
UWL REPOSITORY

repository.uwl.ac.uk

Automated penetration testing for industrial IOT systems: enhancing efficiency

and reducing reliance on human expertise

Sbai, Fatim, Asif, Waqar ORCID logoORCID: https://orcid.org/0000-0001-6774-3050, 

IvaylovMarkov, Lyubomir and Saeed, Nagham ORCID logoORCID: https://orcid.org/0000-0002-

5124-7973 (2025) Automated penetration testing for industrial IOT systems: enhancing efficiency 

and reducing reliance on human expertise. In: 2025 IEEE International Symposium on Circuits and 

Systems (ISCAS), 25-28 May 2025, London, England. 

https://doi.org/10.1109/ISCAS56072.2025.11044276

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/13903/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Automated Penetration Testing for Industrial IoT
Systems: Enhancing Efficiency and Reducing

Reliance on Human Expertise
* Fatim Sbai, †WaqarAsif, ∗LyubomirIvaylovMarkov, and ∗NaghamSaeed

*School of Computing and Engineering, University of West London, UK
†School of Engineering and Computing, University of Central Lancashire, UK

Abstract—Penetration testing is an important aspect when
building or deploying Industrial Internet of Things (IIoT) sys-
tems. This involves using specialised hacking tools that would
help identify exploitable vulnerabilities in an industrial systems,
device, and/or network. Conventionally, security experts rely on
penetration testing performed by expert individuals where these
individuals are expected to have considerable experience and
knowledge in the specified domain. This dependence on skill
evaluation makes the process unreliable as failure in a pene-
tration test does not guarantee system security. Therefore, this
paper proposes the use of automated penetration testing using
script files. Tools such as Nessus are employed for vulnerability
scanning, PostgreSQL serves as the database management system
to store test results and configurations, and Metasploit is utilised
for automating the exploitation of identified vulnerabilities. The
research shows a considerable improvement in task efficiency in
terms of time consumed to find a suitable exploit and execute it
in comparison to manual penetration testing.

Index Terms—IIoT, Nessus, PostgreSQL, Metasploit

I. INTRODUCTION

With the increasing demand of the Industrial Internet of
Things and the granularity of personal data that these devices
deal with, the frequency and sophistication of cyber security
attacks have also intensified, posing significant challenges for
organisations. Globally, the number of threats targeting IIoT
systems increased by 125% during 2021 and 2022 [1], with
some countries being more frequently targeted by adversarial
actors. For example, the UK has the highest number of
cybercrime victims per million internet users, with 4, 783
cases, followed by the USA with 1, 494 [2].

In IIoT environments, the rise in cyber threats is even more
pronounced [3]. Malware attacks targeting IIoT and Oper-
ational Technology (OT) systems surged by 400% between
2022 and 2023, with industries like manufacturing facing the
brunt of these attacks. Manufacturing alone experienced an
average of 6, 000 weekly attacks, accounting for over 54%
of IIoT-targeted threats [1]. These attacks exploit un-patched
and legacy IIoT devices, deploying malware such as Mirai
and Gafgyt to form botnets that launch large-scale Distributed
Denial of Service (DDoS) attacks. Such attacks have the
potential to disrupt critical industrial processes, resulting in
severe financial and operational consequences [1].

To defend against these evolving threats, organisations typi-
cally employ vulnerability assessments and penetration testing

[4].Vulnerability assessments uses automated tools to scan
for weaknesses, while penetration testing simulates external
attacks to uncover exploitable vulnerabilities [5]. However,
traditional penetration testing is often time-consuming and
costly, especially given the growing number of connected IIoT
devices in large-scale industrial networks [6]. Furthermore, the
complexity of IIoT environments presents unique challenges,
as real-time, critical operations need to be protected from both
known and emerging threats [7].

One potential solution for securing IIoT systems is auto-
mated penetration testing, which can identify vulnerabilities
more efficiently across vast networks of connected devices.
For example, researchers have proposed using Deep Reinforce-
ment Learning to automate penetration testing through attack
tree models. While effective, this method requires substantial
data for training and may not always accurately reflect real-
world IIoT conditions [7]. Adopting such automated solutions
is particularly vital in IIoT environments, [6] where the
growing number of connected devices and legacy systems
make traditional manual penetration testing both costly and
less scalable [8].

This paper explores the rise in cyber threats targeting
IIoT systems and presents automated penetration testing as
a scalable solution for improving security. It discusses the
limitations of traditional security measures, such as manual
penetration testing, and how automated methods can speed
up and enhance vulnerability assessments across large IIoT
environments. It lays the ground for the use of Large Language
Models for automating penetration testing with the use of
scripts that are then processed for identifying and exploiting
vulnerabilities. To present this work, Section II highlights
the existing work and its limitations, Section III presents our
implementation followed by discussion in Section IV. Section
V concludes this work.

II. RELATED WORK

Manual penetration testing remains a complex and spe-
cialised task, typically carried out by highly skilled security
experts with extensive experience. Their expertise enables
them to detect intricate flaws and vulnerabilities [9]. How-
ever, the disadvantages of manual testing include its time-
consuming nature, particularly when assessing a complex



system with numerous vulnerabilities. Moreover, the tester’s
experience is crucial; an inexperienced tester may overlook
critical vulnerabilities that could be exploited by malicious
actors [10].

Several studies have explored the application of machine
learning, particularly Reinforcement Learning (RL), for auto-
mated penetration testing. RL is a type of machine learning
where an agent learns to make decisions by interacting with
an environment and receiving feedback in the form of rewards
or penalties. For example, Zhenguo Hu et al. [11] emphasise
that employing an attack tree approach is critical to ensuring
that automated penetration testing closely resembles manual
testing. By analysing the attack tree, the relationships between
different attack methods can be better understood.

Deep Reinforcement Learning (DRL), an advanced form of
RL that combines deep learning and reinforcement learning,
uses neural networks to approximate decision-making policies.
DRL employs a trial-and-error process to determine the most
effective attack method. This automated approach has gained
popularity due to its simplicity and efficiency in identifying
vulnerabilities.

Zennaro et al. [12] developed a Reinforcement Learning
(RL) model to address the challenges associated with Capture-
The-Flag (CTF) scenarios, aiming to enhance efficiency by in-
corporating historical data. By leveraging past experiences, the
RL agent improves task completion speed and effectiveness.
While RL and Deep Reinforcement Learning (DRL) offer
advantages such as adaptability, speed, and cost efficiency,
they also present significant challenges. Integrating large
datasets requires substantial computational resources and time,
while scaling these models to complex environments leads
to exponential growth in action selection, making decision-
making more difficult.

Furthermore, CTF-based training environments are inher-
ently constrained in their ability to replicate real-world con-
ditions, limiting their practical applicability. These challenges
highlight the need for continued advancements in RL and DRL
to improve scalability and adaptability for diverse, real-world
penetration testing scenarios. Despite these limitations, RL and
DRL remain promising approaches for enhancing automated
cybersecurity assessments.

Moreover, Pengfei et al. [8] emphasise the use of a two-
step process. This involves first conducting a manual scan,
and second, using automated scripts to exploit vulnerabilities.
The initial step often involves high-speed port scanning using
tools like Zenmap and Masscan, which employ advanced
optimisation techniques such as low-level packet manipulation,
efficient memory management, and parallel processing. These
techniques allow for rapid scanning of numerous ports, making
them well-suited for large-scale network assessments. Based
on the scan results, the tester can develop custom scripts to ex-
ploit vulnerabilities and may also use zero-day vulnerabilities
in the testing process .

Despite the success of these approaches, the dependence
on large-scale training data undermines their usability in
new environments where extensive testing might not be ap-

propriate, especially in Industrial Internet of Things (IIoT),
which include ad-hoc connected nodes with dynamic network
configurations [13].

III. IMPLEMENTATION

Penetration testing follows a well-defined structure, which
is adopted in this work for both manual and automated testing
[9].

TABLE I
STEPS DURING PENETRATION TESTING

Pentesting Phase Steps Conducted
Planning and
Preparation

Configuring the testing environment
Gathering appropriate tools

Information Gathering Performing reconnaissance
Collecting target system details

Vulnerability Scanning Scanning for exploitable weaknesses

Enumeration Listing IP addresses and OS information
Identifying critical system details

Exploitation Exploiting identified vulnerabilities

Post-Exploitation Performing privilege escalation
Gaining root access and assessing breach

Using this structured approach, this paper outlines the steps
taken for automated penetration testing. First, Nessus scans
the target machine for vulnerabilities, which are then exported
and prioritised based on severity. Some high-severity vul-
nerabilities are exploited using Metasploit penetration testing
framework to establish a connection between the host and
the target [14]. All testing occurs in a controlled environment
using VirtualBox, a free virtualisation program that supports
multiple operating systems on a single physical host [15].
These tests are conducted using a Kali Linux virtual machine,
designed specifically for penetration testing [16]. The target
system is Metasploitable 2 [17], a Unix-based OS.

A. First Automated Test

First, the target IP address is entered in Nessus to identify
all exploitable vulnerabilities [18]. The findings are presented
in a structured format, which includes details such as the
IP address, severity level, name, and description of each
identified vulnerability. To efficiently parse and process the
results, they were downloaded as an XML file. Storing the data
in XML format facilitates extraction and manipulation. After
thorough evaluation, only high-severity vulnerabilities have
been retained. By focusing solely on the most critical issues
and discarding less significant vulnerabilities, valuable insights
are gained into which attacks are most likely to succeed.

The Python package XML.etree provides a simple and ef-
fective Application Programming Interface (API) for reading,
processing, and modifying XML files [19]. The process for
handling the XML file obtained from Nessus involves the
following steps:

1) Step 1: Uploading the XML File, Extracting the Root
Element and Looping through ReportHost: The first step
involves loading the XML file downloaded from Nessus into
the script and then extracting the root elements of the XML



structure. Each ReportHost element in the XML file corre-
sponds to a scanned system that contains vulnerabilities. This
is done using the following command:

tree = ET.parse(”/home/lyubo.ExploitableMachine9rpee9.nessus”)

root = tree.getroot()

hostname = reporthost.get(”name”)

2) Step 2: Processing Report Items: For each host, the
script loops through its associated ReportItem elements,
which store details about detected vulnerabilities. It retrieves
and assigns the severity level and plugin ID, as shown in
Figure 1.

Fig. 1. Python Script

3) Step 3: Filtering by Severity.: To prioritise the most
critical vulnerabilities, an if statement filters out only high-
severity vulnerabilities (rated as ”4” for critical and ”3” for
high). These severity levels indicate the most exploitable
security risks.

4) Step 4: Outputting Results.: After filtering, the script
prints the relevant details, including the plugin ID, severity,
hostname, and IP address of each identified vulnerability
as seen in Figure 2. This structured output allows security
professionals to quickly assess and address the most pressing
threats.

Fig. 2. Processing ReportItem Results

5) Exploitation Process: At this stage, the focus is on
leveraging the highest vulnerabilities identified and exploiting
the most severe ones.

One of the most critical vulnerabilities is the Unreal In-
ternet Relay Chat Daemon (UnrealIRCd) Backdoor Detection
(Plugin ID: 46882), which is classified as Severity 4 (Critical)
due to its remote code execution (RCE) capability, shown in
Figure 3. This backdoor, found in compromised versions of
UnrealIRCd, enables attackers to execute arbitrary commands
on the affected server without authentication.

Fig. 3. Vulnerability UnrealIRCd Backdoor

6) Creating the Exploit Script: The terminal-based text
editor Nano is used to create a script that connects to Metas-
ploit, which provides exploits, payloads, and auxiliary modules
for penetration testing. The script leverages the UnrealIRCd
backdoor exploit to achieve remote code execution (RCE),
using a payload (a malicious code that executes a reverse
shell for remote access or Meterpreter for advanced control)
[20]. After setting the target IP, selecting a suitable payload,
and configuring a listener, the exploit is executed to gain
system access, shown in Figure 4. The script is saved as an
RC (Resource) file, automating the attack process for efficient
exploitation.

Fig. 4. Target Exploitation Script

7) Automated Exploitation: Msfconsole is the main com-
mand line interface that connects to the Metasploit framework.
The Metasploit framework starts automatically and establishes
the connection. The listener is created, and root privilege is
successfully gained on the targeted machine, shown in Figure
5. The -r flag option specifies that the script is created and
saved as the resource script file [20].

B. Automated Exploitation of Second VNC (Virtual Network
Computing) Server Vulnerability

The focus now shifts to exploiting the VNC server vulner-
ability. The Micro Focus OBR (Operations Bridge Reporter)
auxiliary will be used to scan the target machine for potential
weaknesses. The auxiliary module is specified, and the host
IP address is provided as a parameter, seen in Figure 6. These
settings are sufficient for executing the scan. Once initiated,
the auxiliary module automatically interacts with the target
system, performing a thorough vulnerability assessment.



Fig. 5. Automated Target Exploitation

Fig. 6. Auxiliary Module in Use

1) Scanning the Entire Host Network: To assess security
across the entire host network, the exploit will be deployed.
The IP address range 10.0.2.0/24 follows CIDR (Classless
Inter-Domain Routing) notation, where the first 24 bits define
the network, and the remaining 8 bits represent individual
hosts. This configuration supports up to 256 devices within the
subnet. By leveraging CIDR notation, the scan systematically
targets each machine within the network, ensuring that no
device is overlooked. This approach enables comprehensive
testing of all connected systems for potential vulnerabilities
[21]. Once the script is executed, the exploit will initiate
scanning of all machines on this network. It will continue
probing each machine as seen in Figure 7, starting from the
first IP address onwards. The exploit will run until it reaches
the last machine in the network, continuously examining and
testing each machine individually.

Fig. 7. Scanning the entire Network

2) Second Automated Test: The process starts with launch-
ing a ”PostgreSQL” instance, an open-source database man-
agement system known for its robust data storage capabil-
ities [22]. Upon executing the command ”systemctl” start
”postgresql. service” initiates the PostgreSQL service. Sub-
sequently, a database user named ”msf-user” is created along
with a password.

Fig. 8. User Account Successfully Created in PostgreSQL Database

Next, the connection to the PostgreSQL database is estab-
lished using the Metasploit framework, employing the previ-
ously established username and password on port 5432. The db
command confirms that the database is operational. Following
this, scanning results from an XML file downloaded earlier
via Nessus are imported. After importing the Nessus results,
visibility into the open ports on the targeted system is obtained.
This information allows us to identify the services running on
those ports, enabling further analysis of potential risks. This
automation streamlines the exploitation process, saving time
and effort.

C. Manual Exploitation of the UnrealIRCd Vulnerability

In this test, the same backdoor vulnerability in UnrealIRCd
3.2.8.1, using Metasploit to gain unauthorised root access to
the target system. The process begins with launching Metas-
ploit, followed by identifying and loading the appropriate
exploit module. A payload is selected to establish a bind
shell connection, and the target IP address (10.0.2.17) and
port (6667) are configured to match the vulnerable system.
The exploit is then executed, successfully opening a command
shell on the target machine. Running the whoami command
confirms root-level access, demonstrating complete system
compromise. The entire attack is completed in one minute,
with full access obtained within 30 seconds, as seen in Figure
9.

Fig. 9. Manual Exploitation of the Targeted System



IV. RESULTS AND DISCUSSION

Finally, the execution time for each test is examined,
comparing automated versus manual penetration testing ap-
proaches. As reported in III-C manual penetration testing
requires one to perform many time consuming steps that
include, connecting to metasploit, setting up command line to
launch the attack and then waiting for the task to be executed.
Overall this can take 60.47sec for a simple exploit. On the
contrary, automated penetration using scripting can perform
the task in 17sec whereas, automated penetration testing using
PostgreSQL takes around 37sec. Both these tests outperform
manual testing and include steps such as connecting to victim
machine and then gaining root access.

TABLE II
AUTOMATED VS. MANUAL PENTESTING TIME

Testing
Type

Steps Conducted Time/step
(sec)

Total
Time
(sec)

Manual

Connecting to Metasploit 15.22
Setup Command line to Launch
attack on device

37.27 60.47

Completion of task 7.98
Automated
Test 1

Leveraging resource script file to
get root privileges

- 17

Automated
test 2

Setting up PostgreSQL and
Launching attack

- 37

The final results indicate that both automated tests outper-
formed the manual test in exploiting the target, primarily due
to significant time savings in manually finding appropriate
exploit and then executing them. The automated methods
excelled in identifying and exploiting vulnerabilities while
streamlining repetitive tasks, greatly reducing the overall time
required for testing. This research led to the development of
two promising early models of automated penetration testing
capabilities. A custom script was created to target a specific
computer, and an efficient method for scanning the entire
network using a single script was successfully demonstrated.

However, there are several drawbacks to automated testing.
The resource script files follow a predetermined sequence
of actions to exploit the system, which can pose challenges
when dealing with more complex programs, such as custom
applications. This approach may lack the flexibility needed to
adapt to unexpected and intricate vulnerabilities but with the
integration of Large Language Models for the generation of
scripts, the task can be well optimised for multiple scenarios.

V. CONCLUSION

In summary, automated penetration testing is a crucial
method for assessing the security of IIoT networks, systems,
and applications. This study highlights the advantages of
automating the exploitation of vulnerabilities through resource
script files, which enhances accuracy, saves time, and improves
reliability. Nessus was used for vulnerability scanning, gener-
ating detailed reports that informed the resource files used in
the Metasploit framework. While this combination offers an

effective automated testing approach, full automation could
further be enhanced by automating script generation using
Large Language Models.

REFERENCES

[1] Zscaler ThreatLabz. Zscaler threatlabz finds a 400% increase in iot
and ot malware attacks year-over-year, underscoring need for better zero
trust security to protect critical infrastructures. Zscaler, 2023. Accessed:
2024-10-11.

[2] GOV.UK, Department for Digital. Cyber security breaches survey 2022,
gov.uk, 2022.

[3] S. C. Vetrivel, R. Maheswari, and T. P. Saravanan. Security challenges
for industrial iot. Wireless networks and industrial IoT: Applications,
challenges and enablers, 2021.

[4] Dirk Johannes Beukes. The importance of vulnerability assessments
and penetration testing in cybersecurity. Journal of Cybersecurity and
Privacy, 2(4):123–138, 2019. Accessed: 2024-10-11.

[5] Farah Abu-Dabaseh and Esraa Alshammari. Automated penetration
testing: An overview. In The 4th International Conference on Natural
Language Computing, pages 121–129, Copenhagen, Denmark, 2018.

[6] Ralph Ankele, Stefan Marksteiner, Kai Nahrgang, and Heribert Vallant.
Requirements and recommendations for iot/iiot models to automate
security assurance through threat modelling, security analysis and pen-
etration testing. In Proceedings of the 14th International Conference
on Availability, Reliability and Security (ARES 2019), pages 1–8. ACM,
2019.

[7] L.P. Ledwaba and G.P. Hancke. Security challenges for industrial
iot. Wireless networks and industrial IoT: Applications, challenges and
enablers, pages 193–206, 2021.

[8] Pengfei Shi, Futong Qin, Ruosi Cheng, and Kunsong Zhu. The
penetration testing framework for large-scale network based on network
fingerprint. In 2019 International Conference on Communications,
Information System and Computer Engineering (CISCE), pages 378–
381. IEEE, 2019.

[9] Yaroslav Stefinko, Andrian Piskozub, and Roman Banakh. Manual
and automated penetration testing: Benefits and drawbacks. modern
tendency. In 2016 13th International Conference on Modern Problems
of Radio Engineering, Telecommunications and Computer Science (TC-
SET), pages 488–491. IEEE, 2016.

[10] Sarah Tutton. The disadvantages of manual penetration testing. IT
Governance Blog, 2023.

[11] Zhenguo Hu, Razvan Beuran, and Yasuo Tan. Automated penetration
testing using deep reinforcement learning. In 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pages 2–
10. IEEE, 2020.

[12] Fabio Massimo Zennaro and Laszlo Erdodi. Modeling penetration
testing with reinforcement learning using capture-the-flag challenges:
Trade-offs between model-free learning and a priori knowledge. arXiv
e-prints, pages arXiv–2005, 2021.

[13] Ferheen Ayaz, Zhengguo Sheng, Daxin Tian, Maziar Nekovee, and
Nagham Saeed. Blockchain-empowered ai for 6g-enabled internet of
vehicles. Electronics, 11(20):3339, 2022. Accessed: 2024-02-04.

[14] O Valea and C Oprişa. Towards pentesting automation using the
metasploit framework. In 2020 IEEE 16th International Conference
on Intelligent Computer Communication and Processing (ICCP), pages
171–178. IEEE, 2020.

[15] Oracle Corporation. Virtualbox user manual. Oracle VirtualBox, 2024.
Accessed: 2024-02-02.

[16] Offensive Security. Kali linux documentation. Kali Linux, 2024.
Accessed: 2024-02-02.

[17] Rapid7. Metasploitable 2: Vulnerable machine for testing. Metasploit
Framework, 2024. Accessed: 2024-02-02.

[18] Tenable. Nessus essentials: The most comprehensive vulnerability
scanner, 2023. Accessed: 2024-10-11.

[19] Python Software Foundation. XML Processing Modules, 2024. Ac-
cessed: 2024-10-11.

[20] Rapid7. Metasploit RPC API Documentation, 2023. Accessed: 2024-
10-11.

[21] WhatIsMyIPAddress.com. Classless inter-domain routing (cidr) and
notation for beginners, 2022.

[22] PostgreSQL Global Development Group. PostgreSQL: The World’s Most
Advanced Open Source Relational Database, 2023. Accessed: 2024-10-
11.


