
UWL REPOSITORY

repository.uwl.ac.uk

Live coding sonic flocks

Roma, Gerard (2024) Live coding sonic flocks. In: 2025 International Conference on Live Coding, 27-

31 May 2025, Barcelona, Spain. (Submitted) 

https://doi.org/10.5281/zenodo.15527324

This is the Submitted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/13931/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Proceedings of the International Conference on Live Coding (ICLC) 2025, Barcelona, May 27th - 31st

Live Coding Sonic Flocks

Gerard Roma
University of West London
gerard.roma@uwl.ac.uk

ABSTRACT

This paper describes a system for interactively coding the behaviour of flocks of artificial sound-making agents. The
system is based on an animated two-dimensional visualization where the background represents acoustic or visual
information, and multiple agents make sound by traversing the space. The main interface is a domain-specific language
that allows for composing agent behaviours from elementary actions. The language is described through several basic
examples. The system is demonstrated through Brunzit, a standalone C++ application that supports real-time music
live coding using two different synthesis engines. While the system is still in early development, two musical examples
are used to demonstrate its potential.

1 Introduction

Interactive music systems have been traditionally considered as collections of artificial agents (Rowe 2004). In this
context, a computer is often used to automate some parts of a music performance, using several algorithms, sometimes
mimicking the role of human performers. In this sense, the view of the computer as a support of artificial agents can
be seen as a general paradigm for computer-aided music performance. Live coding (Collins et al. 2003) is no exception.
In this practice, multiple code snippets typically result in multiple concurrent processes spawned and/or steered by a
programmer in real time.

Agent-based models (ABM) are a popular take on multi-agent systems, used in many disciplines to model and study the
emergent properties of real-life complex systems. A common application is artificial life (ALife). ABMs often feature 2D
visualizations that help in understanding the process or system being modelled. While the application of multi-agent
systems is quite natural for computer-aided music performance, the use of 2D visualizations is not very widespread.
Two- and three-dimensional spaces are ubiquitous in graphics-heavy interactive applications such as video games, but
there is no obvious universal mapping to common music practices. Yet there are a few traditions, such as wave terrain
synthesis (Borgonovo and Haus 1986) or concatenative synthesis (Schwarz et al. 2006) that take advantage of 2D spaces.
Previous work (Roma 2023) has explored agent-based models as a live coding interface for interacting with sonic data
terrains, with a focus on coding individual agent behaviours. This paper further develops the idea of agent-based music
live coding by exploring live coding of collective agent behaviours. While ABMs often try to model specific real-world
systems, some algorithms are widespread. For example, the Boids algorithm was proposed in the computer graphics
community to simulate bird flocks by Reynolds (1987). This algorithm has been used in interactive music systems
(Blackwell 2003; Unemi and Bisig 2004). The present study proposes a domain-specific language for controlling sonic
flocks through live coding. The following section quickly reviews the languages used for agent models and related
work in interactive music. Section 3 describes the language and general data model. An implementation is described in
Section 4, and some examples are demonstrated in Section 5. Sections 6 and 7 discuss the main contribution and future
work.

2 Related Work

2.1 Languages for agent-based modelling

Agent-based models are computational models used to create ALife systems and study real-world complex phenomena.
Early developments, such as Sugarscape (Epstein 1996) were centered around specific models. More flexible software
platforms then evolved to support the development of different models. Many classic open source platforms and models
were reviewed by Standish (2008). While several platforms have been developed in conventional object-oriented lan-
guages such as C++ or Java, Netlogo (Tisue andWilensky 2004) continued the tradition of the Lisp-based Logo language,

1

mailto:gerard.roma@uwl.ac.uk


with a focus on education. This focus may have led some to regard it as a toy language. However, a formal comparison
by Railsback, Lytinen, and Jackson (2006) highlighted NetLogo’s ease of use. This platform offers some capabilities in
the direction of live coding: as an interpreted language, it can be programmed interactively using a REPL-style text
field known as the “observer”. While NetLogo is based on visualization and offers some limited music functionality, it
is generally not designed for the arts, so its capabilities are too limited for music or graphics live coding.

2.2 Music With Particle Systems

Boids (Reynolds 1987) is a popular algorithm that appeared in computer graphics, where particle systems are commonly
used for different applications. The model is based on a few simple rules (separation, alignment, cohesion) that allow
simulating the flocking behaviour of birds and insects. Beyond modelling real-world systems, Boids is often used to
experiment with ALife in artistic practice. SwarmMusic (Blackwell 2003) is an early example. This system implemented
the Boids algorithm in a particle animation, which was then interpreted to generate MIDI messages to a software
instrument. A later system, Swarm Granulator (Blackwell and Young 2004) used granular synthesis as a more natural
mapping to sound. Both systems were autonomous but interacted with humanmusicians. Following SwarmGranulator,
the proposed system implements granular synthesis as a prominent sound mapping of flocks, but using live coding to
create and control multiple flocks.

A more recent example is Tölvera (Armitage, Shepardson, and Magnusson 2024), a Python library for composing with
ALife. The system allows composing different agent behaviours and offers an Open Sound Control (OSC) interface.
Tölvera has been used in several performances, including interaction with live coding systems. Like Tölvera, the pro-
posed system allows composing agent behaviours but adds the ability to do so in real time through a live coding interface.
Also, while Tölvera focuses mostly on larger-scale behaviours andmodels, the proposed system allows fine-grained con-
trol of individual particles as well as larger swarms.

Many ALife systems are mostly focused on the behaviours of agents. In addition to agent behaviours, the system
proposed in this paper also allows defining a terrain, in the tradition of graphical ABMs. A terrain is a dataset that
is associated and visualized in the 2D space navigated by the agents. In ABMs, the terrain can be used to modify the
behaviour of the agents. In the proposed system, the terrain is used more specifically as a source of data for sonification.

3 Language

Previous work has shown the potential of flocking algorithms for improvised interactive music. Since complex be-
haviour emerges from the rules programmed into the agents, they are perceived to have a life of their own, while still
reacting to input from the real world. However, in previous work using flocking and ALife algorithms, the behaviour
of agents needs to be programmed beforehand. This paper proposes a system for live coding agent behaviours in real
time. In the spirit of music live coding, this allows improvising algorithms that generate music, in this case with the
support of an ALife model.

The system is based on an animation that is updated periodically with a given frame rate. Agents are grouped into flocks
(flocks may contain a single agent) which navigate a data terrain. Data from the terrain is used to produce sound using
different synthesis engines. Each agent is mapped to a single voice. Agents are controlled by behaviours. A behaviour
contains a list of actions that are executed sequentially for all agents in the flock at each frame.

A custom domain-specific language is used to create behaviours and attach them to agents. The language is loosely
inspired by Logo, but at the moment has a very simple syntax. In particular, procedures are not supported, so code is
basically used to compose calls to existing functions. The general syntax follows this form:

name: action p1 p2 p3, action p1 p2 p3, action p1 p2 p3

This is designed to fit in a single long text field, so a single statement is executed at a time. Here, name is a user-defined
identifier, action is the name of an existing action available in the system, and p1…pn are parameters of the action.
A global agent named world is used to create other agents and configure the environment. A number of actions are
supported, which can be grouped into world actions, agent actions and flocking actions. Since identifiers are assigned
to flocks, both agent and flocking actions are executed on flocks. Table 1 shows currently implemented actions.

2



Table 1: Supported actions.

Name Type Meaning
background world change background colour
map world set up the terrain
make world create a new flock or agent
go agent advance in current direction
stop agent keep direction but stop moving
turn agent change direction (relative angle)
up agent steer to absolute angle (up)
down agent steer to absolute angle (down)
left agent steer to absolute angle (left)
right agent steer to absolute angle (right)
seek agent steer to specific point
wander agent change to random direction
die agent leave the terrain and disappear
volume flock set the sound volume of the flock
join flock steer towards group (boids cohesion)
avoid flock steer away from group (boids separation)
align flock steer towards group (boids alignment)

Combining individual behaviours with collective behaviours in a live coding environment involved several design com-
promises. First, the use of a data terrain commonly leads to a learning process where the performer learns to predict the
different sounds found in different locations (Roma 2023). In this context, it is useful to be able to direct agents to specific
zones. However, flocking algorithms critically rely on relative geometry, also known as turtle geometry (Abelson and
DiSessa 1986), where the agent is controlled by a heading direction, which is changed algorithmically. A compromise
was found in implementing the model using turtle geometry, but with helper functions that relate to absolute coordi-
nates (up, down, left, right, seek). It is also worth noting that the terrain is typically continuous, i.e. agents reaching
the right border will appear at the left border. It is left to the user to design the data terrain to avoid discontinuities or
embrace the ones appearing when agents cross the edges.

A second issue relates to time. While agent behaviours are evaluated for each frame, some actions onlymake sensewhen
executed once. Generally, some degree of control over the frequency of execution is necessary. This was implemented
through a frequency parameter which is available for most actions. Possible values are: once, sometimes, often, always,
where sometimes and often are defined in terms of fixed frequencies, once executes the action at the next frame only,
and always executes the action for every frame as long as the behaviour is active. Crucially, actions have appropriate
default frequencies, so the parameter is not needed in many cases.

A similar problem appears from the way flocking behaviours are typically implemented. As these behaviours depend
on the distance between agents, they are typically modelled as forces, with force being proportional to acceleration. In
contrast, individual behaviours modify a velocity vector. Different behaviours, composed together by the user and with
different frequencies, can contribute to the decision of where the agent is heading. In addition, it is also useful in some
cases to have agents that do not advance. As a result, most actions are used only to compute the velocity vector, which
indicates the direction of the agent. The only action that modifies the position is go (equivalent to forward in Logo).
This action also applies a final multiplier that determines the speed of travel, given the velocity computed from all the
previous actions. This means that most of the time, the statements need to explicitly conclude with a go action.

Several examples of the language are shown in Figures 1-6. Here, the implementation described in Section 4 was used
at a small resolution with a white background and the input text box hidden for demonstration purposes.

After setting the background colour, a set of agents is created (Figure 1):

world: make agents 50 arrowhead black

This creates 50 agents, using the arrowhead Unicode character in black (some names are provided in the language, but
the Unicode character can also be used directly as text), and assigns the flock the name “agents”, which is used in
subsequent commands. Agents are then instructed to seek the center of the screen:

agents: seek 400 300, go

3



Figure 2 shows the initial result, with agents moving towards the centre. The process converges with all the agents at
the centre (Figure 3). After this, they are sent to travel right, but with some randomness (Figure 4):

agents: right often, wander 0.8 sometimes, go

In this case, the wander function causes some of the agents (randomly with probability 0.8) to diverge sometimes, but
then often turning right again, which causes the flock to navigate towards the right while expanding. The next command
implements traditional boids flocking behaviour:

agents: join 20 0.1, align 30 0.5, avoid 10 0.7, go

Each of the flocking actions (join, align, avoid) has a radius parameter, which determines which neighbours will be
taken into account, and a force parameter, which can be used to relatively balance the effect of each action. The result
is a more cohesive flock (Figure 5). Finally, Figure 6 shows a less predictable variation:

agents: join 20 0.5, align 10 0.1, avoid 10 0.5, turn 1 often, go

Here, the agents turn by one degree often, which in interaction with the flocking actions makes them draw arcs but also
disperse and in some cases form smaller flocks.

4 Implementation

The proposed language has been implemented into Brunzit, a multi-platform desktop application using the Cinder C++
library ¹. The application presents a text field used for executing one statement of the described language at a time. The
rest of the screen shows the data terrain and agent animations.

The user may create any number of flocks (which may be individual agents) to navigate the terrain. As seen in Section
3, agents are rendered as Unicode icons, which allows defining the icon and colour from the language, with some icons
available as keywords (e.g., triangle, square, circle, arrow, arrowhead, smiley). Colours are specified as strings from the
names in the SVG standard as available in Cinder ²

For the sonification, two synthesis engines are implemented at the time of this writing, which are associated with
different types of terrain.

An additive synthesis engine is implemented for image terrains. Additive synthesis works by adding multiple sine
waves at different frequencies and amplitudes. In Brunzit, if the user chooses an image file with the map action, the
image (converted to grey scale) is used to provide a value for each pixel. Each agent is associated with a sine oscillator
where the frequency is determined by the current pixel value.

A granulation engine is used with audio terrains. Granular synthesis works by combining (often overlapping) small
segments of sound. In granulation, the segments come from an existing audio sample. In this case, following previous
work (Roma 2023), if the user specifies a sound file in themap command, the file is split into segments, and the resulting
corpus is analyzed using the FluCoMa library (Tremblay, Roma, and Green 2021). The framework proposed in (Roma et
al. 2021) is used to map the segments into a 2D grid, where the amplitude envelope of each segment is visualized. Each
agent emits grains with a Hann window envelope. The actual grains are smaller than the sound segments so that each
grain can start at a random position. Compared to the SuperCollider implementation in (Roma 2023), using C++ allows
scaling to larger corpora and numbers of agents. However, the sound capabilities are obviously much more limited.

5 Examples

Brunzit is still under development and has not yet been used in live performance. Regardless, initial experiments with
the system showed a great potential for interactive sonic exploration. This section describes two examples. The code
and links to videos can be found in the github repository.³

¹https://libcinder.org/
²https://en.wikipedia.org/wiki/Web_colors#X11_color_names
³https://github.com/g-roma/Brunzit

4

https://libcinder.org/
https://en.wikipedia.org/wiki/Web_colors#X11_color_names
https://github.com/g-roma/Brunzit


Figure 1: 50 agents are created Figure 2: Steer towards centre using seek

Figure 3: All agents at the centre (after some time) Figure 4: Move right with some wander behaviour

Figure 5: Using composed boids (join, align, avoid) algo-
rithm

Figure 6: Adding turn behaviour to boids

5



Figure 7: Example of the Brunzit interface using a picture as terrain.

5.1 Chasing Sweet Spots

The first example was created with a picture of patterned fabric as terrain, using the additive sound engine (Figure 7).
The stripes in the image created quick changes in the frequencies of the agents. An interesting result was obtained by
sending three flocks towards specific points using seek. This causes the flocks to concentrate around one point, produc-
ing a cluster of sound, sometimes alternating between two frequencies. Stopping some times freezes all modulation
producing an inharmonic drone. The flock is then sent to another spot, combining seek with flocking actions.

5.2 Death by Flocking

The second example is based on a sound file, in this case a field recording containing bell sounds and traffic noise from
Freesound⁴. The interface is shown in Figure 8. The sound was chosen to be used with the granulation engine as it
contained an interesting variety of sounds. For this case, it was found that sending small flocks of agents to wander
the terrain randomly was better than using many agents. The resulting textures were then more nuanced as the agents
consumed different sounds. The flocking behaviour was then used to fade out, letting the agents slowly die during
the process. Repeating the same process multiple times could be used as a musical structure, leading to different sonic
results each time, but with all iterations sharing a common form.

6 Discussion

Artificial life, particle systems and flocking algorithms are commonly used in computer graphics applications and have
also been used for interactive music systems. The system described in this paper introduces the ability to improvise com-
positions of agent behaviours in real-time. By combining the agent models with data terrains, a great variety of complex
sonic behaviours and textures can be obtained, and the animations enhance the understanding of the algorithmic sonic
generation process.

While the use of ALife animations often evokes the intelligence of different life forms beyond humans (Armitage, Shep-
ardson, and Magnusson 2024), there is clearly a strong human component in the design and composition of the be-
haviours. Live coding emphasizes this element by allowing the performer to visually demonstrate their thinking pro-
cess. As commonly seen when improvising with AI systems, Using Brunzit involves finding the right balance between
trying to control and steer the performance, and embracing the unexpected behaviours emerging from the interaction
rules.

⁴https://freesound.org/people/bruno.auzet/sounds/530590/

6



Figure 8: Example of the Brunzit interface using a sound file as terrain.

7 Conclusions and Future Work

This paper has described a system for composing behaviours of sonic agent models using live coding. The user interface
is based on a domain-specific language that allows combining multiple actions into behaviours, with different event
frequencies.

The system is in early development and several features are planned. On one hand, the language is still very limited
and offers no mechanisms for abstraction. Following the Logo tradition, the ability to create new procedures should be
added so that interesting combinations of actions can become new actions.

Another area of improvement concerns the sound engines and musical capabilities. While initial development has been
directed to a mostly continuous sound aesthetic that goes well with the flow of agents, adding more sound-related
actions will allow playing rhythmic patterns, envelopes and other more traditional musical structures.

Finally, while visual animations are currently used mostly as a tool, more work on the graphics would allow algorithmic
design of data terrains, and ultimately a better balance between sound and visuals in flock live coding.

References

Abelson, Harold, and Andrea DiSessa. 1986. Turtle Geometry: The Computer as a Medium for Exploring Mathematics.
MIT press.

Armitage, Jack, Victor Shepardson, and Thor Magnusson. 2024. “Tölvera: Composing With Basal Agencies.” In Proc.
New Interfaces for Musical Expression. Utrecht, NL.

Blackwell, Tim. 2003. “Swarm Music: Improvised Music with Multi-Swarms.” Artificial Intelligence and the Simulation
of Behaviour, University of Wales 10: 142–58.

Blackwell, Tim, and Michael Young. 2004. “Swarm Granulator.” InWorkshops on Applications of Evolutionary Computa-
tion, 399–408. Springer.

Borgonovo, Aldo, and Goffredo Haus. 1986. “Sound Synthesis by Means of Two-Variable Functions: Experimental
Criteria and Results.” Computer Music Journal 10 (3): 57–71.

Collins, Nick, Alex McLean, Julian Rohrhuber, and AdrianWard. 2003. “Live Coding in Laptop Performance.” Organised
Sound 8 (3): 321–30.

Epstein, Joshua M. 1996. Growing Artificial Societies: Social Science from the Bottom up. The Brookings Institution Press.
Railsback, Steven F, Steven L Lytinen, and Stephen K Jackson. 2006. “Agent-Based Simulation Platforms: Review and

Development Recommendations.” Simulation 82 (9): 609–23.
Reynolds, Craig W. 1987. “Flocks, Herds and Schools: A Distributed Behavioral Model.” In Proceedings of the 14th

Annual Conference on Computer Graphics and Interactive Techniques, 25–34.
Roma, Gerard. 2023. “Agent-Based Music Live Coding: Sonic Adventures in 2D.” Organised Sound 28 (2): 231–40.

7



Roma, Gerard, Anna Xambó, Owen Green, and Pierre Alexandre Tremblay. 2021. “A General Framework for Visualiza-
tion of Sound Collections in Musical Interfaces.” Applied Sciences 11 (24): 11926.

Rowe, Robert. 2004. Machine Musicianship. MIT press.
Schwarz, Diemo, Grégory Beller, Bruno Verbrugghe, and Sam Britton. 2006. “Real-Time Corpus-Based Concatenative

Synthesis with Catart.” In 9th International Conference on Digital Audio Effects (DAFx), 279–82.
Standish, Russell K. 2008. “Open Source Agent-Based Modeling Frameworks.” Computational Intelligence: A Com-

pendium, 409–37.
Tisue, Seth, and Uri Wilensky. 2004. “Netlogo: A Simple Environment for Modeling Complexity.” In International

Conference on Complex Systems, 21:16–21. Citeseer.
Tremblay, Pierre Alexandre, Gerard Roma, and Owen Green. 2021. “Enabling Programmatic Data Mining as Musicking:

The Fluid Corpus Manipulation Toolkit.” Computer Music Journal 45 (2): 9–23.
Unemi, Tatsuo, and Daniel Bisig. 2004. “Playing Music by Conducting BOID Agents-a Style of Interaction in the Life

with a-Life.” Proceedings of A-Life IX, 546–50.

8


	Introduction
	Related Work
	Languages for agent-based modelling
	Music With Particle Systems

	Language
	Implementation
	Examples
	Chasing Sweet Spots
	Death by Flocking

	Discussion
	Conclusions and Future Work
	References



