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ABSTRACT

This paper presents the technical and creative process of building a dataset of a personal live coding style using MIRL-
CaProxy, a custom SuperCollider class built on top of the MIRLCa extension. MIRLCa enables real-time sampling of
sounds from Freesound with the assistance of machine learning using FluCoMa. We designed an environment that cap-
tures eight methods for retrieving sounds in the MIRLCa language, recorded through a live coding journaling approach.
This approach aims to predict the next line (next method) from the audio state of the system. Throughout the dataset
creation, the required number of actions led to unexpected creative discoveries, transforming the process into a space
for sonic exploration. This paper reflects on how the training of the machine learning process becomes a rehearsal
space that supports the development of a personal style through constraints. It also explores the role of biases in this
context.

1 Introduction

Live coding and digital sampling can be a creative approach to music making, especially when taking advantage of
online crowd-sourced databases such as Freesound (Font, Roma, and Serra 2013). Using Freesound in live coding opens
the sonic possibilities to sounds recorded under Creative Commons licences that can be repurposed algorithmically. In
our previous research (Xambó 2023), we have seen the benefits of interactive machine learning (IML) (Fails and Olsen
Jr 2003; Fiebrink and Caramiaux 2018) and working with small datasets in live coding when applied to train models
with the custom-made systemMIRLCa. The on-the-fly requested sounds from Freesound can be filtered with a machine
learning classifier to obtain sounds with a greater control closer to what the live coder conceives as ‘good’ sounds
(Xambó et al. 2021). In our previous research, we showed that using a binary classifier of ‘good’ versus ‘bad’ sounds
was useful. However, it can also be limiting because it only acts as a selector. A virtual agent can offer more than that,
such as helping the live coder to decide what code to write in response to a human live coder action.

With the assumption that we can expand the task of a binary classifier in live coding to other tasks that connect with
learning a personal style of live coding, this paper addresses the following research question: What can building a
dataset of your personal live coding style tell us about our personal style of live coding? Our approach is based on using
the same custom-made live coding environment MIRLCa (Xambó et al. 2021; Xambó 2023) and respectively training a
model employing a core of eight instance methods of the customised live coding language. The objective is to present
a proof of concept to predict what the live coder can write as the next line of code. This prediction is based on training
a model using several rehearsals and expects to consider the live coder’s personal style.

Compared to the first machine-learning task developed with MIRLCa (Xambó et al. 2021), which was training a binary
classifier to predict between ‘good’ and ‘bad’ sounds, here we present a classifier of eight classes. The order of magnitude
of the dataset is distinctively different from 130 sounds (training set: 77%, test set: 23%) to 800 sounds (training set:
87.5%, test set: 12.5%) that covers eight classes to predict the next line of code. We share the lessons learned from the
training process, which has become a journal of creative live coding explorations with the constraints given by the task.
We present the process for creating an ongoing dataset as a space for creative exploration and reflection of the own
personal style. This research also informs about the importance of maintaining the biases as characteristic of a personal
style, which are difficult to learn by the learning algorithm. The approach undertaken can be seen as a promising sonic
exploration to be part of the practice of a live coder.

1

mailto:a.xambosedo@qmul.ac.uk
mailto:gerard.roma@uwl.ac.uk


2 Background

Several approaches have explored the integration of machine learning into live coding. While most systems conduct
training offline prior to performance, some systems such as theMégra system (Reppel 2020) brings the machine learning
training process into the live coding performance itself. The ListeningLearning system is a machine improvisation
system that performswith a human, which is developed throughout rehearsals and performances and combinesmachine
listening and machine learning (Collins 2011). Sema (Bernardo, Kiefer, and Magnusson 2020) is an online platform that
enables users to create custom live coding languages and adapt machine learning algorithms to their practice. IML can
offer advantages to artists because of its ability to tailor software behaviour to individual needs through human-driven
interaction. This presents both challenges and opportunities for exploring synergies between IML and live coding,
particularly as both share the key property of liveness or “the ability to modify a running program’’ (Tanimoto 2013, 31).
Our work investigates these synergies by applying machine learning in the context of music performance. With the
proposed MIRLCaProxy, the live coder can apply IML as part of the live coding practice. The live coder can rehearse
for several sessions while building up the dataset using a live coding environment. This extensive time from multiple
sessions is typically lacking in performance.

3 Method

3.1 MIRLCa

MIRLCa¹ (Xambó 2023) is a SuperCollider (SC) custom-made extension that inherits from the self-developedMIRLCRep2
SC extension (Xambó, Lerch, and Freeman 2018). The SC extension expands the MIRLCRep2’s capabilities by proposing
a virtual agent that embodies IML techniques. MIRLCRep2 has a range of performance methods that allow for querying
sounds from Freesound based on human-made categories (folksonomy) or audio-based descriptors using the Freesound
quark² and adding performativity characteristics with a constrained language. MIRLCa enables real-time sampling
of sounds from Freesound with the assistance of machine learning using the Fluid Corpus Manipulation (FluCoMa)
library (Tremblay, Roma, and Green 2021). Based on a binary classifier, the system predicts ‘good’ vs ‘bad’ sounds from
Freesound. For this task, MIRLCa uses the class FluidMLPClassifier,³ which performs classification using aMulti-Layer
Perceptron (MLP) neural network (Xambó et al. 2021).

3.2 MIRLCaProxy

MIRLCaProxy aims to solve the choice of what function to use for the next live coding step, a decision based on the
audio features of the current audio state of the system. This task intends to predict the next line of code. For this, we
have designed a custom-made proxy class that allows for building the dataset using a live coding style.

Code Method Returned Freesound object Argument
01 .id A sound by its ID number A Freesound ID number of a sound (Integer)
02 .tag A sound by the requested tag (best candidate) A tag (String)
03 .similar A similar sound from the target (best candidate) An index number of the target sound (Integer)
04 .random A random sound (best candidate) The number of returned sounds (=1) (Integer)
05 .pitch A sound based on the pitch feature (best candidate) The value of the feature in Hz (Float/Integer)
06 .bpm A sound based on the bpm feature (best candidate) The value of the feature in bpm (Float/Integer)
07 .dur A sound based on the duration feature (best candidate) The value of the feature in seconds (Float/Integer)
08 .diss A sound by the dissonance feature (best candidate) The value of the feature (=[0..1]) (Float/Integer)

Table 1: List of the eight instance methods and their constrained version in MIRLCaProxy to capture the style of a live
coder.

MIRLCaProxy is a subclass of the MIRLCa class that captures eight methods for retrieving sounds from the MIRLCa
language, recorded through a live coding journaling approach. This subclass allows the live coder to record their live
coding sessions using a constrained subset of methods. For consistency, only eight methods with one parameter each
are used as part of the query. A session consists of using the available methods in a live coding style, and the actions
are recorded by the proxy class. The session is captured in a text file following the SC dictionary structure, which can

¹https://github.com/axambo/MIRLCa
²https://github.com/g-roma/Freesound.sc
³https://learn.flucoma.org/reference/mlpclassifier
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Figure 1: A record stored in the dataset generated by the MIRLCaProxy subclass during a session. Diagram generated with
Textik (https://textik.com/#d4e44b060ac3be2a)

then be loaded again and used for training. Table 1 shows the list of the eight methods, the returned Freesound object
and the type of expected argument to, overall, model and capture the sequence of actions.

MIRLCaProxy is a class used to build a dataset of entries that show call-response actions with values. This proxy class
allows the creation of a dataset with encoded lines to predict the next line of code or next method. This can be used
to train a model that aims to suggest, from a given query, what can be a suitable next line of code. Figure 1 shows the
entity of a record in the dataset created in MIRLCaProxy during a session. The fields in each record of the dictionary
provide:

• The type and value of the current action (action_type_call, action_value_call).
• The sound retrieved from the current action (sound_info).
• The sound analysis data from the current sound (sound_analysis).
• The type and value of the response action (action_type_response, action_value_response).

The following code example demonstrates how to instantiate the subclass, call the eight functions with their respective
arguments, and save the session, as shown in the code editor:

a = MIRLCaProxy.new
a.id(9999)
a.tag("washing-machine")
a.random(1)
a.similar(0)
a.diss(0.5)
a.bpm(60)
a.dur(4)
a.pitch(100)
a.savedictionary

3.3 The Training Process

A repository containing all code used for data training and analysis, along with a selection of audio recordings from the
sessions and related code discussed in the paper, is available at https://zenodo.org/records/15249330. The data discussed
in this paper consists of 800 data points collected across 32 sessions. Each session, or rehearsal, contains 25 data points
saved in a text file using the format described in Section 3.2. For each session (except the first), we also recorded the
audio output in .wav format and saved the corresponding SuperCollider code for further analysis. In total, the recorded
material amounts to 6 hours, 15 minutes, and 42 seconds. On average, each session lasted 12 minutes and 7 seconds,
with the longest session lasting 16 minutes and 52 seconds, and the shortest 6 minutes. These durations reflect sustained
musical engagement during the sessions.

We used the same MLP neural network and machine learning process as in the first task reported in Xambó et al. (2021).
The 26 Mel Frequency Cepstral Coefficients (MFCCs) audio descriptors were reduced to 20 dimensions using Principal
Component Analysis (PCA), and the resulting values were standardized to zero mean and unit variance. The final MLP
architecture for this task consisted of a single hidden layer with 14 nodes and ReLU activations.

Figure 2 shows a diagram of the machine learning process flowchart. The follow-up explanation focuses on the classi-
fication of the eight methods presented here.⁴ The key components of the machine learning process flowchart are:

⁴Future work includes applying the FluidMLPRegressor to predict the output values of the target method.
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Figure 2: A machine learning process flowchart of the different blocks of code used to train and predict the accuracy of the
dataset. Diagram generated with Textik (https://textik.com/#626cc02b75693602)

• Data Collection: This is the initial step where data is gathered from the text files. It includes text files that
represent sessions. Each line is a data point.

• Data Preprocessing: The collected data is cleaned and transformed by unifying multiple files into a single dictio-
nary. For training and testing, two FluidDataset and two FluidLabelSet objects are prepared, respectively.

• Feature Selection: MFCC features are selected as input data, while the action_type_response value is stored as
the label and the sound ID as the dictionary key.

• Model Selection: The FluidMLPClassifier is selected, which performs classification between a FluidDataSet
and a FluidLabelSet using a MLP neural network.

• Model Training: The small dataset (less than 1,000 data points) is split into a training dataset (87.5%) and a
testing dataset (12.5%). The MLP model (FluidMLPClassifier) is trained using the preprocessed data, previously
normalised using FluidStandardize (zero mean and unit variance) and FluidPCA, with the aim at feeding the
data into the model and minimise error. FluidMLPClassifier performs classification between a FluidDataSet
and a FluidLabelSet from the training dataset.

• Model Evaluation: After training, the model predicts labels for a FluidDataSet from the testing dataset. Model
performance is evaluated using accuracy, defined as the proportion of correct predictions to total occurrences,
to ensure the model generalises well to unseen data.

• Model Deployment: Once the model is validated, it can be deployed into a real-world environment where it can
make predictions on new data.⁵

⁵While the results reported in this paper are promising, additional development and validation are required before the model can be deployed in
practical settings.
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Figure 3: A 2D line plot showing how accuracy increases with dataset size, compared to the random baseline.

4 Findings

4.1 Technical Results

4.1.1 Accuracy Over Training Examples

To report accuracy, we trained the model across ten independent runs and selected the highest result. As shown in
Figure 3, we found a slow improvement in the proportion of predicted classes as we increased the number of training
examples from 500 to 800. Predictions were made using a set of 75 to 100 data points, representing 12.5% to 16.7% of
the entire dataset.⁶ Although the values are below 0.5, they should be compared to the random baseline of 0.125, which
corresponds to the chance level for eight classes. The results do not indicate a consistent improvement as the number
of training examples or sessions increases. While diminishing returns are expected when adding more training data to
improve accuracy, additional data is still needed to determine when the system reaches saturation.

4.1.2 Confusion Matrix

We generated a confusionmatrix to evaluate the performance of the classification model and understand how our model
is making predictions by classes. Thematrixwas constructed using a sample of 100 predictions from the best-performing
model trained on a dataset of 800 examples (achieving 30% accuracy with 700 training samples). This analysis aimed to
identify the types of errors made by the model and to determine whether it is biased toward any particular class.

Figure 4 shows the result, which is a multi-class confusion matrix with eight classes. The diagonal elements represent
correct predictions, while the off-diagonal elements indicate incorrect predictions. The class that performed best was
.similar (11) followed by .pitch (7), .tag (5) and .id (5). By contrast, .random, (0) .bpm, (0), .dur (1) and .diss (1)
were unpredictable.

We also calculated the performance metrics of accuracy, precision, recall, and the F1 score. The results presented below
show low precision and recall for classes random, bpm, dur, and diss, indicating that the model may have difficulty
identifying these classes with the current amount of training data:

• The accuracywas 30%, which we previously used as a criterion for model evaluation and is defined as the ratio of
correct predictions to the total number of predictions. This value indicates that the model is not performing well.
However, as discussed in the previous section, accuracy steadily improves with the addition of more training
examples, as observed with a dataset size from 500 up to 800 data points.

⁶Because each session contained 25 data points, the training and testing sets were constructed in multiples of 25 for consistency and ease of use.

5



.id .ta
g

.si
m

ila
r

.ra
nd

om

.p
itc

h

.b
pm .d
ur

.d
iss

Prediction

.id

.tag

.similar

.random

.pitch

.bpm

.dur

.diss
Ac

tu
al

5 6 2 0 1 2 0 1

5 5 5 0 0 0 1 2

0 0 11 0 7 1 0 0

3 0 0 0 0 0 0 0

2 2 4 0 7 1 0 1

2 0 3 0 5 0 2 0

3 0 2 0 0 1 1 1

0 0 1 0 4 0 0 1
0

2

4

6

8

10

Figure 4: A multi-class confusion matrix, where rows indicate actual classes and columns indicate predicted classes.

• The precision concerns the ratio of true positive predictions to the total number of positive predictions. We
obtained an overall score of 0.27 (weighted average) and the lowest values related to the classes random (0.0), bpm
(0.0) and diss (0.17).

• The recall or sensitivity refers to the ratio of true positive predictions to the total number of actual positive
instances (true positives + false negatives). We obtained an overall score of 0.3 (weighted average) and the
lowest values related to the classes random (0.0), bpm (0.0), dur (0.12) and diss (0.17).

• The F1 Score, which is the harmonic mean of precision and recall (a combination of these two metrics into a
single score), provides a balanced measure of model performance. We obtained an overall weighted average F1
score of 0.27, with the lowest scores observed for the classes random (0.0), bpm (0.0), dur (0.17), and diss (0.17).

4.2 Creative Results

The 32 sessions were conceived as improvisational rehearsals. The original constraints were considered as design con-
straints for composing and performing with digital musical systems (Magnusson 2010) with the hope that new musical
possibilities could emerge. The nomenclature of each session has the following structure: session_YYMMDD_HHMMSS. The
metadata of the Freesound sounds are captured in a credits text file to keep track of the authorship of the sounds.

Tomaintain efficiency, the first author, who recorded the sessions, avoided using any automatic or sound effect functions
available inMIRLCa. As a consequence, the live coder is in the position of trying to find her voice in a highly constrained
environment where the main intention is to tame the outcoming sounds to her particular style. Factoring out effects
can be a limitation, which conditions the next step. Hence, the research presented in this paper should be seen as a
proof of concept.

Throughout the dataset creation, the required number of actions led to unexpected creative discoveries, transforming the
process into a space for sonic exploration under constraints and biases. We identified the following ‘motifs’ as recurring
patterns present in the rehearsals: the role of Float numbers, the meaning of similarity, exploration of randomness through
number series and the role of repetition. These are patterns present in the training that are non-mutually exclusive. On
the contrary, the ‘motifs’ are often explored sequentially or combined.

4.2.1 The Role of Float Numbers

Using float numbers instead of integer numbers to define musical features such as pitch, duration and beats per minute
(bpm) has resulted in leaning towards sound-basedmusic (Landy 2007). For example, typing .pitch(1256.6348) instead
of .pitch(1256) returns a soundscape-type sound instead of a melodic sound.

Some explorations of this concept involve using four-digit low decimal values for the .dissmethod in session_240922_003003
or trying to find similarities among sounds by applying the pitch float value of one sound to retrieve another sound
with the same float value in session_240926_000248. In session_240921_001536 the concept of dissonance and
out-of-tune sounds is explored using the same technique.
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These sonic investigations align with the live coder’s musical taste of avoiding melodies and finding musicality in the
dissonances instead. Thus, the use of float values applied to melodic features such as pitch, duration or bpm can return
sounds that may be preferable to build a sound-based music improvisation or composition.

4.2.2 The Meaning of Similarity

As shown in Section 4.1.2, .similar is the method best predicted by our model. To complement this method and
explore the other available seven, the first author has investigated what the other methods tell us about similarity.
This has entailed an exploration of nearby .id numbers that are below or up the current sound. For example, in
session_240919_235900, the live coder discovers that the contiguous sounds in the Freesound database are likely to be
similar:

b = MIRLCaProxy.new
b.random(1)
b.whatid // 369694
b.id(369693)
b.id(369695)

Other aspects explored include similarity in terms of duration such as in session_240922_003003:

a = MIRLCaProxy.new
a.diss(0.12345)
a.whatdur // 26.2020
a.dur(26.2020)

4.2.3 Exploration of Randomness Through Number Series

Theuse ofMIRLCa can involve randomness turned into serendipity (Xambó 2023). Apart fromusing themethod .random
(which is one of the functions that is unpredictable by our model), the first author has also investigated other ways of
bringing randomness to the musical process. This includes using number series in different ways, such as the Fibonacci
sequence (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …) applied in different ways in session_240918_232131:

a = MIRLCaProxy.new
a.bpm(0)
a.bpm(1)
a.bpm(1)
a.bpm(2)
a.bpm(3)
a.bpm(5)
a.bpm(8)
a.bpm(13)
a.bpm(21)
a.bpm(34)
a.bpm(55)
a.bpm(89)
a.bpm(144)

In another session, the live coder explored the concept of rolling a dice to decide which of of the eight methods to
write employing a random function (session_240928_203633). The use of other number series applied to the values of
the parameters has been also explored in session_240929_110801 to retrieve the sounds uploaded to Freesound using
arithmetic series or to consult what sounds can result from applying small values to pitch, duration and bpm using
geometric series in session_240929_112115.
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4.2.4 The Role of Repetition

Repetition in music is a recurring motif that helps shape the diversity of sounds, often guiding them toward a more
minimalistic musical result. It can also be used as a technique to overcome the lack of enough candidate sounds from
a given query in MIRLCa. For example, session_240925_000825 explores the same tags. While "interferences" gives
a wide variety of sonic results under the same musical scope, "interference" retrieves the same sound repeatedly,
starting at different moments each time, thereby creating potential rhythmic delay effects.

a = MIRLCaProxy.new
a.tag("interferences")
a.similar(0)
a.tag("interference")
a.similar(3)
a.tag("interference")
a.similar(5)
b = MIRLCaProxy.new
b.tag("interferences")
b.similar(0)
b.tag("interference")
b.similar(3)
b.tag("interference")
b.similar(5)

5 Discussion

We revisit here our research question: What can building a dataset of your personal live coding style tell us about our
personal style of live coding?

In the process of building a dataset of a personal live coding style using the custom-made MIRLCaProxy library, we
have found that it is essential to favour the biases to favour the personal style. Data bias is of big issue in artificial
intelligence systems to avoid the promotion of inequality biases such as racism or sexism (D’Ignazio and Klein 2023;
Jourdan and Caramiaux 2023). In artistic applications, the need to keep personal bias was highlighted by Murray-
Browne and Tigas (Murray-Browne and Tigas 2021) acknowledging that small datasets are commonly generated by
individuals for particular artistic work and their deliberate biases are often a signature of the musical piece.

A limitation of our approach is that it differs from the concept of artists manipulating small and quick datasets to
become a larger-scale training process that requires some days of training. Turning the training into a rehearsal space
of sonic explorations can motivate the artist to keep recording sessions, but the authors acknowledge that this approach
is labour-demanding and can become unsustainable. This could be enhanced with automation that could be provided
by deep learning, tools that can help generate similar code from existing material or bringing other like-minded live
coders to contribute to the recordings. The training process with 800 data points marks the beginning of a journey that
has already revealed new creative avenues, while the dataset itself remains a work in progress and continues to grow
at the time of this writing.

6 Conclusion

This paper presented the technical and creative process of building a dataset of a personal live coding style using
MIRLCaProxy, a custom-made SuperCollider class built on top of the MIRLCa extension. This paper has reflected
on how the training process becomes a rehearsal space that supports the development of a personal style through
constraints. It also explored the role of biases in this context.

Future work includes improving the classification model and adding a regression model to predict the value of the first
argument of the suggested method. We also plan to integrate this code into the MIRLCa class as part of the features of
the virtual agent. An open question is how the prediction will work with fully-featured live coding sessions (instead
of narrowing it down to eight methods) using other functions available in MIRLCa such as automatic functions and
sound effects. The possibility of voting the sonic passages (for example, the most successful ones) could help refine the
learning of the personal style. We are also interested in evaluating the qualitative value of our approach for the human
live coder. We acknowledge that as future work we should try other models such as Markovian, large language models,
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or recurrent models, which would suit well for predicting sequences of actions and might offer comparative insight or
potentially improved performance.

Altogether, this research demonstrates howmachine learning can be integrated into live coding to learn from a personal
coding style based on algorithmic digital sampling of crowd-sourced sounds, where biases may serve as creative assets.
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