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Abstract

In recent years, carbon dioxide (CO,) emissions have increased at the fastest rates ever
recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG)
concentrations and prevent long-term climate change. Over 90% of global transport relies
on oil-based fuels. The continued use of diesel and petrol raises concerns related to oil
costs, supply security, GHG emissions, and the release of air pollutants and volatile organic
compounds. This study explored electric vehicle (EV) charging networks by assessing
environmental impacts through GHG and petroleum savings, developing dynamic pricing
strategies, and forecasting infrastructure needs. A substantial dataset of over 259,000 EV
charging records from Palo Alto, California, was statistically analysed. Machine learning
models were applied to generate insights that support sustainable and economically viable
electric transport planning for policymakers, urban planners, and other stakeholders.
Findings indicate that GHG and gasoline savings are directly proportional to energy
consumed, with conversion rates of 0.42 kg CO, and 0.125 gallons per kilowatt-hour
(kWh), respectively. Additionally, dynamic pricing strategies such as a 20% discount on
underutilised days and a 15% surcharge during peak hours are proposed to optimise
charging behaviour and improve station efficiency.

Keywords: infrastructure forecasting; environmental impact assessment; system dynamics
modelling; urban planning; sustainability; predictive analytics; policy modelling; electric vehicle

1. Introduction

The transportation sector is a major contributor to greenhouse gas (GHG) emissions,
primarily due to its reliance on fossil fuels like diesel and petrol [1,2]. As global awareness
of climate change grows, electric vehicles (EVs) have emerged as a promising alternative,
offering reduced emissions, lower costs, and improved public health [3-5]. However,
the widespread adoption of EVs hinges on the development and efficiency of charging
infrastructure [6].

The origins of EVs trace back to the early 19th century, with Anyos Jedlik building
a small-scale electric car in 1827, and subsequent developments by inventors like Robert
Anderson and Thomas Davenport in the 1830s [7,8]. However, it was not until the late
20th century that EVs began to gain traction, marking the need for reliable charging
infrastructure. Early charging stations, often located in parking garages, were slow and
unreliable but set the stage for future development [9,10]. In 2006, the transportation
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sector accounted for 27.5% of global energy use and contributed 23% of energy-related CO,
emissions, with road transport making up the majority of both consumption and emissions.
By 2010, over 1 billion vehicles were on the road, largely fueled by oil, and this number is
expected to grow significantly by 2050 [11].

The shift to sustainable transportation is essential for mitigating climate change, and
EVs are a key player in this transition [12]. For example, California has set a target for
zero-emission vehicles by 2035, and Palo Alto already has 30% EVs, the highest rate in the
U.S. [13]. As EV adoption rises, well-planned and accessible charging networks are crucial
to supporting this transition. Poorly located charging stations could impede EV growth,
making it harder for users to charge their vehicles [14]. Effective charging management,
including dynamic pricing, can help balance supply and demand, improve user experience,
and reduce charging congestion [15].

While the rapid growth of EV adoption calls for the optimisation of existing infras-
tructure, future expansion will be needed to meet growing demand. With EV ownership
expected to triple by 2050, dynamic pricing models will play a crucial role in optimising
charging networks by spreading demand more evenly, reducing waiting times, and ensur-
ing affordability and profitability. However, significant infrastructure expansion may be
necessary to support a transition to sustainable electric transport, addressing challenges
like infrastructure requirements, environmental impacts, and flexible pricing strategies.

Recent literature increasingly highlights that the accessibility of EV charging infrastruc-
ture, the grid-balancing potential of dynamic pricing, and uncertainty around operational
costs are not isolated considerations but interdependent barriers that jointly shape adoption
outcomes and user equity. For example, Andrenacci and Valentini (2023) show that price
unpredictability, particularly in real-time pricing regimes, can negatively impact user trust
and reduce willingness to switch to EVs, especially among lower-income and cost-sensitive
drivers. Similarly, Faisal et al. (2024) and Jin and Slowik (2017) argue that lack of cost
transparency in charging networks can exacerbate perceptions of economic risk, under-
mining both behavioural responsiveness and social equity in infrastructure rollouts [16,17].
These findings align with Limmer’s assessment that the success of dynamic pricing strate-
gies hinges on users’ ability to anticipate costs and their willingness to engage in flexible
scheduling. As such, dynamic pricing must be carefully designed with predictability and
transparency to avoid deterring adoption or entrenching usage disparities, particularly in
markets with high price sensitivity or inconsistent infrastructure access [18].

This paper aims to contribute to the field of sustainable urban mobility by providing
data-driven insights into EV charging infrastructure development, assessing environmental
impacts, and exploring dynamic pricing models. The key contributions include:

1.  Policy Recommendations: Offering evidence-based advice to policymakers on infras-
tructure development and pricing strategies.

2. Urban Planning: Assisting urban planners in designing efficient, accessible EV charg-
ing networks that support rapid adoption.

3. Economic Viability: Proposing strategies for economically sustainable EV charging
infrastructure, ensuring affordability for users while maintaining profitability.

4. Environmental Impact: Highlighting the potential environmental benefits of widespread
EV adoption and the optimisation of charging networks.

By addressing these areas, this paper will offer actionable solutions to overcome current
infrastructure challenges and facilitate the transition to sustainable electric transportation.

It is important to emphasise that this study is framed as a case study of Palo Alto,
California, a city with distinct characteristics including high EV adoption rates, favourable
weather, and progressive municipal energy policies. As such, the findings, particularly
those related to dynamic pricing, holiday and peak-time behaviours, may not be directly
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generalisable to other cities with differing climatic, demographic, or regulatory profiles.
Nonetheless, this context-specific insight offers a valuable reference point for urban envi-
ronments with similar infrastructure aspirations or policy goals.

The rest of the paper is organised as follows: Section 2 discusses related works,
methodology is explained in Section 3, Section 4 presents results, and the conclusion is
found in Section 5.

2. Related Works
2.1. History of EVs and Charging Infrastructure

The history of EVs and their charging infrastructure dates back to the late 19th century.
Early EVs relied on basic outlets and slow, inefficient charging methods, which limited
widespread adoption. Renewed interest in the late 20th century, driven by battery advance-
ments and growing environmental awareness, led to the development of more advanced
infrastructure. Fast-charging stations, home charging solutions, and standardised protocols
such as CCS and CHAdeMO have been essential in reducing range anxiety and supporting
broader EV adoption [19,20].

2.2. CO, Emissions and Environmental Impact

The transportation sector is a major source of CO, emissions due to fossil fuel use.
Shifting to EVs is a key strategy for reducing GHG emissions and combating climate change.
EVs produce significantly lower emissions than internal combustion engine vehicles, es-
pecially when powered by renewable energy. In the U.S., transportation CO; emissions
dropped by 6% from 2005 to 2021 with increased EV adoption. While battery production
adds to life cycle emissions, EVs still have a lower overall environmental impact than
conventional vehicles [21,22].

2.3. Pricing and Economic Impact of EV Market Expansion

The rapid growth of the EV market has significant economic implications. In the
U.S., plug-in EVs made up 10% of all light-duty vehicle sales in Q3 2023, with over one
million sold that year [23]. This trend is driven by rising fuel prices, greater environmental
awareness, and more affordable EV models. Supporting this demand, both public and
private sectors are investing in charging infrastructure, including public stations and home
solutions [17,24].

Beyond the auto industry, EV adoption boosts sectors like battery manufacturing and
renewable energy. Integrating renewable energy sources, such as solar power, with EV
charging enhances sustainability by reducing grid reliance and emissions [16]. Dynamic
pricing strategies, adjusting rates by demand and time, can improve profitability and
accessibility. Research identifies three EV charging behaviours: charging based on cost and
need, opportunistic charging, and charging influenced by factors like power, dwell time,
and home charging costs [24].

2.4. Technological Advancements and Design Considerations

The efficiency and user convenience of EV charging stations depend on effective
design and optimisation. Recent studies highlight the benefits of integrating renewable
energy and storage systems to lower costs and improve sustainability. Smart grids and
vehicle-to-grid (V2G) systems support bidirectional energy flow, helping stabilize the grid
during peak demand [25,26]. Innovations such as wireless and ultra-fast charging are also
enhancing accessibility and performance [27].
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2.5. Shortcomings in EV Charging Pricing and Infrastructure

Previous research on EV charging has largely centred on dynamic pricing and integra-
tion with clean energy to reduce costs and environmental impacts. Hernandez Cedillo et al.
(2022) [28] examined dynamic pricing models such as time-of-use and real-time pricing,
demonstrating their effectiveness in shifting demand to off-peak periods and aligning
charging with renewable generation. Zhao and Lee (2022) [15] applied deep reinforce-
ment learning to optimise pricing strategies but focused mainly on theoretical models,
overlooking real-world limitations.

However, these studies often neglect the infrastructure implications if pricing strategies
fail as well as the possibility that pricing models may fall short in effectively shaping
consumer behaviour. For instance, user responsiveness to price variation may differ by
income, vehicle range, or access to alternative stations. Without behavioural validation,
dynamic pricing strategies risk overestimating their influence on user decision-making.
This research fills that gap by addressing not only environmental and economic factors but
also the infrastructure adaptations needed to ensure a resilient EV charging network. It
offers a more holistic perspective, providing actionable insights for policymakers, utilities,
and urban planners to support sustainable EV adoption, even when dynamic pricing alone
may prove insufficient.

3. Methodology
3.1. Dataset Description

The dataset [29] used in this research is licensed under *“U.S. Government Works’’. It
includes over 259,000 records from 47 charging stations across California from 29 July 2011,
to 31 December 2020, containing:

* Identification: Station names, media access control (MAC) addresses, and organiza-
tional info.

e  Temporal Data: Session start/end times, durations, transaction dates.

*  Energy Usage: Energy consumed in kWh.

¢  Environmental Impact: GHG savings (kg), gasoline savings (gallons).

e  Station Details: Port/plug types, electric vehicle supply equipment (EVSE) ID, system
serial number (S/N), model number.

*  Geography: Full address, city, state, ZIP, latitude, longitude.

¢  Financial Info: Currency and fee details.

*  Driver Info: User ID, postal code.

Ethical Considerations and Limitations: The dataset excludes personally identifiable
information, adhering to ethical guidelines and license terms. Limitations include possible
data bias, variable omissions, and inconsistency due to evolving online sources. Addi-
tionally, the dataset’s regional focus on Palo Alto necessitates caution when extrapolating
behavioural or economic insights to broader or dissimilar contexts.

3.2. Data Preparation

Data was prepared using: Pandas version 2.1.4 [30], Scikit-learn version 1.3.2 [31], Mat-
plotlib version: 3.7.1 [32], and NumPy version 1.26.4 [33].

Four columns were removed due to redundancy and missing data: EVSE ID, county,
system S/N, and model number (each had over 78,000 missing values).

The data indicated that users began paying for charging services on 1 August 2017 [34],
whereas previously charging was free; only data from this point onward was used in
pricing-related analysis.
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3.3. Feature Engineering

Feature Creation:

Charging Time (seconds): Duration in seconds during which the vehicle was actively
drawing electricity. It reflects energy usage efficiency and informs environmental
impact estimates.

Total Duration (seconds): Total plugged-in time, from connection to disconnection,
including idle time. Essential for modelling usage behaviour and station occupancy.
Holiday: Indicates whether the session occurred on a U.S. federal holiday. This feature
accounts for potential variations in demand due to public holidays. The federal
holidays were identified according to the U.S. government’s official list [35].
Weekday/Weekend, Day of Week: Classifies each session as occurring on a weekday
or weekend and records the specific weekday name. Useful for capturing routine
behaviour patterns.

Price per kWh: Calculated by dividing the total session fee by the amount of energy
consumed (in kilowatt-hours). This derived feature is essential for understanding
the relationship between cost and user behaviour. It enables analysis of how drivers
respond to varying prices, supporting the development of dynamic pricing strategies
that adjust rates based on time, demand, or other conditions [36,37]. Such pricing
models help operators optimise revenue, manage station congestion, and influence
charging habits (e.g., encouraging off-peak usage).

YearMonth: Combines year and month to capture seasonal or monthly trends and
support long-term demand forecasting.

Feature Selection:
Table 1 lists the features used in each model along with their roles in the analysis:

Table 1. Feature Selection for Different Models.

Feature Model Role

Charging Time (seconds)

Duration of the charging
session, affecting energy
consumption.

Green House Gases and
Gasoline Savings Model

Total Duration (seconds)

Overall event duration,
impacting energy use and
GHG savings.

Green House Gases and
Gasoline Savings Model

Green House Gases and

Gasoline Savings Model Indicates if the event occurred

Weekday or Weekend o on a weekday or weekend,
Dynamic Pricing Model infl . harei
Demand Forecasting Model Influencing charging patterns.
SZZ%II@OSU:;STT\ZSQSI Indicates if the event occurred
Holiday Dynamic Pricir?g Model on a federal holiday, affecting
Demand Forecasting Model charging behaviour.
Green House Gases and Amount of energy consumed,
Gasoline Savings Model directly influencing GHG
Energy (kWh) Dynamic Pricing Model savings, dynamic pricing, and
Demand Forecasting Model needed infrastructure.
Green House Gases and Type of charging port used,
Port Type Gasoline Savines Model which might affect efficiency
& and energy consumption.
Green House Gases and Type of plug used, potentially
Plug Type influencing charging

Gasoline Savings Model

efficiency.
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Table 1. Cont.

Feature Model Role
Green House Gases and .
. . Year of the event, capturing
Gasoline Savings Model .
Year o trends and technological
Dynamic Pricing Model imbrovements
Demand Forecasting Model p ’
Green House Gases and Month (.)f the event,
Month . . accounting for seasonal
Gasoline Savings Model c 2
variations in energy use.
Green House Gases and
Day of Week Gasoline Savings Model Day of the week, which might

Dynamic Pricing Model
Demand Forecasting Model

influence charging patterns.

Gasoline Savings (gallons)

Green House Gases and
Gasoline Savings Model

Amount of gasoline saved.

Green House Gases and

Amount of green house gases

GHG Savings (kg) Gasoline Savings Model saved.
S The cost charged for every

Price Per kWh Dynamic Pricing Model kilowatt-hour of electricity

Demand Forecasting Model

consumed.

Dynamic Pricing Model Captures monthly patterns

YearMonth Demand Forecasting Model across years.
Model Targets:

GHG/Gasoline Savings Model: GHG Savings (kg), Gasoline Savings (gallons)
Dynamic Pricing Model: Energy (kWh)
Demand Forecasting Model: Energy (kWh)

The forecasting model is integrated with the pricing model’s features as a fallback strategy.

3.4. Missing Values and Outliers

GHG Model: Interquartile range (IQR)-based outlier removal was applied to GHG
and gasoline savings values. This ensured that extreme or anomalous values did not
distort the environmental impact analysis.

Pricing Model: Data from before 1 August 2017 was excluded, as charging was free
prior to this date. Outliers in price per kWh were also removed to maintain a realistic
representation of market-based pricing behaviour.

Forecasting Model: Outliers in energy consumption were eliminated to improve the
accuracy of long-term demand predictions. This step was crucial for preserving the
integrity of seasonality and trend modelling.

Remaining NaNs: After cleaning and dropping irrelevant columns, any rows con-
taining missing (NaN) values were removed. This ensured a complete dataset and
reduced the risk of introducing bias or computational errors in the models.

The number of rows removed through IQR-based outlier filtering was relatively small

across all models. In each case, fewer than 9000 rows were excluded, preserving the

integrity of the dataset while reducing noise from extreme values. While some valid high-

load sessions may have been removed, this trade-off was accepted to enhance the stability

and reliability of the models.

3.5. Feature Scaling

Applied StandardScaler [38] from sklearn.preprocessing in GHG and Pricing models:
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i
o

z =

where y is the mean and ¢ is the standard deviation. Default settings (with_mean=True,
with_std=True) were used.

StandardScaler was not applied to the seasonal autoregressive integrated moving
average with exogenous regressors (SARIMAX)-based forecasting model because, unlike
neural network-based models, it operates on time series values directly and does not
involve gradient-based optimisation where feature scaling would influence learning sta-
bility or convergence speed. SARIMAX models rely on statistical relationships (such as
autoregressive and moving average components) and internal differencing of the data,
which makes them inherently less sensitive to the magnitude of input features. Therefore,
applying StandardScaler is not only unnecessary but could also distort the interpretability
of the model parameters, especially when forecasting in units like kWh.

3.6. Variation Analysis

Between 2011 and 2020 as shown in Figure 1, total energy consumption generally
increased with the growing adoption of EVs. However, 2018 and 2020 showed unexpected
declines. This analysis examines possible causes for these anomalies, considering how
external factors may have disrupted expected patterns. Understanding these variations is
important for improving forecasts of EV charging demand.

400,000 4

300,000 -

200,000

Total Energy Consumed (kWh)

100,000 4

2020 4

2011
2012
2013
2014
2015 4
2016
2017
2018
2019 4

Year

Figure 1. Energy consumption trends (2011-2020), highlighting dips in 2018 and 2020.

Energy Consumption Dips in 2018 and 2020:

Two notable declines in EV energy consumption occurred in 2018 and 2020 due to dis-
tinct external factors. In 2018, following the introduction of a charging fee on 1 August 2017,
in Palo Alto, users who were previously accustomed to free charging reduced their usage or
sought alternative options. This change in behaviour demonstrates how pricing policies can
influence infrastructure utilisation [34]. In 2020, the COVID-19 pandemic caused a sharp
decline in charging demand. Lockdowns, remote work, travel restrictions, and economic
uncertainty led to reduced travel and more conservative energy use, with many delaying
EV purchases due to financial concerns [39]. These events highlight the sensitivity of EV
charging patterns to both economic incentives and broader societal disruptions.
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3.7. Model Selection

GHG and Gasoline Savings Model

A linear regression model was used to analyse how factors such as charging times and
energy usage relate to GHG and gasoline savings. This method assumes a linear relationship
and fits a line that minimises prediction errors. Its simplicity and interpretability make
it suitable for understanding the environmental and economic benefits at EV charging
stations [40].
Dynamic Pricing Model

Ridge regression was selected for pricing analysis. It extends linear regression
with L2 regularisation (Ridge penalty) to reduce overfitting, especially in the presence
of multicollinearity. By penalising large coefficients, it produces more stable and reliable
predictions [41,42].

This equation forms the basis of ridge regression, detailing the components and their
roles in the model:

Iy = Xl 3+ - [[oo] B

*  y: Observed values.

*  X: Predictor variables.

*  w: Coefficient vector.

*  «: Regularisation parameter.

e || ||3: Squared Euclidean norm [42].

In this study, « was set to 1.0 based on empirical testing. This commonly used
default value provided sufficient regularisation. Including this detail enhances the model’s
reproducibility and clarity.

Demand Forecasting Model

The demand forecasting model employed a SARIMAX framework due to its ability
to handle non-stationary and seasonal data while incorporating external variables [43]. It
builds on earlier models by accounting for cases where pricing alone does not influence
user behaviour, such as peak demand or limited user flexibility. This model supports
planning for infrastructure expansion and equitable access to charging stations.

3.8. Hypothesis Testing

Two hypothesis tests (Figures 2 and 3) were conducted to inform demand forecasting
and pricing strategies. Both applied a consistent bootstrapping method, resampling with
replacement to estimate means and mean differences. Key steps included dataset prepara-
tion, generating bootstrapped samples, computing z-scores, and calculating p-values. A
significance level of « = 0.05 was used to evaluate results. This approach supports robust,
interpretable findings for operational planning.

P-values were calculated empirically by computing the proportion of bootstrap re-
samples where the test statistic was at least as extreme as the observed value, using a
two-tailed approach.

Daily Variations in Charging Times

In this hypothesis test, the daily variations in EV charging durations are tested based
on the following:

Null Hypothesis Hyp: The mean charging time on a specific day equals that of all
other days.

Ho : fg = Pother
Alternative Hypothesis H;: The mean charging time on a specific day differs from
that of other days.
Hi @ g # Pother
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*  uy: Mean charging duration for the specific day.
®  lother: Mean charging duration on all other days.

The null hypothesis was rejected for Friday and Saturday, indicating significantly
different charging times on these days.

Comparison of Daily Total Duration Across the Week

® Actual Mean L] L]
I Bootstrap Mean ® LJ
200 A

150 1

100 A

Total Duration (hours)

50

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Day

Figure 2. Weekly EV charging times vs. average.

Federal Holiday vs. Non-Federal Holiday Charging Times

In this analysis, the differences in EV charging means during federal holidays versus
non-federal holidays are examined:

Null Hypothesis Hy: Mean charging time is the same for both groups.

Hj : Mholiday = Mnon-holiday

Alternative Hypothesis Hi: Mean charging times differ between the two.
H;: Hholiday 7é Hnon-holiday

®  Hholiday: Mean charging time on federal holidays.
®  Hnon-holiday* Mean on non-federal holidays.

The test rejected the null hypothesis, confirming significantly different charging
behaviour during federal holidays, critical insight for pricing decisions.

Bootstrap Mean Differences: Federal Holiday vs Non-Federal Holiday

[ ——- Observed Federal Holiday Mean - ===

200 1 --- observed Non-Federal Holiday Mean

175 1

H
o
=)

= =
5] Iy
5] o

Total Duration (hours)

~
@

254

T
Federal Holiday Non-Federal Holiday

Figure 3. Mean charging times: federal holiday vs. non-federal holiday.
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4. Results
4.1. GHG and Gasoline Savings Model

The model was designed to project and monitor GHG and gasoline savings over
the years 2021 to 2025, focusing on the environmental benefits of EV usage. Utilising
historical data from EV charging stations, the linear regression model employed predictive
analytics to forecast trends and quantify potential reductions in emissions and gasoline
usage. This approach enables evaluation of the long-term impact of sustainability efforts in
reducing carbon footprints. However, the results revealed an almost perfect coefficient of
determination (R? ~ 1). Moreover, as illustrated in Figure 4, the correlation heatmap shows
a high degree of interdependence among key charging session attributes, confirming the
near-perfect correlation between energy (kWh), GHG savings (kg), and gasoline savings
(gallons). This indicates that GHG and gasoline savings are not independently measured
variables but are instead directly derived from the amount of energy consumed during
each charging session.

This insight, while valuable, introduced modelling limitations, as it restricted the
ability to independently assess each of these variables. To address this issue and improve
the model’s predictive performance over the next five years, constants representing the
relationships between these variables were extracted from the correlation analysis. These
constants are now used to compute GHG and gasoline savings based on the measured or
predicted energy (kWh), ensuring consistency and avoiding redundancy in variable inputs.

Correlation Heatmap

1.00
Charging Time (hh:mm:ss)mw 0.01 -0.04 0.06 —0.05 0.26 0.04 0.03 -0.08 —0.02 —-0.00 —O.IZM

-0.05 0.06 —0.02 041 005 0.01 006 —0.01 -0.00 —0.07 | 0.55

GHG Savlngslkgb 0.01 -0.05 0.06 —0.02 041 0.05 0.01 0.06 —0.01 —0.00 —0.07 0.55 0.75
Gasoline Savings (gallons) - 0.01 -0.05 0.06 —0.02 0.41 0.05 0.01 0.06 —0.01 —0.00 —0.07 0.55
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Figure 4. Correlation heatmap of charging session attributes, highlighting the interdependence
between energy (kWh), gasoline savings, and GHG savings.
Conversion Rates

Upon careful examination, the conversion rates observed in the data were as follows:

*  GHG saved per kWh: 0.420 kg;
*  Gasoline saved per kWh: 0.125 gallons.



World Electr. Veh. ]. 2025, 16, 410

11 of 26

These values capture only the average carbon intensity of the local grid during the
study period and does not reflect year-to-year changes in the energy mix, such as increased
use of renewables or shifts in peak demand generation.

As shown in Table 2, the values for energy, GHG savings, and gasoline savings across
the years were derived using these fixed conversion rates. These figures were calculated
based on the monthly energy demand trends illustrated in Figure 5.

Table 2. Energy, GHG, and gasoline savings (historical and predicted) across various years.

. Gasoline
Type Year Energy (kWh) GHG(E a)v nes Savings
8 (Gallons)
Historical 2017 120,236.561 50,499.356 15,029.570
Historical 2018 341,885.561 143,591.936 42,735.695
Historical 2019 412,152.592 173,104.089 51,519.074
Predicted 2021 536,640.843 225,389.154 67,080.105
Predicted 2022 599,780.185 251,907.678 74,972.523
Predicted 2023 662,919.526 278,426.201 82,864.941
Predicted 2024 728,712.560 306,059.275 91,089.070
Predicted 2025 792,446.619 332,827.580 99,055.827
Historical and Predicted Energy Demand by Year
i e d
g 50,000 —e— Predicted 2025 NN‘
o v

Year

Figure 5. Monthly historical and predicted energy demand by year.

These calculations demonstrate that substantial environmental savings were achieved
and are projected to continue, highlighting the escalating impact of sustainable practices
on the environment over time.

4.2. Dynamic Pricing Model
4.2.1. Utilisation Patterns and Peak Times

Upon analysing the daily occupancy rates of EV chargers, it becomes clear that a
significant number of chargers remain unused for nearly half of the day or more. This
indicates a concentration of charging activity during specific peak hours, highlighting
inefficiencies in utilisation. The data suggests that while many stations have the capacity to
support more vehicles, the challenge lies in optimising the timing of usage.

By managing when drivers choose to charge—through dynamic pricing that adjusts
costs based on the time of day—stations can operate more efficiently. This approach
can help

. Reduce wait times;

¢  Distribute demand more evenly throughout the day;
*  Potentially delay the need for additional infrastructure.
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Figure 6 supports this analysis by showing a comparison of occupied and empty hours

across various charging stations, making it evident that most stations have long periods

of inactivity.

PALO ALTO CA / SHERMAN 5

PALO ALTO CA / SHERMAN 9

PALO ALTO CA / SHERMAN 17
PALO ALTO CA / BRYANT # 1

PALO ALTO CA / SHERMAN 14
PALO ALTO CA / SHERMAN 4

PALO ALTO CA / SHERMAN 15
PALO ALTO CA / SHERMAN 3

PALO ALTO CA / SHERMAN 7

PALO ALTO CA / SHERMAN 2

PALO ALTO CA / SHERMAN 8
PALO ALTO CA / SHERMAN 6

PALO ALTO CA / MPL #2

PALO ALTO CA / SHERMAN 11
PALO ALTO CA / MPL #3

PALO ALTO CA / SHERMAN 1

PALO ALTO CA / MPL #1

PALO ALTO CA / RINCONADA LIB 2
PALO ALTO CA / RINCONADA LIB 3
PALO ALTO CA / BRYANT #3

PALO ALTO CA / RINCONADA LIB 1
PALO ALTO CA / BRYANT #1

PALO ALTO CA / BRYANT #2

PALO ALTO CA [ MPL #5

PALO ALTO CA / TED THOMPSON #3
PALO ALTO CA / MPL #4

PALO ALTO CA / TED THOMPSON #4
PALO ALTO CA / CAMBRIDGE #4
PALO ALTO CA / TED THOMPSON #2
PALO ALTO CA / MPL #6

PALO ALTO CA / BRYANT #4

PALO ALTO CA / HIGH #4

PALO ALTO CA / HIGH #1

PALO ALTO CA / CAMBRIDGE #2
PALO ALTO CA / CAMBRIDGE #5
PALO ALTO CA / CAMBRIDGE #3
PALO ALTO CA / HAMILTON #1
PALO ALTO CA / CAMBRIDGE #1
PALO ALTO CA / HIGH #2

PALO ALTO CA / BRYANT #5

PALO ALTO CA / HIGH #3

PALO ALTO CA / WEBSTER #3
PALO ALTO CA / TED THOMPSON #1
PALO ALTO CA / BRYANT #6

PALO ALTO CA / WEBSTER #2
PALO ALTO CA / WEBSTER #1
PALO ALTO CA / HAMILTON #2

Average Daily Occupation and Empty Hours per Station
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Empty Hours
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Figure 6. Comparison of daily station utilisation showing occupied and empty hours across various

charging stations.

4.2.2. Day-Based Charging Behaviour

The previous hypothesis test (Figure 7) confirmed significant differences in total

charging durations between Friday and Saturday and every other day of the week. Further

investigation revealed that people tend to charge their vehicles less frequently on these days.

Average Total Duration per Day of the Week
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Figure 7. Average total charging duration per day.

4.2.3. Implementation of Dynamic Pricing

To effectively manage the utilisation of EV charging stations, a day-based dynamic
pricing strategy could be introduced. For days with typical usage (Sunday through Thurs-



World Electr. Veh. ]. 2025, 16, 410

13 of 26

day), standard rates should be maintained due to consistently high demand. In this study,

the average price observed across most stations is approximately USD 0.25 per kWh.
While pricing appears uniform in general, some stations exhibit noticeable devia-

tions. The dataset does not provide specific reasons for these differences, which may be

influenced by

*  Local policies;

e Infrastructure costs;

*  Usage trends.

Figure 8 illustrates the average price per kWh at each station, clearly showing that
most stations cluster around the average rate, while a few outliers exhibit significantly
higher or lower pricing.

Average Price per kWh by Station
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Average Price per kWh (3)
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Figure 8. Price Per kWh For Each Station.

For underutilised days (Friday and Saturday), a 20% price reduction is proposed to
encourage charging on these days, setting the price to 0.20 USD/kWh. This adjustment
does not account for any hourly price changes that might be implemented.

The price adjustment calculations are as follows:

. Current Price: 0.25 USD/kWh
e  Reduction (20%):

0.25USD/kWh x 0.20 = 0.05USD/kWh
®  Price for Friday and Saturday:
0.25USD/kWh — 0.05 USD/kWh = 0.20 USD/kWh

Implementing this pricing strategy aims to balance the load on the EV charging infras-
tructure by shifting some of the demand from the highly utilised days to the underutilised
Fridays and Saturdays. This approach not only optimises the use of existing infrastructure
but also improves user satisfaction by reducing congestion during peak times. Continuous
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monitoring and adjustments will be essential to ensure that the pricing strategy remains
effective and responsive to user behaviour and demand patterns.

Based on the bar chart in Figure 9, the peak and off-peak periods are determined
using an experimental 3.5 h threshold as follows: Any hour with an average total duration
exceeding 3.5 h is considered a peak hour.

Average Total Duration (hours) for Each Hour of the Day

Iy

Average Total Duration (hours)
w

N

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 1 17 18 19 20 21 22 23
Hour of Day

Figure 9. Average total duration (hours) for each hour of the day with peak hours indicated by red
bars exceeding 3.5 h.

e  Peak Hours: [9:00 PM, 4:00 AM)
e Off-Peak Hours: [4:00 AM, 9:00 PM)

During peak hours, when the average total charging duration is at its highest, a 15%
price increase is introduced to help manage station congestion and discourage excessive
use. The adjusted pricing during peak hours is calculated as follows:

Current Price = 0.25USD/kWh
Increase (15%) = 0.25USD/kWh x 0.15 = 0.0375 USD/kWh
New Price During Peak Hours = 0.25USD/kWh + 0.0375 = 0.2875 USD/kWh

During off-peak hours, standard rates are maintained to encourage usage during
periods of lower demand and to optimise station utilisation. This strategy is designed to
enhance infrastructure efficiency by aligning user behaviour with station availability. The
effectiveness of the pricing model is monitored regularly to inform potential adjustments.
Following the implementation of an hour-based dynamic pricing strategy, data revealed
that the period from 9:00 PM to 4:00 AM recorded the highest total charging duration but
the fewest sessions. This indicates that many users leave their vehicles connected overnight
without actively charging throughout the duration, resulting in inefficient station use. Such
behaviour limits access for other users and underscores the need for greater awareness and
the introduction of a penalty system to encourage more efficient charging practices, thereby
improving station availability and operational efficiency.

Implementation Plan For A Graduated Penalty System

1.  Goal: To optimise the use of EV charging stations by discouraging prolonged usage
during peak hours and ensuring efficient turnover for increased user satisfaction.

2. Justification: Efficient use of charging stations reduces wait times, accommodates
more users, and enhances overall service quality.

3. Policy Design

Duration Thresholds:

- 10-20% over charging time: Minor penalty
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- 21-40% over charging time: Moderate penalty
- More than 40% over charging time: Major penalty

Penalty Scale: The penalty scale is determined based on the average cost to charge an
EV with an average battery capacity of 72.2 kWh [44], priced at 0.25 USD per kWh. This
results in an estimated cost of 18.05 USD to fully charge a vehicle.

- Minor penalty: 5 USD
- Moderate penalty: 10 USD
- Major penalty: 20 USD

This hypothetical scale is designed to be fair and reflective of real-life scenarios. A
grace period equivalent to 10% of the charging time is considered adequate for users to
remove their vehicle from the charger, ensuring availability for others. For fast chargers,
users are typically expected to stay near their vehicle and disconnect it immediately once
charging is complete. For slower chargers, the grace period allows sufficient time for users
to return and disconnect their vehicle and remove it after it has finished charging.

This approach encourages responsible use of charging stations and helps balance the
needs of all users, regardless of the charging speed.

A previous hypothesis test (Figure 3) showed that users tend to charge less during
federal holidays. Therefore, as a hypothetical scenario, an additional discount is proposed
to encourage charging on federal holidays.

To find the percentage discount, the percentage increase in charging times that is
desired to be encouraged on holidays will be estimated:

*  Observed non-federal holiday mean: Approximately 210 h
*  Observed federal holiday mean: Approximately 135 h

To encourage more usage, the holiday charging time should be aimed to be increased
at least 50% of the difference closer to the non-federal holiday mean:

. Difference:

Difference = 210 h — 135 h
=75h

e  Target Increase (50% of the difference minimum):

Target Increase = 75 h x 0.5
=375h

Now, we calculate the percentage increase needed to reach this new target:

37.5

p tage I ==
ercentage Increase ( 135

) x 100 = 27.8%

This 27.8% represents the minimum increase in usage that is aimed to be achieved.
Offering a discount of 20% reflects the desired increase in usage. Continuous monitoring
and iterative adjustments based on real-time data and user feedback are essential to ensure
the strategy’s success, as this pricing strategy is based on assumed user responsiveness and
therefore warrants empirical validation through behavioural modelling.

Model Summary

The analysis of daily occupancy rates of EV chargers has revealed a significant unused
capacity at certain times of the day, indicating that charging activities are concentrated
during peak hours. In this speculative trial, the following dynamic pricing measures are
proposed to optimise charger utilisation and mitigate congestion. It is important to note
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that these measures are theoretical and should be continuously adjusted based on real-time
observation, user feedback, or insights from a demand elasticity study to ensure their
effectiveness and suitability.

It is important to note that these pricing scenarios are theoretical and assume static de-
mand. They should be continuously refined based on real-time observation, user feedback,
and system performance data. While this study does not model price elasticity explicitly,
incorporating behavioural response models in future work could enhance the realism and
effectiveness of pricing strategies.

Days with Typical Usage (Sunday-Thursday).

¢  Standard Rate: 0.25 USD/kWh.

*  Justification: This rate is maintained due to consistent demand observed from Sunday
to Thursday.

*  Expected Impact: Ensures stability in revenue from regular users while maintaining
high utilisation.

Underutilised Days (Friday and Saturday).

e Discount: 20% off to encourage charging.

*  New Price: 0.20 USD/kWh.

e Justification: The lower prices are aimed at increasing charger usage on days with
traditionally lower demand.

e Expected Impact: A projected increase in charger use by 15% during these days, based
on previous underutilisation patterns.

Hour-Based Pricing.
. Peak Hours (9:00 PM to 4:00 AM):

—  15% price increase to manage congestion.
—  New Price: 0.2875 USD/kWh (Sunday-Thursday), 0.23 USD/kWh (Friday
and Saturday).

¢ Justification: Higher prices during peak hours are designed to stagger charging times,
reducing peak load.

*  Expected Impact: Reduction in peak hour congestion by 25%, encouraging off-peak usage.

¢ Off-Peak Hours (4:00 AM to 9:00 PM):

-  Standard rate of 0.25 USD/kWh (Sunday-Thursday), 0.20 USD/kWh (Friday
and Saturday).

*  Justification: These rates aim to maintain a steady flow of users outside of peak times.
*  Expected Impact: Consistent utilisation during off-peak hours without discouraging
users due to high costs.

Federal Holiday Pricing.

*  Discount: Additional 20% off the total price to encourage federal holiday charging.

¢  Justification: The federal holiday discount is aimed at increasing usage during typi-
cally low-usage days, leveraging reduced rates to attract users.

¢ Expected Impact: An increase in charger usage by 27.8% on federal holidays compared
to current numbers.

Figure 10 shows the pricing rate assigned to each hour, with higher rates applied
during peak hours:
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Average Charging Rates by Hour Across the Week
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Figure 10. Average charging rates throughout the day.

4.3. Demand Forecasting Model

This model builds on the dynamic pricing strategy by addressing cases where pricing
alone fails to manage demand. Such cases include periods of persistent overcapacity, users
with fixed schedules, and regions where geographical or socioeconomic constraints limit
responsiveness to price signals. The goal is to identify areas that require additional EV
charging infrastructure to ensure fair and efficient access.

The SARIMAX model is used to forecast demand at individual charging stations based
on historical usage data. The process involves combining date and time into a unified
datetime field, extracting temporal features (e.g., year, month), and excluding data from
2020 to avoid distortions. Monthly sessions are aggregated and used to predict demand
trends from 2021 to 2025 using tuned SARIMAX parameters.

This approach follows a review of user behaviour under dynamic pricing. Continuous
full-capacity periods and limited flexibility in user schedules—due to work, school, or med-
ical commitments—can reduce service reliability and increase dissatisfaction. Forecasting
supports proactive infrastructure planning to address such constraints.

The dataset includes 47 charging stations. Of these, 14 were active only during 2020.
Since the dataset ends in 2020, two possibilities arise:

1. These stations started and ceased operations within 2020, possibly due to the
COVID-19 pandemic.

2. They continued operating beyond 2020, but this cannot be confirmed from the avail-
able data.

In both scenarios, lack of prior or follow-up data makes demand forecasting infeasible
due to the absence of meaningful trends.
Stations operating exclusively in 2020:
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13. PALO ALTO CA/SHERMAN 8
14. PALO ALTO CA/SHERMAN

For the modelling process, while conventional time series approaches often include
explicit train—test splitting for accuracy validation, the focus in this study was on long-term
trend estimation rather than short-horizon prediction. The model was trained on the full
dataset (excluding 2020) to maximise seasonal pattern detection and improve the stability
of extended forecasts. Given the policy-oriented context of the analysis, this approach was
considered appropriate.

A detailed set of graphs illustrating the monthly kilowatt-hour (kWh) demand
for each EV charging station, along with projected future demand, is provided in
Supplementary Materials Figures S1-S8. These visualisations highlight historical usage
trends and anticipated future needs while omitting data from the year 2020 due to potential
anomalies caused by the COVID-19 pandemic.

The graph below illustrates the average duration of charging sessions across some
stations throughout the day. Each line represents a specific charging station, capturing
how charging durations fluctuate hourly. This clear visual representation allows for a
straightforward understanding of when and how long vehicles are typically charged at
different locations, highlighting the diverse charging behaviour at each station as the
day progresses:

Figure 11 shows notable peaks in charging durations during the early morning and
late night hours, with more consistent and shorter durations throughout the day. This
consistent pattern across all hours at each station aligns with the findings from previous
investigations into hourly demand that have been conducted. Identifying these patterns,
where they exist, is crucial for pinpointing which stations are most frequently used and at
what times. This provides a comprehensive view of charging station utilisation throughout
a typical day, essential for assessing infrastructure needs if dynamic pricing measures
are insulfficient.

Average Charging Duration per Hour for 6 Random Stations

Station Name
—8— PALO ALTO CA/ CAMBRIDGE #1
PALO ALTO CA / HAMILTON #2
* & PALO ALTO CA/ HIGH #2
=& PALO ALTO CA/ MPL #2
14 =)= PALO ALTO CA/ MPL #3
—+ = PALO ALTO CA / RINCONADA LIB 1

Average Duration (hours)

Hour of Day

Figure 11. Hourly trends in EV charging duration.

When plotting the geographical locations of each station using their latitude and longi-
tude coordinates, it has been noticed that some stations have multiple pairs of coordinates.
This variation can be attributed to several factors, including:

(1) Measurement Variability: Small variations in coordinates could be due to GPS
accuracy or the way coordinates are recorded. This can result in slightly different
coordinates for the same physical location.
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(2) Location Precision: The coordinates might be reported with different levels of preci-
sion, or the station might have multiple charging points or sensors that report slightly
different coordinates.

To fulfill the objectives of this research, the multiple coordinates for the same
stations were aggregated by calculating the average latitude and longitude for each
station and then graphed on a map using GeoPandas, which transforms the DataFrame
into a GeoDataFrame that integrates spatial information, enabling the plotting of points
based on latitude and longitude. The matplotlib is used to set up the visual framework,
plotting the GeoDataFrame with specific aesthetic parameters. Contextily enhances the
plot by adding a basemap from OpenStreetMap [45], providing a real-world geographic
context to the data points. This approach results in a central geographical point for
each station, consolidating various coordinates into a single representative location.
Additionally, the stations were grouped based on their location to evaluate the ability of
users to move to another station close by or whether they had to move to a completely
different location to get the service. The resulting geographic distributions are available
Supplementary Materials Figures S9-517. Based on the SARIMAX analysis, under the
assumption that each station is operating at full capacity and that dynamic pricing
measures are ineffective, stations have been categorised into three groups: Needs,
Might Need, and Does Not Need. This classification is derived from a structured
visual interpretation of SARIMAX-predicted demand trends rather than from strict
thresholds within the model outputs. The categorisation reflects consistent patterns
observed across the forecasted utilisation curves and total plug-in hours, and it was
applied uniformly by comparing projected data against historical baselines.

- Needs: Stations in this category exhibit a sustained upward trajectory in utilisation,
approaching or exceeding practical capacity limits. They are projected to experience a
significant increase in energy demand over the next five years, indicating an urgent
need for infrastructure expansion or enhancement.

- Might Need: These stations display moderate growth trends or intermittent peaks
in demand. While not immediately critical, they may require upgrades or additional
resources in the near future, particularly if fluctuations in peak demand become more
frequent or pronounced.

- Does Not Need: Stations in this group demonstrate flat or declining demand, with
utilisation expected to remain within current capacity. As such, they do not warrant
additional infrastructure investment in the short to medium term.

Table 3 summarises the categorisation of charging stations in Palo Alto based on
projected infrastructure needs:

Table 3. Categorised station needs in Palo Alto, CA.

Needs Might Need Do Not Need
PALO ALTO CA/HAMILTON PALO ALTO CA/MPL
PALO ALTO CA/CAMBRIDGE PALO ALTO CA/HIGH PALO ALTO CA/BRYANT

PALO ALTO CA/TED THOMPSON PALO ALTO CA/WEBSTER PALO ALTO CA/RINCONDA LIB

Note—Groupings in this table are based on visual inspection of SARIMAX forecast trends, as explained in
Section 4.3. Future work may formalise these categories using empirical utilisation thresholds.

To sum up, the SARIMAX analysis provides a clear framework for future planning and
resource allocation among the examined stations. Given the categorisation into “Needs”,
“Might Need”, and “Does Not Need”, the decision-maker is better equipped to prioritise
investments and interventions. Stations classified under “Needs” require immediate at-
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tention to manage the anticipated surge in demand, whereas those in the “Might Need”
category present potential risk and need continuous observation. Stations in the “Do Not
Need” group can maintain current operations and enhance them with the dynamic pricing
measures assigned without additional infrastructure resources for the next five years, al-
lowing for a more focused allocation of funds and efforts towards areas with more pressing
demands. This strategy ensures that infrastructure developments are responsive, efficiently
meeting the changing needs of the energy sector. Furthermore, this categorisation supports
ongoing debates around equitable access to EV charging. Stations flagged as “Needs”
are often located in high-demand or underserved areas, where insufficient access could
create bottlenecks for users without home charging options. Prioritising infrastructure
expansion in these areas can help mitigate socioeconomic disparities in EV adoption and
ensure that mobility benefits are equitably distributed. Without such targeted planning,
dynamic pricing strategies may risk reinforcing inequality by favouring users with greater
schedule flexibility or access to less-congested stations.

Enhancing the infrastructure can be achieved through a variety of strategies, including:

1.  Ultra-Fast Charging Networks: The development of ultra-fast charging networks
can revolutionise EV charging by significantly reducing charging times to just a few
minutes. This advancement will enhance convenience for EV owners, making the
charging process comparable to traditional refueling times. As a result, range anxiety
will be mitigated, encouraging more people to adopt EVs. Additionally, ultra-fast
charging will make EVss more practical for daily use and accessible to those who lack
home charging infrastructure [46].

2. Wireless Charging Technology: Wireless charging technology allows EVs to charge
through an electromagnetic field without the need for physical cables. This method
improves convenience by eliminating the need to connect to a charging point and can
reduce installation costs associated with traditional infrastructure. Wireless charging
enables continuous charging while the vehicle is in use as charging starts automatically
as soon as the vehicle enters an area with a wireless charging pad, thus improving
efficiency and reducing wait times at charging stations [46].

3. V2G Technology: V2G technology allows EVs to both draw power from and supply
it back to the grid. This bi-directional flow enhances grid stability and helps integrate
renewable energy by balancing supply fluctuations. It can offer financial incentives to
EV owners through revenue from excess power and provides utilities with a flexible
grid resource, potentially reducing the need for costly infrastructure upgrades [46].

4.  Providing More Charging Stations: Expanding the network of charging stations in-
volves evaluating potential sites based on available land, accessibility, and regulatory
approvals. This expansion can focus on adding stations in high-demand areas or
nearby regions. It is essential to consider land availability, obtain necessary approval
from landowners and government authorities, and ensure that the new locations are
accessible for timely deployment and use.

5. Conclusions

This study provides a comprehensive case study analysis of environmental benefits,
dynamic pricing strategies, and infrastructure requirements for EV charging networks.
While the results are inherently tied to the conditions in Palo Alto, they offer policy-
relevant insights that may inspire similar initiatives in other regions, particularly those
with comparable urban and environmental contexts. Utilising an extensive dataset from
Palo Alto, California, this study employs statistical analysis, econometrics, and machine
learning techniques to offer significant insights into the deployment and optimisation of
EV charging systems.
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5.1. Environmental Impact Assessment

The environmental analysis demonstrated notable reductions in GHG emissions and
significant gasoline savings due to the adoption of EVs. Based on the data available,
between 1 August 2017, and the end of 2020, for the 33 stations that began operating
before 2020, EV usage has led to a decrease of approximately 367,195 kg of CO, emissions,
which is equivalent to around 367 tons. To put this into perspective, a typical passenger
vehicle emits about 4.6 tons of carbon dioxide annually [47]. This reduction is similar to
taking approximately 80 conventional vehicles off the road during that period, alongside
gasoline savings amounting to roughly 109,284 gallons. Considering that, for example, the
average vehicle on U.S. roads gets around 25 miles per gallon [48], these gasoline savings
correspond to about 2.73 million miles of driving. Looking ahead, projections indicate
that between 2021 and 2025, an additional reduction of approximately 1,392,046 kg of CO,
emissions could be achieved, which is comparable to eliminating the emissions of about
303 passenger vehicles. Furthermore, the anticipated gasoline savings during this period
are expected to reach around 414,299 gallons, translating to approximately 10.36 million
miles of driving avoided.

5.2. Dynamic Pricing Strategies

The implementation of dynamic pricing models shows potential to optimise profitabil-
ity and accessibility. The measurements suggested for this model are as follows:

e Days With Typical Usage (Sunday-Thursday): Standard rate of 0.25 USD/kWh.

*  Underutilised Days (Friday and Saturday): Offers a 20% discount, setting the new
rate at 0.20 USD/kWh.

* Hour-Based Pricing;:

—  Peak Hours (9:00 PM to 4:00 AM): Price increases by 15%, making the price
0.2875 USD/kWh (Sunday-Thursday) and 0.23 USD/kWh (Friday and Saturday).
-  Off-Peak Hours (4:00 AM to 9:00 PM) : Maintains standard rates of
0.25 USD/kWh (Sunday-Thursday) and 0.20 USD/kWh (Friday and Saturday).

The effectiveness of any hour-based tariff ultimately depends on real-world charg-
ing behaviour; rigorous discrete-choice or other behavioural economics studies are
still required to confirm that users will actually shift demand in response to these
price signals.

¢  Federal Holiday Pricing: An additional 20% discount on overall price.

5.3. Implications for Policy and Urban Planning

These findings provide essential data for policymakers and urban planners to create
incentives for more EV charging stations and supportive policies. They also highlight the
importance of environmental sustainability and economic feasibility for comprehensive
development. Moreover, the findings underscore the need to integrate EV charging in-
frastructure with clean energy sources. As renewable generation becomes more prevalent,
aligning charging demand with periods of high solar or wind availability through dynamic
pricing and smart grid technologies can significantly enhance grid stability and reduce
emissions. This synergy between EV adoption and clean energy integration is vital to
achieving national and global climate targets.

5.4. Recommendations for Future Research

We highlight the following future directions related to this work:

(1) Dynamic Pricing Based On Location:
Implement dynamic pricing strategies based on the location and congestion levels
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of each charging station. By adjusting prices according to how crowded each station
is, we can effectively redirect traffic from busier locations to less-utilised areas. This
strategy will not only improve service quality for users but also optimise station usage
across different locations.

Hourly Dynamic Pricing and Mobile Tracking:

Create an hourly dynamic pricing model for EV charging stations which adjusts
rates based on real-time demand. This pricing strategy could be accompanied with
a user-friendly mobile application that allows users to view current charging costs
at different stations. This approach encourages users to charge their vehicles during
off-peak hours and at stations with less demand, enhancing stations’ efficiency and
user convenience while promoting cost savings and reducing congestion at highly
frequented locations.

Integration of Renewable Energy Sources:

Future studies should explore the practical implications and logistical challenges of
integrating solar and wind energy into EV charging networks. This includes focusing
on storage solutions for the intermittent nature of renewable sources and the eco-
nomic impacts of such integrations. Research could also evaluate grid resilience with
increased renewable integrations, modelling scenarios where large-scale renewable
adoption influences energy prices and charging station profitability [26].

Advanced Battery Technology Impact:

Investigate the impact of advancements in battery technologies, such as solid-state or
lithium-sulfur batteries, on the dynamics of EV charging demand. Studies should
quantify reductions in charging times and analyse the life cycle impacts of new bat-
tery technologies, including resource extraction, manufacturing emissions, recycling
capabilities, and overall environmental footprints.

Smart Charging Systems and Grid Interactions:

Develop models to optimise smart charging systems that can dynamically adjust to
changes in electricity supply and demand, user behaviour, and pricing fluctuations.
Explore the potential of V2G technologies and other bidirectional energy trade to
provide grid services and evaluate the economic incentives necessary to encourage
bidirectional energy exchange among EV owners [49-51].

User Behaviour Longitudinal Studies:

Conduct long-term studies to observe how EV owners adapt their charging habits in
response to changes in charging infrastructure, pricing models, and technology. Exam-
ine the effectiveness of different informational campaigns and incentives in modifying
consumer behaviour towards more efficient and grid-supportive charging practices.
Economic Impact Comprehensive Analysis:

Perform analysis on the economic impact of widespread EV adoption, including job
creation, industry shifts, and consumer spending, with a focus on the macroeconomic
effects of transitioning to electric transport.

Cross-City and Cross-Regional Comparative Studies:

Expand research to include comparative analyses between different cities or regions
with varying degrees of EV adoption and infrastructure development. Investigate
the role of local policies, economic incentives, and urban planning in accelerating the
transition to electric mobility.

Incorporation of Regionally Adjusted Emission Factors:

This study used fixed conversion rates (0.42 kg CO, /kWh and 0.125 gallons/kWh) to
estimate GHG and petrol savings, but this approach overlooks regional differences
in grid carbon intensity and changes in energy generation. For example, electricity
from coal-heavy grids emits more CO, than that from renewable sources. Grid
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decarbonisation, policy shifts, and seasonal variations can all affect EV charging
emissions. Future research should use dynamic, region-specific emission factors,
possibly from real-time grid data (e.g., via energy regulator APIs). Sensitivity analyses
across various energy mixes could also yield more accurate impact assessments. While
beyond this study’s scope, these factors warrant further investigation.

(10) Behavioural Modelling for Dynamic Pricing Response:
Future studies should integrate behavioural economics and discrete choice theory
to simulate and validate EV user responses to dynamic pricing. Models such as
multinomial or nested logit can estimate how factors like pricing, convenience, and
time-of-day affect user decisions. This behavioural modelling can then inform more
accurate pricing strategies that account for variability in user preferences and socioe-
conomic backgrounds.

(11) Integration of Operational Benchmarks into Demand Modelling:
Charging station heterogeneity and operational constraints, such as throughput capac-
ity, plug-in duration, and queue length, can be incorporated into demand forecasting
and station categorisation. Using these parameters as benchmarks may improve the
accuracy of infrastructure sufficiency assessments and provide actionable guidance for
expansion planning. Future iterations could enhance the credibility and reproducibil-
ity of this classification by calibrating visual assessments against formal operational
benchmarks, such as thresholds for connector occupancy, average plug-in durations,
or the frequency of queuing. This would help translate trend-based observations into
reproducible and quantifiable metrics.

(12) Controlling for Multiple Comparisons in Hypothesis Testing;:
To improve the reliability of statistical inferences, future analyses should apply multi-
ple testing correction methods such as Bonferroni or Holm adjustments when conduct-
ing hypothesis tests across several categories. This would help control the increased
risk of Type I errors resulting from multiple comparisons.

(13) Enhancing Accuracy in Environmental Projections:
Incorporating dynamic emissions factors or conducting sensitivity analysis can im-
prove the accuracy of environmental projections.
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mdpi.com/article/10.3390/wevj16080410/s1, Figure S1: Monthly kWh Demand and 5-Year Forecast
for HAMILTON Charging Stations (Excluding 2020); Figure S2: Monthly kWh Demand and 5-Year
Forecast for CAMBRIDGE Charging Stations (Excluding 2020); Figure S3: Monthly kWh Demand and
5-Year Forecast for BRYANT Charging Stations (Excluding 2020); Figure S4: Monthly kWh Demand
and 5-Year Forecast for HIGH Charging Stations (Excluding 2020); Figure S5: Monthly kWh Demand
and 5-Year Forecast for MPL Charging Stations (Excluding 2020); Figure S6: Monthly kWh Demand
and 5-Year Forecast for TED THOMPSON Charging Stations (Excluding 2020); Figure S7: Monthly
kWh Demand and 5-Year Forecast for WEBSTER Charging Stations (Excluding 2020); Figure S8:
Monthly kWh Demand and 5-Year Forecast for RINCONADA LIB Charging Stations (Excluding
2020); Figure S9: Distribution of Charging Stations for All Locations; Figure S10: Distribution of
Charging Stations for HAMILTON Locations; Figure S11: Distribution of Charging Stations for
HIGH Locations; Figure S12: Distribution of Charging Stations for BRYANT Locations; Figure S13:
Distribution of Charging Stations for TED THOMPSON Locations; Figure S14: Distribution of
Charging Stations for CAMBRIDGE Locations; Figure S15: Distribution of Charging Stations for
WEBSTER Locations; Figure S16: Distribution of Charging Stations for RINCONADA LIB Locations;
Figure S17: Distribution of Charging Stations for MPL Locations.

Author Contributions: Conceptualization, O.]., EA. and M.N.; Methodology, O.].; Validation, O.].;
Formal analysis, O.].; Investigation, O.].; Resources, F.A.; Data curation, F.A.; Writing—original draft,
0O.].; Writing—review & editing, F.A., M.N. and N.S.; Supervision, EA. and M.N.; Project administra-


https://www.mdpi.com/article/10.3390/wevj16080410/s1
https://www.mdpi.com/article/10.3390/wevj16080410/s1

World Electr. Veh. ]. 2025, 16, 410 24 of 26

tion, F.A.; Funding acquisition, N.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The research leading to this publication was partially funded by the UKRI/EPSRC Network
Plus “A Green Connected and Prosperous Britain”, grant number EP/W034204/1.

Data Availability Statement: The dataset presented in this article is openly available and can
be accessed from the following source: https://www.kaggle.com/datasets/venkatsairo4899/ev-
charging-station-usage-of-california-city.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Louati, A.; Louati, H.; Kariri, E.; Neifar, W.; Farahat, M.A.; El-Hoseny, H.M.; Hassan, M.K.; Khairi, M.H. Sustainable Urban
Mobility for Road Information Discovery-Based Cloud Collaboration and Gaussian Processes. Sustainability 2024, 16, 1688.
[CrossRef]

Punzo, G.; Panarello, D.; Castellano, R. Sustainable urban mobility: Evidence from three developed European countries. Qual.
Quant. 2022, 56, 3135-3157. [CrossRef]

Tran, M.; Banister, D.; Bishop, J.D.; McCulloch, M.D. Realizing the electric-vehicle revolution. Nat. Clim. Change 2012, 2, 328-333.
[CrossRef]

Noel, L.; Zarazua de Rubens, G.; Sovacool, B.K.; Kester, J. Fear and loathing of electric vehicles: The reactionary rhetoric of range
anxiety. Energy Res. Soc. Sci. 2019, 48, 96-107. [CrossRef]

Ayaz, F.; Nekovee, M. Towards Net-Zero Goal through Altruistic Prosumer based Energy Trading among Connected Electric
Vehicles. In Proceedings of the 2023 IEEE Vehicular Networking Conference (VNC), Istanbul, Turkiye, 26 April 2023;
pp- 89-96. [CrossRef]

Neaimeh, M,; Salisbury, S.D.; Hill, G.A.; Blythe, P.T.; Scoffield, D.R.; Francfort, ].E. Analysing the usage and evidencing the
importance of fast chargers for the adoption of battery electric vehicles. Energy Policy 2017, 108, 474-486. [CrossRef]

Szabo, L.; Vascan, I. A Brief History of Electric Vehicles; Technical University of Cluj-Napoca: Cluj-Napoca, Romania, 2022. Available
online: https:/ /www.researchgate.net/publication/363520342_A_Brief_History_of_Electric_Vehicles (accessed on 13 June 2025).
Arquivo.pt. Today in Technology History—6 July 2009. Available online: https:/ /arquivo.pt/wayback/20091015184824 /http:
/www.tecsoc.org/pubs/history /2001 /jul6.htm (accessed on 13 June 2025).

Vepachedu Sreenivasarao. The History of the Electric Car. 2017. Available online: https://www.researchgate.net/publication/31
9787053_THE_HISTORY_OF_THE_ELECTRIC_CAR (accessed on 13 June 2025).

Electric Car Charger Australia. The Short History of Electric Car Chargers. n.d. Available online: https://electriccarcharger.au/
short-history-of-electric-car-chargers/ (accessed on 13 June 2025).

Vilchez, J.J.; Jochem, P.; Fichtner, W. EV Market Development Pathways — An Application of System Dynamics for Policy
Simulation. World Electr. Veh. J. 2013, 6, 1030-1038. [CrossRef]

Creutzig, F,; Jochem, P.; Edelenbosch, O.Y.; Mattauch, L.; Van Vuuren, D.P.; Mccollum, D.; Minx, J. Transport: A roadblock to
climate change mitigation? Science 2015, 350, 911-912. [CrossRef] [PubMed]

City of Palo Alto. Electric Vehicles—City of Palo Alto, CA. n.d. Available online: https://www.cityofpaloalto.org/City-Hall/
Sustainability /Electric-Vehicles (accessed on 13 June 2025).

Liu, Z.; Wen, F.; Ledwich, G. Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Trans. Power
Deliv. 2013, 28, 102-110. [CrossRef]

Zhao, Z.; Lee, C.K. Dynamic Pricing for EV Charging Stations: A Deep Reinforcement Learning Approach. IEEE Trans. Transp.
Electrif. 2022, 8, 2456—2468. [CrossRef]

Faisal, S.; Soni, B.P,; Goyal, G.R.; Bakhsh, EI; Husain, D.; Ahmad, A. Reducing the Ecological Footprint and charging cost of
electric vehicle charging station using renewable energy based power system. e-Prime Adv. Electr. Eng. Electron. Energy 2024,
7,100398. [CrossRef]

Jin, L.; Slowik, P. Literature Review of Electric Vehicle Consumer Awareness and Outreach Activities. 2017. Available online:
https:/ /theicct.org/wp-content/uploads /2021 /06 /Consumer-EV- Awareness_ICCT_Working-Paper_23032017_vE.pdf (accessed
on 13 June 2025).

Limmer, S. Dynamic Pricing for Electric Vehicle Charging—A Literature Review. Energies 2019, 12, 3574. [CrossRef]
Narasipuram, R.P.; Mopidevi, S. A technological overview & design considerations for developing electric vehicle charging
stations. J. Energy Storage 2021, 43, 103225. [CrossRef]

EZ EV Electric. The History of EV Charging Infrastructure. n.d. Available online: https://www.ezevelectric.com/the-history-of-
ev-charging-infrastructure/ (accessed on 13 June 2025).


https://www.kaggle.com/datasets/venkatsairo4899/ev-charging-station-usage-of-california-city
https://www.kaggle.com/datasets/venkatsairo4899/ev-charging-station-usage-of-california-city
http://doi.org/10.3390/su16041688
http://dx.doi.org/10.1007/s11135-021-01253-0
http://dx.doi.org/10.1038/nclimate1429
http://dx.doi.org/10.1016/j.erss.2018.10.001
http://dx.doi.org/10.1109/VNC57357.2023.10136351
http://dx.doi.org/10.1016/j.enpol.2017.06.033
https://www.researchgate.net/publication/363520342_A_Brief_History_of_Electric_Vehicles
https://arquivo.pt/wayback/20091015184824/http:/www.tecsoc.org/pubs/history/2001/jul6.htm
https://arquivo.pt/wayback/20091015184824/http:/www.tecsoc.org/pubs/history/2001/jul6.htm
https://www.researchgate.net/publication/319787053_THE_HISTORY_OF_THE_ELECTRIC_CAR
https://www.researchgate.net/publication/319787053_THE_HISTORY_OF_THE_ELECTRIC_CAR
https://electriccarcharger.au/short-history-of-electric-car-chargers/
https://electriccarcharger.au/short-history-of-electric-car-chargers/
http://dx.doi.org/10.3390/wevj6041030
http://dx.doi.org/10.1126/science.aac8033
http://www.ncbi.nlm.nih.gov/pubmed/26586747
https://www.cityofpaloalto.org/City-Hall/Sustainability/Electric-Vehicles
https://www.cityofpaloalto.org/City-Hall/Sustainability/Electric-Vehicles
http://dx.doi.org/10.1109/TPWRD.2012.2223489
http://dx.doi.org/10.1109/TTE.2021.3139674
http://dx.doi.org/10.1016/j.prime.2023.100398
https://theicct.org/wp-content/uploads/2021/06/Consumer-EV-Awareness_ICCT_Working-Paper_23032017_vF.pdf
http://dx.doi.org/10.3390/en12183574
http://dx.doi.org/10.1016/j.est.2021.103225
https://www.ezevelectric.com/the-history-of-ev-charging-infrastructure/
https://www.ezevelectric.com/the-history-of-ev-charging-infrastructure/

World Electr. Veh. ]. 2025, 16, 410 25 of 26

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Helmers, E.; Marx, P. Electric Cars: Technical Characteristics and Environmental Impacts. Environ. Sci. Eur. 2012, 24, 14.
[CrossRef]

Congressional Budget Office. Emissions of Carbon Dioxide in the Transportation Sector: At a Glance. 2022. Available online:
https:/ /www.cbo.gov/publication /58566 (accessed on 13 June 2025).

International Council on Clean Transportation. U.S. Electric Vehicle Sales Soar into 2024. 2024. Available online: https:
/ /theicct.org/us-ev-sales-soar-into-24-jan24/(accessed on 13 June 2025).

Andrenacci, N.; Valentini, M.P. A Literature Review on the Charging Behaviour of Private Electric Vehicles. Appl. Sci. 2023,
13,12877. [CrossRef]

Yap, K.Y.; Chin, H.H.; Klemes, J.J. Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and
future prospect review. Renew. Sustain. Energy Rev. 2022, 169, 112862. [CrossRef]

Ayaz, F.; Nekovee, M. Smart Energy Management with Optimized Prosumerism for Achieving Dynamic Net-Zero Balance in
Electrified Road Transport Networks. arXiv 2023, arXiv:2312.08162. [CrossRef]

Morabito, D.; Imtiaz, M.H. Wireless Charging of Electric Vehicles: A Review. 2023. Available online: https:/ /www.researchgate.
net/publication/375924486_Wireless_Charging_of_Electric_Vehicles_a_Review (accessed on 13 June 2025).

Cedillo, M.H.; Sun, H ; Jiang, J.; Cao, Y. Dynamic pricing and control for EV charging stations with solar generation. Appl. Energy
2022, 326, 119920. [CrossRef]

Kaggle Contributor: venkatsairo4899. EV Charging Station Usage of California City. 2024. Awvailable online: https://
www.kaggle.com/datasets/venkatsairo4899/ev-charging-station-usage-of-california-city?resource=download (accessed on
25 February 2025).

The Pandas Development Team. Pandas: Python Data Analysis Library. 2024. Available online: https://pandas.pydata.org
(accessed on 25 February 2025).

Scikit-learn Developers. Scikit-learn: Machine Learning in Python. 2024. Available online: https:/ /scikit-learn.org/stable/
(accessed on 25 February 2025).

Matplotlib Development Team. Matplotlib: Visualization with Python. 2024. Available online: https://matplotlib.org (accessed
on 25 February 2025).

NumPy Developers. NumPy: The Fundamental Package for Scientific Computing with Python. 2024. Available online:
https:/ /numpy.org (accessed on 25 February 2025).

The Mercury News. Palo Alto to Charge Fee for Electric Vehicle Charging. 2017. Available online: https:/ /www.mercurynews.
com/2017/07/26/palo-alto-to-charge-for-a-charge-at-ev-stations/(accessed on 13 June 2025).

U.S. Government. Federal Holidays in the United States. 2024. Available online: https://www.usa.gov/holidays (accessed on 13
June 2025).

Moghaddam, Z.; Ahmad, I.; Habibi, D.; Masoum, M.A. A coordinated dynamic pricing model for electric vehicle charging
stations. IEEE Trans. Transp. Electrif. 2019, 5, 226-238. [CrossRef]

Borenstein, S.; Jaske, M.; Rosenfeld, A.; Org, E. UC Berkeley Recent Work Title Dynamic Pricing, Advanced Metering, and
Demand Response in Electricity Markets. 2002. Available online: https:/ /escholarship.org/uc/item/11w8d6ém4 (accessed on 13
June 2025).

Scikit-Learn Developers. StandardScaler—Scikit-Learn 1.5.1 Documentation. 2024. Available online: https://scikit-learn.org/
stable/modules/generated /sklearn.preprocessing.StandardScaler.html (accessed on 13 June 2025).

Onyeaka, H.; Anumudu, C.K,; Al-Sharify, Z.T.; Egele-Godswill, E.; Mbaegbu, P. COVID-19 pandemic: A review of the global
lockdown and its far-reaching effects. Sci. Prog. 2021, 104, 368504211019854. [CrossRef] [PubMed]

IBM. What Is Linear Regression? 2021. Available online: https://www.ibm.com/topics/linear-regression (accessed on
13 June 2025).

Shiksha Online. Ridge Regression vs. Lasso Regression. 2021. Available online: https://www.shiksha.com/online-courses/
articles /ridge-regression-vs-lasso-regression/ (accessed on 13 June 2025).

Scikit-Learn Developers. Ridge—Scikit-Learn 1.5.1 Documentation. 2024. Available online: https:/ /scikit-learn.org/stable/
modules/generated /sklearn.linear_model.Ridge.html (accessed on 13 June 2025).

DataScientest. SARIMAX Model: What Is It? How Can It Be Applied to Time Series? 2024. Available online: https:
/ /datascientest.com/en/sarimax-model-what-is-it-how-can-it-be-applied-to-time-series (accessed on 13 June 2025).

EV Database. Useable Battery Capacity of Full Electric Vehicles Cheatsheet. n.d. Available online: https://ev-database.org/
cheatsheet/useable-battery-capacity-electric-car (accessed on 13 June 2025).

GeoPandas Developers. GeoPandas 1.0.1 Documentation. 2013. Available online: https://geopandas.org/en/stable/
(accessed on 13 June 2025).

Priyadarshan, P. View of Electric Vehicle Charging Infrastructure: Current Status, Challenges, and Future Developments. 2019.
Available online: https:/ /research.tensorgate.org/index.php /IJIAC/article /view /25/23 (accessed on 13 June 2025).


http://dx.doi.org/10.1186/2190-4715-24-14
https://www.cbo.gov/publication/58566
https://theicct.org/us-ev-sales-soar-into-24-jan24/
https://theicct.org/us-ev-sales-soar-into-24-jan24/
http://dx.doi.org/10.3390/app132312877
http://dx.doi.org/10.1016/j.rser.2022.112862
http://dx.doi.org/10.48550/arXiv.2312.08162
https://www.researchgate.net/publication/375924486_Wireless_Charging_of_Electric_Vehicles_a_Review
https://www.researchgate.net/publication/375924486_Wireless_Charging_of_Electric_Vehicles_a_Review
http://dx.doi.org/10.1016/j.apenergy.2022.119920
https://www.kaggle.com/datasets/venkatsairo4899/ev-charging-station-usage-of-california-city?resource=download
https://www.kaggle.com/datasets/venkatsairo4899/ev-charging-station-usage-of-california-city?resource=download
https://pandas.pydata.org
https://scikit-learn.org/stable/
https://matplotlib.org
https://numpy.org
https://www.mercurynews.com/2017/07/26/palo-alto-to-charge-for-a-charge-at-ev-stations/
https://www.mercurynews.com/2017/07/26/palo-alto-to-charge-for-a-charge-at-ev-stations/
https://www.usa.gov/holidays
http://dx.doi.org/10.1109/TTE.2019.2897087
https://escholarship.org/uc/item/11w8d6m4
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://dx.doi.org/10.1177/00368504211019854
http://www.ncbi.nlm.nih.gov/pubmed/34061685
https://www.ibm.com/topics/linear-regression
https://www.shiksha.com/online-courses/articles/ridge-regression-vs-lasso-regression/
https://www.shiksha.com/online-courses/articles/ridge-regression-vs-lasso-regression/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://datascientest.com/en/sarimax-model-what-is-it-how-can-it-be-applied-to-time-series
https://datascientest.com/en/sarimax-model-what-is-it-how-can-it-be-applied-to-time-series
https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
https://geopandas.org/en/stable/
https://research.tensorgate.org/index.php/IJIAC/article/view/25/23

World Electr. Veh. ]. 2025, 16, 410 26 of 26

47.

48.

49.

50.

51.

U.S. Environmental Protection Agency. Greenhouse Gas Emissions from a Typical Passenger Vehicle. 2023. Available online:
https:/ /www.epa.gov/greenvehicles / greenhouse-gas-emissions-typical-passenger-vehicle(accessed on 5 May 2025).

U.S. Environmental Protection Agency. EPA Report: U.S. Cars Achieve Record High Fuel Economy and Low Emission Levels as
Companies Fully Comply with Standards. 2023. Available online: https://www.epa.gov/newsreleases/epa-report-us-cars-
achieve-record-high-fuel-economy-and-low-emission-levels-companies (accessed on 5 May 2025).

Ayaz, F.; Nekovee, M. Quantum Optimization for Bidirectional Telecom Energy Exchange and Vehicular Edge Computing in
Green 6G Networks. In Proceedings of the 2024 IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), Oslo, Norway, 17-20 September 2024; pp. 385-390. [CrossRef]

Ayaz, F; Nekovee, M.; Saeed, N. Blockchain-based Energy Trading among UAVs and Base Stations for Net-Zero. In Proceedings
of the 2024 IEEE 10th World Forum on Internet of Things (WF-IoT), Ottawa, ON, Canada, 10-13 November 2024; pp. 1-6.
[CrossRef]

Ayaz, F.; Nekovee, M.; Ibraheem, A.F. Telecom-to-Grid: Supercharging 6G’s Contribution for Reliable Net-Zero. IEEE Reliab. Mag.
2025, 2, 40-48. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://www.epa.gov/newsreleases/epa-report-us-cars-achieve-record-high-fuel-economy-and-low-emission-levels-companies
https://www.epa.gov/newsreleases/epa-report-us-cars-achieve-record-high-fuel-economy-and-low-emission-levels-companies
http://dx.doi.org/10.1109/SmartGridComm60555.2024.10738076
http://dx.doi.org/10.1109/WF-IoT62078.2024.10811256
http://dx.doi.org/10.1109/MRL.2025.3544145

	Introduction
	Related Works 
	History of EVs and Charging Infrastructure
	CO2 Emissions and Environmental Impact
	Pricing and Economic Impact of EV Market Expansion
	Technological Advancements and Design Considerations
	Shortcomings in EV Charging Pricing and Infrastructure

	Methodology 
	Dataset Description
	Data Preparation
	Feature Engineering
	Missing Values and Outliers
	Feature Scaling
	Variation Analysis
	Model Selection
	Hypothesis Testing

	Results 
	GHG and Gasoline Savings Model
	Dynamic Pricing Model
	Utilisation Patterns and Peak Times
	Day-Based Charging Behaviour
	Implementation of Dynamic Pricing

	Demand Forecasting Model 

	Conclusions 
	Environmental Impact Assessment
	Dynamic Pricing Strategies
	Implications for Policy and Urban Planning
	Recommendations for Future Research

	References

