [1].

This process allowed for the identification of critical transitions in the system’s

behaviour, such as period-doubling bifurcations and the onset of chaos. By plotting the

maximum amplitude against the corresponding r values, the bifurcation structure of

the system became evident, revealing regions of stability, periodicity, and chaos. This

visual representation provides key insights into the sensitivity of the system to parameter
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variations and serves as a powerful tool for analysing nonlinear oscillatory dynamics. The

detailed structure visible in the bifurcation diagram validates the use of time-domain

simulations in exploring the system’s response under subharmonic resonance conditions,

reinforcing the findings presented in earlier sections.

Figure 4.8: Bifurcation diagram when r value is varied and constant Ω = 19.4162 rads−1.

Figure 4.8 depicts the initial period doubling that takes place soon before r = 0.975.

This is further supported by the Poincaré’s maps shown in Figure 4.9. Additionally,

at about r approximately 2.1, the first period doubling in a series of period doubles is

displayed, which results in chaotic behaviour.
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Figure 4.9: Poincaré maps for the different r values.

The results of this numerical analysis demonstrate that as the value of r is increased,

the swing equation gets closer and closer to losing its synchronisation function. As can

be seen in Figure 4.9, the Poincaré maps that correspond to the coordinates are shown.

They provide a clear illustration of the sites at which period doubling takes place, as

well as the manner in which the phenomena of chaos is confirmed when r is increased.

When the subharmonic resonance is taken into consideration, it is noted that the

chaotic zone has begun at roughly r > 2.1. This is the region in which the Lyapunov

exponent typically takes on positive values. This behaviour is visualised and displayed

in Figure 4.10, which illustrates the situation in which two nearby points, which were

initially separated by an infinitesimal distance, normally drift from each other over time.

The Lyapunov exponents are used to statistically measure this behaviour. In addition,

this behaviour is confirmed by the bifurcation diagram shown in Figure 4.8. This diagram

shows that the cascade of period doubling sequence leads to chaos at nearly the same
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value of r . This chaos is sufficiently severe that it is sufficient to assert that a chaotic

attractor can be characterised by a positive Lyapunov exponent. The Poincaré maps,

which are displayed in Figure 4.9, provide additional validation for this assertion.

Figure 4.10: Lyapunov exponents as r is varied.

A comparison is made between the analytical solution and the numerical simulation,

and the frequency domain plot for equation (4.46) is plotted as shown in Figure 4.11

below. This is done in order to determine whether or not the analytical solution is correct.

It is clear from this that the two analyses that were carried out on the swing equation

for the subharmonic resonance are in complete agreement with one another. As a result,

the analysis that was investigated in this work is validated.
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Figure 4.11: Frequency domain plot for subharmonic resonance.

4.4 Comparison of Basins of Attractions for

Primary and Subharmonic Resonances

4.4.1 Primary Resonance

This resonance plays a vital role in understanding the stability of a nonlinear system.

Hence it is important to study the basins of attraction of the primary resonance to obtain

more in-depth information about the system. Basins of attraction shows the stable and

unstable regions and helps to analyse the changes made to the system [95]. Plots show

the changes in the basins of attraction when variables are altered. It is also necessary to

consider boundary conditions when analysing these graphs when arriving at conclusions,

[96].

Important insights into the stability behaviour of power systems have been uncovered

by studies of the basins of attraction of primary resonance. The effect of parameter

variations, including system damping, excitation levels, and control gains, on the shape
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and magnitude of the basins of attraction associated with primary resonance has been

studied, [97], [98]. In addition, research efforts have concentrated on identifying the

critical boundaries separating stable and unstable regions in the state space, [99].

The figures below, Figure 4.12 and Figure 4.13, show the basins of attractions for

the primary resonance when the variable VB1 is varied whilst Ω= 19.375 rads−1. As the

variable is increased the stability of the system changes. The red and green colour show

the stable region and the other colours represent the unstable regions of the system. As

the variable is increased the system enters a corrupt state with unstable regions, hence a

further analysis on the affect of other variables in the system should be considered for

sound results in this chapter.

Figure 4.12: Basins of attractions when VB1 is 0.051 rad and 0.062 rad respectively for
primary resonance.
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Figure 4.13: Basins of attractions when VB1 is 0.071 rad and 0.151 rad respectively for
primary resonance.

4.4.2 Subharmonic Resonance

The subharmonic resonance analysed, further provides evidence on the stable regions of

the system. The basins of attractions for the subharmonic resonance depicts the stable

and unstable regions when the excitation frequency is approximately double the natural

frequency of the dynamical system, [100]. This analysis will show the chaos and instability

points of the system for further studies, [101].

Subharmonic resonance’s sources of attraction have also been studied extensively.

In [102], [103], the authors investigated the effects of various parameters, such as the

amplitude and frequency of the subharmonic component, on the basins of attraction.

Transitions between distinct subharmonic resonant states and the effect of control

strategies on the stability boundaries have been studied, [104], [105]. Hence further

investigation on the basins of attraction is necessary to analyse the stability when there

is a change in parameters, [56].

Figure 4.14 and Figure 4.15 represent the basins of attraction for the subharmonic

resonance when VB1 and θB1 are varied in the swing equation of the dynamical system.

As the variable is changed the system becomes fractal and it becomes corrupt.

Initially only the variable VB1 is varied when others are fixed to observe the effect of
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this particular variable. Even when VB1 = 0 the system is still corrupted and this is due

to the effect of θB1.

Figure 4.14: Basins of attractions when VB1 is 0 rad and 0.051 rad respectively
subharmonic resonance.

Figure 4.15: Basins of attractions when VB1 is 0.151 rad and 0.21 rad respectively for
subharmonic resonance.

Furthermore, the variable θB1 is changed to observe the transitions in the basins of

attractions for subharmonic resonance.
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Figure 4.16: Basins of attractions when θB1 is 0.191 rad and 0.181 rad respectively for
subharmonic resonance.

Figure 4.17: Basins of attractions when θB1 is 0.151 rad and 0.141 rad respectively for
subharmonic resonance.

Figure 4.16 and Figure 4.17 depict the system when the variable is varied whilst

others are kept constant. In this instance as θB1 is decreased the basins of attractions

change and the stable and unstable regions can be observed.
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4.5 Discussion

An investigation into the dynamic behaviour of the swing equation under a variety of

control situations is carried out in this section for the subharmonic resonance. In order to

check the correctness of the perturbed solution for subharmonic resonance and the basins

of attraction associated with these phenomena, perturbation techniques are compared to

numerical simulation. They are used to verify the accuracy of the perturbed solution.

By applying the swing equation to a variety of different circumstances, particularly

those involving load displacement, it is easier to make predictions about the behaviour

of the system. The administrators of the power system make use of this information in

order to ensure the system’s consistency and dependability is maintained. It is possible

to make use of this methodology in the process of developing and evaluating control

systems for power systems, namely in the areas of automatic generation control and load

frequency management. The major goal of this initiative is to lower the likelihood of

blackouts occurring and, more importantly, to lessen the potentially catastrophic effects

that they could have.

The comprehensive numerical analysis that was carried out in this investigation,

which made use of a wide range of mathematical tools including bifurcation diagrams,

Lyapunov exponents, phase portraits, frequency domain plots, and Poincaré maps, yield

significant insights into the way in which the swing equation behaves when subjected

to subharmonic resonance. The occurrence of the first period doubling in a sequence

has been identified as a significant indicator of oncoming chaos, warning possible risks

and operational challenges for power systems. This fact has been highlighted as a key

predictor of impending chaos. Furthermore, the research has demonstrated that other

phenomena, such as intermittency or the collapse of quasiperiodic torus structures, can

also result in systemic chaos. While period doubling is a well-known example of chaotic

behaviour, other events, such as these, can also result in chaotic behaviour.

It has effectively depicted both pre-chaotic and post-chaotic alterations by taking into

account the effects of various parameter adjustments on the dynamical behaviour of the

system. This demonstrates the significance of the work. Having a better understanding

of the transitional behaviour of a system before to its entry into a chaotic regime can

be achieved through the detection of pre-chaos motion patterns. A further validation
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of the system’s loss of stability, which leads to chaotic behaviour under conditions of

subharmonic resonance, was achieved by the investigation of basins of attraction for

primary and subharmonic resonances.

The primary and subharmonic resonances are the focus of this segment, which

contributes to a deeper comprehension of the fundamental components of the swing

equation and the consequences those aspects have for the maintenance of system stability.

Power system engineers and researchers are provided with valuable information as a

result of the findings, which enables them to design control systems and protective

measures that are more successful in mitigating the risks associated with subharmonic

resonance-induced chaos.

The findings of this thesis embedded in this chapter, contribute to a better understanding

of the dynamic behaviour of the swing equation and its reaction to subharmonic resonance.

Additionally, it sheds light on the essential parameters that govern the stability of the

system. The findings also have the potential to contribute to the advancement of the

creation of power infrastructures that are more resilient and secure. This is because power

systems are always evolving and will continue to face increasingly complex difficulties.

Under conditions of subharmonic resonance, it is possible that future research in this

field will investigate novel control methods and technologies with the goal of ensuring

the dependability and stability of power systems.

4.6 Final Remarks

Subharmonic resonance plays a critical role in understanding the dynamic stability of

nonlinear systems such as the swing equation. In the context of this chapter, a detailed

investigation of subharmonic resonance has been undertaken, with the aim of highlighting

its influence on the overall system behaviour and its potential to induce instability.

Subharmonic resonance occurs when the external forcing frequency is a fraction of the

system’s natural frequency, and this interaction can give rise to complex oscillatory

patterns, including periodic windows, bifurcations, and chaotic attractors.

This chapter has provided a comprehensive explanation of subharmonic resonance and

has served to bridge the theoretical insights found in existing literature with the practical

analysis of the swing equation. By simulating and analysing the system under various
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subharmonic conditions, the chapter has demonstrated how seemingly small parametric

variations can lead to significant qualitative changes in the system’s dynamics. The

inclusion of analytical techniques alongside numerical simulations has further strengthened

the validity of the findings and has offered multiple lenses through which the phenomenon

can be understood.

Moreover, the study of subharmonic resonance serves as a critical stepping stone

toward exploring more complex dynamic behaviours, including the emergence of chaos.

Understanding the mechanisms through which energy is transferred across frequencies in

nonlinear systems provides key insight into the broader narrative of dynamic instability.

As this research has shown, the appearance of subharmonic oscillations often precedes

more erratic behaviour and can act as a precursor to bifurcation cascades and the onset

of chaos.

Therefore, a thorough comprehension of subharmonic resonance is not merely an

academic exercise but a necessary foundation for investigating chaotic behaviour in power

system models. It equips researchers and engineers with the theoretical tools and practical

awareness needed to predict and mitigate instability in electrical networks. By deepening

our understanding of these resonant interactions, this chapter contributes meaningfully

to the broader goals of stability analysis and control in nonlinear dynamical systems,

particularly in the context of modern power grids.
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Chapter 5

Analysing the Dynamical Behaviour

using different Mathematical

techniques

5.1 Introduction

This section explains different mathematical techniques to analyse the case of bifurcation

in the swing equation. Floquet method, Method of strained parameters and Tangent

Instability are analysed in depth to understand the intricate behaviour of the system

when a disturbance is introduced.

The Floquet approach is a significant tool in the analysis of power system stability,

particularly in the context of tiny disruptions, [23], [106]. The mathematical methodology

employed in assessing the stability of periodic solutions, such as those seen in the

swing equation, involves the examination of the eigenvalues of the linearised equations

governing the system. Tangent instability, conversely, refers to a phenomena in which

minor disturbances in the operational parameters of a power system can result in

prolonged oscillations or instability, [107]. The strained parameters method is a strategy

in control theory that is employed to mitigate tangent instability by modifying system

characteristics in order to uphold stability, [108]. Collectively, these notions offer a

comprehensive theoretical structure for examining and managing the stability of a

mathematical problem, thereby guaranteeing their dependable functioning in the presence
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of dynamic disturbances.

5.2 Floquet Method

Let u(t) be a small disturbance (arbitrary), then:

η̂(t) = η(t) + u(t) (5.1)

The stability of η(t) depends on the growth or decay of the perturbation u(t). If u(t)

increases over time, the system is unstable around η(t); if it decays, the system is stable.

Substituting equation (5.1) into equation (3.10) and eliminating any nonlinear terms

with ζ(t), we obtain the variational equation governing the evolution of u(t):

d2u

dt2
+

ωRD

2H

du

dt
+ u

(
K − 2α2η − 3α3η

2
)
= 0 (5.2)

The behaviour of u(t) can be analysed using Floquet theory, which is suitable for

studying the stability of periodic solutions in linear differential equations with periodic

coefficients.

If u1(t), u2(t) are two independent solutions to equation (5.2), then due to the

periodicity of the coefficients, the shifted functions u1(t+ T ), u2(t+ T ) are also solutions.

Therefore, they can be expressed as linear combinations of u1(t) and u2(t) as follows:

u1(t+ T ) = a11u1(t) + a12u2(t)

u2(t+ T ) = a21u1(t) + a22u2(t)

To construct the monodromy matrix, two linearly independent solutions are computed

using the following initial conditions:

u1(0) = 1, u̇1(0) = 0

u2(0) = 0, u̇2(0) = 1

After solving the differential equation (5.2) with the above initial conditions over one

period T , we evaluate the solutions at t = T to form the monodromy matrix A:
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A =

[
u1(T ) u̇1(T )

u2(T ) u̇2(T )

]
(5.3)

The eigenvalues of the monodromy matrix A, referred to as Floquet multipliers,

govern the stability of the periodic solution η(t). If all Floquet multipliers lie strictly

within the unit circle in the complex plane, the solution is stable. Conversely, if any

multiplier lies on or outside the unit circle, the periodic orbit becomes unstable.

A saddle-node bifurcation of a periodic solution occurs when a pair of fixed points

(or periodic orbits) coalesce and eliminate each other as a system parameter varies. In

the context of Floquet theory, this bifurcation is analytically predicted when one of the

Floquet multipliers approaches and crosses the unit circle at +1 on the real axis. This

indicates the loss of stability and the disappearance of the periodic orbit.

In the analytical approach used in this thesis, perturbation methods are applied to

approximate the solution and derive a linearised variational equation around the periodic

orbit. The resulting monodromy matrix captures the fundamental solution over one

period. By computing its eigenvalues analytically, it is possible to track when a multiplier

reaches the critical value of +1, signalling a saddle-node bifurcation. Therefore, the

analytical solution accurately predicts the bifurcation point by identifying the parameter

value at which the Floquet multiplier crosses the stability threshold, confirming the onset

of the bifurcation.

5.3 Method of strained Parameters

Considering equation (3.60) and substituting it into equation (5.2) leads to:

ü+
ωRD

2H
u̇+ u

(
K − 2α2

[
εa cos(Ωt+ β + φe) +

ε2a2α2

6Ω2
(3− cos(2Ωt+ 2β + 2φe))

]

−3α3

[
εa cos(Ωt+ β + φe) +

ε2a2α2

6Ω2
(3− cos(2Ωt+ 2β + 2φe))

]2)
= 0

(5.4)

Expanding the brackets:
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ü+
ωRD

2H
u̇+ uK − 2uα2εa cos(Ωt+ β +φe) +

ε2a2uα2
2

Ω2
− ε2a2uα2

2

3Ω2
cos(2Ωt+2β +2φe)

−3α3uε
2a2 cos2(Ωt+β+φe)−

3α3ua
3ε2α2

Ω2
cos(Ωt+β+φe)+

α3uε
2a3α2

Ω2
cos(Ωt+β+φe) cos(2Ωt+2β+2φe)

− α3uε
2a4α2

2

12Ω4
(9 + cos(2Ωt+ 2β + 2φe)− 6 cos(2Ωt+ 2β + 2φe)) = 0 (5.5)

From equation (3.29), it is known:

ωRD

2H
= 2ε2µ (5.6)

and letting:

Φ = Ωt+ β + φe (5.7)

In the above expression, Φ represents the total phase of the oscillatory solution.

The term Ωt denotes the time-dependent phase component, where Ω is the excitation

frequency and t is time. The symbol β is a constant phase shift introduced by the system’s

nonlinear response, typically arising from the perturbation analysis. Finally, φe represents

the external or initial phase offset, often associated with the excitation signal or imposed

boundary conditions. Together, these components define the instantaneous phase of the

system’s response.

Then the equation becomes:

ü+ 2ε2µu̇+ uK − 2uα2εa cosΦ +
α2
2uε

2a2

Ω2
− α2

2uε
2a2

3Ω2
cos 2Φ− 3α3uε

2a2 cos2 Φ

−3α3ua
3ε2α2

Ω2
cosΦ+

α3uε
2a3α2

Ω2
cosΦ cos 2Φ−3α3uε

2a4α2
2

4Ω4
−α3uε

2a4α2
2

12Ω4
cos2 2Φ+

α3uε
2a4α2

2

2Ω4
= 0

(5.8)

Now cancelling out ε2 and simplifying gives:

ü+ 2µu̇+ uK∗ = χu cosΦ + Λu cos 2Φ (5.9)

where:
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K∗ = K +

(
3α3

2
− α2

2

3Ω2

)
a2 − 19α2

2αea
4

24Ω4
(5.10)

χ = 2α2a+
5α2α3a

2Ω2
(5.11)

Λ =

(
3α3

2
− α2

2

3Ω2

)
a2 − α2

2α3a
4

2Ω4
(5.12)

Φ = Ωt+ β + φe (5.13)

Introducing ε as a bookkeeping parameter, and damping and forcing terms at O(ε),

equation (5.9) is rewritten as:

ü+ 2µεu̇+ uK∗ = εχu cosΦ + εΛu cos 2Φ (5.14)

Assuming a uniform expansion of the solution:

u(t; ε) = εu1(t) + ε2u2(t) + . . . (5.15)

And writing:

K∗ =
1

4
Ω2 + εδ1 + ε2δ2 + . . . (5.16)

Comparing the powers of ε0:

ü0 +
1

4
Ω2u0 = 0 (5.17)

Comparing the powers of ε1:

ü1 +
1

4
Ω2u1 = −2µu̇0 − δ1u0 + χu0 cosΦ + Λu0 cos 2Φ (5.18)

Comparing the powers of ε2:

ü2 +
1

4
Ω2u2 = −2µu̇1 − δ1u1 − δ2u0 + χu1 cosΦ + Λu1 cos 2Φ (5.19)

Taking the solution:

u0 = a cos
1

2
Φ + b sin

1

2
Φ (5.20)
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Substituting equation (5.20) into equation (5.18)

ü1 +
1

4
Ω2u1 = −2µu̇0 − δ1(a cos

1
2
Φ + b cos 1

2
Φ)

+ χ cosΦ(a cos 1
2
Φ + b sin 1

2
Φ) + Λ cos 2Φ(a cos 1

2
Φ + b sin 1

2
Φ) (5.21)

Replacing with,

u̇0 =
−a

2
sin 1

2
Φ +

b

2
cos 1

2
Φ (5.22)

gives,

ü1 +
1

4
Ω2u1 = µaΩ sin 1

2
Φ− µbΩcos 1

2
Φ

− δ1a cos
1
2
Φ− δ1b sin

1
2
Φ + aχ cosΦ cos 1

2
Φ

+ bχ cosΦ sin 1
2
Φ + aΛcos 2Φ cos 1

2
Φ + bΛcos 2Φ sin 1

2
Φ (5.23)

Employing trigonometric identities,

aχ cosΦ cos 1
2
Φ =

aχ

2

(
cos 3

2
Φ + cos 1

2
Φ
)

(5.24)

bχ cosΦ sin 1
2
Φ =

bχ

2

(
sin 3

2
Φ− sin 1

2
Φ
)

(5.25)

aΛcos 2Φ cos 1
2
Φ =

aΛ

2

(
cos 5

2
Φ + cos 3

2
Φ
)

(5.26)

bΛcos 2Φ sin 1
2
Φ =

bΛ

2

(
sin 5

2
Φ− sin 3

2
Φ
)

(5.27)

Substituting the above into the equation and rearranging,

ü1 +
1

4
Ω2u1 = cos 1

2
Φ

[(
1

2
χ− δ1

)
a− µbΩ

]
+ sin 1

2
Φ

[
µaΩ−

(
1

2
χ+ δ1

)
b

]
+

a

2
(χ+ Λ) cos 3

2
Φ +

b

2
(χ− Λ) sin 3

2
Φ

+
aΛ

2
cos 5

2
Φ− bΛ

2
sin 5

2
Φ (5.28)
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For eliminating secular terms in equation (5.28), consider

(
1

2
χ− δ1

)
a− µbΩ = 0 (5.29)

µaΩ−
(
1

2
χ+ δ1

)
b = 0 (5.30)

It is also given that for non-trivial solution to exist, the following should be satisfied,

δ21 =
1

4
χ2 − µ2Ω2 (5.31)

Using equations (5.29) and (5.30), equation (5.28) becomes

u1 = D cos 1
2
Φ + E sin 1

2
Φ− (X + Λ)a

4Ω2
cos 3

2
Φ− (X − Λ)b

4Ω2
sin 3

2
Φ + . . . (5.32)

where D and E are constants.

Substituting equations (5.28) and (5.32) into equation (5.27) the following equations

are obtained,

(
1

2
χ− δ1

)
D − µΩE =

[
δ2 +

(X + Λ)Λ

8Ω2

]
a (5.33)

µΩD − 1

2
(χ+ δ1)E =

[
δ2 +

(X − Λ)Λ

8Ω2

]
b (5.34)

Given that equations (5.33) and (5.34) have non-trivial solution, the inhomogeneous

equations have solution if and only if consistency (solvability) condition is satisfied,

δ2 = −χ2 + 4Λδ1 + Λ2

8Ω2
(5.35)

Hence the equation (5.16) depicts the transition curves determining period doubling

as shown below,

K∗ =
1

4
Ω2 ± ε

(
1

4
χ2 − µ2Ω2

)1/2

− ε2
(
χ2 + 4Λδ1 + Λ2

8Ω2

)
+ . . . (5.36)
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5.4 Tangent Instabilities

Initially the points corresponding to vertical tangents are in the frequency-response

curves given by the equation below, [1],

Beginning with the equation:

µ2 +

(
σ

2Ω
+

αea
2

Ω

)2

=
g2

4Ω2a2
(5.37)

and rearranging the above equation gives:

4µ2Ω2 +
(
σ + 2αea

2
)2

=
(g
a

)2
(5.38)

For ease of analysis, the following variable substitutions are defined:

s = a2, x = Ω2, σ = ω2
0 − Ω2 (5.39)

Then equation (5.38) is written as,

4µ2xs+ s
(
ω2
0 − x− 2αes

)2
= g2 (5.40)

Next, taking the derivative of the above equation with respect to x:

4µ2x
ds

dx
+
(
ω2
0 − x− 2αes

)2 ds

dx
− 4αes

(
ω2
0 − x− 2αes

) ds
dx

+4µ2s− 2s
(
ω2
0 − x− 2αes

)
= 0

(5.41)

Now, to determine the turning point (i.e., where ds
dx

= 0), equating the coefficient of

ds
dx

to zero:

4µ2x+
(
ω2
0 − x− 2αes

)2 − 4αes
(
ω2
0 − x− 2αes

)
= 0 (5.42)

Now, recall from earlier that:

g2 = 4αes
(
ω2
0 − x− 2αes

)
(5.43)

Let us define:

z = ω2
0 − x− 2αes (5.44)
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Then, rearranging:

2(z + x− ω2
0) = 4αes (5.45)

Now substitute equation (5.44) into (5.42) for z back into the earlier turning-point

equation:

4µ2x+ z2 + 4αesz = 0 (5.46)

Now use the identity above again to replace 4αes by 2(z + x− ω2
0), leading to:

4µ2x+ z2 + z · 2(z + x− ω2
0) = 0 (5.47)

Expanding the brackets and simplifying:

3z2 + 2z(x− ω2
0) + 4µ2x = 0 (5.48)

In order to calculate the tangent instability using Matlab, the variable z is determined

by solving equation (5.48) with specific values assigned to the parameter Ω. Subsequently,

by solving equation (5.44) for the variable s and substituting the obtained value into

equation (5.43), the variable g can be determined.

5.5 Results

A comprehensive comparison between numerical simulation results and various analytical

approaches namely, the Floquet method, the method of strained parameters, and the

tangent instability technique is illustrated in Figure 5.1. This figure highlights the

accuracy and limitations of each method in predicting the nonlinear dynamic behaviour

and bifurcation characteristics of the swing equation.

A detailed investigation of the system’s stability and dynamic response has been

performed using the Floquet method, implemented numerically via Matlab. This approach

facilitates a deep understanding of transient stability phenomena in power systems by

examining the periodic nature of small perturbations and their evolution over time. The

Floquet method is found to be particularly effective in predicting the onset of saddle-node
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bifurcation. However, when its results are compared with those from numerical simulations,

a relative error of approximately 9.21% is observed in locating the bifurcation point.

In parallel, analytical solutions derived using the method of strained parameters have

been computed by evaluating equation (5.36), which approximates the period-doubling

bifurcation curve. This method offers a perturbation-based closed-form expression that

provides both qualitative and quantitative insight into the swing equation’s nonlinear

oscillatory behaviour. Nevertheless, it introduces a prediction error of 10.32% when

compared to the numerical benchmark.

The tangent instability criterion has also been applied through the analysis of

equation (5.46), offering another perspective on identifying saddle-node bifurcations.

While analytically elegant, this method yields a deviation of 12.5% from the numerically

determined critical point.

In summary, although all three analytical methods provide valuable predictive

capability and theoretical understanding of the system dynamics, each exhibits a certain

level of discrepancy relative to the numerically obtained values. Among them, the Floquet

method demonstrates the highest accuracy, making it especially useful for applications

requiring precise stability assessment. These findings underscore the importance of

cross-validating analytical methods with numerical simulations to ensure robust analysis

of power system stability.
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Figure 5.1: Bifurcation diagram showing a comparison of different analytical methods for
Primary Resonance.

Figure 5.2: Bifurcation diagram showing a comparison of different analytical methods for
Subharmonic Resonance.
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Similarly, Figure 5.2 presents a comparative analysis between the results obtained

from numerical simulations and those derived using various analytical methodologies for

the case of subharmonic resonance. In this context, the analysis considers a time scale

that is twice that of the primary resonance, allowing for the examination of second-order

resonant phenomena such as period doubling and saddle-node bifurcations.

To predict the onset of bifurcations under subharmonic excitation, both the Method

of Strained Parameters and the Tangent Instability approach have been employed.

These analytical tools are applied to derive expressions that characterise the transition

boundaries of the system’s dynamic stability. The Method of Strained Parameters

demonstrates exceptional agreement with the numerical data, predicting the saddle-node

bifurcation with a remarkably low error of only 0.091%. Similarly, the Tangent Instability

method forecasts the bifurcation point with a moderate error of 5.43%, reflecting its

applicability despite a slightly reduced accuracy in this scenario.

Furthermore, the Floquet method, renowned for its effectiveness in capturing the

periodic structure of solutions and their stability, is also applied in this analysis. It

successfully predicts the period-doubling bifurcation, yielding an impressively low error

of 0.102% when benchmarked against numerical simulation results.

These analytical predictions are not only consistent with the numerical findings but

also show strong coherence with specific results presented in the literature, particularly

in [86]. The close agreement across methods affirms the robustness of the analytical

frameworks and their utility in accurately capturing complex nonlinear behaviours such

as subharmonic resonance and bifurcation dynamics in power systems.

5.6 Discussion

The objective of this section of this chapter is to analyse the dynamic characteristics of

the swing equation under different variations of control parameters. It compares analytical

methods, particularly perturbation techniques, with numerical simulation in order to

verify the accuracy of the perturbed solution for subharmonic resonance and the basins

of attraction associated with these phenomena.

The examination of the primary and subharmonic resonances of the swing equation
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involves the utilisation of many analytical methods, namely the Floquet method, method

of strained parameters, and analytical techniques. These approaches give unique perspectives

and contribute significant knowledge to the understanding of the stability of the power

system in this chapter. The analytical approach generally depends on the utilisation

of mathematical modelling and manual computations, resulting in accurate outcomes

within the context of simplified assumptions. However, it may encounter difficulties in

accurately representing the many interconnections and nonlinear dynamics that manifest

in power systems found in real-world scenarios.

On the other hand, the Floquet method and the method of strained parameters utilise

numerical and computational techniques to effectively address complex dynamics. These

methodologies provide a methodical investigation of the system’s reaction to diverse

conditions and external disturbances, which can be effectively depicted through graphical

illustrations. Researchers can enhance their comprehension of the system’s behaviour in

the vicinity of the primary resonance by graphing the response of the swing equation

across various parameter values or forcing frequencies. Graphical analyses serve as a vital

supplement to analytical techniques, providing a more holistic perspective on the stability

attributes. This aids power system engineers in making well-informed judgements to

guarantee the dependable functioning of the grid.

The anticipated response of the system is determined by employing the swing equation

in diverse scenarios, including instances involving load alterations. The data is utilised

by power system management in order to guarantee the stability and reliability of the

system. The use of this approach extends to the design and analysis of control systems for

power systems, namely in the areas of autonomous generation control and load frequency

management. For instance in the case to mitigate the occurrence of blackouts and the

consequential catastrophic consequences they may entail.

5.7 Final Remarks

This chapter has examined the influence of parameter variations on the dynamic behaviour

of the swing equation, with particular emphasis on the transitions observed before and

after the onset of chaos. Analytical methods, including the Floquet technique, the method

of strained parameters, and tangent instability analysis, were employed to assess the
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system’s stability characteristics. These techniques offered valuable insights into the

mechanisms underpinning the emergence of complex dynamical behaviours.

The identification of pre-chaotic motion proved especially useful in enhancing our

understanding of the transient dynamics that precede chaotic regimes. Moreover, the

investigation of the basins of attraction associated with both primary and subharmonic

resonances confirmed the system’s inherent instability under certain excitation conditions

particularly those linked to subharmonic resonance, which tends to provoke chaotic

responses.

This work makes a significant contribution to the current academic literature on the

swing equation, building on recent studies, notably [77] and [115]. By focusing specifically

on primary and subharmonic resonances, the findings offer a deeper understanding of

the nonlinear dynamics and stability margins in power systems. These insights are of

practical relevance to power engineers and researchers seeking to develop advanced control

strategies for mitigating chaotic behaviour.

The findings highlight key aspects of system stability and provide a foundation for

future research aimed at improving the resilience and reliability of power infrastructures,

an increasingly critical objective given the growing complexity and demands placed on

modern power networks.

Looking forward, the integration of quasiperiodic forcing into the swing equation

framework represents a promising avenue for further investigation. Such an approach

could yield important insights into the long-term stability and adaptability of power

systems subject to multifrequency disturbances and non-periodic excitations.
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Chapter 6

Studying the Effects of

Quasiperiodicity on the Swing

Equation

6.1 Introduction

The concept of quasiperiodicity describes a type of motion that is characterised by the

presence of two or more frequencies that are not rational multiples of one another, which

results in the frequencies being incommensurate with one another. In light of this, it may

be deduced that the system does not completely return to its initial state, although it

does come close to doing so on occasion. The phenomenon of quasiperiodic motion is

widely observed in dynamical systems that display perturbations of integrable systems

[109]. An illustration of this can be found in the situation of a double pendulum, where

the motion displays quasiperiodicity when the amplitudes are at their lowest [110].

The idea of quasiperiodicity is a multidimensional phenomenon that does not have a

description that is universally accepted by everyone. Nevertheless, a methodology that is

widely utilised entails the construction of a definition for quasiperiodic motion in the

manner that is described below: An example of a dynamical system that is considered to

be quasiperiodic is one that possesses a solution that can be described as the combination

of two or more frequencies that are not in a rational ratio with each other [111].

One other way of thinking about quasiperiodicity is to consider it as a type of motion
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that has features that are very similar to those of periodicity. According to the definition

provided by authors, a periodic signal is a signal that displays repeating behaviour,

meaning that it occurs exactly after a predetermined amount of time has passed [112].

When compared to a perfect periodic signal, a quasiperiodic signal does not exhibit

perfect repetition yet, it does exhibit approximate repetition at consistent intervals [113].

Within the area of dynamical systems theory, the idea of quasiperiodicity is thought

to be of significant importance. A wide variety of systems, including economic, biological,

and physical systems, are all examples of the phenomenon that can be observed. There

are a number of events that can serve as examples of quasiperiodicity. These include the

motion of the planets within the solar system, as well as the rhythmic patterns that are

displayed by the human heartbeat and respiratory cycle [114].

Over the past few years, there has been a substantial amount of focus placed on

the investigation of quasiperiodicity in the swing equation. A non-linear differential

equation known as the swing equation is a mathematical representation of the dynamics

of a machine when it is subjected to the action of a periodic driving force [77, 115].

It is possible that the solution to the swing equation is a combination of two or more

frequencies that are not in a clear ratio. This is because the swing equation exhibits

quasiperiodic features when specific values are provided to the parameters. Despite the

fact that it does get near to returning to its starting state at regular intervals, implying

that the system does not completely return to its basic state.

Within the context of the swing equation, the ability of quasiperiodicity to induce

chaotic dynamics is the primary reason for its significance. The settings under which

chaos begins to take place have a significant impact on the type of movement occurring.

It is clear that when two trajectories begin so close to each other, their future divergence

follows an exponential growth pattern over a particular length [116]. This is something

that can be observed immediately. In order to fully comprehend the fundamental variables,

it is necessary to have a comprehensive understanding of chaotic behaviour. This is due

to the fact that chaotic behaviour is inherently unpredictable and impossible to manage

[23]. Moreover, the capability of this phenomena to produce intricate patterns is another

factor that contributes to its relevance. It has been demonstrated through empirical

evidence that the utilisation of quasiperiodic solutions to the swing equation can result

in the generation of spiral patterns, which are frequently observed in natural systems.
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Within the scope of their research work, Chen and Xu [117] investigate the quasiperiodic

solutions of discrete dynamical systems that are characterised by mixed-type functional

equations. An example of the presence of quasiperiodic solutions is provided by the authors

through the application of a fixed-point theorem. In addition to this, they provide instances

of systems that are able to fulfil the conditions that are outlined in their proposition.

A further inquiry was carried out by the authors, which focused on the examination of

quasiperiodic solutions within the context of a fractional differential equation [118]. After

that, they make use of a variational approach to show that quasiperiodic solutions do

exist, and they also give numerical examples to make their results more clear.

In addition, research is conducted to explore the occurrence of quasiperiodic motion,

which is distinguished by two frequencies that are not proportionate, within the context

of a non-autonomous differential equation [119]. For the purpose of determining whether

or not quasiperiodic solutions are present, the researchers employ a methodology that is

founded on the concept of averaging. In addition to that, they provide qualitative and

quantitative visualisations to illustrate the findings of their research. In their study, Li

and Zhang analyse the existence of quasiperiodic solutions for a fractional differential

equation that is not autonomous and has a nonlinear component [120]. In order to verify

the presence of quasiperiodic solutions, the researchers employ a methodology that is

observed on the concept of fixed points.

An investigation has been carried out that explicitly explores quasiperiodic solutions

in a certain category of non-autonomous differential equations that incorporate impulsive

effects [121]. For the purpose of demonstrating the existence of quasiperiodic solutions,

the authors make use of a methodology that is structured around the concepts of

lower and upper solutions theory. Furthermore, in order to make their conclusions more

understandable, they include numerical examples.

The method of averaging is utilised to investigate the existence of quasiperiodicity

in the swing equation when it is influenced by a sinusoidal driving force [122]. In this

chapter, the author demonstrated that the swing equation is capable of displaying

quasiperiodic dynamics throughout a broad spectrum of driving force amplitudes and

frequencies. In addition, the aforementioned author expanded his research to encompass

the influence of damping in a different paper [123]. The author demonstrated that

the application of damping can simultaneously generate new sorts of quasiperiodic
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behaviour while simultaneously reducing the amount of quasiperiodic behaviour that is

observed. A researcher has offered a detailed description of his research on the presence

of quasiperiodicity in the swing equation [9]. As an additional point of interest, the

author investigated a number of interesting applications of the averaging method in the

investigation of nonlinear dynamical systems.

In the context of quasiperiodicity in the swing equation, the term intermittency refers

to the rapid and unpredictable shifts that occur between regular and chaotic patterns that

are observed in the system [124]. It is distinguished by sporadic episodes of chaos that

alternate with periods of regular, quasiperiodic motion, which stands in contrast to the

constant irregularities that are observed in traditional chaotic dynamics [125]. Within the

framework of the swing equation, these sporadic patterns can be experienced as abrupt

transitions between stable quasiperiodic trajectories and chaotic behaviour, emphasising

the system’s susceptibility to specific changes in parameters or beginning circumstances

[126]. Because it can create sudden and unexpected oscillations in the pendulum-like

motion, intermittentness in the swing equation has significant repercussions for power

systems. These repercussions require careful consideration. According to the researchers,

the unforeseen changes that occur during these transitions pose challenges in terms of

maintaining system stability and have the potential to have effects that are perceptible

on the operations of electrical grids [127]. It is possible to gain a valuable understanding

of the underlying processes that regulate the behaviour of the system by doing an

examination of the irregular patterns that are present in the periodic motion of the swing

equation [33]. This knowledge contributes to the development of control techniques and

preventative measures that are more reliable, with the goal of minimising the possibilities

of disruptive repercussions resulting from irregularities in power systems.

During the course of the inquiry into quasiperiodicity in the swing equation, it

was discovered that the appearance of torus structures is indicative of a distinct and

intricate form of dynamic behaviour. A torus is a difficult trajectory that exhibits both

periodic and non-periodic properties in the motion of the system [128]. In this context,

a torus represents a trajectory that is intricate. It is possible for the swing equation

to undergo bifurcations; these bifurcations can lead to the formation of torus shapes

when the equation approaches quasiperiodic states. The forms in question are indicative

of a fragile equilibrium between regular oscillations and chaotic disturbances being
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present. These torus structures provide valuable insights into the complicated interaction

of parameters that bring about patterns of motion that are both stable and intricate

[129]. An investigation of torus structures is essential for gaining an understanding of the

system’s potential to withstand and adapt to a variety of conditions. This is because torus

structures offer a nuanced perspective on the system’s response to shifting conditions.

This information is helpful in the development of sophisticated control systems that

can make use of the favourable aspects of quasiperiodic dynamics while simultaneously

minimising the risks associated with chaotic transitions [130].

When it comes to the field of quasiperiodicity in the swing equation, chaos refers to

the occurrence of behaviour that is erratic and appears to be unexpected in a system

that, under certain conditions, is expected to exhibit motion that is more organised

and periodic [26]. In the swing equation, chaos is characterised by the disturbance

of the anticipated quasiperiodic trajectories, which results in movement that is both

unpredictable and non-repetitive [89]. As an illustration of the system’s susceptibility to

disruptions, the creation of this disorderly behaviour can be linked to relatively minor

changes in the characteristics of the system or the conditions under which it was initially

established. A gripping phenomenon that highlights the inherent complexity of dynamic

systems and demonstrates the delicate interaction between deterministic and chaotic

dynamics is the phenomenon of transitioning to chaos in quasiperiodic systems, such as

the swing equation [131]. This phenomenon is a captivating occurrence that highlights

the inherent complexity of dynamic systems. Gaining a full grasp of the chaotic behaviour

in the quasiperiodic dynamics of the swing equation is of highest significance, particularly

within the field of power systems [132]. It is possible for unpredictable behaviour to lead

to unfavourable results, such as increased vulnerability to disruptions and difficulties in

maintaining system equilibrium [103]. By examining the conditions under which chaos

emerges in the swing equation, one can gain a valuable understanding of the factors that

influence the transition from organised to chaotic movement [133]. For the purpose of

establishing effective control strategies and preventative actions to manage and decrease

the potentially disruptive implications of chaos in power system dynamics, it is essential to

have a thorough understanding of this information. The dependable and secure operation

of the entire power grid is ensured as a result of this [23, 134].
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6.2 Analytical Work

The swing equation is derived from the Law of Rotation, which governs the motion

of rotating systems. Specifically, it is formulated by applying Newton’s second law to

the dynamics of a synchronous generator rotor, as shown in the derivation presented

in Chapter 3. This foundational analysis considers the net accelerating torque as the

difference between the mechanical input torque and the electrical output torque acting

on the rotor.

The analytical framework outlined below builds upon that derivation by further

examining the contributions of both mechanical and electrical torques. The resulting

swing equation, a second order nonlinear differential equation, describes the evolution of

the rotor angle relative to the synchronous reference frame over time. Previous studies

addressing this formulation and its applications include the works of [33, 77, 115, 133],

which have laid the groundwork for exploring the nonlinear dynamics of the swing

equation.

This section extends the initial formulation by considering additional influences

such as damping, external excitation, and nonlinear effects, thereby enabling a more

comprehensive analysis of system stability and resonance phenomena in power systems.

In order to acquire a deeper comprehension of the intricate nature of quasiperiodicity,

it is of the utmost importance to engage in a thorough mathematical investigation

of the swing equation. For the purpose of this all-encompassing research, a variety

of mathematical approaches, including algebraic algorithms, Taylor series expansion,

and substitution, are utilised. Consistently, these methodologies are employed in order

to comprehend the intricacies of the swing equation and uncover the subtle effects of

quasiperiodicity [77, 115, 134].

The purpose of this section is to make use of the mathematical tools that have

been mentioned in order to conduct a thorough investigation of the consequences and

ramifications of quasiperiodic behaviour. Through the strategic application of algebraic

methods, the purpose is to obtain an understanding of the fundamental patterns and

structures that are present in the swing equation. The Taylor expansion is a mathematical

technique that is extremely effective and is used to acquire a methodical and precise

estimation of an equation. This allows for a more in-depth understanding of the dynamics
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of the equation [77, 115].

Furthermore, the strategic application of substitution techniques is introduced into the

analytical framework. This has made it possible to investigate alternate representations

and transformations, which may disclose elements of quasiperiodic occurrences that were

previously hidden. Through the utilisation of mathematical techniques, the objective of

this work is to discover the fundamental mechanisms that govern quasiperiodic behaviour

in the swing equation [134]. This will be accomplished by revealing the intricate link that

exists between variables.

6.3 The Swing Equation Model

One of the most important frameworks for understanding the dynamics of rotor systems

in electrical power equipment, specifically synchronous generators, is provided by the

swing equation model. In its most basic form, the equation is a representation of the

equilibrium that exists between the mechanical inertia and the electrical torque that

are present within the rotor. An explanation of how perturbations in the power grid

or mechanical forces can cause deviations from the synchronous speed is provided by

this equation. These deviations, in turn, can cause oscillations in the rotor angle and

speed. Using the language of mathematics, it is possible to characterise it as a differential

equation of the second order. Additionally, it is applicable to the acceleration of the rotor

angle in relation to the disparity between the mechanical torque and the electrical torque,

which is then divided by the inertia of the system [23]. When it comes to evaluating the

stability and dynamic response of power systems, the usage of this model is absolutely

necessary. This model gives engineers the capacity to build control techniques that are

resilient, hence reducing interruptions and ensuring reliable operation.

The rotor of the machine used by the swing equation, explains the intricate behaviour

of both electrical and mechanical elements of the system. Hence studying the stability

of this machine is vital to comprehend the abrupt alterations to the parameters of the

equation. Stability can be observed through changing the load and inputs of the systems

over time and hence reducing the cascade of chaos within power systems [133]. Examples

of such changes include grid faults and load fluctuations. For the purpose of maintaining
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grid stability and preventing cascading failures on account of disturbances, gaining an

understanding of these processes is absolutely necessary. The swing equation makes it

possible to carry out an accurate analysis of the dynamics of the rotor, which helps to

develop complex control systems.

6.4 Hamilton’s Principle

Hamilton’s principle studies the dynamics of the swing equation system and considering

this for the case of quasiperiodicity, this principle uses Lagrangian multiples to formulate

the equation [135, 136]. It also provides deeper insight into the behaviour of the

variable change within the nonlinear systems [137]. Hence this principle provides a

better understanding of the parameters and chaos theory of the swing equation [138].

Over time, within the quasiperiodic domain governed by Hamilton’s principle, the

swing equation may experience a transition towards chaotic dynamics. Chaos arises when

the system’s response becomes very sensitive to initial conditions, leading to unpredictable

and erratic behaviour. Quasiperiodicity involves a transition to chaos that is marked by

the disturbance of stable periodic orbits, the appearance of bifurcations, and the start

of complex, non-repetitive paths. The system’s vulnerability to disruptions, combined

with the incongruous frequencies present in quasiperiodic environments, results in the

rapid transition towards chaos. Hamilton’s principle, which focuses on minimising action

and determining the trajectory of a system, is a valuable tool for understanding how

quasiperiodicity can lead to chaotic dynamics in the swing equation over time.

Consider equation (3.10) represents the general form of the swing equation, accounting

for damping, mechanical power input, and the electrical power output represented through

the sinusoidal term.

Next, we substitute equations (3.11) and (3.12) into the swing equation above and

expand the resulting expression. This gives:

104



CHAPTER 6. STUDYING THE EFFECTS OF QUASIPERIODICITY ON THE

SWING EQUATION

d2θ

dt2
= −ωRD

2H

dθ

dt
+

ωR

2H
Pm

− ωRVGVB0

2HXG

sin [θ − (θB0 + θB1 cos(Ωt+ ϕθ))]

− ωRVGVB1

2HXG

cos(Ωt+ ϕv) sin [θ − (θB0 + θB1 cos(Ωt+ ϕθ))] (6.1)

Now, simplifying equation (6.1) under the assumption that the quantities θB0, VB0,

ϕθ and θB1 are sufficiently small (perturbative terms), we can reduce the expression to a

more standard form:

d2θ

dt2
= −p

dθ

dt
+ q − r sin θ + f sin(Ωt) (6.2)

where the constants are defined as:

p =
ωRD

2H
, q =

ωR

2H
Pm, r =

ωRVG

2HXG

, f =
ωRVGVB1

2HXG

cos(Ωt+ ϕv) (6.3)

In order to apply Hamilton’s Principle, we first define the Lagrangian L(θ, θ̇, t) which

consists of kinetic and potential energy terms, as well as non-conservative forces (such as

damping) and external periodic excitation:

L(θ, θ̇, t) =
1

2
θ̇2 + q − pθ̇ − cos θ + f sin(Ωt) sin θ (6.4)

We then apply the Euler–Lagrange equation:

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (6.5)

After evaluating the derivatives and simplifying the result, we arrive at the following

non-linear differential equation which governs the motion of the system:

θ̈ − sin θ + f sin(Ωt) cos θ = 0 (6.6)

After plotting equation (6.6) with angle against time for the case of Hamilton’s

Principle, comparing this with Method of Strained Parameters and Floquet Theory for

further analysis within the context of quasiperiodicity is the next step in the process.

Figure 6.1 is a graph that illustrates the gradual decrease in stability that occurs over

the course of time, which ultimately leads to a condition of instability that is characterised
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by quasiperiodicity. Throughout the course of time, the movement of the system becomes

increasingly erratic and unpredictable, which demonstrates the system’s sensitivity to

the quasiperiodicity for all of the approaches that are taken into consideration. Based

on the behaviour that was seen, it appears that the complex interaction between the

system’s inherent dynamics and the forces that are located outside of it could potentially

result in chaotic motion.

Figure 6.1: Simulation of the Swing Equation with the Hamilton’s Principle comparing
with Method of Strained Parameters and Floquet Theory when Ω = π/2 rads−1 [115, 134].
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6.5 Basins of Attractions for the case of

Quasiperiodicity

The phenomenon of quasiperiodicity is of the utmost relevance when it comes to

comprehending the characteristics of stability that are associated with a nonlinear

system. Therefore, in order to get a comprehensive understanding of the system, it is

absolutely necessary to carry out an in-depth investigation of the basins of attraction

that are connected to the core resonance. The utilisation of basins of attraction makes it

possible to distinguish between stable and unstable regions within a system, which in

turn makes it easier to analyse the modifications that have been made to the system in

question [139]. The charts depict the changes that occur in the basins of attraction as a

result of the modifications made to the variables. In the process of generating conclusions

from these graphs, it is of utmost importance to have the boundary conditions taken

into consideration as well [140].

There have been major discoveries made on the stability characteristics of power

systems as a result of research conducted on the basins of attraction of quasiperiodicity. An

investigation has been conducted to examine the influence of parameter variations, which

encompass system damping, excitation levels, and control gains, on the configuration and

amplitude of the basins of attraction [98, 140]. Additionally, the majority of the research

conducted by academics has concentrated on the discovery of critical borders that serve

to differentiate between stable and unstable regions within the state space [99, 141].

6.6 Numerical Analysis

6.6.1 Graphical Representation

Through the use of the fourth-order Runge-Kutta method in Matlab, the equations (3.10),

(3.11), and (3.12) were successfully solved. The primary objective was to investigate the

impact of altering the excitation frequency Ω on the occurrence of quasiperiodicity with

irrational values [77, 115].
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Figure 6.2: Phase portrait, frequency-domain plot and Poincaré map when Ω = 2π rads−1.

Figure 6.3: Phase portrait, frequency-domain plot and Poincaré map when Ω = π rads−1.

Figure 6.4: Phase portrait, frequency-domain plot and Poincaré map when Ω = 2π/3
rads−1.
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Figure 6.5: Phase portrait, frequency-domain plot and Poincaré map when Ω = π/2
rads−1.

Figure 6.6: Phase portrait, frequency-domain plot and Poincaré map when Ω = 2π/8
rads−1.

The swing equation (3.10) was used to examine the system’s response to variations

in excitation frequency, and Figures 6.2 through 6.6 were constructed to visualise these

changes. Each figure includes the corresponding phase portrait, frequency-domain plot,

and Poincaré map. The dynamic effects of changing excitation frequency have also been

documented in previous studies such as [110].

The selected excitation frequency values for this analysis were chosen to investigate

the emergence of quasiperiodic motion and its transition into chaos. In particular, the

values of Ω used in Figures 6.2 to 6.5 were carefully set to lie near incommensurate ratios

with the system’s natural frequency. This encourages the onset of quasiperiodicity, where

the system’s trajectory evolves on a torus in phase space. As depicted in these figures,

the resulting attractors exhibit closed, nested loops indicative of toroidal motion rather

109



CHAPTER 6. STUDYING THE EFFECTS OF QUASIPERIODICITY ON THE

SWING EQUATION

than simple periodic behaviour.

These torus structures suggest that the rotor dynamics of the synchronous generator

are governed by two or more incommensurate frequencies, which is a defining characteristic

of quasiperiodic motion. The excitation frequencies were gradually lowered in a controlled

manner to capture the breakdown of these tori. Figure 6.6 demonstrates this progression,

where the attractor degenerates into a strange attractor, confirming the transition to

chaos. The chaotic attractor is identified at approximately 2π/8 rad · s−1, marking the

endpoint of this route to chaos.

By selecting these specific Ω values, the study aims to illustrate the route to chaos,

in which a system transitions from periodic to quasiperiodic dynamics, and eventually to

chaos, through torus breakdown. Each frequency step was deliberately chosen to highlight

a key phase in this transition, thereby offering insight into the delicate interplay between

excitation frequency and nonlinear system behaviour.

6.6.2 Golden Ratio Number

The golden ratio (1.61803398875...), has captivated scientists and mathematicians due

to its visually appealing qualities and distinctive mathematical importance [142]. Using

the golden ratio as the angular frequency (Ω) in the swing equation makes it possible to

conduct an insightful inquiry into the dynamics of quasiperiodicity. A number that is

irrational is known as the golden ratio. When it is utilised as the driving frequency, it

generates a relationship with other system properties that is not proportional to either

dimension. Because of this, there is a possibility that complex quasiperiodic motion will

occur. It is envisaged that the reaction of the system will exhibit compelling patterns and

frequencies as a result of the introduction of the golden ratio, which will demonstrate

the inherent complexity of quasiperiodic behaviour.

A graphical representation of the impact that the golden ratio has on the swing

equation may be found in Figure 6.7. A perceptive picture of the system’s trajectory as

it evolves over time is provided by the phase portrait. This representation highlights the

transitions that occur in the system’s tilt and angular velocity across time. It is also an

illustration of the torus phenomenon for the situation that is being considered. Poincaré
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maps offer a concise representation of the behaviour of the system by illustrating the

points at which the trajectory interacts with a specific plane through the use of mapping.

Furthermore, frequency domain charts make it easier to investigate the spectrum features

of the system by illuminating prominent frequencies and potential resonance in the

system. The utilisation of the golden ratio in these analyses provides a unique viewpoint

that enables one to observe and appreciate the intricate quasiperiodic patterns that

emerge in the swing equation. This, in turn, allows a fascinating analysis of the dynamic

behaviour of the system.

Figure 6.7: Phase portrait, frequency-domain plot and Poincaré map when Ω =
1.61803398875... rads−1.

6.7 Bifurcation and Lyapunov Exponents

Diagrammatic representation of the bifurcation that is connected with the phenomena

of quasiperiodicity is shown in Figure 6.8. After determining the swing equation for a

particular angular frequency value of Ω = π/2 rads−1, the building procedure involved

doing numerical time integration using the widely recognised fourth order Runge-Kutta

method. This was done in order to construct the structure. The forcing parameter, which

is denoted by the symbol r as shown in equation (3.65), is gradually increased, and the

time integration procedure is subsequently extended as a result of this. According to the

authors, the data that was acquired is then utilised to build a graph that illustrates the

largest amplitude of the oscillatory solution in relation to r as in equation (4.53) [77].
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Figure 6.8: Bifurcation diagram for the case of Quasiperiodicity where Ω = π/2 rads−1.

Figure 6.8 also illustrates the occurrence of the initial period doubling just before to

reaching a value of r that is equal to 1.085 in the case of quasiperiodicity. This is shown

in the figure above. Additionally, it is clear that the first instance of period doubling in

a series of repeated period doublings is observed at around r = 1.94, which ultimately

results in the emergence of chaotic behaviour. This is the result of a chain of period

doublings that occur in succession. The findings of this numerical component indicate

that an increase in the value of parameter r leads to a progressive loss of synchronisation

in the swing equation, particularly in regard to quasiperiodicity. This is demonstrated by

the fact that the synchronisation gradually deteriorates.

To a large extent, the Lyapunov exponent, as depicted in Figure 6.9, exhibits positive

values in the region surrounding the values of r = 1.9. Within the context of this

scenario, two locations that are initially very close to one another and are separated by an

incredibly short distance eventually move further apart from one another over the course
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of time. The utilisation of Lyapunov exponents is what allows for the quantification of

this divergence to be achieved. Additional corroboration of the phenomenon that was

reported earlier is provided by the behaviour that was found in the bifurcation diagram.

To provide a more exact explanation, when the value of r hits a specific threshold, a series

of period doublings takes place, which ultimately leads to chaotic behaviour. Therefore,

it is possible to draw the conclusion that the existence of a chaotic attractor is indicated

by the presence of a positive Lyapunov exponent within the system.

Figure 6.9: Lyapunov exponents as r is varied for quasiperiodicity.
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6.8 Comparison of Routes to Chaos for the case of

Quasiperiodicity and Primary Resonance

In the process of contrasting the disorder in quasiperiodicity with the primary resonance

in the swing equation, it is possible to detect distinct variations in the manner in which

the system reacts to the influence of external factors. The term quasiperiodicity describes

a circumstance in which the frequency of driving is not a clear rational multiple of the

frequency obtained from the natural frequency. In these kinds of situations, the swing

equation exhibits patterns that are both complicated and non-repetitive. It is important

to note that the complexity of quasiperiodic behaviour is highlighted by the fact that the

system is responsive to starting conditions and eventually separates on its courses. On

the other hand, when the external frequency coincides with a natural frequency mode,

the swing equation can undergo period-doubling bifurcations and ultimately move into

chaos. This occurs in primary resonance.
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Figure 6.10: Comparison of chaos in the case of Quasiperiodicity(Ω = 8.27+π/2 rads−1)
vs the Primary Resonance (Ω = 8.27 rads−1).

Figure 6.10 is a graph that provides a visual representation of the temporal progression

of chaos in quasiperiodicity as contrasted to primary resonance in the swing equation.

The primary resonance is believed to be at Ω = 8.27 rads−1, and for the quasiperiodicity,

it is therefore considered to be closer to the primary resonance at Ω = 8.27 + π/2 rads−1.

The graph depicts the irregular trajectories and the early emergence of chaotic behaviour

in the quasiperiodic scenario. It also highlights the enhanced susceptibility of the system

to slight variations in parameters, which is a characteristic of quasiperiodic dynamics.

Compared to the more organised and predictable behaviour associated with primary

resonance, this result reveals a tendency for faster transitions into chaotic states, which

underscores the necessity of comprehending and tracking the quasiperiodic regime. This

is because it demonstrates quicker transitions into chaotic states. When conducting an

analysis of the dynamics of the swing equation, it is important to take into consideration

both of the possibilities, as the graph illustrates. It provides an in-depth analysis of the
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intricate link that exists between the external force and the response of the system.

6.9 Basins of attractions for the case of

Quasiperiodicity

The basins of attraction for the case of quasiperiodicity are depicted in Figure 6.11,

Figure 6.12, Figure 6.13, and Figure 6.14, respectively. The graphics presented here

illustrate the fluctuations that occur in the variables VB1 and θB1, while maintaining

the value of Ω at π/2 rads−1. As the variable is increased, there is a possibility that

the stability of the system will be altered. It is clear that the areas of the system that

are stable are represented by the presence of the colours red and green, while the other

colours are indicative of the regions that are unstable. As the value of the independent

variable increases, the system goes through a stage of degradation that is characterised

by the presence of unstable zones. For this reason, it is very necessary to conduct an

exhaustive investigation into the influence of other components inside the system in order

to guarantee the validity and robustness of the conclusions that were reached in this

particular research.

Figure 6.11: Basins of attractions when VB1 is 0.051 rad and 0.062 rad respectively for
Ω= π/2 rads−1.
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Figure 6.12: Basins of attractions when VB1 is 0.071 rad and 0.151 rad respectively for
Ω= π/2 rads−1.

Figure 6.13: Basins of attractions when θB1 is 0.101 rad and 0.05 rad respectively for Ω=
π/2 rads−1.
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Figure 6.14: Basins of attractions when θB1 is 0.07 rad and 0.181 rad respectively for Ω=
π/2 rads−1.
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6.10 Stability Reduction

Figure 6.15: Comparing the reduction in stability region for Primary Resonance (Ω=8.27
rads−1) and the case of Quasiperiodicity (Ω = 2π/8 rads−1).

The Lyapunov exponents are utilised in the analysis of two different instances of stability

degradation in the swing equation, which is depicted in Figure 6.15. When considering

the first situation, the estimated value of Ω is to be 8.27 rads−1, which is the frequency

that represents the primary resonance. The system is subjected to a driving force that

corresponds to its resonant frequency, which results in a gradual reduction in its amplitude.

In this case, the value of Ω is investigated by utilising the expression 2π
8

rads−1. This

particular expression represents a quasiperiodicity frequency that is distinct from the

natural frequency of the system. Within this context, the machine displays a quasiperiodic

response as a result of the frequency at which the driving force is given.

According to authors, the Lyapunov exponents offer valuable insights into the stability

of a dynamical system, namely the rate at which nearby trajectories either converge
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or diverge over the course of time [46]. Within the framework of the swing equation,

which is a mathematical expression that represents the movement of a system that is

influenced by an external force denoted by VB1, Lyapunov exponents can be utilised to

assess the impact of increasing VB1 on the stability of the system. Through the process

of incrementing VB1, it becomes feasible to compute the Lyapunov exponents at each

and every iteration. It is possible to see a loss in stability when there is a transition from

negative exponents to less negative or even positive exponents. This is an indication of

diminished stability. A steady path is shown by a negative exponent, which indicates

that the perturbations in the system are decreasing with time [23, 143]. Consequently,

if the Lyapunov exponents fall in size or change sign as the value of VB1 increases, this

indicates that there is a significant decline in stability. The fact that this is the case

suggests that the system is more susceptible to the beginning conditions and that its

conduct is less predictable.

As the variable VB1 is changed, the Lyapunov exponents provide a precise measurement

of the stability of the swing equation. This is important since the swing equation is stable.

An observable decline in stability is implied by changes in the exponents, which imply

an increased sensitivity of the system to shocks as VB1 grows.

6.11 Discussion

The fundamental purpose of this segment is to carry out an in-depth analysis of the

dynamic features that are displayed by the swing equation when the control parameters

are changed, with a specific emphasis on the complex phenomena of quasiperiodicity as

the key area of investigation. An examination of the similarities and differences between

analytical methods, particularly perturbation techniques, and numerical simulations is

carried out in the course of this investigation. The goal of this comparison is to determine

whether or not the perturbed solutions and the basins of attraction that correspond to

them are accurate. The purpose is to obtain a full understanding of the quasiperiodic

dynamics and the influence that these dynamics have on the stability of the power system.

This was accomplished through the use of the analytical technique known as Hamilton’s

Principle.

It is necessary to make use of analytical techniques and methodologies in order to
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conduct an analysis of the resonances that are intrinsically present in the swing equation.

Specific insights that are seen on fewer assumptions can be obtained by the utilisation of

these techniques, which involve the use of mathematical modelling and computations. It

is possible, on the other hand, that their efficiency will decrease when they are confronted

with the complexity of actual power networks. By combining numerical and computational

tools into Hamilton’s Principle, it is possible to solve this limitation, which in turn makes

it possible to conduct a more in-depth investigation of how the system reacts to a range

of the many scenarios that may arise. Utilising graphical representations, which are

obtained from numerical calculations, it is possible to produce a visual depiction of how

the swing equation performs under various parameter values and forcing frequencies

for the scenario of quasiperiodicity. This may be accomplished by using the process of

graphical representations. In order to acquire a more profound understanding of the

information that was collected using analytical approaches, these graphical representations

are of great use. Using this all-encompassing methodology, power system engineers are

able to make well-informed decisions, which is necessary for the purpose of ensuring the

grid’s reliable functioning in the face of quasiperiodic dynamics.

When it comes to scenarios that occur in real life, it is of the utmost importance

to have a solid understanding of the predicted reactions of the system, particularly

when quasiperiodicity is present. An illustration that is pertinent is provided by load

fluctuations, which are something that regularly occur in power systems. The information

that is gathered from these events is extremely important for the management of the

power system, as it contributes to the upkeep of the system’s dependability and stability.

Furthermore, the conclusions that were gained from this research have consequences

for the development and evaluation of control systems, namely in the fields of loading

frequency management and autonomous generation control. When it comes to efficiently

lowering the risk of blackouts and the terrible ramifications that they can have, having a

solid understanding of the quasiperiodic dynamics that are involved in the swing equation

is absolutely necessary.
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6.12 Final Remarks

In order to carry out an in-depth investigation into the complex dynamics of the swing

equation within the realm of quasiperiodicity, this extensive analysis utilised a wide range

of analytical methods, such as bifurcation diagrams, Lyapunov exponents, phase portraits,

frequency domain plots, and Poincaré maps. An oncoming shift towards turbulence is

indicated by the introduction of complex behaviours, such as the repetition of periods in

sequences of bifurcations. This shift may result in the formation of operational issues and

may potentially represent hazards to power systems depending on the circumstances.

The results provided light on the relevance of chaos induction, which is caused by the

collapse of quasiperiodic torus structures and the presence of intermittency in the swing

equation. The findings of the research shed light on the significance of chaos induction.

One example of the system’s vulnerability to quasiperiodic transitions is the phenomenon

known as period doubling, which is widely recognised. This occurrence is an example of

the system’s instability. the goal is to investigate such effects in order to better understand

how the behaviour of the system is affected by changes in parameters. The outcomes of

this inquiry will provide insights into the alterations that are observed both before and

after the onset of chaotic behaviour from the perspective of the observers.

It expands upon the recent academic research conducted by the same group of

researchers, further developing their previous findings. It aims to enhance existing

approaches by offering a more profound understanding of the underlying mathematics,

rather than replacing them. This research contributes to the improvement of control

strategies and preventive measures for power systems by enhancing the understanding

of fundamental principles and system stability, with a specific focus on quasiperiodicity.

It aims to mitigate the chaotic effects caused by the phenomena of quasiperiodicity

benefiting power system engineers and researchers.

The findings obtained from this work provide a clear grasp of how the swing

equation behaves in the presence of quasiperiodic conditions, thereby making significant

contributions to the comprehension of system stability. These discoveries could lead to

improvements in the creation of power infrastructures that are more durable and safe,

especially as power systems face more intricate issues throughout expansion.

In the future, scholars might look at how to include quasiperiodic circumstances in
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the framework of swing equations. This may provide important new information about

the long-term stability and flexibility of electricity systems. These initiatives have the

potential to deepen the knowledge of these intricate nonlinear systems and produce

improvements that increase their robustness.
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Chapter 7

Analysing the Swing Equation using

Matlab Simulink

7.1 Introduction

Matlab is a widely recognised software application employed by numerous researchers

for data analysis. In addition, it facilitates the solution of differential equations and

the generation of graphical representations, thereby establishing a strong foundation for

deeper understanding. Among its various components, the most frequently utilised is

Simulink.

Simulink enables the modelling of circuit equations and supports the simulation of

reliable data using user-defined inputs. The electrical and electronics industries have

undergone significant transformation in recent years, in part due to the capability to

simulate a wide range of circuit behaviours.

To accommodate users’ specific design requirements, Simulink offers a block diagram

interface. This allows users to select and utilise various block diagrams available within

its library to construct their desired models for analytical purposes. In the context of this

investigation, the swing equation is modelled using Matlab Simulink to conduct both

analytical and numerical analyses of the results from a practical standpoint .

Although Matlab Simulink was developed relatively recently, it is currently employed

across a wide range of industries and disciplines [144]. It is also used to simulate digital

power systems, enabling the examination of data derived from complex post-processing
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results [145]. Several authors have developed a simulation toolbox based on power systems

that features a user-friendly interface and functionality [146].

Furthermore, a power system model has been proposed by researchers that can be

extended for use in various electrical and mechanical systems to explore the interactions

between them [147]. In the context of electromechanical systems, multiphase models can

also be effectively described and simulated using the Matlab programming environment

[148]. Additionally, Matlab has played a significant role in the modelling and design of

various fault conditions, facilitating the analysis of their impacts in order to mitigate

such adverse effects [149].

The modelling of wireless networks and the investigation of distortion have both

been accomplished with the help of Simulink in the setting of nonlinear dynamics [150].

Researchers now have the opportunity to expand their understanding of a variety of

systems as a result of this event. A case study is used to highlight the practicability of

implementation in the simulation environment in terms of representation and control of

nonlinear processes [151]. The authors also employed the adaptive cruise control model

as the main focus of the study. The models of any arbitrary nonlinear system are also

subjected to an analysis for the purpose of analysing them in Matlab [152]. For the

purpose of gaining an understanding of the principles of transfer functions, research is

carried out on the computer simulation of nonlinear control systems that are specified in

the form of so-called generalised transfer functions [153].

Figure 7.1 presents an example circuit simulation of a synchronous power system,

developed by the authors in [154] using Matlab Simulink. This diagram illustrates a

model of a transmission system supplying a gearbox line over a distance of 300 kilometres.

A shunt inductor is placed at the receiving end to compensate for reactive power. The

system parameters, including a voltage level of 735 kV, are based on realistic high-voltage

transmission system values typically used in long-distance power delivery networks, such

as those in North America or large-scale grid infrastructure projects.

These specific values were adopted from the referenced study to serve as a practical

and illustrative benchmark for modelling power systems in Simulink. The 735 kV voltage

level is commonly used in extra-high voltage (EHV) transmission networks, as it allows

for efficient long-distance power transfer with reduced line losses. Similarly, the 300 km

transmission length represents a realistic scenario where line inductance and capacitance
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significantly influence system dynamics, making it suitable for studying phenomena such

as transient stability and resonance topics central to the swing equation.

This figure was included in the thesis to demonstrate how such a system can be

translated into a Simulink model, and to highlight the components relevant to the swing

equation analysis presented in this research. The diagram helps to visualise key elements

of the power system, including synchronous generators, transmission lines, compensating

devices (e.g., shunt inductors), and loads. Understanding the layout and interactions

of these components is crucial for correctly configuring the simulation model. This

ensures that the swing equation-based model accurately reflects the physical behaviour

of real-world power systems, thereby improving the validity and applicability of the

numerical results obtained in subsequent chapters.

Figure 7.1: Example of a synchronous circuit produced on Matlab Simulink [154].

Simulink offers a flexible platform for modelling intricate dynamical systems, enabling

researchers to precisely simulate the behaviour of power circuits and analyse the real-time

dynamics of the swing equation. Researchers can utilise the swing equation circuit in

Simulink to investigate different situations, modify system parameters, and visually

analyse the power system’s transient response to shocks.

Furthermore, Simulink provides a user-friendly interface that includes a wide range of

pre-built blocks for electrical components. This greatly simplifies the task of developing

and simulating the swing equation circuit model. Scientists may incorporate different
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components of the power system, including generators, transmission lines, and loads, into

their simulations, conducting a thorough examination of system dynamics. Moreover,

Simulink offers sophisticated data visualisation tools that allow researchers to properly

understand simulation results and obtain significant insights into the power system’s

behaviour.

Additionally, it simplifies the process of verifying theoretical models and experimental

results by conducting simulation-based experiments. Researchers can assess the correctness

and dependability of the swing equation model by comparing simulation results with

empirical data or analytical answers. This verification process ensures that the model is

suitable for forecasting the behaviour of real-world power systems. The validation phase

is essential for establishing the legitimacy of the findings and demonstrating the practical

applicability of the swing equation technique in addressing stability and reliability issues

in power circuits.

The circuit simulation developed in Matlab will be used to support and guide the

modelling and analysis conducted in this research. Hence this research should focus on

building a circuit model for the synchronous generator considered for the rotor of the

machine explaining the swing equation to study the dynamical behaviours.

Matlab Simulink is used to verify the swing equation, which has been examined

numerically and analytically in this research. This will strengthen understanding of the

equation with analytical results. This will establish a safe foundation for doing an analysis

of the differential equation model and keeping track of changes in the parameters in

Simulink. In order to discover the results that were anticipated, it is possible to investigate

the intricate behaviour of the system by manipulating the simulated model with very

tiny disruptions. The findings that are provided by the models will indicate the rate at

which the system becomes unstable as well as the precise moment when it takes place.

The swing equation, illustrating the nonlinear behaviour of synchronous generators,

has been extensively analysed in many research papers in recent years. These models are

essential for assessing the stability of intricate synchronous machines within dynamical

systems. Researchers have employed Simulink to develop advanced swing equation models

that eliminate simplifying assumptions, yielding a more accurate representation of system

dynamics [77, 155]. The enhanced models have been utilised to assess the performance of

synchronous generators under diverse conditions, including connections to steady loads
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or infinite buses, providing critical insights into stability and frequency regulation, [156],

[157]. Moreover, Matlab Simulink offers explicit visualisation when various excitation

frequencies are analysed within the systems [158].

The swing equation analyses the dynamic behaviour of the machine’s rotor and

minor external disturbances [77, 155]. Research has demonstrated that adjusting specific

variables in the equation yields distinct behavioural patterns inside the system. Consequently,

the system encounters challenges in reverting to its former state, displaying minimal

changes that ultimately result in chaos within the structure [116]. Examining the

fundamental tenets of chaos theory will provide essential understanding for the management

of the nonlinear system [23].

The swing equation is initially modelled in Matlab Simulink, where primary resonance,

subharmonic resonance, and quasiperiodicity are studied by varying the system’s excitation

frequency. The generated results were subsequently examined and validated against the

analytical and numerical findings from prior works by the same authors [77, 115, 134, 159].

Various choices of Ω were examined, and Poincaré maps were generated to juxtapose the

analytical approaches with the Simulink model, so deriving robust findings for this study.

This chapter seeks to understand the modelling of the swing equation using Simulink

and to validate the analytical methods employed to enhance comprehension for academics

and researchers. Therefore, the aim is to emphasise progress in the examination of the

swing equation through a Matlab model and to concentrate on comprehending this

model to provide novel insights into persistent issues related to the stability of dynamical

systems.

Matlab Simulink models are essential for analysing the complex behaviour of nonlinear

systems. It facilitates the modelling, simulation, and comprehensive analysis of intricate

power systems, [160]. This enables engineers and researchers in the electrical domain to

visualise the system on a digital computer prior to executing the procedures on actual

power grids [161, 162]. Storage facilities utilise Simulink models to analyse processes at

varying speeds and loads, hence ensuring system safety [163]. It facilitates the modelling

and simulation of systems, hence enabling the creation of innovative chaotic systems

exhibiting diverse dynamic behaviours [164].

Numerous studies have explored various uses and approaches within the realm

of Simulink modelling. Simulink models have been employed for detecting defects in
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control systems and simulating power systems by deconstructing complicated components

[165–168]. These models have also been employed in the examination of vehicle gearboxes

and memristors within chaotic systems [169–171].

This work additionally analyses the integrity diagrams for primary resonance, subharmonic

resonance, and the case of quasiperiodicity when the variable is modified. An analytical

method utilising the isolated resonance approximation can be employed to derive integrity

diagrams and ascertain their limits before the onset of period doublings [172, 173].

Stochastic bifurcation limits are established by this method, taking into account various

amplitudes and beginning circumstances [174, 175]. Attractors lose stability in the absence

of chaos when a system enters a bistable state [176, 177].

Primary resonance occurs when the excitation frequency of the system closely matches

its natural frequency, whereas subharmonic resonance transpires when disturbances are

integer multiples of the natural frequencies. Both resonances may lead to system instability

and equipment damage [79, 178]. Techniques like the incremental averaging method

and various scales provide accurate analytical solutions that elucidate the resonant

behaviour of nonlinear systems, including Duffing oscillators with diverse damping

processes [179, 180]. Furthermore, the examination of subharmonic resonance is utilised

for diagnostic imaging with ultrasonic contrast agents [181]. Quasiperiodicity occurs when

the frequency ratio is an irrational number. All three scenarios are analysed using the

Simulink model. Studying all three situations is essential for a comprehensive knowledge

of the dynamics of the swing equation system.

Bifurcation diagrams serve as an effective instrument for analysing integrity diagrams

in dynamics, as noted in numerous research publications. They furnish essential insights

about the dynamical behaviour of the system and its stability [182–184]. Hamiltonian

systems employ bifurcation diagrams to analyse the complex and chaotic behaviour within

this field [185]. Therefore, it is essential to analyse and acquire bifurcation diagrams

for nonlinear systems to comprehend the intricacies of the structure, facilitating a

comprehensive examination for future research.
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7.2 The Swing Equation Model from the Matlab

Simulink

The swing equation, denoted as equation (3.10), elucidates the electrical and mechanical

torque of the machine’s rotor and examines the behaviour of the rotor’s angle and speed

in response to a minor perturbation. Analysing the machine’s acceleration and torques

establishes a robust basis for engineers to address challenges inside the systems [172].

Therefore, modelling this concept to acquire real-time values will be optimal for a detailed

examination of the equation.

The rotor of the machine, as described by the swing equation, elucidates the complex

interactions between the electrical and mechanical components of the system. Therefore,

examining the stability of this machine is essential to understand the sudden changes in

the parameters of the equation. Stability can be assessed by varying the load and inputs

of the systems over time, hence mitigating the cascade of chaos inside power systems,

[180].

The Simulink model depicted in Figure 7.2 was employed to investigate the swing

equation for this investigation.

Figure 7.2: MATLAB Simulink model used to represent the Swing Equation.
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7.3 Integrity Diagrams

Integrity diagrams are essential in nonlinear dynamics since they facilitate the assessment

of the dynamic integrity of systems. These diagrams are essential for assessing the safe

basin and erosion profiles, which are critical instruments for studying dynamic integrity,

[186]. The concept of dynamical integrity has emerged as a crucial factor in structural

design, with extensive study focused on the management of basin erosion processes,

[187]. The notion of global safety, an innovative methodology for assessing systems, has

significantly impacted the study, regulation, and design of mechanical and structural

systems. The integrity diagrams are essential for preserving the stability and performance

of the nonlinear system, [188]. This is demonstrated by studying vibrational systems,

both with and without discontinuities, [189]. Nonlinear robust control techniques require

integrity diagrams to illustrate solutions when several variables are influenced by external

disturbances, [190].

These diagrams employ surrogate models to reduce simulation time, maintain accuracy,

and facilitate integration into circuit simulators for comprehensive setup analysis throughout

the design phase. Adjustable dead bands are examined in networked control systems

to reduce network traffic. The main focus is on stability analysis with robust stability

theory, [191]. Furthermore, nonlinear robust control techniques that depend on integrity

are utilised to tackle unmodeled dynamics and uncertainties in multivariable systems,

hence ensuring both robustness and feasibility, [192].

7.4 Results from the Simulink Model

7.4.1 Primary Resonance

The results for primary resonance was obtained for the Simulink model. Figure 7.3,

Figure 7.4, Figure 7.5, Figure 7.6 and Figure 7.7 show time series, phase portraits and

Poincaré maps that were plotted and compared to the analytical results obtained from

the previous research work, [77]. The produced figures from Matlab Simulink show similar

behaviour to the analytical work hence providing a strong validation to this study.
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Figure 7.3: Time series, Phase portrait and Poincaré map from Simulink when Ω = 8.61
rads−1.

Figure 7.4: Time series, Phase portrait and Poincaré map from Simulink when Ω = 8.43
rads−1.

Figure 7.5: Time series, Phase portrait and Poincaré map from Simulink when Ω = 8.282
rads−1.
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Figure 7.6: Time series, Phase portrait and Poincaré map from Simulink when Ω = 8.275
rads−1.

Figure 7.7: Time series and Phase portrait from Simulink when Ω = 8.2601 rads−1.

7.4.2 Subharmonic Resonance

Similarly, Figure 7.8, Figure 7.9, Figure 7.10, Figure 7.11 and Figure 7.12 were obtained

for subharmonic resonance from the Simulink model. Results obtained for subharmonic

resonance were compared to the analytical findings from previous research [115]. The

graphs show similar behaviour to the analytical work, hence providing strong confirmation

for this study [115, 134].

Subharmonic resonance is when the excitation frequency is twice the natural frequency

of the system. This results in the occurrence of low-frequency oscillations and the

possibility of equipment damage [115, 134]. Studies have demonstrated that by employing

Melnikov methods, chaos in the pendulum equation may be mitigated during ultra-subharmonic

resonance. This allows for the manipulation of chaos patterns, enabling them to be

regulated into period-n orbits by making precise adjustments to certain parameters, [193].
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The Ω was reduced and it was observed that the system was losing its stability and

entering into chaos.

Figure 7.8: Time series, Phase portrait and Poincaré map from Simulink when Ω = 26.01
rads−1.

Figure 7.9: Time series, Phase portrait and Poincaré map from Simulink when Ω =
21.042 rads−1.

134



CHAPTER 7. ANALYSING THE SWING EQUATION USING MATLAB

SIMULINK

Figure 7.10: Time series, Phase portrait and Poincaré map from Simulink when Ω =
19.4162 rads−1.

Figure 7.11: Time series, Phase portrait and Poincaré map from Simulink when Ω =
19.375 rads−1.

Figure 7.12: Time series and Phase portrait from Simulink when Ω = 19.37251 rads−1.
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7.4.3 Quasiperiodicity

Considering quasiperiodicity where the Ω value is considered to be irrational values,

figures similar to the analytical work done previously, [159], were produced and compared.

Figure 7.13, Figure 7.14, Figure 7.15, Figure 7.16 and Figure 7.17 show the behaviour of

the nonlinear system as Ω is reduced exemplifying the significance of the Simulink model.

Figure 7.13: Time series, Phase portrait and Poincaré map from Simulink when Ω = 2π
rads−1.

Figure 7.14: Time series, Phase portrait and Poincaré map from Simulink when Ω = π
rads−1.
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Figure 7.15: Time series, Phase portrait and Poincaré map from Simulink when Ω =
2π/3 rads−1.

Figure 7.16: Time series, Phase portrait and Poincaré map from Simulink when Ω = π/2
rads−1.

Figure 7.17: Time series, Phase portrait and Poincaré map from Simulink when Ω =
2π/8 rads−1.
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7.4.4 Comparing Analytical Method with the Simulink model

Figures 7.18, 7.19, and 7.20 were generated to juxtapose the analytical procedure with

the Simulink model for further validation of the results.

For the primary resonance depicted in Figure 7.18, a Ω value of 8.2601 rads−1, which

is approximately around the system’s natural frequency, is utilised, and the Poincaré

maps derived from both the analytical analysis and the Simulink model are presented.

Both distinctly exhibit analogous patterns in the system’s behaviour.

Figure 7.19 illustrates subharmonic resonance at Ω = 19.37251 rads−1. The Poincaré

maps derived from both the analytical and simulated models exhibit comparable behaviours,

so confirming the Simulink model.

Figure 7.20 was generated under the scenario of quasiperiodicity, with Ω set to

π/8.5 rads−1. This also offers a robust comparison between the analytically derived

Poincaré map and the Poincaré map simulated in Simulink.

Figure 7.18: Poincaré maps from analytical method and Simulink model respectively for
Primary Resonance when Ω = 8.2601 rads−1.
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Figure 7.19: Poincaré maps from analytical method and Simulink model respectively for
Subharmonic Resonance when Ω = 19.37251 rads−1.

Figure 7.20: Poincaré maps from analytical method and Simulink model respectively for
Quaisperiodicity when Ω = π/8.5 rads−1.

7.4.5 Results for the Integrity Diagrams

Bifurcation diagrams are crucial instruments for understanding nonlinear dynamical

systems, as they visually represent the system’s behaviour in response to systematic

alterations in the parameter Ω. These diagrams delineate the precise instances at which the

system’s solutions experience qualitative transformations, transitioning from stable fixed

points to either periodic or chaotic behaviour. This can be utilised to pinpoint important

moments for deriving relevant parameter values and corresponding state variables. These
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inputs are essential for integrity diagrams that depict the dynamic behaviours and

resilience of the system within the parameter space. This method also provides a more

efficient computational technique for studying system behaviour, [187, 189]. Integrity

diagrams delineate the safe zones for the systems, and it is imperative to remain beneath

the integrity curve to prevent running at r values that surpass that of the cliff face.

Integrity diagrams are derived by analysing the stability of different behaviours when

system parameters vary, utilising bifurcation diagrams. To illustrate the period-doubling

precursor to chaos, the first stage entails constructing a bifurcation diagram by varying

a control parameter Ω and recording the system’s stable or periodic solutions. The

identification of pivotal places where period-doubling bifurcations transpire, leading to

the onset of chaos, has been achieved. The regions representing stable equilibrium points,

periodic paths, and chaotic behaviour are delineated. A study is performed to ascertain

how the borders between these behaviours shift in response to perturbations. Before and

after disturbances, the integrity zones, which indicate the parameter ranges within which

the system sustains a particular stable state, are calculated. The percentage reduction is

calculated by comparing the area of these locations prior to and following the disruption.
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Figure 7.21: Integrity Diagrams for Primary Resonance when Ω = 8.27 rads−1, 8.43
rads−1 and 8.61 rads−1.

Figure 7.21 depicts the changes happening within the primary resonance. As the Ω is

increased the erosion takes place quicker.
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Figure 7.22: Integrity Diagrams for Subharmonic Resonance when Ω = 19.4162 rads−1,
21.042 rads−1 and 26.01 rads−1.

142



CHAPTER 7. ANALYSING THE SWING EQUATION USING MATLAB

SIMULINK

Figure 7.23: Integrity Diagrams for Quasiperiodicity Ω = π/8 rads−1, π/2 rads−1 and π
rads−1.

Figures 7.22 and 7.23 illustrate the integrity diagrams for subharmonic resonance and

quasiperiodicity, respectively. As the r value increases with the augmentation of Ω, the

system’s behaviour changes.

The percentage reduction is computed for the integrity diagrams pertaining to

primary resonance and subsequently evaluated. When Ω equals 8.27 rads−1, the reduction

percentage is 24.56%; however, when Ω increases, the reduction percentage rises to

38.17%. 8.6 rads−1 illustrates that the stable zone diminishes as the parameter is altered.

Consequently, it has been established that the system’s integrity is markedly undermined

as the parameter is elevated. Subharmonic resonance occurs when Ω equals 19.4162 rads−1,

resulting in an approximate 44.13% reduction in stable behaviour. At Ω = 26.01 rads−1,

the increase in bias leads to a decrease of around 51.28%, signifying a substantial decline

in the system’s consistent performance.
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In the context of quasiperiodicity, when Ω transitions from π/8 rads−1 to π/2 rads−1

and subsequently to π rads−1, the stable region contracts. The stable region diminishes to

39.01% when Ω = π/8 rads−1, but swiftly escalates to 67.23% when Ω rises to π rads−1.

7.5 Discussion

The primary aim of this section is to meticulously examine the dynamic behaviour of the

swing equation while varying factors inside the system. This work compares analytical

methodologies and numerical simulations to yield robust results for the investigation.

This chapter seeks to thoroughly understand the dynamics of the swing equation and its

impact on power system stability through the utilisation of the Simulink tool.

Analytical instruments are crucial for assessing the resonances in the swing equation.

By employing mathematical modelling and computations, these methods provide accurate

insights grounded in minimal assumptions. The simulated model offers graphical depictions

of the swing equation’s behaviour under main resonance, subharmonic resonance, and

quasiperiodicity as variables are altered. These graphics validate the analytical results

achieved. This technology enables engineers to make informed decisions on the reliability

of electric grids.

Load fluctuations frequently arise in power systems characterised by nonlinear

dynamics. The swing equation executed in Matlab provides clarity on the previously

obtained analytical and numerical results. The information obtained from these scenarios

is essential for the management of the electrical grid, contributing to the maintenance of

system stability and reliability. Enhancing comprehension of the dynamics in the swing

equation can facilitate the mitigation of power outages in electrical systems and assist in

circumventing unavoidable situations.

This thorough investigation of the swing equation and associated Matlab Simulink

model compares and validates the findings from the authors’ prior research. The time

series, phase portraits, and Poincaré maps derived from the Simulink model illustrate

the dynamic behaviour of the power system as Ω is modified. Bifurcation diagrams were

meticulously analysed to derive integrity diagrams and enhance the comprehension of

the swing equation and its dynamics. The outcomes obtained from the Simulink model

for primary resonance, subharmonic resonance, and quasiperiodicity display similar
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behavioural patterns to the previous analytical research performed by the same authors.

This chapter also extends the current research conducted by the same researchers,

enhancing their previous findings. The idea is to enhance existing approaches by offering a

more profound understanding of the underlying mathematics, rather than replacing them.

This research improves comprehension of fundamental concepts and system stability

in power systems, with a specific emphasis on the Simulink model. It enhances control

methodologies and preventive strategies for power systems. The purpose is to mitigate

the disruptive effects arising from measures beneficial to power system engineers and

researchers.

7.6 Final Remarks

The results also reveal significant insights into the dynamic behaviour of the swing

equation. This can enhance power systems that are sophisticated and characterised by

detailed details inside the electronics sector.

In the future, researchers may investigate strategies to improve these conditions

concerning swing equations in power networks. This may produce substantial new

insights into the lasting sustainability and adaptation of electricity networks. They can

further our understanding of intricate nonlinear systems and produce advancements that

bolster robustness.
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Chapter 8

Studying the Phenomena of

Intermittency in the Swing Equation

8.1 Introduction

The swing equation, a second-order differential equation, is crucial for comprehending

the dynamic behaviour in power systems [33]. It is extensively utilised in engineering

applications, particularly within the electrical engineering domain, to simulate the

stability of synchronous machines [77, 89]. Despite substantial research on primary and

subharmonic resonances and quasiperiodicity, the phenomenon of intermittency remains

underexplored in the swing equation. Sudden variations or eruptions within a periodic

pattern in a nonlinear system are referred to as intermittency [194]. This study seeks to

address this gap by carefully examining the occurrence of intermittency and its role in

the transition of the system from stable to chaotic regions [195]. Various classifications

of this phenomena, including Type I, Type II, and Type III, have been recognised in

experimental contexts, indicating its practical significance [196, 197]. Type I intermittency

is frequently linked to saddle-node bifurcation, while Type II is associated with subcritical

Hopf bifurcation.

Recent research in nonlinear systems indicates that intermittency may act as a crucial

precursor to chaos, consequently influencing the stability of these systems. Intermittency

has been found in fluid dynamics, thermoacoustic oscillations, and electrical circuits,

where minor parameter changes result in abrupt disruptions [198]. In the realm of power
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systems, comprehending intermittency is essential due to the rising incorporation of

renewable energy sources, which contribute to diminished inertia and heightened system

variability [125]. The observed phenomenon of intermittency may significantly indicate

unstable power networks, rendering its research within the swing equation framework

essential [199]. Notwithstanding the significance of this phenomenon, many studies on

nonlinear power systems neglect intermittency as a distinct pathway to chaos. Previous

work has examined period-doubling, quasiperiodicity, and crises; however, few studies

have explored intermittency in relation to variable parameters such as inertia and voltage

of the machine.

The primary aim of this research is to investigate the influence of intermittency on

the swing equation and its implications for the stability of power systems. The study

seeks to explore the phenomenon of intermittency when parameters fluctuate, analyse

the shift from periodic to chaotic domains, and pinpoint important thresholds for the

onset of intermittency. The primary emphasis is on the impact of inertia and voltage of

the machine to analyse the stability of the swing equation.

This chapter utilises analytical and numerical methodologies to accomplish its aims

and objectives. The fourth-order Runge-Kutta method is employed to solve the swing

equation in Matlab. Bifurcation diagrams are utilised to examine stability transitions,

whilst heat maps provide insights into the evolution of system dynamics. Lyapunov

exponents are computed to confirm the existence of chaos and intermittency. Poincaré

maps are utilised to analyse the paths of systems. This segment offers an in-depth analysis

of the system’s behaviour in response to variations in machine inertia and voltage.

The results have substantial implications for the development of enhanced stability

and control solutions, particularly in power circuits experiencing abrupt fluctuations.

Addressing intermittent behaviour at an early stage can avert detrimental effects, hence

maintaining a dependable nonlinear power system.

The stability of nonlinear power systems is affected by various events, including

bifurcations, chaos, and intermittency. Numerous studies have investigated the stability

of these systems employing analytical and numerical methods, including bifurcation

diagrams, Lyapunov exponents, and phase space analysis [33, 43, 115, 134].

Bifurcation theory is crucial for comprehending the transitions of nonlinear systems

between stable and unstable states [200]. Period-doubling bifurcation is a recognised

147



CHAPTER 8. STUDYING THE PHENOMENA OF INTERMITTENCY IN THE

SWING EQUATION

pathway to chaos, particularly evident in power systems and electrical circuits [33, 89].

Bifurcation diagrams illustrate changes by graphing system states against a control

parameter, thereby highlighting zones of stability and intermittency [201].

The Lyapunov exponent is a crucial metric of chaotic behaviour, quantifying the

proximity of trajectories inside a system. A positive Lyapunov exponent signifies chaotic

motion, whereas a negative exponent denotes stability [115, 134]. This technique has been

extensively utilised to examine stability and dynamical behaviour in nonlinear systems.

The stability of the swing equation can be analysed by Lyapunov exponents, particularly in

relation to intermittent events. Resolving the swing equation necessitates precise numerical

integration methods. The fourth-order Runge-Kutta method is extensively employed

to solve non-linear differential equations, offering excellent precision in computational

systems [33, 89]. Poincaré maps provide a geometric representation of periodic and chaotic

attractors, facilitating the visualisation of intermittent regions [134, 202]. An alternative

pathway to quasiperiodicity arises when the system possesses irrational frequency values,

resulting in irregular transitions [159].

In contrast to the gradual transitions seen in period-doubling, intermittency is

marked by abrupt surges of instability inside a periodic system [194]. Intermittency

is seen in fluid dynamics, thermoacoustic oscillations [196], and combustion instability

[199]. Research indicates that intermittency may commence when essential system

characteristics, including inertia, damping, and voltage, exceed stability limits [203, 204].

Three categories of intermittencies exist. Type I intermittency occurs when system

trajectories linger at an unstable fixed point prior to abrupt bursts [197]. Type II

intermittency is frequently encountered in electrical and mechanical systems [196]. Type

III intermittency pertains to quasiperiodicity and arises from non-uniform reinjection in

probability densities [198].

Research has demonstrated that the stability of the swing equation may be examined

through modelling in Matlab Simulink. It facilitates improved visualisation of the system

and offers a thorough comprehension of its dynamic functioning [205].

The swing equation, examined in this research, is a crucial element in the understanding

of power system dynamics [13]. It has characteristics akin to those of other power systems;

nonetheless, a thorough investigation is necessary to attain a more profound understanding

of the concepts. The generalised form of the swing equation has been found to enhance the
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understanding of transient stability in power-electronic power systems [206]. In reaction

to minimal disturbances, the rotor of the machine will demonstrate motion relative to

the air gap, rotating in synchrony. Subsequently, a relative motion is initiated, allowing

the swing equation to be employed for characterising and simulating this relative motion

[15, 16].

8.2 Analytical Work

Initially the equilibrium points are found. At equilibrium, the time derivatives of θ

vanishes.

Begin the analytical realm by considering equilibrium conditions where the system is

at rest, that is, no change in rotor angle over time:

dθ

dt
= 0,

d2θ

dt2
= 0 (8.1)

Substituting these conditions into the swing equation yields:

0 = Pm − VGVB

XG

sin(θ0 − θB) (8.2)

Rearranging the above, the mechanical power input is found at equilibrium is:

Pm =
VGVB

XG

sin(θ0 − θB) (8.3)

where θ0 is the equilibrium rotor angle.

To linearise the swing equation, a small perturbation is introduced:

δ = θ − θ0 (8.4)

This variable δ represents small deviations from the equilibrium. Expanding the

sinusoidal term sin(θ − θB) using a first-order Taylor series about θ0 gives:

sin(θ − θB) ≈ sin(θ0 − θB) + (θ − θ0) cos(θ0 − θB) (8.5)

Recalling the equation (8.3), substituting this back into the original swing equation,

replacing θ with θ0 + δ, to obtain:
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2H

ωR

d2δ

dt2
+D

dδ

dt
= −VGVB

XG

cos(θ0 − θB)δ (8.6)

Rearranging the terms, the linearised swing equation is thus:

d2δ

dt2
+

D

2H

dδ

dt
+

VGVB

2HXG

cos(θ0 − θB)δ = 0 (8.7)

This is a linear second-order differential equation of the standard form:

δ̈ + αδ̇ + βδ = 0 (8.8)

with parameters:

α =
D

2H
, β =

VGVB

2HXG

cos(θ0 − θB) (8.9)

To analyse stability, the characteristic equation is derived of the system:

λ2 + αλ+ β = 0 (8.10)

Solving this quadratic equation for λ using the quadratic formula:

λ =
−α±

√
α2 − 4β

2
(8.11)

The nature of the eigenvalues λ determines the system’s stability:

• Stable: When both roots have negative real parts (Re(λ) < 0), the system returns

to equilibrium after a disturbance. This condition holds when:

α2 − 4β > 0, and α > 0 (8.12)

• Marginally stable: When at least one root is zero (λ = 0), the system exhibits

quasiperiodic motion, i.e., remains in bounded oscillation.

• Unstable: If any root has a positive real part (Re(λ) > 0), small perturbations

grow exponentially, potentially leading to bifurcation or chaotic dynamics. This

happens if:

α2 − 4β < 0 or α < 0 (8.13)
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8.3 Lyapunov Exponent Analysis

The Lyapunov exponent λ quantifies the system’s sensitivity to initial conditions by

measuring the average exponential rate of divergence of nearby trajectories in phase

space [26, 207, 208]. It is computed as:

λ = lim
t→∞

1

t
ln

∣∣∣∣ δθ(t)δθ(0)

∣∣∣∣
where δθ(t) represents the perturbation in the rotor angle over time.

The Lyapunov exponent characterises different dynamical behaviors as stated below:

Stable periodic motion: λ < 0, indicating that small disturbances decay, and the

system returns to its steady-state region [33, 195].

Intermittency: λ fluctuates between negative and positive values with sudden bursts,

reflecting a system that alternates between stability and chaos [196].

Chaos: λ > 0, signifying exponential divergence of trajectories, leading to unpredictable

behavior and unstable regions [197].

It is found that the system transitions from periodic motion to chaos through

intermittent bursts when:

λ ≈ 0,
dλ

dr
> 0 at r = rc.

where rc represents the critical value of the bifurcation parameter r at which the

system shifts from stability to chaos. This transition is confirmed through the computed

Lyapunov exponents, which align with the bifurcation diagrams and Poincaré maps.

8.4 Bifurcation Diagrams

The bifurcation diagrams are generated by incrementally increasing the forcing parameter

r, while continuing the time integration of the system at each step [33, 77, 115]. For each

value of r, the maximum amplitude of the oscillatory solution is computed and plotted

against r. This process reveals how the system’s behavior evolves as the forcing parameter

is varied, showing transitions between periodic, chaotic states and even intermittency.

The r is considered as mentioned in equation (3.65).
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The swing equation (3.10) was solved in Matlab using the fourth-order Runge-Kutta

method for numerical accuracy. The inertia and voltage of the machine variables were

then altered separately to observe the minute changes that occur within the nonlinear

system. Primary and subharmonic resonances are in focus of this research to analyse the

intermittent behaviour.

Initially, bifurcation diagrams were obtained for primary and subharmonic resonance

of the swing equation. This is then validated with heat maps and Lyapunov exponents.

Then this study discusses the changes observed in the system when inertia and voltage of

the machine are altered separately. Poincaré maps were then obtained for the time series

to compare the results and intermittency was seen when a slight change is made to the

nonlinear system. This shows that a small disturbance can lead to a complex behaviour

wihtin the system.

Intermittency is considered as a route to chaos. The swing equation also exhibits

intermittency when variables are altered. This section will provide a strong foundation

for researchers to focus on this topic in nonlinear systems. Previous research by the

same authors [77, 115, 134, 203, 204] studied the primary, subharmonic resonances, and

quasiperiodicity in the swing equation. This is a continuation to those research and will

give a wider knowledge for the case of intermittency.

8.5 Graphical Representation

To investigate the intermittent behaviour, numerical simulations were conducted using

fourth-order Runge Kutta method. This method was chosen due to its accuracy in solving

second order differential equations. The testing procedure involved selecting parameters

such as inertia and voltage of machine and incrementing slightly to observe any sudden

bursts within a periodic region. Bifurcation diagrams were plotted and variation of the

variable r allowed to identify stability lost.

To ensure validity and reliability different conditions were considered. The findings

were cross-validated using bifurcation diagrams, Lyapunov exponents and heat maps.

These figures provided insights into the stability regions and confirmed the presence of

intermittency. There were limitations in this research method, including computational
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complexity during numerical simulations.

8.5.1 Analysing Intermittency around Primary Resonance

Initially, the bifurcation diagram related to Ω = 8.3 rads−1, which is a value closer to

the primary resonance Ω = 8.27 rads−1 is obtained for analysis as shown in Figure 8.1.

At around r = 0.97, period doubling bifurcation occurs showing a stable period 2 orbit.

Approximately when r = 2.235, another period doubling bifurcation occurs depicting

a period 4 orbit, which then leads to a period 8 orbit and so on. This happens for 2n

where n takes large values. This then leads to an aperiodic motion eventually cascading

to an unstable system [209–211].

At around r = 2.43, all periodic orbits would have occurred by then and furthermore

that when r = 3.03, there are periodic orbits of all periods and all of them are unstable.
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Figure 8.1: Bifurcation diagram for Ω = 8.3 rads−1.

The following heatmap, Figure 8.2, shows the progression of the system into an

unstable region. The output heatmap represents the dynamic behaviour of the system

over a range of r values and iterations n [212]. Each pixel’s color corresponds to the

2π value of xn, which highlights periodicity and chaos distinctly. Periodic behaviour

appears as horizontal bands of uniform color, where the system settles into repeating

patterns. Chaotic regions are characterised by irregular, scattered, and mixed color

patterns, indicating unpredictable behavior. The marked region at r = 2.43 demonstrates

intermittency, where the system alternates between chaotic and periodic dynamics.

Above r = 3.03, the heatmap predominantly shows chaotic behavior, represented by

noisy, non-uniform patterns.
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Figure 8.2: Heatmap depicting the dynamical behaviour closer to Primary Resonance.

The following figure, Figure 8.3, shows the corresponding Lyapunov exponents for

the corresponding bifurcation diagram. Just below the point of tangency, Lyapunov

exponent is positive. This shows that the dynamics just below the tangent bifurcation

is actually chaotic. Once this tangency is obtained, there is a bifurcation where the

Lyapunov exponent becomes zero. Then it can be seen that the exponent values become

negative, and then gradually goes into positive exponents. This validates the results

obtained from the bifurcation diagram and the heat map.

Research also found the importance of Lyapunov Exponents in validating the detailed

investigation of bifurcation diagrams [207]. Hence, this plays a vital role in studying the

intricate dynamic behaviour of nonlinear systems.
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Figure 8.3: Lyapunov Exponents at Ω = 8.3 rads−1.

The results obtained for intermittency around the primary resonance clearly illustrated

the presence of intermittent dynamics in the system. The bifurcation diagram revealed a

classical route to chaos through period-doubling bifurcations, a hallmark of nonlinear

dynamical systems. Notably, at the critical parameter value of r = 2.43, the diagram

exhibited intermittent windows, regions where the system oscillated irregularly between

phases of regular periodic motion and bursts of chaotic behaviour. This intermittent

transition indicates a temporary and unpredictable loss of stability, which is a defining

characteristic of type-I intermittency commonly observed near the onset of chaos.

This finding was further validated by the corresponding heat map, which visually

confirmed the existence of an area at r = 2.43 where the system’s periodic behaviour

unpredictably shifted to chaotic dynamics. The heat map provided a colour-coded

depiction of the system’s response, with transitions marked by distinct variations in

intensity and structure. Additionally, the Lyapunov exponent analysis reinforced this
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interpretation: at r = 2.43, the exponents fluctuated between positive and negative values,

reflecting alternating regimes of divergence and convergence in phase space. This variation

is a quantitative indicator of intermittent behaviour, affirming the non-uniform stability

of the system. Together, these results demonstrate that the system undergoes a complex

transition to chaos characterised by intermittency, and highlight the importance of using

multiple analytical tools to detect and interpret such subtle dynamical phenomena.

8.5.2 Analysing Intermittency around the Subharmonic

Resonance

The subharmonic resonance for the swing equation in this study occurs at an excitation

frequency of Ω = 19.41 rad s−1. To investigate the system’s behaviour near this resonance,

a bifurcation diagram was generated at Ω = 19.5 rad s−1, a value chosen to lie in close

proximity to the subharmonic resonance frequency. As illustrated in Figure 8.4, the

diagram reveals a rich variety of nonlinear dynamics as the parameter r is varied. At

approximately r = 0.965, the system undergoes a period-doubling bifurcation, resulting

in the emergence of a stable period-2 orbit. This is a classic indicator of a route to

chaos through successive period-doublings. As r increases further to around r = 2.36, a

second period-doubling occurs, giving rise to a period-4 orbit, further demonstrating the

system’s progression toward chaotic dynamics.

Following these transitions, the system continues to exhibit increasingly complex

behaviour. By approximately r = 2.685, all lower-order periodic orbits appear to have

taken place, and the system enters a fully chaotic regime. This is characterised by irregular,

aperiodic oscillations and sensitive dependence on initial conditions. As r is increased

beyond this point, specifically around r = 2.9, the system becomes unstable, indicating a

breakdown of the previously observed attractor structure. The loss of bounded oscillatory

behaviour suggests that the swing equation system has exceeded its stability limits,

underscoring the significance of parameter tuning and the sensitivity of nonlinear systems

near resonance conditions.
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Figure 8.4: Bifurcation diagram at Ω = 19.5 rads−1.

The heatmap presented in Figure 8.5 illustrates the dynamic behaviour of the system

under subharmonic resonance conditions. This visual representation provides a clear

depiction of how the system transitions through different regimes as the control parameter

r is varied. The marked region around r = 2.68 highlights the presence of intermittency,

a transitional behaviour where the system alternates unpredictably between phases of

periodic and chaotic motion. This intermittent window is consistent with the route

to chaos identified in the corresponding bifurcation diagram and is characterised by

fluctuations in system stability.

Beyond r = 2.9, the heatmap reveals a fully chaotic regime, indicated by the irregular

and high-intensity patterns typical of sensitive, aperiodic dynamics. The colour gradient

in this region intensifies, reflecting the complex and unstable nature of the system’s

response. These observations reinforce the significance of the intermittency threshold

at r = 2.68, which serves as a precursor to the complete breakdown of regular motion.
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Overall, the heatmap provides strong visual confirmation of the system’s transition to

chaos and highlights the critical regions in parameter space where control strategies may

be most effective.

Figure 8.5: Heatmap depicting the dynamical behaviour closer to Subharmonic Resonance.

Figure 8.6 shows the Lyapunov exponents corresponding to the bifurcation diagram

for subharmonic resonance. This figure serves to validate the results obtained from both

the bifurcation diagram and the heatmap for this case. The Lyapunov exponent becomes

positive in regions where chaotic behaviour is observed, particularly beyond r = 2.68,

confirming the onset of instability. In the intermittent region, the exponent fluctuates

near zero, which is characteristic of transitions between periodic and chaotic dynamics.

These findings reinforce the diagnostic power of Lyapunov analysis in detecting chaos

and verifying the system’s nonlinear response near subharmonic resonance.
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Figure 8.6: Lyapunov Exponents at Ω = 19.5 rads−1.

8.5.3 Analysing Intermittency around the Quasiperiodicity

The bifurcation diagram associated with quasiperiodicity at an excitation frequency of

Ω = π
2.5

rad s−1 was obtained using Matlab for detailed nonlinear analysis, as illustrated

in Figure 8.7. This diagram captures the complex dynamic transitions of the system under

quasiperiodic excitation and provides valuable insight into the emergence of intermittent

and chaotic behaviour. As the system parameter r is varied, several distinct regions of

intermittency can be identified, reflecting a gradual and irregular transition between

ordered and chaotic states.

At approximately r = 2.24, the first clear instance of intermittency becomes evident.

Here, the system exhibits alternating phases of regular periodic motion interrupted by

unpredictable, short bursts of chaotic activity. This behaviour is indicative of type-I

intermittency and marks the system’s initial departure from steady-state oscillations. A
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second intermittent window is observed around r = 2.5, where a similar switching between

stable and unstable dynamics is present. Most notably, at r = 3.701, the system undergoes

a sudden and pronounced burst of intermittent behaviour, suggesting a critical threshold

beyond which chaos becomes dominant. These successive occurrences of intermittency

highlight the sensitivity of the system under quasiperiodic forcing and underscore the

importance of precise parameter control to maintain stable operation.

Figure 8.7: Bifurcation diagram for Quasiperiodicity at Ω = π/2.5 rads−1.

The following heatmap, Figure 8.8, shows the system for quasiperiodicity. The marked

regions at r = 2.24, 2.5, 3.701 depict intermittencies, where the system alternates between

chaotic and periodic dynamics.
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Figure 8.8: Heatmap depicting the dynamical behaviour for Quasiperiodicity.

Figure 8.9 shows the Lyapunov exponents for the corresponding bifurcation diagram

in the case of quasiperiodicity. This validates the results obtained from the bifurcation

diagram and the heatmap for this case. The regions where the Lyapunov exponent crosses

from negative to positive values align with the onset of chaotic behaviour seen in the

bifurcation diagram. Near the intermittent windows at r = 2.24, r = 2.5, and r = 3.701,

the exponents fluctuate close to zero, confirming transitions between order and chaos.

These fluctuations are consistent with quasiperiodic routes to chaos and further support

the presence of intermittent dynamics. The use of Lyapunov analysis thus provides a

quantitative measure reinforcing the visual observations from other diagnostic tools.
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Figure 8.9: Lyapunov Exponents for Quasiperiodicity at Ω = π/2.5 rads−1.

8.6 Effects of altering Inertia in the Swing Equation

The following results were obtained when the system inertia was varied and exhibited

intermittency in the swing equation. This variation in inertia significantly influenced the

dynamic response of the system, leading to observable changes in oscillatory behaviour

and stability margins. The presence of intermittent inertia introduces complexity in the

modelling process, making it essential to capture transient phenomena accurately. These

findings highlight the importance of incorporating realistic, time-varying parameters

when analysing power system dynamics using the swing equation.
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Figure 8.10: Time series and Poincaré map for the case of intermittency when Inertia is
1.81 kgm2.

Figure 8.11: Time series and Poincaré map for the case of intermittency when Inertia is
1.75 kgm2.
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Figure 8.12: Time series and Poincaré map for the case of intermittency when Inertia is
1.7 kgm2

The figures above Figures 8.10, 8.11, and 8.12 illustrate the time series behaviour of

the system as the variable inertia is changed. These figures correspond to different values

of the moment of inertia H, and provide insight into the transition from periodic to

chaotic dynamics. The associated Poincaré maps offer a complementary view, capturing

the qualitative changes in the attractors of the system.

As the value of H is varied, the system exhibits a range of dynamical behaviours.

For instance, when H = 1.81 kgm2, the system predominantly exhibits periodic orbits.

However, intermittent bursts of chaotic motion appear suddenly within these regular

intervals. This phenomenon indicates that the system is near a bifurcation point, where

small changes in inertia lead to drastic changes in the long-term dynamics.

The corresponding Poincaré map for H = 1.81 kgm2 initially displays a periodic

attractor represented by discrete, regularly spaced points. As the chaotic bursts begin

to appear, the map evolves and begins to show a gradual expansion of the attractor,

signifying the emergence of instability in the system. The transition is marked by the

spreading of points in the Poincaré map, which is indicative of the system entering a

chaotic regime.
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Overall, these figures and maps highlight the sensitivity of the system’s behaviour

to changes in the moment of inertia and demonstrate a classical route to chaos via

intermittency and attractor destabilisation.

8.7 Effects of altering Voltage of machine in the

Swing Equation

The following intermittency graphs were obtained when the machine voltage (VG) was

varied. Altering the machine voltage has a direct impact on the power output and

stability characteristics of the system, influencing the overall dynamic behaviour. The

results demonstrate how fluctuations in VG can lead to intermittent patterns in the

system’s response, particularly affecting the synchronisation and damping properties.

These graphical representations provide valuable insights into the sensitivity of the system

to voltage variations, which is critical for the design and stability assessment of power

systems under varying operating conditions.

Figure 8.13: Time series and Poincaré map for the case of intermittency when VG is 0.05.
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Figure 8.14: Time series and Poincaré map for the case of intermittency when VG is 0.04.

Figure 8.15: Time series and Poincaré map for the case of intermittency when VG is 0.03.

Figures 8.13, 8.14, and 8.15 present the time series and corresponding Poincaré maps

for varying values of the machine voltage. Similar to the earlier analysis involving moment

of inertia, these figures reveal that changes in the machine voltage significantly affect

167



CHAPTER 8. STUDYING THE PHENOMENA OF INTERMITTENCY IN THE

SWING EQUATION

the dynamic behaviour of the system. Specifically, the system transitions from periodic

motion to sudden bursts of instability, a phenomenon characteristic of intermittent

behaviour. This intermittent instability is clearly visible in the time series, where regular

oscillations are interrupted by erratic fluctuations. The corresponding Poincaré maps

reflect this transition, initially showing periodic attractors which then begin to scatter,

indicating a move toward chaotic dynamics.

To further explore the system’s sensitivity, both the inertia and machine voltage

were systematically varied. When the moment of inertia was adjusted within the range

1.70 kgm2 ≤ H ≤ 1.81 kgm2, the system began to display clear signs of intermittent

instability. This suggests that the system is operating near a bifurcation threshold, where

small changes in physical parameters can trigger complex dynamical transitions.

Similarly, variations in the machine voltage, specifically in the range from 0.05 to 0.03,

led to an observable increase in instability. As the voltage decreased, the system’s periodic

nature was disrupted more frequently by irregular and chaotic bursts. This behaviour

indicates that lower voltages may reduce system damping or alter the excitation dynamics,

thereby enhancing the system’s susceptibility to intermittency and chaotic transitions.

In both cases whether through changes in inertia or voltage, the system consistently

demonstrated a tendency toward intermittent chaos, underscoring the nonlinear and

sensitive dependence of the system’s dynamics on its governing parameters.

8.8 Discussion

The findings from this section underscore the importance of intermittency as a prelude

to chaos in the swing equation. Identifying the pivotal values of intermittent behaviour

can assist in recognising instability in power systems. This is especially pertinent in

real-world power systems characterised by low inertia.

In comparison with previous research, the validation of Lyapunov exponents adheres

to analogous techniques [207] for identifying chaos. This verifies that intermittency

phenomena can be evaluated via exponent fluctuations. The findings align with the

intermittency observed in fluid dynamics [194], indicating that the analysis of intermittency

is relevant across diverse nonlinear systems.

This chapter possesses certain limitations that warrant consideration. The swing
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equation is examined in an idealised context, excluding external influences such as power

grid disturbances and abrupt load variations. While inertia and voltage of the machine

are examined, additional characteristics like as damping and network architecture must

also be considered to analyse intermittent behaviour.

This work elucidates the concept of intermittency in power systems by linking it to

chaotic transitions in the swing equation, so enabling engineers to mitigate its detrimental

impacts.

This chapter examined intermittency in the swing equation, illustrating its function

as a precursor to chaos in power systems. Bifurcation diagrams, Lyapunov exponents,

heat maps, and Poincaré maps were utilised to detect intermittency. The findings validate

that intermittency can be noticed when the machine’s inertia and voltage fluctuate,

underscoring the significance of analysing minor disruptions within the system.

Power grids that include renewable energy with low inertia demonstrate intermittent

behaviour. This chapter emphasises that low-inertia systems exhibit a heightened

potential for intermittent instability, underscoring the significance and necessity of

stability management techniques. The examination of the machine’s voltage indicates

that precise voltage regulation measures can mitigate chaotic transitions.

8.9 Final Remarks

The findings of this chapter establish a foundational framework for developing early

warning indicators aimed at detecting potential instability within power networks. One of

the key insights is the potential deployment of Lyapunov exponent monitoring instruments

as diagnostic tools. These instruments can be used to detect the onset of intermittent

behaviour, which serves as a precursor to chaotic transitions in system dynamics. By

identifying these early signals, system operators could take preventive actions before

instability manifests in a disruptive manner, thereby enhancing grid reliability and

resilience.

Although this research contributes significantly to the understanding of nonlinear

dynamics in power systems, it is not without limitations. The analysis of the swing

equation was conducted under idealised conditions, deliberately excluding extraneous

influences such as load variations, stochastic fluctuations, and grid faults. These were
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necessary for isolating the primary dynamic behaviour; however, they also highlight

the scope for future research. Subsequent studies should focus on real-time operational

environments to better assess the impact of intermittency and identify other precursors

to chaotic transitions. In addition, the methodology can be extended to multi-machine

or large-scale interconnected power systems to explore the interplay between resonance,

intermittency, and chaos as grid complexity increases.

Furthermore, future investigations may consider the integration of advanced data-driven

techniques such as machine learning and predictive analytics with traditional nonlinear

dynamical models. This hybrid approach could lead to more robust forecasting tools

capable of capturing subtle precursors to instability. As modern power systems evolve with

the incorporation of renewable energy sources, electric vehicles, and decentralised control

strategies, understanding and managing nonlinear behaviours will become increasingly

critical. Hence, this line of inquiry not only advances theoretical insight but also holds

considerable promise for enhancing the operational security of future smart grids.
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Chapter 9

Analysing Load Shedding Technique

to Increase Stability

9.1 Introduction

Examining the stability of nonlinear systems is of paramount importance, particularly in

the context of sudden, minor perturbations that may escalate into large-scale failures or

blackouts [33, 89]. Power systems, by their nature, are highly sensitive to fluctuations,

and even small deviations can produce cascading effects that threaten the integrity of

the entire grid. A crucial aspect of maintaining system stability lies in ensuring that

the system’s frequency remains within specified operational limits. Frequency deviations

are typically caused by abrupt mismatches between electricity demand and generation

capacity, which, if not addressed promptly, may lead to destabilisation and equipment

damage [213].

To mitigate such adverse outcomes, a range of control strategies have been implemented,

aimed at preserving frequency stability during short-term disturbances. These strategies

are essential for ensuring that transients do not lead to critical instability or chaotic

dynamics. Frequency regulation mechanisms, both primary and secondary, serve to

restore balance between supply and demand in the immediate aftermath of a disturbance,

thereby reducing the risk of cascading failures.

The swing equation, a second-order nonlinear differential equation, is central to the

analysis of power system dynamics. It models the motion of the rotor in synchronous
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machines and captures the essential behaviour of generators under various operating

conditions [33, 77]. While numerical simulations have long been the standard approach

for exploring these nonlinear dynamics [214], recent advancements have seen the adoption

of more sophisticated analytical tools. These methods have been employed to define and

explore stability boundaries under a wide range of parameter settings and disturbances

[115, 134], providing deeper insight into the onset of instability and the conditions that

facilitate transitions to chaos.

Historical approaches to mitigating frequency instability have focused on load shedding

techniques. These have evolved from rigid, rule-based mechanisms to more nuanced,

adaptive strategies. Classical methods such as Under Frequency Load Shedding (UFLS)

are relatively simple and easy to implement; however, they suffer from several shortcomings.

Chief among them is the use of fixed frequency thresholds, which often result in either

excessive or insufficient load shedding [216, 217]. Such static approaches are unable

to account for the real-time state of the grid and fail to adapt to varying levels of

perturbation.

To overcome these limitations, recent research has shifted towards data-driven

methodologies capable of dynamically responding to grid conditions. These advanced

techniques integrate real-time system monitoring, predictive analytics, and machine

learning models to execute more accurate and efficient load shedding operations [215, 218–

221]. These strategies not only provide improved resilience against disturbances but also

enable more economical and sustainable grid operations. The transition from traditional

to intelligent systems marks a pivotal step towards the development of future-proof, smart

grid infrastructures that can better withstand nonlinear instabilities and unpredictable

perturbations.

Although a variety of contemporary control tools are available, ranging from voltage

stability indicators to AI-driven, game-theoretic optimisation models many researchers

still perceive load shedding as an external corrective measure, operating independently

of the fundamental equations that govern system dynamics. Traditional perspectives

often treat load shedding as a post-fault emergency response, rather than a proactive,

system-integrated control variable.

This chapter aims to bridge this critical gap by proposing a control-integrated load

shedding mechanism that is embedded directly within the dynamic equations of the
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system. The approach draws inspiration from the classical equation of motion for a

pendulum, adapting it to the context of synchronous machines governed by the nonlinear

swing equation. The principal goal is to analytically determine the minimum amount

of load curtailment required to restore system stability following minor disturbances,

and to explore the extent to which the integration of a load shedding term can mitigate

the onset of chaotic behaviour. By modifying the damping characteristics of the swing

equation via a shedding factor, this method enables real-time control to be analytically

understood within the context of nonlinear dynamics.

The proposed work derives an analytical formulation of the swing equation that

explicitly includes a load shedding component. It subsequently evaluates the system’s

stability using a suite of well-established analytical tools, including eigenvalue analysis,

Lyapunov exponents, bifurcation diagrams, and perturbation techniques. The proposed

approach is then compared with conventional load shedding strategies, using both

analytical derivations and numerical simulations. The methodology’s robustness is tested

across a range of system parameters, and its effectiveness is validated through simulations

conducted in Matlab Simulink.

The stability of nonlinear systems in the presence of small and abrupt perturbations

has become an area of increasing importance, especially given the growing complexity and

decentralisation of modern power grids. Load shedding remains one of the most widely

implemented emergency control mechanisms used to prevent system-wide blackouts and

to preserve frequency stability under stress conditions [222]. However, its implementation

has traditionally remained detached from the governing dynamic equations of the power

system.

The swing equation, which models the rotor dynamics of synchronous generators, is a

cornerstone in the analysis of transient stability. Represented as a second-order nonlinear

differential equation, it captures the essential response of power systems to disturbances

[159, 205]. Due to its inherent nonlinearity, solving the swing equation analytically

has historically posed considerable challenges, with early investigations relying almost

exclusively on numerical techniques. Nevertheless, recent advances have introduced novel

analytical approaches that provide deeper insights into system stability boundaries

[214, 223]. For instance, reformulating the swing equation in Cartesian coordinates has

enabled approximate analytical solutions that align well with traditional numerical
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outcomes [224]. Similarly, enhancements to ZIP load models, incorporating constant

impedance, current, and power elements, have increased the applicability of such analyses

to real-world scenarios [225].

Despite these analytical advances, many industrial systems continue to employ

conventional load shedding techniques such as Under Frequency Load Shedding (UFLS),

primarily due to their simplicity and ease of implementation. These methods operate

by disconnecting predefined load blocks once frequency thresholds are breached [226].

However, these static and reactive methods are fundamentally limited, they neither

adapt to the nature of the disturbance nor incorporate real-time system conditions. As a

result, they often lead to either over-shedding or under-shedding, exacerbating instability

instead of alleviating it.

To improve upon UFLS, voltage-indicator-based techniques have been proposed. These

strategies evaluate the system’s voltage margin to forecast the maximum sustainable load

curtailment before instability ensues [227]. While more adaptive than traditional UFLS,

their scope is generally confined to voltage-related instabilities and may not perform well

in scenarios dominated by frequency dynamics.

In recent years, data-driven strategies employing machine learning techniques have

garnered significant attention. These methods leverage historical operational data and

simulated scenarios to forecast optimal load shedding actions in real time [219, 220].

Although they offer impressive predictive capabilities, these techniques require large

volumes of high-quality training data and often struggle with generalisability across

different grid topologies. Furthermore, they lack analytical transparency and are often

treated as black-box solutions, which can be problematic in critical infrastructure contexts

where interpretability and auditability are paramount.

Game-theoretic frameworks represent another emerging class of solutions, modelling

power systems as multi-agent environments where entities such as regional operators,

generators, and consumers engage in cooperative or competitive decision-making processes

[221]. These models are capable of producing equilibrium-based load shedding strategies

that balance local objectives with global system stability. However, they introduce complex

optimisation problems and often rely on strong assumptions about agent behaviour,

which can be difficult to realise in a real-time physical power system.

The methodology introduced in this chapter offers a distinct departure from these
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approaches by embedding the load shedding mechanism directly within the swing equation.

This integration enables load shedding to be treated as a dynamic system variable rather

than an external intervention. The resulting modified swing equation allows for the

derivation of closed-form expressions for key system parameters, such as natural frequency

and damping ratio, under the influence of load curtailment. Through this formulation,

the real-time effects of load shedding on system stability can be analytically traced,

offering both interpretability and predictive capability.

By synthesising nonlinear dynamics theory with practical control applications, this

approach serves as a promising foundation for future research and implementation. It

aligns with the broader goal of developing intelligent, adaptive control strategies that are

deeply rooted in the fundamental physics of power systems. Moreover, the method has

the potential to enhance system resilience, reduce the frequency and severity of blackouts,

and provide a theoretical framework that bridges the gap between simulation-based

design and real-world control systems.

Table 9.1 below delineates several load shedding methodologies to elucidate the

significance of the technique proposed in this article.
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Table 9.1: Comparison of Load Shedding Strategies

Strategy
Type

Real-Time
Capable

Embedded in
System

Control
Flexibility

Limitations

UFLS
(Conventional)

No No Low Rigid thresholds; lacks
adaptability to varying
conditions

Voltage
Indicator-Based

Partial No Medium Dependent on reactive
power data; not predictive
under frequency-dominated
instability

Machine Learning /
Predictive

Yes No High Requires extensive
training data; may
lack generalisation and
interpretability

Game-Theory
Approaches

Yes No High Computationally intensive;
assumes idealised agent
behaviour

Proposed
Embedded Method

Yes Yes Medium–High Currently validated for
single-machine models;
requires extension for
large-scale grids

9.2 Analytical Work

Deriving an equation for system frequency f(t), which relates to the time derivative of

the rotor angle:

f(t) = f0 +
1

2π

dθ

dt
(9.1)

where f0 is the rated system frequency.

Differentiating both sides with respect to time:

df

dt
=

1

2π

d2θ

dt2
(9.2)

Substituting into the swing equation (3.10):

df

dt
=

ωR

2H

(
Pm − VGVB

XG

sin (θ − θB)−D
dθ

dt

)
(9.3)
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This equation describes how the frequency f(t) evolves over time based on power

input, electrical power transfer, and damping.

9.2.1 Frequency Deviation Analysis

The aim is to make sure that the system frequency remains above the minimum threshold

fmin to reduce unstable regions. During a small perturbation the electrical power Pe,

might drop because of faults in the grids. This might adversely affect the nonlinear

systems.

Pe =
VGVB

XG

sin (θ − θB) (9.4)

To study the effect of these perturbations, it is required to approximate sin(θ − θB)

using a first-order Taylor expansion around the steady-state condition θ ≈ θB0:

sin (θ − θB) ≈ sin θB0 + cos θB0(θ − θB0) (9.5)

Introducing Load Shedding

Load shedding is introduced to alter Pe, reducing the effective electrical power. Let

PLS be the load shed, so that:

P ′
e = Pe − PLS (9.6)

df

dt
=

ωR

2H

(
Pm − (Pe − PLS)−D

dθ

dt

)
(9.7)

Expanding Pe in the swing equation:

df

dt
=

ωR

2H

(
Pm −

[
VG(VB0 + VB1 cos (Ωt+ ϕv))

XG

×(sin θB0 + cos θB0(θ − θB0))− PLS

]
−D

dθ

dt

) (9.8)
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The load shedding objective is to determine PLS such that:

f(t) ≥ fmin, ∀t (9.9)

The load shedding term, PLS , was introduced into the swing equation to evaluate

its effect on system stability [218]. Load shedding was triggered when the rotor angle

deviation exceeded a defined threshold. At each time step, if this threshold was breached,

the system shed a fixed percentage of electrical power. The values of tested were 0.05,

0.1 and 1.2 per unit (pu). The values were carefully selected to represent light, moderate,

and high levels of load reduction respectively and were chosen to examine how increasing

control effort influences system dynamics. The effect of load shedding was studied by

comparing the delay in chaotic parts in bifurcation diagrams and were validated from

the Lyapunov Exponents.

9.2.2 Derivation of the Stability Equation without Load

Shedding

Consider the swing equation (3.10) and approximate it using a Taylor series. Then

simplifying gives:

d2θ

dt2
+

DωR

2H

dθ

dt
+

ωR

2H

VGVB

XG

(sin θB0 + cos θB0(θ − θB0)) = 0 (9.10)

The natural frequency is defined as:

ωn =

√
ωR

2H

VGVB

XG

cos θB0 (9.11)

The damping ratio is:

ζ =
D

2

√
ωR

2H

VGVB

XG

cos θB0 (9.12)

Thus, the characteristic equation is:

s2 + 2ζωns+ ω2
n = 0 (9.13)

Solving the above equation to find the eigenvalues:
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s = −ζωn ± ωn

√
ζ2 − 1 (9.14)

The stability of the system is determined by the damping ratio ζ and the real part of

the eigenvalues s.

The system is stable if the damping ratio is positive and the real part of the eigenvalues

is negative:

ζ > 0, Re(s) < 0. (9.15)

If the damping ratio is between 0 and 1, the system oscillates but eventually stabilises:

0 < ζ < 1. (9.16)

If the damping ratio is exactly 1 it is called critically damped, the system returns to

equilibrium in the shortest possible time without oscillations:

ζ = 1. (9.17)

If the damping ratio is negative, the real part of the eigenvalues is positive, leading

to exponential growth and system instability:

ζ < 0, Re(s) > 0. (9.18)

9.2.3 Derivation of the Stability Equation with Load Shedding

The modified swing equation including load shedding is given by:

df

dt
=

ωR

2H

(
Pm − (Pe − PLS)−D

dθ

dt

)
(9.19)

Expanding Pe:

df

dt
=

ωR

2H

(
Pm −

[
VG(VB0 + VB1 cos (Ωt+ ϕv))

XG

× (sin θB0 + cos θB0(θ − θB0))− PLS

]
−D

dθ

dt

)
(9.20)

Considering small deviations around the equilibrium θ ≈ θB0, leading to the linearised

system:
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d2θ

dt2
+

D + PLS

2H

dθ

dt
+

ωR

2H

VGVB

XG

cos θB0(θ − θB0) = 0 (9.21)

This equation follows the form of a standard second-order differential equation:

d2θ

dt2
+ 2ζωn

dθ

dt
+ ω2

n(θ − θB0) = 0 (9.22)

The natural frequency ωn is:

ωn =

√
ωR

2H

VGVB

XG

cos θB0 (9.23)

The damping ratio ζ is modified due to the incorporation of load shedding PLS:

ζ =
D + PLS

2

√
ωR

2H

VGVB

XG

cos θB0 (9.24)

The characteristic equation was:

s2 + 2ζωns+ ω2
n = 0 (9.25)

Solving for the eigenvalues:

s = −ζωn ± ωn

√
ζ2 − 1 (9.26)

The eigenvalues were plotted in Figure 9.3, for different values of PLS, depicting a

leftward shift as load shedding increased. This confirms that higher values enhanced

system damping and reduced oscillations, leading to delayed chaos within the system.

9.2.4 Perturbation Analysis

The standard swing equation, which governs the rotor dynamics of a synchronous machine

including damping and electrical power terms, is given by [77]:

2H

ωR

d2θ

dt2
+D

dθ

dt
= Pm − Pe (9.27)

where:

• Pm is the mechanical power input.
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• Pe is the electrical power output.

To enhance stability, introducing the load shedding term within the equation PLS,

2H

ωR

d2θ

dt2
+D

dθ

dt
= Pm − (Pe − PLS) (9.28)

where

PLS = PLS0 + PLS1 cos (Ωt+ ϕls) (9.29)

This equation (9.29) shows a small perturbation effect on the load shedding term

where PLS0 which depicts the initial state and is assumed to be very small.

Expanding Pe using a first-order Taylor series approximation:

Pe =
VG(VB0 + VB1 cos(Ωt+ ϕv))

XG

(sin θB0 + cos θB0(θ − θB0)) (9.30)

By introducing perturbations in rotor angle,

θ − θB = η (9.31)

Allowing consideration for the transformations,

θ − θB = δ0 + η (9.32)

δ0 = θ0 − θB0 (9.33)

η = ∆θ − θB1 cos(ωt+ ϕ0) (9.34)

Equation (9.32) becomes,

sin (θ − θB) = sin (δ0 + η) (9.35)

Substituting equations (9.32), (9.33) and (9.34) into equations (3.10), (3.11), and

(3.12), we derive the modified swing equation with excitation:
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d2η

dt2
+

ωRD

2H

dη

dt
+Kη = α2η

2 + α3η
3 +G1η cos (Ωt+ ϕv)

+G2η
2 cos (Ωt+ ϕv) +G3η

3 cos (Ωt+ ϕv) +Q1 cos (Ωt+ ϕθ) +Q2 sin (Ωt+ ϕθ)

+Q3 cos (Ωt+ ϕv) + P1 cos (Ωt+ ϕLS) (9.36)

α2 =
1

2
K tan δ0, α3 =

1

6
K

G1 =
−VB1

VB0

K, G2 =
−VB1

2VB0

K tan δ0, G3 =
−VB1

6VB0

K

Q1 = Ω2θB1, Q2 =
ΩDωRθB1

2H
, Q3 =

−VB1

VB0

K tan δ0, P1 =
ωR

2H
PLS1

K =
VGVB0ωR cos δ0

2HXG

where,

Q cos (Ωt+ ϕe) = Q1 cos (Ωt+ ϕθ) +Q2 sin (Ωt+ ϕθ) +Q3 cos (Ωt+ ϕv) (9.37)

Thus, equation (9.36) reduces to:

d2η

dt2
+

ωRD

2H

dη

dt
+Kη = α2η

2 + α3η
3 +G1η cos (Ωt+ ϕv)

+G2η
2 cos (Ωt+ ϕv) +G3η

3 cos (Ωt+ ϕv) +Q cos (Ωt+ ϕe) + P1 cos (Ωt+ ϕLS) (9.38)

Initially, the focus of the analysis is on primary resonance. To study this, multiple

scales is used to find a uniform solution for equation (9.38). A small, dimensionless

parameter ε is introduced to account for the effects of damping, nonlinearities, and the

excitation frequency, which occur in a specific order.

Letting

η = O(ε),
ωRD

2H
= O(ε2) (9.39)
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and

VB1 = O(ε3), θB1 = O(ε3), PLS1 = O(ε3) (9.40)

then the final equation from the swing equation derivation above has the following

coefficients:

G1 = ε3g1, G2 = ε3g2, G3 = ε3g3, (9.41)

Q = ε3q, P1 = ε3p. (9.42)

Also, considering the equation with the detuning parameter σ,

ω2
0 = Ω2 + E2σ, (9.43)

to allow for the derived final swing equation (9.38) to be rewritten as,

η̈ + 2ε2µη̇ + (Ω2 + E2σ)η = α2η
2 + α3η

3 + ε3g1η cos(Ωt+ ϕv)

+ ε3g2η
2 cos(Ωt+ ϕv) + ε3g3η

3 cos(Ωt+ ϕv) + ε3q cos(Ωt+ ϕe) + ε3p cos(Ωt+ ϕLS).

(9.44)

The solution to the above equation is of the form:

η(t; ε) = εη1(T0, T1, T2) + ε2η2(T0, T1, T2) + ε3η3(T0, T1, T2) + . . . (9.45)

where T0 is a fast scale describing motions of frequencies, and T1, T2 are slow scales

describing amplitude variation [33].

The first derivative of this equation is:

d

dt
= D0 + εD1 + ε2D2 + . . . (9.46)

The second derivative is:

d2

dt2
= D2

0 + 2εD0D1 + ε2(2D0D2 +D2
1) + . . . (9.47)

where
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Dn =
∂

∂Tn

. (9.48)

Equation (9.45) can be rewritten as:

η = εη1 + ε2η2 + ε3η3 + . . . (9.49)

Finding the first derivative with respect to t for equation (9.49) and substituting

equation (9.46) gives:

η(D0 + εD1 + ε2D2 + . . . ) = εη1(D0 + εD1 + ε2D2 + . . . )

+ ε2η2(D0 + εD1 + ε2D2 + . . . ) + ε3η3(D0 + εD1 + ε2D2 + . . . ). (9.50)

Differentiating for the second derivative with respect to t for equation (9.49) and

substituting equation (9.47) gives:

η(D2
0 + 2εD0D1 + ε2(2D0D2 +D2

1) + . . . ) =

εη1(D
2
0 + 2εD0D1 + ε2(2D0D2 +D2

1) + . . . )

+ ε2η2(D
2
0 + 2εD0D1 + ε2(2D0D2 +D2

1) + . . . )

+ ε3η3(D
2
0 + 2εD0D1 + ε2(2D0D2 +D2

1) + . . . ). (9.51)

Substituting equations (9.49), (9.50), and (9.51) into equation (9.38) and comparing

coefficients of ε gives,

ε1/ : η1D
2
0 + η1Ω

2 = 0 (9.52)

ε2/ : η1D
2
0 + η2Ω

2 + 2D0D1η1 = α2η
2
1 (9.53)

ε3/ : D2
0η3 + 2D0D1η2 + (D2

1 + 2D0D2)η1 + 2µD0η1 + Ω2η3 + ση1

= 2α2η1η2 + α3η
3
1 + q cos(Ωt+ ϕe) + p cos(Ωt+ ϕLS)

(9.54)
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From equations (9.52), (9.53) and (9.54), it can be seen that the parametric terms

do not have key effects on the system. Hence, only the external forcing term remains

[33, 77].

The solution to equation (9.52) is of the form:

η1 = A(T1, T2)e
iΩT0 + Ā(T1, T2)e

−iΩT0 (9.55)

where A is an undetermined function. Given that

Dn =
∂

∂Tn

, D0 =
∂

∂T0

by integration,

T0 =
1

D0

.

Substituting equation (9.55) into (9.53),

η2D
2
0 + η2Ω

2 = − 2D0D1

(
A(T1, T2)e

iΩT0 + Ā(T1, T2)e
−iΩT0

)
+ α2

(
A(T1, T2)e

iΩT0 + Ā(T1, T2)e
−iΩT0

)2 (9.56)

Expanding the brackets,

η2D
2
0 + η2Ω

2 = − 2D0D1A(T1, T2)e
iΩT0 − 2D0D1Ā(T1, T2)e

−iΩT0

+ α2

(
A2e2iΩT0 + Ā2e−2iΩT0 + 2AĀ

) (9.57)

Due to D0 =
∂

∂T0
and

∂
(
2D0D1AeiΩT0

)
∂T0

= 2iΩD1AeiΩT0 (9.58)

∂
(
2D0D1Ā e−iΩT0

)
∂T0

= −2iΩD1Ā e−iΩT0 (9.59)

Substituting into the equation and rearranging leads to,

η2D
2
0 + η2Ω

2 = −2iΩD1Ae
iΩT0 + α2(A

2e2iΩT0 + Ā2e−2iΩT0) + cc (9.60)

where cc is the complex conjugate. In this equation, D1A = 0, to avoid secular terms

η2 and hence A = A(T2). Replacing equation (9.52) into (9.55) and simplifying,
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η2 = −α2A
2e2iΩT0

3Ω2
− α2Ā

2e−2iΩT0

3Ω2
+

2α2AĀ

Ω2
(9.61)

which is also echoed in [33, 77].

Replacing equations (9.55) and (9.61) into equation (9.54),

2iµΩ(A′ + µA) + σA− 1

2
qeiϕ − 1

2
peiϕ + 8αeA

2Ā = 0 (9.62)

where

αe = −3

8
α3 −

5α2
2

12Ω2
.

Expressing A in polar form,

A =
1

2
ae−i(β+ϕe) (9.63)

Substituting equation (9.63) into equation (9.62) gives,

Ω(a′ + µa) +
1

2
q sin β +

1

2
p sin β = 0 (9.64)

−Ωaβ′ + αea
3 − 1

2
q cos β − 1

2
p cos β +

1

2
σa = 0. (9.65)

Equation (9.63) can also be written in the form:

A =
1

2
a cos(β + ϕe). (9.66)

Substituting A and its conjugate into equation (9.55) leads to:

η1 = a cos(2Ωt+ β + ϕe). (9.67)

Similarly, replacing into equation (9.61) gives:

η2 =
α2a

2

2Ω2
− α2a

2

6Ω2
cos(2Ωt+ 2β + 2ϕe). (9.68)

Substituting the above derivations for η1 and η2 in equation (9.45) to obtain the

second approximation,
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η = εa cos(Ωt+ β + ϕe) +
ε2a2α2

6Ω2
[3− cos(2Ωt+ 2β + 2ϕe)] + . . . (9.69)

Setting ε = 1 and letting “a” be the perturbation parameter, using equation (9.69),

equation (9.34) may be rewritten as,

∆θ = θB1 cos(Ωt+ ϕθ) + a cos(Ωt+ β + ϕe) +
a2α2

6Ω2
(3− cos(2Ωt+2β +2ϕe)) + ... (9.70)

with a2α2

2Ω2 defined as the drift term, which because of its quadratic nonlinearity the

oscillatory motion is not centered as seen also in [33, 77].

To understand the character of equations (9.64) and (9.65), fixed points are found in

alignment with a′ = β′ = 0 to reduce to:

µa = −q sin β

2Ω
− p sin β

2Ω
(9.71)

aσ

2Ω
+

αea
3

Ω
=

q cos β

2Ω
+

p cos β

2Ω
(9.72)

Squaring and adding equations (9.71) and (9.72) will give,

µ2 +

(
σ

2Ω
+

αea
2

Ω

)2

=
(q + p)2

4Ω2a2
(9.73)

The analytical results are compared with the numerical simulations for the primary

resonance when Ω = 8.61 rads−1 with the load shedding term. The Runge-Kutta fourth

order and Newton Raphson methods were used for the simulation perturbation analysis

and compared with the numerical results as shown in Figure 9.1. It can be seen that

the Newton Raphson Method gives a better approximation to the numerical solution.

The calculated numerical error of the Runge-Kutta method versus the Newton Raphson

technique compared to the actual numerical solution error was 0.04192 and 0.02314

respectively, ensuring that the Newton Raphson method is a suitable fit because of its

small error value.
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Figure 9.1: Perturbed solution employing Runge-Kutta and Newton Raphson algorithms
in comparison to numerical simulations for the case of primary resonance in the phase
plane and time history for Ω = 8.61 rads−1.

The bifurcation diagrams are produced by incrementally increasing the forcing

parameter r, while simultaneously continuing the time integration of the system at

each step [16, 33, 77]. For each value of r, the maximum amplitude of the oscillatory

solution is calculated and graphed against r. This procedure elucidates the evolution of

the system’s behaviour when the forcing parameter is altered, demonstrating transitions

among periodic, chaotic states, and intermittency. The r is regarded as mentioned in the

equation (3.65)

The modified swing equation was resolved in Matlab with the fourth-order Runge-Kutta

method for numerical precision, incorporating the load shedding term. As load shedding

intensified, a critical threshold was identified that mitigated chaos inside the system.

Conventional scheme bifurcation diagrams were generated, wherein the system was

resolved incrementally. The results indicated that the confusion occurred prior to the

introduction of the load shedding term into the system.

The Lyapunov exponents were generated to measure the system’s sensitivity to

beginning circumstances [42]. A positive Lyapunov exponent indicates chaos, whereas
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a negative exponent signifies stability. As load shedding values grew, the Lyapunov

exponents transitioned to negative values, indicating diminished chaos. The turmoil

commenced later than the period characterised by the absence of load shedding in the

system.

A traditional load shedding technique was employed for comparison, wherein the

electric power was executed in a sequential manner with designated time intervals [200].

Rather than reducing load solely during instances of instability, predetermined shedding

intervals were implemented every 5 seconds. This method resulted in earlier confusion,

indicating that the load shedding strategy examined in this research is more effective in

postponing anarchy. Therefore, it is essential to evaluate the impact of the parameters

on the system [26, 228].

The model presumes a single-machine infinite bus system with fixed parameters,

including damping, inertia, and generating voltage. These simplifications are essential

for deriving analytical results and understanding stability mechanisms. Although the

actual system encompasses more intricate variables and reactive power dynamics, as

well as varying topologies, these assumptions are applicable for analysing local generator

behaviour during short-term transients. Consequently, subsequent research may broaden

this methodology to intricate power grid configurations and examine the stability dynamics

when other elements are incorporated [229].
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9.3 Results

9.3.1 Representation of the Analytical Work

Figure 9.2: Eigenvalues obtained from the swing equation with load shedding term when
Ω = 8.61 rads−1.

Figure 9.2 illustrates the eigenvalues computed for the swing equation devoid of any load

shedding component. In the case of negative damping (ζ = −0.5), the eigenvalues possess

positive real components, indicating that the system undergoes exponentially amplifying

oscillations. This signifies an unstable system characterised by the amplification of

disturbances.

When the damping ratio is null, the eigenvalues reside only on the imaginary axis.

The system demonstrates persistent oscillations without attenuation.

In underdamped scenarios (0 < ζ < 1), such as ζ=0.2 and ζ=0.5, the eigenvalues

move to the left while retaining imaginary components. This indicates that the system

oscillates but eventually stabilises over time. A damping ratio approaching 1 is preferable,

as it facilitates rapid decline.

In the case of critical damping (ζ=1), the eigenvalues are real and negative, indicating
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that the system reverts to equilibrium without oscillatory behaviour. This is the optimal

damping scenario sought by researchers and engineers in the field.

Figure 9.3: Eigenvalues obtained from the swing equation with load shedding term when
Ω = 8.61 rads−1.

Figure 9.3 depicts the eigenvalues obtained for the swing equation with the load

shedding term. For zero load shedding the eigenvalues remain close to the imaginary axis.

As load shedding is increased, the eigenvalues shift leftward, signifying improved

damping and enhanced stability. For higher load shedding values the eigenvalues move

further into the left-half plane, reducing the imaginary component.
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9.3.2 Representation for the Primary Resonance

Figure 9.4: Bifurcation diagrams when the load shedding terms are increasing in the
scheme analysed in this study for primary resonance at Ω = 8.61 rads−1.

Figure 9.4 presents bifurcation diagrams generated for the swing equation using the

load shedding factor. The swing equation devoid of load shedding exhibits initial chaotic

behaviour [77]. The incorporation of the load shedding term within the system is reflected

in a minor alteration in the diagrams.

At elevated load shedding values (PLS = 1.2), the bifurcation diagram indicates a

predominantly stable zone, characterised by diminished chaotic oscillations. The system

displays a singular, stable trajectory rather than many bifurcation branches, so validating

that load shedding facilitates consistent frequency responses. Excessive load shedding may

overly stabilise the system, thereby hindering its ability to adjust to transient changes.

When PLS exceeds 1.2, the system demonstrates chaotic behaviour, indicating that at

PLS = 1.2, the system experiences a delay in chaos and remains stable for an extended

period.
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Figure 9.5: Lyapunov Exponents for the primary resonance for the Load shedding scheme
when Ω = 8.61 rads−1.

Figure 9.5 illustrates the Lyapunov exponents corresponding to the bifurcation

diagrams derived from the aforementioned load shedding strategy. In the absence of load

shedding, positive Lyapunov exponents are seen, indicating that the system demonstrates

sensitivity to initial conditions. As PLS grows, the Lyapunov exponents transition to

negative values, indicating that load shedding successfully alleviates chaotic dynamics

and guarantees predictable system behaviour. Chaos ensues in the system when PLS = 0

and r = 2.2 [4]. However, when the load shedding parameter is elevated to 0.05, disorder

ensues at r = 2.3. With the load shedding term elevated to 1.2, it is evident that chaos

initiates at r = 2.72, indicating that the proposed technique has postponed the system’s

transition into an unstable region.
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Figure 9.6: Basins of attractions with load shedding term within the swing equation for
primary resonance when Ω = 8.61 rads−1.

The basins of attraction depicted in Figure 9.6 illustrate the domains of beginning

conditions that result in steady operation. The red and green areas represent the stable

sections. In the absence of load shedding, the stable basin is comparatively limited,

indicating that even slight disruptions might induce system instability. As PLS grows,

the stable basin enlarges, indicating that load shedding improves the system’s capacity

to revert to equilibrium following perturbations. The stability region expands, indicating

a rise in pixel count, which reflects a significant enhancement in the system’s dynamic

reactivity. These findings underscore the necessity for dynamic optimisation of load

shedding to enhance stability while minimising energy loss.
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Figure 9.7: Basins of attractions when increasing the load shedding term within the swing
equation for primary resonance when Ω = 8.61 rads−1.

Figure 9.7 illustrates the dynamic changes that the system undergoes as the load

shedding term is progressively increased in the context of primary resonance. Primary

resonance, being a fundamental type of resonance that occurs when the system’s natural

frequency aligns closely with the excitation frequency, is highly sensitive to external

perturbations. As shown above, the introduction and subsequent amplification of the

load shedding term have a marked influence on the system’s behaviour. Initially, when

the load shedding is absent or minimal, the system exhibits greater susceptibility to

irregularities and instabilities. The oscillations are more erratic, and signs of chaotic

behaviour begin to emerge earlier in the response.

However, as the load shedding term is incrementally increased, the system transitions

into a more stable regime. The figure reveals a significant reduction in the amplitude

and irregularity of the oscillations, as well as a delay in the onset of chaotic motion. This

stabilising effect demonstrates the efficacy of load shedding in modulating the system’s

energy balance and preventing uncontrolled dynamic responses. The results shown in

Figure 9.7 thus underscore the critical role of load shedding as a control strategy during

primary resonance, effectively enhancing the overall robustness and resilience.
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9.3.3 Representation for the Conventional Scheme

Figure 9.8: Bifurcation diagrams when the load shedding terms are increasing using the
conventional scheme when Ω = 8.61 rads−1.

Figure 9.8 illustrates the bifurcation diagrams for the conventional load shedding scheme,

emphasising a significant divergence in stability behaviour relative to the adaptive load

shedding technique. In the traditional method, where load shedding is activated at

predetermined frequency thresholds, the system continues to display chaotic oscillations,

albeit with an earlier onset of instability. The bifurcation graphic illustrates chaotic

behaviour manifesting at reduced parameter values of r, indicating that the system

transitions into an unstable zone more rapidly. This indicates that the conventional

progressive load shedding method fails to adequately postpone pandemonium.

In contrast to the load shedding methodology examined in this paper, which progressively

relocates bifurcations deeper into the stability domain, the traditional scheme exhibits a

lack of control, leading to both excessive and insufficient shedding in electrical power

circuits, hence fostering chaotic oscillations. Moreover, rather than a seamless transition

to stability, the bifurcation diagram for the typical system displays sudden shifts between

periodic and chaotic behaviour, further validating the inadequacy of a fixed threshold
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method in mitigating instability.

9.3.4 Representation for the Subharmonic Resonance

Figure 9.9: Bifurcation diagrams when the load shedding terms are increasing in the
scheme analysed in this study for subharmonic resonance when Ω = 19.375 rads−1.

Figure 9.9 illustrates bifurcation diagrams for subharmonic resonance at Ω = 19.375

rads−1. The swing equation incorporates a load shedding factor, and the output is

examined to observe chaotic behaviour.

The initial diagram illustrates the dynamic behaviour in the absence of a load shedding

factor in the swing equation [6, 7]. Chaotic behaviour is seen at around r = 2.15. Chaos

can only be observed at r = 2.2 with the load shedding parameter, PLS = 0.05. As

the load shedding parameter escalates to 1.2, the system descends into anarchy at r =

2.47. This indicates that pandemonium is postponed when the load shedding parameter

is incrementally increased, corroborating the findings of the controlled load shedding

scheme examined in this work.

197



CHAPTER 9. ANALYSING LOAD SHEDDING TECHNIQUE TO INCREASE

STABILITY

Figure 9.10: Basins of attractions with load shedding term within the swing equation
when Ω = 19.375 rads−1.

The basins of attraction depicted in Figure 9.10 illustrate the regions of initial

conditions that lead the system to stable equilibrium states under the phenomenon of

subharmonic resonance. These basins serve as a visual representation of the system’s

stability landscape. In the figure, the red and green regions represent areas of stability

where the system eventually settles into periodic or quasi-periodic behaviour.

When there is no load shedding mechanism incorporated into the system, the size of

the stable basin remains relatively small, indicating limited tolerance to perturbations in

initial conditions. This suggests that the system is more prone to instability under such

circumstances. However, as the load shedding term is increased, a notable expansion in

the stable basin can be observed. This expansion implies that the system becomes more

robust and less sensitive to variations in initial states.

Figure 9.11 further reinforces this observation by illustrating additional basins of

attraction corresponding to progressively higher values of the load shedding term. The

sequence of graphs captures the dynamic evolution of the system’s stability landscape as

the load shedding parameter is varied. As the parameter increases, the basins of attraction

become larger and more inclusive, thereby confirming that load shedding contributes
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significantly to the enhancement of system stability and the enlargement of the domain

of attraction.

Hence, both figures underscore the positive influence of load shedding on system

dynamics, particularly under conditions of subharmonic resonance. The increasing area

of the stable regions with higher load shedding indicates that such a control strategy can

effectively mitigate instability.

Figure 9.11: Basins of attractions when increasing the load shedding term within the
swing equation when Ω = 19.375 rads−1.
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Figure 9.12: Increase in stability as the load shedding term is incremented for Primary
Resonance when Ω = 8.61 rads−1 and Subharmonic Resonance when Ω = 19.375 rads−1.

Figure 9.12 shows the relationship between load shedding PLS and the increase in the

stability region for both primary resonance, when Ω = 8.61 rad s−1, and subharmonic

resonance, when Ω = 19.375 rad s−1. It can be observed that stability increases as the load

shedding term is incremented. At PLS = 1.2, the stability region increases to a maximum

by 49.21% for primary resonance and 45.34% for subharmonic resonance. These results

validate the bifurcation diagrams and Lyapunov exponents, confirming that the load

shedding term contributes to delaying the onset of chaotic oscillations.

The clear trend indicates that load shedding not only suppresses chaos but also

enhances the system’s tolerance to initial perturbations. This improved stability is

especially critical in energy systems, where maintaining operational continuity is essential.

The differing percentages of improvement between primary and subharmonic resonances

suggest that the system’s response to load shedding is frequency-dependent, with primary

resonance exhibiting a slightly greater sensitivity to control interventions. This distinction

may be attributed to differences in nonlinear energy transfer mechanisms active at

different excitation frequencies. Overall, the results reinforce the role of load shedding as

an effective control strategy for managing dynamic instabilities in nonlinear oscillatory
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systems.

9.3.5 Load Shedding in the Matlab Simulink Model

Figure 9.13: Conceptual schematic of the power system integrated with the proposed
load shedding control loop.

Figure 9.13 presents a generic block diagram representing a power system with integrated

load shedding control. This diagram captures the essential dynamic interactions between

generation, system response, and real-time control mechanisms, framed within the context

of the modified swing equation.

The Generator block represents the mechanical power input, denoted by Pm, which

is typically provided by a turbine or other prime mover. This mechanical input serves

as the driving force of the system and is a critical component in the balance of energy

within the generator.

The Power System block models the fundamental swing dynamics of the generator,

which are governed by the classical swing equation. This block includes parameters

such as the system’s moment of inertia H, the damping coefficient D, and the electrical

power output Pe. Together, these variables define the generator’s response to imbalances

between mechanical input and electrical output power. The swing equation characterises

the evolution of the rotor angle θ, which represents the angular displacement of the

generator rotor and serves as a key indicator of system stability.

The output of the Power System block is the rotor angle θ, which is continuously

monitored. Both θ and its time derivative θ̇, representing the rotor speed deviation,
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are essential for assessing the system’s dynamic behaviour and detecting the onset of

instability.

The Control block receives θ and θ̇ as inputs and computes the appropriate load

shedding response. This response is determined based on deviations from nominal

operating conditions, and the control strategy aims to stabilise the system by curtailing a

calculated portion of the load. The resulting control signal is then fed back into the Power

System block, effectively modifying the damping characteristics of the swing equation

through the introduction of a load shedding term.

This closed-loop structure reflects the implementation of a modified swing equation,

such as that expressed in Equation (9.19), where the effective damping is dynamically

enhanced by the control input. As a result, the integrated system is capable of reacting

in real time to disturbances, reducing the likelihood of instability and chaotic behaviour,

and maintaining operational security within the power grid.

Figure 9.14: Simulink model of the swing equation with the load shedding term when Ω
= 7.5 rads−1.

The Simulink model illustrated in Figure 9.14 represents the implementation of

the swing equation with an integrated load shedding term. This model facilitates the
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simulation and analysis of power system dynamics under various operational conditions

and disturbance scenarios. It allows for real-time observation of system responses,

including frequency deviations, rotor angle oscillations, and the impact of load curtailment

on overall stability. By incorporating the modified swing equation directly into the model,

this setup serves as a valuable tool for validating analytical findings and evaluating the

performance of control strategies.

To investigate the system’s behaviour around resonance conditions, specific excitation

frequencies were chosen. For the analysis of primary resonance phenomena, an excitation

frequency of Ω = 7.5 rad s−1 was selected. This value is situated near the system’s primary

resonance frequency and enables the observation of characteristic nonlinear responses

such as increased amplitude oscillations and potential bifurcations. The choice of this

frequency provides insight into how the system responds when it is near its natural

frequency, where small disturbances can result in significant dynamic amplification.

In addition, a higher excitation frequency of Ω = 18.9 rad s−1 was chosen to investigate

the system’s behaviour near subharmonic resonance. At this frequency, the system exhibits

complex dynamic behaviours, such as period-doubling and intermittent instability, which

are typical precursors to chaos in nonlinear systems. Analysing the model’s response at

this frequency helps to identify the thresholds at which the system transitions from stable

to chaotic regimes. The comparative study of system dynamics at both primary and

subharmonic resonance frequencies underscores the importance of frequency-dependent

stability analysis and demonstrates the efficacy of the control-based load shedding

mechanism in mitigating undesirable nonlinear effects.
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Figure 9.15: Poincaré maps from the Simulink model showing the delay in chaos after
the load shedding term is included for Ω = 7.5 rads−1.

The Poincaré maps in Figure 9.15 were derived using the aforementioned Simulink

model to illustrate the delay in the onset of chaos as a result of incorporating the

load shedding factor. These maps offer valuable insights into the system’s phase space

dynamics by sampling the system at regular intervals, thus enabling the visual detection

of periodicity and chaos. The first map illustrates the system’s behaviour in the absence

of a load shedding term at an excitation frequency of Ω = 7.5 rad s−1. Under these

conditions, chaotic behaviour becomes evident when the angular displacement θ ≈ 1.6,

as characterised by the presence of widely dispersed points on the map, indicative of a

loss of regularity in the system’s motion.

Upon introducing a load shedding term of 1.2 pu, the system exhibits a significant

delay in the manifestation of chaotic dynamics. The corresponding Poincaré map shows

that chaos now arises around θ ≈ 1.7, as reflected by the scattered distribution of points,

though the onset is clearly postponed. This shift in the threshold of chaotic behaviour

highlights the stabilising influence of load shedding, which acts to suppress the system’s

transition into chaotic regimes. The observed delay suggests that the system remains in
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a more ordered state over a broader range of operating conditions, thereby enhancing its

dynamic reliability.

The implications of these findings are particularly important for power system stability

and control. By effectively delaying the onset of chaos, load shedding allows system

operators greater flexibility in maintaining control, especially under fluctuating demand

or disturbances. This capacity to defer instability can be critical during peak loads

or fault conditions, providing valuable time for corrective action. Furthermore, the

analysis reinforces the importance of non-linear diagnostic tools such as Poincaré maps

in understanding complex dynamical systems and evaluating control strategies like load

shedding. Overall, the results demonstrate that targeted intervention via load shedding

can play a pivotal role in improving the resilience and operational robustness of non-linear

oscillatory systems.

Figure 9.16: Poincaré maps from the Simulink model showing the delay in chaos after
the load shedding term is included for Ω = 18.9 rads−1.

Figure 9.16 illustrates the Poincaré maps both with and without the load shedding

term at Ω = 18.9 rads−1. Chaos commences at θ ≈ 1.6103 in the absence of the load

shedding term, however with the inclusion of the load shedding term, chaos manifests at
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θ ≈ 1.652, accompanied by a limited number of locations on the map. This underscores

the significance of the load shedding methodology for the swing equation.

Time series data regarding the rotor speed is acquired to validate the results obtained.

Figure 9.17: Time series and Phase portraits for the rotor speed with load shedding and
without load shedding for Ω = 7.5 rads−1.

Figure 9.17 illustrates the time series and phase pictures of rotor speed in the swing

equation, contrasting the system’s behaviour with and without load shedding at Ω =

7.5 rads−1, which is near the primary resonance value. In the absence of load shedding,

erratic oscillations persist for an extended duration before progressively stabilising into a

consistent oscillatory pattern. This signifies that disturbances endure for an extended

duration within the system. The phase pictures indicate that, with load shedding, the

system enters a stable area characterised by fewer spirals compared to the scenario

without the load shedding term. Thus, demonstrating that the system attains stability

rapidly with the introduction of a load shedding factor in the equation.

The load shedding method enables the rotor speed to attain stable oscillations more

rapidly. The supplementary damping effect from load shedding significantly diminishes

oscillation amplitude and curtails chaotic activity, resulting in expedited stabilisation.
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This underscores the significance of incorporating the load shedding approach to mitigate

volatility.

Figure 9.18: Time series and Phase portraits for the rotor speed with load shedding and
without load shedding for for Ω = 18.9 rads−1.

Figure 9.18 shows the behaviour of the system when an Ω value is considered that

is close to the subharmonic resonance. At Ω = 18.9 rad s−1, the time series and the

corresponding phase portraits are compared both with and without the load shedding

term. The figure effectively demonstrates the impact of load shedding in delaying the

onset of chaotic behaviour, highlighting its role in stabilising the system. The results

further validate the importance of incorporating the load shedding term as a control

mechanism to improve dynamic reliability and mitigate instability.

The comparison reveals that, in the absence of load shedding, the system rapidly

descends into chaotic oscillations, characterised by erratic and irregular trajectories in

both the time series and phase space. However, when the load shedding term is introduced,

the system maintains a more coherent and quasiperiodic response over a longer duration.

This contrast underscores the effectiveness of load shedding in preserving system order

near critical resonance frequencies.
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Table 9.2: Quantitative Performance Comparison: Proposed Method vs. Conventional
(UFLS) method.

Metric
Conventional

UFLS
Proposed
Method

Improvement

Chaos Onset
(r value)

2.15 2.72
+0.57
(26.5% delay in instability)

Stability Region Size 24% 49%
+25 percentage points
(104% relative increase)

System Recovery Time 12 s 6.5 s
45% faster
restoration

Power Cut Frequency
Every 5s
(fixed step)

Only triggered
on instability

Reduced
unnecessary shedding

Lyapunov Exponent Shift +0.12 → - 0.05 +0.12 → - 0.15
Greater negative shift
(stronger damping)

Table 9.2 contrasts the suggested load shedding strategy with the conventional

Underfrequency Load Shedding (UFLS) method utilising performance indicators. The

proposed technique postpones the emergence of chaos, enhancing the crucial bifurcation

by 26.5%. It further enlarges the stability region by a relative increase of 104%. The system

recovery time is reduced by over 50%, demonstrating a 45% faster return to a stable

condition. In contrast to the traditional system that disconnects load at predetermined

intervals, the solution presented in this study only sheds load when instability is detected,

hence minimising power outages. The Lyapunov exponent shift signifies enhanced damping

and increased robustness in the system. These findings numerically affirm and substantiate

that the proposed technique provides more efficient control mechanisms for sustaining

power system stability.

9.3.6 Sensitivity Analysis of the System’s Parameters

Studying how key system parameters affect power system stability is vital for analysing

the robustness of control strategies. A sensitivity analysis is carried out to examine the

influence of the parameters damping and inertia on the dynamics of the swing equation

when the swing equation with the load shedding term is considered. By varying each

parameter individually while keeping the others constant, phase portraits were plotted

and examined to understand changes in the system’s qualitative behaviour. This approach
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allows the identification of parameter thresholds beyond which the system may exhibit

instability, oscillatory divergence, or transitions into chaotic regimes. These findings are

particularly relevant for real-world implementation, where grid parameters can vary due

to operational changes, infrastructure upgrades, or network reconfiguration, leading to

different topologies and conditions.

The results of the sensitivity analysis reveal that increased damping generally enhances

system stability by reducing oscillation amplitudes and accelerating convergence to

steady-state conditions. In contrast, reduced damping can lead to sustained oscillations

or even chaotic motion, particularly near resonance conditions. Similarly, variations

in inertia significantly influence the system’s dynamic response: higher inertia values

tend to smooth out transient disturbances and delay instability, while lower inertia

may amplify the effects of perturbations and lead to faster divergence from equilibrium.

These insights are critical when designing adaptive control strategies, especially for

modern power systems with high renewable energy penetration, where system inertia

is often reduced. Understanding how these parameters affect system resilience provides

a foundation for tuning control laws and deploying corrective measures such as load

shedding more effectively.
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Figure 9.19: Phase portraits when damping is altered when the load shedding term is
included in the swing equation for Ω = 8.61 rads−1.

Figure 9.19 shows the phase portraits under varying damping conditions in the swing

equation with the load shedding term included. As the damping value is increased to 0.5,

the system rapidly converges to the equilibrium point, clearly reflecting enhanced system

stability. This behaviour confirms the expected stabilising influence of damping and further

demonstrates that the proposed load shedding strategy retains its effectiveness even when

intrinsic damping is low, an increasingly common scenario in renewable-dominated grids.

The progression of the phase portraits illustrates how lower damping values lead to

broader and more spiralled trajectories, indicating longer-lasting oscillations and a slower

return to steady-state conditions. This reflects the natural tendency of low-damping

systems to be more sensitive to disturbances, which is especially relevant in modern grids

with a high penetration of inverter-based resources that inherently contribute very little
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damping.

Despite these conditions, the presence of the embedded load shedding term clearly

mitigates the associated risks. Even at reduced damping levels, the term effectively

dampens the oscillations and steers the system toward equilibrium more quickly. This

reinforces the value of the proposed control approach not only as a response mechanism

to overloading but also as an auxiliary damping source that becomes crucial when natural

system damping is insufficient.

Overall, the results validate both the necessity of damping and the robustness of the

proposed load shedding method. It performs reliably across different damping scenarios,

offering a practical and adaptive means of enhancing stability in low-inertia, inverter-rich

power systems.

Figure 9.20: Phase portraits when inertia is altered when the load shedding term is
included in the swing equation for Ω = 8.61 rads−1.
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Figure 9.20 above shows the phase portraits of the swing equation with the load

shedding term when the inertia is incremented. As inertia increases, the phase portraits

become more compact and the system transitions more slowly but steadily toward

equilibrium. Additionally, the proposed load shedding strategy remains effective across

all inertia levels, helping to compensate for the reduced natural stability in low-inertia

systems.

As inertia escalates, the system’s response becomes increasingly lethargic yet more

predictable, exhibiting diminished sensitivity to disturbances. This is apparent in the

phase portraits, where the loops are more compact and converge seamlessly to the

origin, indicating improved damping and reduced frequency variations. Conversely, at

diminished inertia levels, the system demonstrates broader loops and swifter yet less

stable oscillations, potentially resulting in instability if inadequately managed. The

incorporation of the load shedding concept is especially beneficial in low-inertia scenarios,

when conventional stabilisation methods may fall short.

Moreover, these findings are particularly pertinent to contemporary power networks

that are progressively incorporating renewable energy sources like wind and solar. These

sources are generally connected via power electronics and provide minimal system inertia.

Consequently, sustaining frequency stability becomes increasingly difficult. The suggested

technique exhibits versatility by stabilising both high- and low-inertia scenarios, rendering

it suitable for future grids with significant proportions of inverter-based power. This

underscores the method’s practical significance and its potential contribution to tackling

the emerging difficulties of grid stability in low-inertia contexts.

9.3.7 Load Disturbance

To evaluate the efficacy of the proposed load shedding strategy, phase portraits were

employed to analyse the system’s dynamic behaviour following a rapid load disturbance.

In this chapter, a realistic scenario was simulated by imposing a sudden 25% increase

in system load. This form of disturbance mirrors real-world phenomena such as abrupt

demand surges, generator or line disconnections, or fault-induced transitions. These

events are known to exert significant stress on the power system and, if not promptly

addressed, can lead to unstable frequency oscillations, activation of protective schemes,
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and, in severe cases, large-scale blackouts.

Figure 9.21 presents the phase portraits for two distinct operating conditions: one

without any load shedding control and the other incorporating the proposed control-based

load shedding mechanism. In the uncontrolled case, the system exhibits wide, loosely

spiralling trajectories in the phase plane, indicating sustained oscillations with slow

attenuation. The rotor angle and angular velocity continue to fluctuate significantly after

the initial shock, demonstrating that the system struggles to return to equilibrium. This

prolonged transient response reflects inadequate damping and a heightened sensitivity to

perturbations. Such a scenario is undesirable in practical settings, as persistent oscillations

increase the likelihood of triggering protective relays or destabilising interconnected

components within the grid, potentially leading to cascading failures.

Figure 9.21: Phase portraits when sudden disturbance is altered introduced without and
with the load shedding term in the swing equation for Ω = 8.61 rads−1.
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In contrast, the second case, which includes the proposed load shedding control,

reveals a marked improvement in system behaviour. The phase trajectories become more

concentrated and localised around the equilibrium point. The spiral loops are significantly

reduced in amplitude and frequency, highlighting a quicker and more controlled return to

the steady-state condition. This improved dynamic response can be directly attributed

to the adaptive nature of the shedding mechanism. By continuously monitoring system

variables such as rotor angle and speed, the control system applies load curtailment in a

manner that effectively rebalances the mismatch between mechanical and electrical power.

This correction modifies the damping characteristics of the swing equation in real-time,

thereby suppressing oscillatory responses and stabilising the system more efficiently.

The success of this control approach underlines its capacity to operate as both a

preventive and corrective measure. Unlike threshold-based load shedding techniques,

which react only after certain predefined criteria are breached, the proposed method offers

a continuous, feedback-driven control strategy. This ensures a timely and proportional

response to disturbances, which is particularly valuable in modern power systems

characterised by high levels of uncertainty and variability, such as those with substantial

renewable energy penetration or decentralised generation sources.

This experiment provides compelling evidence of the benefits of embedding the load

shedding mechanism directly into the dynamic equations of the system. By integrating

control into the fundamental swing equation, the method ensures that corrective actions

are synchronised with the system’s intrinsic dynamics. The phase portraits serve as a

visual and analytical tool to demonstrate the contrast between uncontrolled instability

and controlled recovery, thereby validating the robustness and practical applicability of

the proposed strategy in enhancing system resilience under variable operating conditions.

9.4 Discussion

The findings of this study indicate that the optimum load shedding approach is crucial for

enhancing system stability and mitigating chaotic oscillations. The eigenvalues indicate

that elevating the PLS values improves damping and displaces the eigenvalues into the

left half-plane, so providing a more stable response. This parallels prior studies on power

system stability, in which damping measures have mitigated system failure. This study’s
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quantitative examination of bifurcations and Lyapunov exponents offers enhanced insight

into the swing equation system, demonstrating the impact of the load shedding strategy,

which subsequently postpones chaotic oscillations.

The suggested method is juxtaposed with the typical Under Frequency Load Shedding

methodology, which implements incremental disconnections according to specified frequency

thresholds. This traditional strategy frequently leads to inadequate or excessive shedding

due to its failure to account for the intensity of the disturbances. Conversely, the load

shedding approach outlined above guarantees that only a little load is relinquished

to restore stability, hence maintaining system integrity and service continuity. This

corresponds with the trajectory of contemporary smart grid technologies that depend on

adaptability and real-time control mechanisms.

The proposed strategy can be implemented in real-world nonlinear systems to improve

operational reliability. A primary advantage is its capacity to mitigate or avert blackouts

in extensive interconnected power grids by delivering prompt control measures during

disturbances. This method provides economic advantages by reducing unwanted customer

disconnections, therefore alleviating financial pressure on households and companies.

Given that blackouts lead to considerable economic detriment, a strategy that maintains

stability while minimising load shedding can enhance system efficiency and consumer

contentment.

A Matlab Simulink model was created to validate the practical implementation of the

approach, replicating essential components of physical power systems, such as the load

and generators. The Simulink results exhibited behaviour analogous to the analytical

and numerical findings, so corroborating the validity of the proposed methodology. The

block-based implementation facilitates method testing in a controlled environment and

may enable future hardware-in-the-loop testing.

The Simulink model accurately represents the dynamic behaviour of the swing

equation but does not explicitly incorporate the complete equivalent circuit of the power

supply. Therefore, the primary constraint is to the network topology, line impedances,

and generator specifications. These factors affect the transient responses of power systems.

The swing equation model incorporates electrical elements, including generator reactance,

bus voltage, and power angle, which represent the system’s electrical characteristics.

Subsequent study may concentrate on integrating this into multi-machine models or
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IEEE benchmark test systems to yield a more comprehensive and accurate depiction of

the system’s reaction.

This section also highlights that excessive load shedding can result in negative

consequences. If the shedding level exceeds a specific threshold, the system enters unstable

zones or exhibits a sluggish recovery from disruptions. The finding demonstrates the

existence of an ideal range for load shedding that preserves stability balance. Excessive

shedding may impede recuperation, whereas insufficient shedding may fail to avert

instability.

This approach is exceptionally efficient in terms of computing performance. The

control logic is straightforward; it monitors the rotor angle or frequency of the system

and initiates a proportional load shedding reaction upon exceeding specified thresholds.

The absence of iterative measures in the model renders the technique lightweight and

appropriate for real-time applications. It can be integrated into ordinary Supervisory

Control and Data Acquisition or Phasor Measurement Unit-based infrastructure without

necessitating intricate computing systems.

The existing model presumes static parameters and lacks real-time measurement

feedback; nonetheless, the concept is amenable to future incorporation of AI and

machine learning methodologies. This integration could allow the system to forecast

instabilities and adjust shedding methods in real time. This is especially pertinent as power

networks increasingly depend on renewable energy sources, which exhibit uncertainty

and heightened fluctuation. The suggested approach integrates control into the dynamics

of the power system, establishing a framework that ensures frequency stability even in

intricate settings.

9.5 Final Remarks

This chapter employs parameter settings that represent real-world generators and

comparable grid conditions; however, no actual grid data was utilised. Integrating

IEEE benchmark systems (such as the 9-bus or 39-bus models) and utilising actual

operational data would enhance the practical significance of the findings. Subsequent

research may concentrate on corroborating the methodology using real-time simulations

and hardware-in-the-loop (HIL) settings.
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Future enhancements may integrate the control-embedded methodology with machine

learning methodologies to provide predictive load shedding responses. This will be

advantageous in contemporary power grids characterised by significant renewable integration,

where system inertia is minimal and rapid control is needed. Therefore, enhancing the

model’s complexity and validating it in real-world contexts will be essential for real-time

infrastructures and the advancement of smart grids.

This research presents a mathematically complex, control-integrated load shedding

method that enhances frequency stability in nonlinear power systems through the

alteration of the swing equation. The primary contribution of this study is the direct

incorporation of the load shedding factor into the swing equation, enabling the control

mechanism to function as an internal dynamic rather than as an external adjustment. The

paper illustrates that this methodology successfully postpones the emergence of chaos

through analytical techniques, eigenvalue shifts, Lyapunov exponent analysis, bifurcation

diagrams, and Simulink validation. It enhances stable regions by as much as 49% and

decreases system recovery time by 45% relative to the traditional way. The technique

outlined in this study minimises disconnection by relinquishing only the essential load

necessary for system stabilisation, hence enhancing efficiency and economic advantage.

Its computational simplicity guarantees practical implementation utilising ordinary

SCADA or PMU-based infrastructure, eliminating the necessity for intricate algorithms.

This establishes the strategy as a feasible option for real-time stability improvement in

contemporary, progressively dynamic power systems. The chapter effectively connects

theoretical control models with their practical implementation, providing a comprehensive

framework for mitigating instability in essential grid activities.
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Conclusion

This research thesis has presented a detailed, multifaceted investigation into the nonlinear

dynamics of power systems, focusing particularly on the extended swing equation. The

study brought together analytical techniques, numerical simulations, and simulation-based

modelling to uncover the diverse and often complex behaviours exhibited by such

systems under various forcing conditions. The main objective was to explore how power

systems respond to dynamic disturbances, especially under conditions of resonance,

quasiperiodicity, and intermittency conditions that are not captured adequately through

conventional linear models.

The foundation for this work was laid in the early chapters, where the formulation of

the classical and extended swing equations was discussed in detail. The mathematical

model was enhanced to include not only damping and inertia but also parametric

excitation and external forcing features that allowed for the investigation of a wider range

of nonlinear behaviours. These extensions were justified in the literature as essential for

capturing real-world dynamics, especially in modern power systems where variability is

introduced by renewable sources, control systems, and distributed loads.

In the analytical chapters, the study utilised advanced mathematical techniques

such as the method of strained parameters, Floquet theory, and tangent instability

analysis to derive approximate solutions and investigate the stability of periodic and

quasiperiodic solutions. These tools were crucial in identifying critical thresholds known

as bifurcation points, where small changes in system parameters lead to significant

qualitative changes in system behaviour. The occurrence of primary and subharmonic
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resonance was systematically analysed, highlighting how specific forcing frequencies

amplify oscillatory responses and potentially push the system toward chaos.

The numerical chapters validated and extended these analytical results through

bifurcation diagrams, Poincaré maps, phase portraits, and Lyapunov exponent computations.

These tools allowed for the exploration of various nonlinear regimes, from stable periodic

oscillations to quasiperiodic motion and eventually chaotic attractors. One of the critical

findings was that quasiperiodicity, when induced by incommensurate forcing frequencies,

led to faster transitions to chaos compared to the primary or subharmonic resonance

cases. The study also examined how system trajectories evolved under changes in key

parameters such as excitation frequency Ω revealing complex period-doubling cascades

and torus breakdown routes to chaos.

A key contribution of the thesis lies in its investigation of intermittency, where systems

appear stable over long periods before abruptly transitioning into chaotic states. This

type of behaviour was found to be especially dangerous in power systems, as it introduces

unpredictability in timing and severity of instability. The identification of intermittent

regimes in the bifurcation structure of the swing equation model presents a significant

step forward in understanding real-world grid behaviour under fluctuating inputs.

Equally important was the detailed analysis of basins of attraction and integrity

diagrams, which revealed the sensitivity of system stability to initial conditions. These

visual tools illustrated the boundaries between stable and unstable trajectories and

showed how basin erosion occurred as parameters approached critical thresholds. The

findings emphasised the importance of knowing not just the system’s parameters, but

also its starting state, in order to reliably predict future behaviour.

Another major element of the thesis was the development and simulation of load

shedding strategies. These strategies were introduced as a method for controlling nonlinear

instabilities in real-time by reducing system load when instability or chaotic transitions

are imminent. The study compared conventional load shedding approaches to modified

ones developed from nonlinear system theory, showing how targeted shedding can delay

or prevent the onset of instability.

To ensure that theoretical and numerical findings translated into practical applicability,

a detailed Matlab Simulink model was constructed. This model implemented the full

extended swing equation and was used to simulate system response under a variety
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of initial conditions and parameter values. The Simulink environment also served as a

platform for testing and validating the effectiveness of control strategies like load shedding

in a near-realistic setting.

Altogether, this thesis has provided a coherent and layered understanding of how

nonlinear dynamics manifest in power systems, especially under external excitations and

disturbances.

10.1 Summary of Contributions and Implications

This thesis has contributed significantly to the understanding of nonlinear phenomena

in power systems through a comprehensive analytical, numerical, and experimental

investigation of the swing equation. The following points summarise the original contributions

made:

• Developed an extended formulation of the swing equation incorporating parametric

excitation, quasiperiodic forcing and nonlinear damping, providing a more realistic

representation of synchronous machine dynamics.

• Applied advanced analytical methods, including the method of strained parameters,

Floquet theory, and tangent instability analysis to derive approximate solutions

under primary and subharmonic resonance conditions.

• Conducted a comparative study of resonance types (primary, subharmonic, and

quasiperiodic) and their distinct roles in the onset of bifurcations, loss of synchronism,

and chaotic behaviour.

• Performed numerical investigations using bifurcation diagrams, Poincaré sections,

and Lyapunov exponent plots to map the system’s stability regions and characterise

routes to chaos.

• Introduced and modelled intermittency within the swing equation, identifying

parameter sensitivity effects and demonstrating how small perturbations can lead

to complex dynamical transitions.
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• Implemented the swing equation in Matlab Simulink, replicating analytical predictions

under various dynamic regimes and generating integrity diagrams to visualise regions

of stability and chaos.

• Proposed and evaluated a modified load shedding strategy as a control mechanism

to delay or suppress chaotic transitions. Analytical derivations and Simulink

simulations confirmed its superiority over conventional schemes.

• Integrated all analytical, numerical, and experimental methods under a cohesive

framework, bridging theoretical rigour with practical applicability in nonlinear

power system analysis.

Prior to the work presented in this thesis, the swing equation had long been recognised

as a fundamental tool for studying generator dynamics in power systems, particularly for

assessing transient and small-signal stability. However, most studies either linearised the

equation for tractability or focused on very specific nonlinear cases, often isolating the

influence of a single type of external excitation, typically sinusoidal or stochastic. The

full richness of nonlinear behaviour arising from combined resonance conditions, such as

subharmonic and quasiperiodic forcing, was largely unexplored in a unified analytical

and numerical framework.

The majority of existing analyses also relied heavily on numerical simulation or

qualitative phase space investigation, without a strong integration of rigorous analytical

techniques. While bifurcation theory and chaos analysis had been applied in isolated

studies, few works systematically linked methods such as the method of strained

parameters, Floquet theory, and Lyapunov exponent analysis within the context of

a single model across a wide parameter space. Moreover, very few studies connected these

analytical methods to experimental validation using platforms like Matlab Simulink,

which limited their practical applicability.

In the domain of power system protection and control, load shedding was traditionally

addressed through under-frequency or under-voltage thresholds, often derived from

empirical or static rules. There was little emphasis on treating load shedding as a dynamic

control problem that interacts with nonlinear instabilities or bifurcation structures. As a

result, standard load shedding schemes lacked predictive power and adaptability in the

presence of rapidly changing or resonant operating conditions.
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Overall, there was a clear gap in the literature for a comprehensive, multi-method

investigation of nonlinear dynamics in power systems one that combined analytical rigour,

numerical depth, simulation realism, and practical control relevance. This thesis aims to

fill that gap by offering a cohesive and validated approach to studying and controlling

complex dynamical behaviours in power networks.

This thesis has provided a deeper and more unified understanding of the nonlinear

dynamics governing synchronous machines in power systems. It has demonstrated that

resonance phenomena, whether primary, subharmonic, or quasiperiodic can lead to

significantly different routes to instability, each with distinct bifurcation patterns and

sensitivity characteristics. By applying perturbation methods, Floquet theory, and

Lyapunov-based diagnostics, this work has shown that it is possible to analytically

predict the onset of chaotic transitions across a broad parameter space, even in the

presence of complex excitations.

Through systematic numerical simulations and bifurcation analysis, this research has

clarified the impact of intermittency and quasiperiodic forcing on power system stability,

showing how seemingly small parameter variations can induce irregular, unpredictable

behaviours. It has also introduced and verified a new approach to load shedding, wherein

control interventions are not merely reactive but strategically designed based on the

underlying nonlinear dynamics. This method delays or prevents the transition to chaos,

offering a proactive alternative to conventional frequency-threshold schemes.

Furthermore, the study has validated that analytical predictions align closely with

experimental results obtained via Matlab Simulink, thus bridging the gap between theory

and real-time simulation. The inclusion of integrity diagrams and Poincaré maps has

enhanced the interpretability of the results, providing operators and engineers with visual

tools for diagnosing stability margins.

In essence, this work has reframed how power system stability under nonlinear stress

is understood, analysed, and controlled. It has shown that a hybrid analytical, numerical

and simulation methodology can yield both theoretical insights and practical strategies

for enhancing resilience in modern power networks.
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10.1.1 Real-World Implications

The findings of this thesis hold significant implications for several key stakeholders in the

design, operation, and control of modern power systems.

For grid operators, the work presents an analytical and simulation-based framework

to better understand how nonlinear dynamics such as resonance, intermittency, and

chaos can emerge under routine operating conditions. By recognising early indicators

of instability such as bifurcation points or positive Lyapunov exponents operators can

take informed, pre-emptive actions to maintain synchronism, thereby reducing the risk

of cascading failures or blackouts.

In the context of smart grid design, the insights from this research offer valuable

guidance for embedding resilience into system architecture. The analysis of quasiperiodic

and subharmonic resonance provides a basis for anticipating how multiple time-varying

inputs from renewable energy sources may interact in unpredictable ways. By integrating

bifurcation-aware control logic, smart grids can be made more adaptive to dynamic and

distributed sources of generation and load.

For control system developers, the proposed load shedding strategy exemplifies

how nonlinear analysis can inform control design beyond conventional threshold-based

heuristics. The analytical derivation of control conditions based on system parameters

enables the development of more nuanced, proactive stabilisation mechanisms. Such

strategies could be embedded into real-time controllers or decision-support tools used in

energy management systems.

Overall, this thesis bridges the gap between theoretical nonlinear dynamics and

practical engineering applications, offering a transferable toolkit that not only improves

system-level understanding but also enhances operational decision-making in complex,

real-world environments.

10.2 Research Impact

10.2.1 Applications in the Industrial Sector

The results of this study have clear implications for the industrial sector, where power

systems play a crucial role in operating large-scale equipment and manufacturing processes.
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Stability in such systems is critical, as even brief disturbances can lead to costly downtimes,

safety risks, and equipment damage. The nonlinear analysis carried out in this research

provides tools for better prediction and prevention of such disturbances. Engineers can

use the results to design control and protection mechanisms that account for bifurcation

points and potential routes to chaos scenarios that traditional linear models may miss.

In particular, the findings related to resonant excitations and chaotic attractors

can be used to refine the control logic in power converters, inverters, and smart grid

interfaces. Load shedding strategies developed in this research can also be adapted for use

in emergency response systems, where rapid stability restoration is critical. Additionally,

the integrity diagrams generated through simulation offer a visual framework for system

designers to identify stable and unstable zones in parameter space an invaluable resource

during system planning and commissioning.

Overall, the industrial relevance of this research lies in its ability to contribute to

safer, more robust, and intelligent power network operations, particularly in environments

integrating high levels of renewable energy or operating under variable loading conditions.

10.2.2 Applications in the Academic Sector

From an academic standpoint, this thesis contributes to the ongoing advancement of

nonlinear system theory and its application in power engineering. The extended swing

equation developed in this study, along with its analytical treatment and simulation

validation, provides a strong foundation for future research into synchronisation, stability,

and chaos in energy systems. The combination of analytical and numerical techniques

presented here ranging from perturbation methods to Lyapunov analysis and integrity

mapping demonstrates a multidisciplinary approach that can be expanded and applied

to other complex systems.

Academics studying system stability, renewable integration, or smart grid control can

build on the methodologies and modelling techniques demonstrated in this work. The

Simulink models, in particular, offer a teaching and research tool for exploring nonlinear

behaviours in a hands-on environment. Moreover, the thesis highlights areas such as

intermittency and quasiperiodicity that are often under-explored in engineering education

but highly relevant to modern systems.
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This work encourages the academic community to adopt nonlinear approaches as

part of standard analysis, particularly when designing systems intended to operate near

their performance boundaries or under uncertain conditions. By filling existing gaps in

literature and methodology, the thesis provides a valuable contribution to power systems

education and research.

10.2.3 Limitations

• The swing equation model is based on a single-machine system, which does not

fully represent the dynamics of large-scale interconnected grids.

• Idealised conditions are assumed in many analytical derivations (e.g., no noise, no

time delays), limiting applicability in real-world environments.

• The complexity of nonlinear dynamics makes it difficult to obtain closed-form

solutions in many scenarios, requiring extensive numerical simulation.

• The system’s sensitivity to initial conditions can result in significant variation in

long-term outcomes, complicating prediction and control.

• Simulations using Matlab Simulink, while powerful, are time-consuming and

computationally intensive for high-resolution chaos analysis.

• Load shedding strategies were tested in simulation only, no hardware-in-the-loop

validation was performed.

• The research does not incorporate network effects such as line impedance, multi-node

feedback, or reactive power dynamics.

• No formal optimisation of control strategies (e.g., for minimal load loss or energy

efficiency) was included.

• The study focuses primarily on deterministic systems, omitting potential effects of

stochastic inputs or noise.

• Integrity diagrams and bifurcation maps were based on finite resolution simulations,

which may miss ultra-fine transitions or microstructures.
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10.2.4 Methodological Generalisation to Other Nonlinear

Systems

While this thesis has focused on nonlinear dynamics within power systems, particularly

through the lens of the swing equation, the analytical and simulation techniques employed

here are broadly applicable across a variety of scientific and engineering domains. The

methodological framework comprising perturbation analysis, Floquet theory, bifurcation

mapping, Lyapunov exponent evaluation, and numerical simulation using Matlab Simulink

can be extended to the study of other complex nonlinear systems exhibiting oscillatory

or chaotic behaviour.

In robotics, for instance, the dynamics of flexible joints and manipulators with variable

stiffness can be modelled using second-order nonlinear differential equations similar to

the swing equation. Understanding resonance effects and ensuring stability under varying

loads or control inputs could benefit from the bifurcation and chaos analysis techniques

developed in this work.

In the aerospace sector, flight control systems, particularly those involving delayed

feedback or actuator saturation, can experience nonlinear instabilities that resemble the

transitions observed in power systems. Perturbation methods and stability analysis using

Floquet theory are well-suited to assessing aircraft response to periodic disturbances,

wind gusts, or system faults.

Biomedical engineering applications, such as cardiac rhythm models, neural oscillators,

and respiratory systems also exhibit quasiperiodic and chaotic behaviour. The methods

used to analyse intermittent transitions and stability boundaries in this thesis could be

adapted to investigate pathological conditions like arrhythmias, epileptic seizures, or

ventilator-induced instabilities.

Moreover, the load shedding framework proposed here parallels the idea of active

control or intervention in other domains. In robotic systems, this might correspond to

actuator disengagement; in aerospace, to dynamic thrust reduction; and in medicine, to

real-time drug dosage regulation.

Thus, this research not only contributes to power system stability but also offers a

transferable toolkit for exploring, diagnosing, and mitigating nonlinear behaviour in a

wide array of real-world systems.
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10.3 Future Work

While this thesis has made substantial progress in understanding and controlling nonlinear

behaviours in power systems, several promising avenues for future research remain open.

One natural extension of this work is the study of multi-machine systems using coupled

swing equations. Real power grids consist of multiple generators and control elements

interacting across networked topologies. Coupling effects can give rise to synchronisation

patterns, phase locking, and collective bifurcations that are not captured in single-machine

models. Extending the current framework to analyse these interactions would provide a

more realistic and robust foundation for control design.

Another important direction involves stochastic modelling and noise analysis. Real-world

power systems are subject to fluctuations due to weather, demand variability, and

intermittent renewable generation. Incorporating stochastic terms into the swing equation

such as white noise or coloured noise processes would enable the study of noise-induced

transitions, coherence resonance, and probabilistic stability margins.

There is also scope for advancing real-time chaos control. While this thesis explored

load shedding as a stabilisation strategy, emerging techniques such as delayed feedback

control, adaptive damping, and reinforcement learning offer new possibilities for mitigating

chaos without sacrificing performance. These methods can be integrated into smart grid

infrastructure and tested using digital twin simulations.

From a computational perspective, the development of faster and more scalable

simulation tools would be highly beneficial. This includes parallelised simulation frameworks,

surrogate modelling using machine learning, and reduced-order models for control

optimisation. These tools could significantly reduce the computational burden of conducting

large-scale nonlinear analysis.

Experimentally, constructing a hardware-in-the-loop (HIL) or laboratory-scale testbed

for validating the swing equation dynamics would strengthen the link between theory

and physical systems. Integrating real sensors, control hardware, and power converters

would allow researchers to test chaos detection and control strategies in a controlled but

realistic environment.

Finally, future research could explore the role of nonlinear stability indicators,

such as fractal basin boundaries, entropy measures, or generalized stability indices,
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as new ways to quantify resilience and design robust control protocols. These tools may

help decision-makers assess risk and reliability in complex, nonlinear grids under high

variability.

By pursuing these directions, future studies can build upon the foundation laid by

this thesis, helping advance the discipline of nonlinear power system dynamics and

contributing to more intelligent, adaptive, and resilient energy infrastructure.
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11.2 Ethical Considerations
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The researcher ensured that all data handling adhered to the principles of objectivity,

carefulness, and reproducibility.
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Appendix A

A.1 Parameters of Machine Used in Chapter 3

The parameters of the machine taken are similar to that from Table D3 of Appendix D

of the textbook by Anderson and Fouad (1977). They are as follows:

• Rated MVA: 160

• Rated power factor: 0.805

• Rated voltage: 15.2 kV

• Frequency: 60 Hz

• Transient reactance, X ′: 0.244 per unit

• Inertia constant, H: 2.36 s

The remaining parameters of the SMQIBS (Single Machine Quasi-Infinite Bus System)

are:

• Line reactance, Xline: 0.4 per unit

• Bus voltage modulation amplitude, VB1: 0.1 per unit

• Bus angle modulation amplitude, θB1: 0.1 rad

• Bus voltage magnitude, VB0: 1 per unit

• Bus angle, θB0: 0.1 rad

• Total reactance, XG = Xline +X ′: 0.645 per unit

• Damping coefficient, D: varied between 0.002 and 0.016
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A.2 Parameters of Machine Used in Chapter 4

The parameters of the machine taken are similar to that from Table D3 of Appendix D

of the textbook by Anderson and Fouad (1977). They are as follows:

• Rated MVA: 160

• Rated power factor: 0.805

• Rated voltage: 15.2 kV

• Frequency: 60 Hz

• Transient reactance, X ′: 0.244 per unit

• Inertia constant, H: 2.36 s

The remaining parameters of the SMQIBS (Single Machine Quasi-Infinite Bus System)

are:

• Line reactance, Xline: 0.4 per unit

• Bus voltage modulation amplitude, VB1: 0.2 per unit

• Bus angle modulation amplitude, θB1: 0.2 rad

• Bus voltage magnitude, VB0: 1 per unit

• Bus angle, θB0: 0.2 rad

• Total reactance, XG = Xline +X ′: 0.645 per unit

• Damping coefficient, D: 0.004

A.3 Codes

Code for Phase portraits, frequency-domain plots and Poincaré maps

clc;

clear all;
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N=1000;

T=linspace(0,30,N);

H=T(2)-T(1);

F=@(X2)X2;

G=@(X1,X2,T)-0.05*X1 +0.9 - 2.1*(1 + 0.1*cos(8.27*T)*sin(X1 - (1+0.1*cos(8.27*T))));

X1=zeros(1,N);

X2=zeros(1,N);

X1(1)=0;

X2(1)=1;

for i=1:N-1

K1=F(X2(i));

L1=G(X1(i),X2(i),T(i));

K2=F(X2(i)+((H/2)*L1));

L2=G(X1(i)+((H/2)*K1),X2(i)+((H/2)*L1),T(i));

K3=F(X2(i)+((H/2)*L2));

L3=G(X1(i)+((H/2)*K2),X2(i)+((H/2)*L2),T(i));

K4=F(X2(i)+((H)*L3));

L4=G(X1(i)+((H)*K3),X2(i)+((H)*L3),T(i));

X1(i+1)=X1(i)+(H/6)*(K1+2*K2+2*K3+K4);

X2(i+1)=X2(i)+(H/6)*(L1+2*L2+2*L3+L4);

end

figure(1)

plot(T,X1)

hold on

plot(T,X2,’r’);

legend(’x1(t)
′,′ x2(t)

′);

xlabel(’Normalized Time’);

ylabel(’States of the system’)

figure(2)

plot(X1,X2,’k’)

xlabel(’x′1); ylabel(
′x′

2)

[T,X] = ode45(G,T,X0’);
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n = length(T); RES =5; p = 0.035;

poincarex = X((n ∗ p) : RES : n, 1);

poincarez = X((n ∗ p) : RES : n, 1); figure(5);

plot(poincarex, poincarez,
′ r∗′);

xlabel(’θ(t)′);

ylabel(’ ˙θ(t)’,’interpreter’,’latex’);

axis([1.346 1.35 1.346 1.35]);

title(’Poincare map’); grid on

Npre = 200; Nplot = 100;

N=10;

Codes for Bifrucation diagrams and Lyapunov Exponents

x = zeros(Nplot,1);

for T = 0:0.01:1

x(1) = 0.5;

for n = 1:Npre

x(1) = (- 0.05*x(1) + 0.9 - 2.44*sin(x(1) - (1+0.1*cos(8.27*T))));

end

for n = 1:Nplot-1

x(n+1) = x(n)*(- 0.05*x(n) + 0.9 - 2.44*sin(x(n) - (1+0.1*cos(8.27*T))));

end

plot(T*ones(Nplot,1), x, ’.’, ’markersize’, 2);

hold on;

end

title(’Bifurcation diagram’);

xlabel(’r’); ylabel(’x′n);

set(gca, ’xlim’, [2.5 4.0]);

hold off;

function LE = LEofLogisticMap( rStart, rEnd, rStep ) rValues = rStart:rStep:rEnd;

nPoints = length( rValues );

nIterations = 1000;

LE = zeros( 1, nPoints );

x = zeros( 1, nIterations + 1 );
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x( 1 ) = 0;

for k = 1:nPoints

sum = 0;

for i = 1:nIterations

x( i + 1 ) = - 0.03*x(i) + 0.805 - rValues*sin(x(i) - (1+0.1*cos(8.27*7)));

sum = sum + log( abs( rValues( k ) - 0.5*rValues( k )*x( i ) ) );

end

LE( k ) = sum / nIterations;

end

rStart = 0.2;

rEnd = 2.8;

rStep = 0.005;

LE = LEofLogisticMap( rStart, rEnd, rStep );

figure; plot( rStart:rStep:rEnd, LE, ’k.-’ ); axis tight;

xlabel( ’r’ );

ylabel( ’Values of estimated Lyapunov exponent’ );

hold on;

plot(yline(0));

G = @(X1, X2, T) -0.05*X1 + 0.9 - 2.1*(1 + 0.1*cos(8.27*T)*sin(X1 - (1 +

0.1*cos(8.27*T))));

omega = 8.27;

T = 2*pi/omega;

X10 = linspace(−2 ∗ pi, 2 ∗ pi, 1000);X20 = zeros(size(X10));

epsilon = 0.01;

bifurcationpointsF loquet = [];

bifurcationpointstangent = [];

bifurcationpointsstrained = [];

for i = 1:length(X10)

X1init = X10(i);

X2init = X20(i);

[T, X] = ode45(@(t, y) [y(2); G(y(1), y(2), t)], [0 T], [X1init;X2init]);
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[ , floquetindices] = max(abs(eig(jacobian(@(t, y)[y(2);G(y(1), y(2), t)], 0, X(end, :

)))));

bifurcationpointsF loquet = [bifurcationpointsF loquet;X(end, 1)floquetindices];

[T, X] = ode45(@(t, y) [y(2); G(y(1), y(2), t) + epsilon*y(1)], [0 T], [X1init;X2init]);

[ , tangentindices] = max(abs(eig(jacobian(@(t, y)[y(2);G(y(1), y(2), t) + epsilon ∗
y(1)], 0, X(end, :)))));

bifurcationpointstangent = [bifurcationpointstangent;X(end, 1)tangentindices];

[T, X] = ode45(@(t, y) [y(2); G(y(1), y(2), t) + epsilon*y(1) + epsilon2∗y(1)2], [0T ], [X1init;X2init]);

[ , strainedindices] = max(abs(eig(jacobian(@(t, y)[y(2);G(y(1), y(2), t) + epsilon ∗
y(1) + epsilon2 ∗ y(1)2], 0, X(end, :)))));

bifurcationpointsstrained = [bifurcationpointsstrained;X(end, 1)strainedindices]; end

figure;

plot(bifurcationpointsF loquet(:, 1), bifurcationpointsF loquet(:, 2),
′ .′,′ DisplayName′,′ FloquetMethod′);

hold on;

plot(bifurcationpointstangent(:, 1),

bifurcationpointstangent(:, 2),
′ .′,′ DisplayName′,′ TangentInstabilities′);

plot(bifurcationpointsstrained(:, 1),

bifurcationpointsstrained(:, 2),
′ .′,′ DisplayName′,′ MethodsofStrainedParameters′);

xlabel(’X1’);

ylabel(’Bifurcation Indices’);

legend;

title(’Bifurcation Diagram’);

Codes for Basins of Attractions

xmin = −15;

xmax = 10;

numpoints = 200;

x = linspace(xmin, xmax, numpoints);

y = linspace(xmin, xmax, numpoints);

[X, Y] = meshgrid(x, y);

basins = zeros(numpoints);

tspan = [010];

for i = 1:numpoints
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for j = 1:numpoints

IC = [X(i,j), Y(i,j)];

[t, x] = ode45(@myODE, tspan, IC);

finalpoint = x(end, :);

datapoints(i, j, :) = finalpoint;

end

end

datapoints = reshape(datapoints, [], 2);

numclusters = 5;

[idx, ] = kmeans(datapoints, numclusters);

basins = reshape(idx, numpoints, numpoints);

figure;

pcolor(X, Y, basins);

colormap(’jet’);

shading interp;

colorbar;

xlabel(’Real part of initial condition’);

ylabel(’Imaginary part of initial condition’);

title(’Basins of Attraction’);

ylim([-15,10])

xlim([-15,10])

function attractor = determineattractor(finalpoint)

attractor = abs(finalpoint(1)) < 1e− 3abs(finalpoint(2)) < 1e− 3;

end

Basins of attractions for load shedding clc; clear; close all;

xmin = −15;

xmax = 10;

numpoints = 200;

x = linspace(xmin, xmax, numpoints);

y = linspace(xmin, xmax, numpoints);

[X, Y] = meshgrid(x, y);
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PLSvals = [0, 0.05, 0.1, 5];

titles = ’No Load Shedding’, ’PLS = 0.05′,′ PLS = 0.1′,′ PLS = 1.2′;

figure; for p = 1:length(PLSvals)

PLS = PLSvals(p); basins = zeros(numpoints);

tspan = [010];

for i = 1:numpoints

for j = 1:numpoints

IC = [X(i,j), Y(i,j)];

[t, x] = ode45(@(t, x) myODE(t, x, PLS), tspan, IC);

finalpoint = x(end, :);

datapoints(i, j, :) = finalpoint;

end end

datapointsreshaped = reshape(datapoints, [], 2);

numclusters = 5; [idx, ] = kmeans(datapointsreshaped, numclusters);

basins = reshape(idx, numpoints, numpoints);

subplot(2,2,p);

pcolor(X, Y, basins);

colormap(’jet’);

shading interp;

colorbar;

xlabel(’Real part of initial condition’);

ylabel(’Imaginary part of initial condition’);

title(titlesp);

ylim([-15,10]);

xlim([-15,10]); end

function dxdt = myODE(t, x, PLS)r = 2.5; dxdt = zeros(2, 1);

dxdt(1) = x(2);

dxdt(2) = -0.03*x(2) + 0.805 - r*sin(x(1) - (1 + 0.1*cos(19*4))) - PLS;

end

Lyapunov Exponents for laod shedding

clc; clear; close all;
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Npre = 200;

Ncalc = 1000; delta0 = 1e-8;

rvalues = 0 : 0.005 : 4;

PLSvalues = [0, 0.235, 0.25, 9.8]; titles = ′NoLoadShedding′,′ PLS = 0.05′,′ PLS = 0.1′,′ PLS = 1.2′;

figure;

for k = 1:length(PLSvalues)

PLS = PLSvalues(k);

LyapunovExp = zeros(length(rvalues), 1);

for idx = 1:length(rvalues)

r = rvalues(idx);

x = 0.05;

xperturbed = x+ delta0; delta = delta0;

for n = 1:Npre

x = -0.03*x + 0.805 - r*sin(x - (1 + 0.1*cos(8.27*7))) - PLS;

xperturbed = −0.03 ∗ xperturbed+ 0.805− r ∗ sin(xperturbed− (1 + 0.1 ∗ cos(8.2 ∗
7)))− PLS;

end

sumlogdelta = 0;

for n = 1:Ncalc

x = -0.03*x + 0.805 - r*sin(x - (1 + 0.1*cos(8.27*7))) - PLS;

xperturbed = −0.03 ∗ xperturbed+ 0.805− r ∗ sin(xperturbed− (1 + 0.1 ∗ cos(8.27 ∗
7)))− PLS;

delta = abs(xperturbed− x);

if delta ¡ 1e-10

delta = delta0;

end sumlogdelta = sumlogdelta+ log(delta/delta0);

xperturbed = x+ delta0 ∗ sign(xperturbed− x); end

LyapunovExp(idx) = sumlogdelta/Ncalc; end

subplot(2, 2, k);

plot(rvalues, LyapunovExp,′ b−′,′ LineWidth′, 1.2);

hold on; yline(0, ’r–’, ’LineWidth’, 1);

title(titlesk);
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xlabel(’r’);

ylabel(’Lyapunov Exponent’);

grid on;

legend(’Lyapunov Exponent’, ’Zero Line’, ’Location’, ’Best’); end

Phase portrait for load shedding clc; clear; close all;

H = 6.5; D = 0.8; Pm = 1.5; VG = 1.2; XB = 0.5;

VB0 = 1.0; VB1 = 0.15; thetaB0 = 1.0; thetaB1 = 0.08;

Omega = 2.25; phiv = 0; phi0 = 0; omegaR = 2.0;

g = @(theta, dtheta, t) 1.2 * sin(theta) .* exp(-0.5 * t) + 0.3 * dtheta .* (1 -

exp(-0.5*t));

tspan = [0 300];

theta0 = [0.9; 0];

swingEq1 = @(t, y) [y(2);

(omegaR/(2 ∗ H)) ∗ (Pm − (V G ∗ (V B0 + V B1 ∗ cos(Omega ∗ t + phiv))/XB) ∗
...sin(y(1)− (thetaB0 + thetaB1 ∗ cos(Omega ∗ t+ phi0)))−D ∗ y(2))];

swingEq2 = @(t, y) [y(2);

(omegaR/(2∗H))∗(Pm−(V G∗(V B0+V B1∗cos(Omega∗t+phiv))/XB)∗...sin(y(1)−
(thetaB0 + thetaB1 ∗ cos(Omega ∗ t+ phi0)))− (3.4 ∗D + 0.5) ∗ y(2)− g(y(1), y(2), t))];

[t1, y1] = ode45(swingEq1, tspan, theta0);

[t2, y2] = ode45(swingEq2, tspan, theta0);

figure;

subplot(3,1,1);

plot(t1, y1(:,2), ’r’, ’LineWidth’, 1.2); hold on;

plot(t2, y2(:,2), ’b’, ’LineWidth’, 1.2);

xlabel(’Time (s)’);

ylabel(’dθ/dt(rad/s)′);

title(’Rotor Speed Time Series’);

legend(’Without Load Shedding’, ’With Load Shedding’);

grid on;

subplot(3,1,2);

plot(y1(:,1), y1(:,2), ’r’, ’LineWidth’, 1.2);
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xlabel(’θ(rad)′);

ylabel(’dθ/dt(rad/s)′);

title(’Phase Portrait Without Load Shedding’);

grid on;

xlim([0.8, 2.4]);

ylim([-0.3, 0.5]);

subplot(3,1,3);

plot(y2(:,1), y2(:,2), ’b’, ’LineWidth’, 1.2);

xlabel(’θ(rad)′);

ylabel(’dθ/dt(rad/s)′);

title(’Phase Portrait With Load Shedding’);

grid on;

xlim([0.8, 2.4]);

ylim([-0.3, 0.5]);

Poincare map for load shedding clear; clc;

r = 2.0;

D = 0.03;

Omega = 7.5;

tspan = [0 300];

x0 = [0.1; 0];

PLSvalues = [0, 1.2];

labels = ’Without Load Shedding’, ’With Load Shedding’;

T = 2*pi / Omega;

samplingpoints = T ∗ (1 : 150);

figure;

for i = 1:2

PLS = PLSvalues(i);

[t, x] = ode45(@(t, x) swingeq(t, x,D, r, PLS,Omega), tspan, x0);

thetap = interp1(t, x(:, 1), samplingpoints);

omegap = interp1(t, x(:, 2), samplingpoints);

subplot(1,2,i);
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plot(thetap, omegap,
′ k.′,′ MarkerSize′, 4);

title([’Poincaré Map - ’ labelsi]);

xlabel(’θ(rad)′);

ylabel(’ω(rad/s)′);

axis tight; grid on; end

function dxdt = swingeq(t, x,D, r, PLS,Omega)dxdt = zeros(2, 1);

dxdt(1) = x(2);

VB = 1 + 0.1*cos(Omega * t);

dxdt(2) = -D*x(2) + 0.805 - r*sin(x(1) - VB) - PLS; end

Phase portraits clc; clear; close all;

H = 2.36;

D = 0.8;

Pm = 1.5;

VG = 1.2;

XB = 0.5;

VB0 = 1.0;

VB1 = 0.15;

thetaB0 = 1.0;

thetaB1 = 0.08;

Omega = 1.2;

phiv = 0;

phi0 = 0;

omegaR = 2.0;

g = @(theta, dtheta, t) 1.2 * sin(theta) .* exp(-0.5 * t) + 0.3 * dtheta .* (1 -

exp(-0.5*t));

tspan = [0 300];

theta0 = [0.9; 0];

swingEq1 = @(t, y) [y(2);

(omegaR/(2 ∗ H)) ∗ (Pm − (V G ∗ (V B0 + V B1 ∗ cos(Omega ∗ t + phiv))/XB) ∗
sin(y(1)− (thetaB0 + thetaB1 ∗ cos(Omega ∗ t+ phi0)))−D ∗ y(2))];

swingEq2 = @(t, y) [y(2);
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(omegaR/(2∗H))∗(Pm−(V G∗(V B0+V B1∗cos(Omega∗t+phiv))/XB)∗sin(y(1)−
(thetaB0 + thetaB1 ∗ cos(Omega ∗ t+ phi0)))− (3.4 ∗D + 0.5) ∗ y(2)− g(y(1), y(2), t))];

[t1, y1] = ode45(swingEq1, tspan, theta0); [t2, y2] = ode45(swingEq2, tspan, theta0);

figure;

subplot(2,1,1);

plot(t1, y1(:,1), ’r’, ’LineWidth’, 1.2); hold on;

plot(t2, y2(:,1), ’b’, ’LineWidth’, 1.2);

xlabel(’Time (s)’); ylabel(’θ(rad)′);

title(’Rotor Angle Time Series’);

legend(’Without Load Shedding’, ’With Load Shedding’);

grid on;

subplot(2,1,2);

plot(t1, y1(:,2), ’r’, ’LineWidth’, 1.2); hold on;

plot(t2, y2(:,2), ’b’, ’LineWidth’, 1.2);

xlabel(’Time (s)’); ylabel(’dθ/dt(rad/s)′);

title(’Rotor Speed Time Series’);

legend(’Without Load Shedding’, ’With Load Shedding’);

grid on;

sgtitle(’Time Series of Rotor Angle and Speed’);

figure;

subplot(2,1,1);

plot(y1(:,1), y1(:,2), ’r’, ’LineWidth’, 1.2);

xlabel(’θ(rad)′); ylabel(′dθ/dt(rad/s)′);

title(’Phase Portrait Without Load Shedding’);

grid on;

grid on;

xlim([0.8, 2.4]);

ylim([-0.3, 0.5]);

subplot(2,1,2);

plot(y2(:,1), y2(:,2), ’b’, ’LineWidth’, 1.2);

xlabel(’θ(rad)′); ylabel(′dθ/dt(rad/s)′);

title(’Phase Portrait With Load Shedding’);
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grid on;

xlim([0.8, 2.4]);

ylim([-0.3, 0.5]);

Stability increase clc; clear; close all;

PLSvals = linspace(0, 1.2, 30);

stabilityincreaseoriginal = [0, 10.5, 21.6, 29.5, 35.2, 40.8, 44.1, 46.8, 48.5, 49.21];

PLSoriginal = [0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2];

stabilityincrease = interp1(PLSoriginal, stabilityincreaseoriginal, PLSvals,
′ pchip′);

figure;

plot(PLSvals, stabilityincrease,
′ bo−′,′ LineWidth′, 1.5,′ MarkerSize′, 6,′ MarkerFaceColor′,′ b′);

grid on;

xlabel(’Load Shedding (PLS)
′);

ylabel(’Stability Region Increase (

xlim([0 max(PLSvals)]);

ylim([0 max(stabilityincrease) + 5]);

set(gca, ’FontSize’, 12);

legend(’Stability Increase’, ’Location’, ’Best’);

Time series for control clc; clear; close all;

H = 6.5;

D = 0.8;

Pm = 1.5;

VG = 1.2;

XB = 0.5;

VB0 = 1.0;

VB1 = 0.15;

thetaB0 = 1.0;

thetaB1 = 0.08;

Omega = 1.2;

phiv = 0;

phi0 = 0;

omegaR = 2.0;
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g = @(theta, dtheta, t) 1.2 * sin(theta) .* exp(-0.5 * t) + 0.3 * dtheta .* (1 -

exp(-0.5*t));

tspan = [0 300];

theta0 = [0.9; 0];

swingEq1 = @(t, y) [y(2);

(omegaR/(2 ∗ H)) ∗ (Pm − (V G ∗ (V B0 + V B1 ∗ cos(Omega ∗ t + phiv))/XB) ∗
sin(y(1)− (thetaB0 + thetaB1 ∗ cos(Omega ∗ t+ phi0)))−D ∗ y(2))];

swingEq2 = @(t, y) [y(2);

(omegaR/(2∗H))∗(Pm−(V G∗(V B0+V B1∗cos(Omega∗t+phiv))/XB)∗sin(y(1)−
(thetaB0 + thetaB1 ∗ cos(Omega ∗ t+ phi0)))− (3.4 ∗D + 0.5) ∗ y(2)− g(y(1), y(2), t))];

[t1, y1] = ode45(swingEq1, tspan, theta0); [t2, y2] = ode45(swingEq2, tspan, theta0);

plot(t1, y1(:,2), ’r’, ’LineWidth’, 1.2); hold on;

plot(t2, y2(:,2), ’b’, ’LineWidth’, 1.2);

xlabel(’Time (s)’); ylabel(’dθ/dt(rad/s)′); legend(′WithoutLoadShedding′,′ WithLoadShedding′); gridon;

Heat map

Npre = 200;

Nplot = 200;

rvalues = 0 : 0.005 : 4;

nvalues = 1 : Nplot;

x = zeros(length(rvalues), Nplot); foridx = 1 : length(rvalues)

r = rvalues(idx); xcurrent = 0;

for n = 1:Npre

xcurrent = −0.03 ∗ xcurrent+ 0.805− r ∗ sin(xcurrent− (1 + 0.1 ∗ cos(18.5 ∗ 7)));
end for n = 1:Nplot

xcurrent = −0.03 ∗ xcurrent+ 0.805− r ∗ sin(xcurrent− (1 + 0.1 ∗ cos(18.5 ∗ 7)));
x(idx, n) = xcurrent;

end end figure;

imagesc(nvalues, rvalues,mod(x, 2 ∗ pi)); colormap(′hot′); colorbar;

xlabel(’n (iterations)’);

ylabel(’r’); hold on; plot([0, Nplot], [2.68, 2.68], ’b–’, ’LineWidth’, 1.5);

legend(’Intermittency Region’);
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Quasiperiodicity Bifurcation

function bifurcationdiagramquasiperiodic2

Npre = 200;

Nplot = 100;

x = zeros(Nplot, 1);

omegaprimaryresonance = pi/2.5;

for r = 0:0.005:4 x(1) = 0;

for n = 1:Npre

x(1) = -0.01 * x(1) + 0.8 - r * sin(x(1) - (1.7 + 0.15 * cos(omegaprimaryresonance ∗
7)));

end

for n = 1:Nplot-1

x(n+1) = -0.01 * x(n) + 0.8 - r * sin(x(n) - (1.7 + 0.15 * cos(omegaprimaryresonance∗
7)));

end

plot(r * ones(Nplot, 1), x, ’.’, ’markersize’, 4);

hold on;

end

xlabel(’r’);

ylabel(’θ(t)′);

set(gca, ’xlim’, [0 4], ’ylim’, [-5 5]);

end

Quasiperiodicity Analysis

function quasiperiodicanalysis

f = 0.1;

omegaprimaryresonance = pi/2.5;

rrange = 0 : 0.005 : 4;

Npre = 200;

Nplot = 100;

Ncalc = 500;

delta0 = 1e-8;
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x = zeros(Nplot, length(rrange));

LyapunovExp = zeros(length(rrange), 1);

heatmapdata = zeros(length(rrange), Nplot);

for j = 1:length(rrange)

r = rrange(j);

xcurrent = 0;

xperturbed = xcurrent+ delta0;

for n = 1:Npre

xcurrent = −0.01∗xcurrent+0.8−r∗sin(xcurrent−(1.7+0.15∗cos(omegaprimaryresonance∗
7)));

xperturbed = −0.01∗xperturbed+0.8−r∗sin(xperturbed−(1.7+0.15∗cos(omegaprimaryresonance∗
7)));

end

for n = 1:Nplot

x(n, j) = -0.01 * xcurrent+0.8−r∗sin(xcurrent−(1.7+0.15∗cos(omegaprimaryresonance∗
7)));

xcurrent = x(n, j);

heatmapdata(j, n) = mod(xcurrent, 2 ∗ pi);
end

sumlogdelta = 0;

xcurrent = 0;

xperturbed = xcurrent+ delta0; delta = delta0;

for n = 1:Ncalc xcurrent = −0.01 ∗ xcurrent+ 0.8− r ∗ sin(xcurrent− (1.7 + 0.15 ∗
cos(omegaprimaryresonance ∗ 7)));

xperturbed = −0.01∗xperturbed+0.8−r∗sin(xperturbed−(1.7+0.15∗cos(omegaprimaryresonance∗
7)));

delta = abs(xperturbed− xcurrent);

if delta ¡ 1e-10 delta = delta0;

end

sumlogdelta = sumlogdelta+ log(delta/delta0);

xperturbed = xcurrent+ delta0 ∗ sign(xperturbed− xcurrent);

end LyapunovExp(j) = sumlogdelta/Ncalc;
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end

figure;

plot(rrange, x,
′ .′,′ markersize′, 2);

xlabel(’r’);

ylabel(’x′n);

title(’Quasi-Periodic Bifurcation Diagram’);

ylim([-5 5]);

xlim([0 4]);

grid on;

figure;

imagesc(1:Nplot, rrange, heatmapdata);

colormap(’hot’);

colorbar;

xlabel(’n (iterations)’);

ylabel(’r’);

title(’Heatmap of Quasi-Periodic System Dynamics’);

figure;

plot(rrange, LyapunovExp,′ b−′,′ LineWidth′, 1);

xlabel(’r’);

ylabel(’Lyapunov Exponent’); grid on;

hold on;

yline(0, ’r–’, ’LineWidth’, 1);

legend(’Lyapunov Exponent’, ’Zero Line’);

end
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