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Highlights

What are the main findings?

e A pre-trained transformer model, fine-tuned with transfer learning, significantly
improves fault detection in cyber-physical systems (CPSs) despite limited fault-
labeled data.

e  The proposed method achieves a high average F1-score of 93.38% on industrial CPS
datasets, outperforming traditional CNN and LSTM models.

What is the implication of the main finding?

e  Transformer-based transfer learning enables more reliable fault diagnostics in indus-
trial CPS environments where data scarcity and domain shifts are common.

e  The approach demonstrates practical scalability from controlled lab conditions to
real-world industrial applications.

Abstract

As industries become increasingly dependent on cyber-physical systems (CPSs), failures
within these systems can cause significant operational disruptions, underscoring the critical
need for effective Prognostics and Health Management (PHM). The large volume of data
generated by CPSs has made deep learning (DL) methods an attractive solution; however,
imbalanced datasets and the limited availability of fault-labeled data continue to hinder
their effective deployment in real-world applications. To address these challenges, this
paper proposes a transfer learning approach using a pre-trained transformer architecture
to enhance fault detection performance in CPSs. A streamlined transformer model is first
pre-trained on a large-scale source dataset and then fine-tuned end-to-end on a smaller
dataset with a differing data distribution. This approach enables the transfer of diagnostic
knowledge from controlled laboratory environments to real-world operational settings,
effectively addressing the domain shift challenge commonly encountered in industrial
CPSs. To evaluate the effectiveness of the proposed method, extensive experiments are
conducted on publicly available datasets generated from a laboratory-scale replica of a
modern industrial water purification facility. The results show that the model achieves an
average Fl-score of 93.38% under K-fold cross-validation, outperforming baseline models
such as CNN and LSTM architectures, and demonstrating the practicality of applying
transformer-based transfer learning in industrial settings with limited fault data. To enhance
transparency and better understand the model’s decision process, SHAP is applied for
explainable AI (XAI).
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1. Introduction

As technology continues to evolve, there is a growing trend toward integrating the
Internet to enhance the connectivity of devices and systems, particularly with the increasing
use of Internet of Things (IoTs) devices. This development has led to the embedding of cyber
components within physical systems, enabling real-time monitoring and control of physical
processes [1]. Such integration, known as cyber-physical systems (CPSs), significantly
improves the efficiency and controllability of these systems. CPSs are increasingly being
deployed across critical industries, including transportation [2], healthcare [3], energy [4],
and manufacturing [5]. However, the tight integration of cyber and physical components
also introduces potential vulnerabilities, such as increased susceptibility to cyberattacks,
sensor failures, and software malfunctions.

As industries seek more flexible, efficient, and reliable systems, ensuring the resilience
of CPS is essential to prevent cascading failures and minimize economic losses. To address
these challenges, the industry is increasingly adopting Prognostics and Health Manage-
ment (PHM) as a strategic approach to enhance system reliability, improve operational
efficiency, and support the long-term sustainability of complex systems [6]. PHM serves as
a comprehensive computational framework that combines physical modeling, real-time
operational data, and domain-specific expertise to assess the health of system components.
By continuously monitoring system performance and detecting early signs of degradation,
PHM enables the forecasting of potential failures and supports data-driven maintenance
planning. This proactive approach not only reduces unplanned downtime and maintenance
costs but also enhances overall system reliability, safety, and lifecycle performance.

Figure 1 presents a typical flow diagram of a PHM framework for CPS. The process
begins with data acquisition, where sensors collect operational data from the system.
This raw data is then processed to support objectives such as fault detection, diagnosis,
or prognosis, depending on the system’s specific requirements and the availability of
data. Fault detection involves identifying anomalies or failures, whereas fault diagnosis
extends this process by localizing, classifying, and assessing the nature and severity of
the detected faults. Fault prognosis, on the other hand, aims to predict the timing and
location of potential failures, often by estimating the system’s future condition or the
remaining useful life (RUL) of its components [7-9]. Building on these insights, prescriptive
maintenance offers a more advanced, data-driven approach by recommending targeted
actions to maintain or restore optimal system performance. It goes beyond prediction
to support informed decision-making, enhance operational efficiency, and drive greater
business value through strategic maintenance planning [10,11].

Advancements in the IoT have greatly increased the availability of data from various
components of CPS. This abundance of data offers a valuable opportunity to develop ad-
vanced data-driven models capable of extracting critical insights into system performance
and health conditions. However, despite this data availability, several challenges continue
to hinder the widespread adoption of data-driven methodologies in industrial settings.
One of the primary challenges is the complexity of data pre-processing and manual feature
extraction, which are both labor-intensive and technically demanding tasks [12]. Due to the
heterogeneous nature of CPS components, feature extraction must be specifically tailored to
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the unique characteristics, operational conditions, and functional roles of each component,
further complicating the process [13,14].
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Figure 1. A typical flow diagram of a PHM framework for CPSs.

In recent years, deep learning (DL) techniques have shown great promise in addressing
data analysis challenges, owing to their ability to autonomously learn and extract complex
patterns from raw, unprocessed data [15,16]. However, DL models are inherently data-
dependent and require large, diverse datasets to produce accurate and reliable diagnostics
of system health states. While modern industrial environments generate substantial vol-
umes of data, a major challenge arises from the dynamic and evolving operating conditions
of CPS. Data collection under abnormal or fault conditions is often limited, leading to highly
imbalanced datasets that hinder model performance [17]. Furthermore, the operational
profiles of CPS frequently shift over time, making it both difficult and costly to obtain
and label representative fault data, especially in environments where safety concerns and
economic constraints severely limit fault data acquisition.

To address the challenges outlined above, this paper proposes a novel approach em-
ploying transfer learning with pre-trained transformers for fault detection in CPS. Originally
introduced by Vaswani et al. [18], transformers are powerful, parallelized models designed
for processing sequential data. They have demonstrated remarkable success across various
domains, including natural language processing (NLP) and image recognition. Given the
sequential nature of sensor data in CPS, transformers are particularly well-suited for this
application. Unlike Recurrent Neural Networks (RNNs), which process data in a recurrent
manner, transformers use attention mechanisms to capture dependencies across entire
sequences more efficiently and in parallel [19]. The attention mechanism enables the model
to assign contextual importance to different elements within a sequence, regardless of their
position, thereby enhancing its ability to extract meaningful patterns. However, transform-
ers are typically large models that require extensive training data to perform effectively. To
overcome this limitation, we apply transfer learning, a technique that utilizes knowledge
acquired from a data-rich source domain to improve performance on a related, data-scarce
target domain. This approach enables better generalization by transferring learned features,
making it especially valuable in DL contexts where labeled data is limited [20].

In this study, we first pre-train a transformer model on a large, labeled dataset collected
from a controlled laboratory environment. This initial training phase allows the model to
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learn robust feature representations. We then fine-tune the pre-trained model on a smaller
dataset obtained under different operating conditions, enabling the model to adapt and
generalize to previously unseen fault scenarios, even with limited data availability. To the
best of our knowledge, this work is among the first to develop a pre-trained transformer
architecture combined with transfer learning for fault detection in CPS. The proposed
models will be evaluated using the Secure Water Treatment (SWaT) dataset, which is
derived from a scaled-down industrial water treatment testbed [21]. Developed by the
iTrust Centre for Research in Cyber Security at the Singapore University of Technology and
Design, the dataset contains time-stamped data capturing both normal operations and a
variety of cyber-physical attack scenarios. It includes sensor readings, actuator states, and
network traffic, providing a comprehensive representation of real-world CPS behavior.

While prior research in PHM has explored transformers and transfer learning inde-
pendently, our study focuses on the underexplored problem of generalizing PHM models
under domain shift, which is a common issue in CPS. Our approach is based on using a
transformer model that is first pre-trained on a comprehensive laboratory dataset and then
fine-tuned on a smaller dataset collected under different operating conditions. This method
addresses the mismatch between controlled laboratory data and real-world environments,
which has received limited attention in the existing literature.

Although pre-training and fine-tuning transformer models are well-established in gen-
eral Al, their specific use for fault detection under domain shift in CPS has not been studied
in depth. In addition, many existing approaches assume access to large, balanced datasets
or do not consider model interpretability. These assumptions limit their practical use in
industrial PHM settings where fault data are often scarce. To address these issues, we em-
ploy a simplified transformer architecture, a domain adaptation strategy suitable for small
datasets, and model explainability through SHapley Additive exPlanations (SHAP) [22],
which aids in interpreting model decisions.

Deep learning models are often seen as black boxes, which can be a concern in safety-
critical applications such as CPS fault detection. To improve transparency, we apply
the SHAP method to analyze the contribution of input features to model predictions
and to support system-level decision-making. The main contributions of this paper are
summarized as follows:

e  We propose a transfer learning approach for PHM of CPS by using pre-trained trans-
former models to address significant discrepancies between source and target datasets,
particularly in terms of operating conditions.

e  An end-to-end fine-tuning strategy is employed, incorporating cross-validation under
severe class imbalance and a simplified architecture using a single encoder-decoder
transformer. This design makes transfer learning feasible for small PHM datasets,
which is an aspect often overlooked in previous transformer-based PHM studies.

e The proposed methodology enables effective knowledge transfer from laboratory-
controlled datasets to real-world operational data, achieving improved fault detection
performance as validated through extensive experiments on the SWaT dataset, outper-
forming existing DL-based approaches.

e To increase model interpretability and support decision-making, the SHAP method is
used on the fine-tuned transformer model, which provides insight into the model’s
internal behavior and improves transparency in fault diagnosis.

The remainder of the paper is organized as follows. Section 2 reviews related work
and the current state of the art. Section 3 describes the proposed methodology in detail.
Section 4 outlines the experimental setup and procedures. Section 5 presents the results and
discusses their implications. Finally, Section 6 concludes the study and highlights potential
directions for future research.
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2. Literature Review

In recent years, there has been increasing interest in applying DL techniques to the
PHM of CPS. This shift is driven by the limitations of traditional machine learning models
in handling the complex, high-dimensional sensor data produced by these systems. DL-
based approaches are primarily aimed at monitoring system performance to enable fault
detection, diagnosis, and prognosis. The ultimate goal is to support intelligent maintenance
scheduling and reduce unexpected disruptions by using the rich sensor data generated
during system operation.

However, despite progress, the application of DL in PHM, particularly in real-world,
data-constrained environments, faces ongoing challenges, including data imbalance, lack of
interpretability, and limited generalizability under domain shifts. This section reviews the
evolution of DL in PHM, categorized into feedforward /convolutional models, temporal
models, and recent transformer-based and transfer learning approaches, while focusing on
current limitations and the unique contributions of this study.

2.1. Feedforward and CNN-Based Approaches

Early applications of DL in PHM primarily utilized fully connected (FC) networks and
Convolutional Neural Networks (CNNSs) to classify fault states or estimate remaining useful
life (RUL). Yang et al. [23] applied a 1D CNN model on the IEEE PHM Challenge 2012
dataset for both fault classification and RUL estimation from vibration signals, demonstrat-
ing superior performance over Support Vector Regression (SVR). Similarly, Lupea et al. [24]
used 2D CNNs with Continuous Wavelet Transform (CWT) for defect classification in
gearboxes, achieving over 99% accuracy across multiple failure types.

Several studies have sought to enhance CNN-based methods through architectural
innovations or hybrid designs. For example, Wei et al. [25] combined residual networks
(ResNets) with Extreme Learning Machines (ELMs) to create a model capable of extracting
robust time-frequency features for fault classification in rotating machinery. Cui et al. [26]
introduced generative modeling through a Conditional Wasserstein Generative Adversarial
Network with Gradient Penalty (CWGAN-GP) to augment imbalanced fault datasets and
improve classifier performance using a dual-CNN architecture. Despite their effective-
ness, these CNN-based methods typically treat time as a static dimension and are thus
limited in their ability to capture temporal dependencies, a critical aspect of sensor data in
dynamic systems.

2.2. Sequential Models and Hybrid Architectures

To overcome the limitations of static models, research attention has increasingly shifted
toward sequential models that can account for time-dependent behavior in CPS data. Long
Short-Term Memory (LSTM)-based models have shown particular promise in this area.
Bampoula et al. [27] developed an LSTM autoencoder framework to monitor equipment
health over time, using temperature and hydraulic sensor data from milling machines.
Shoorkand et al. [28] proposed a hybrid CNN-LSTM-FC model that integrated convo-
lutional feature extraction with LSTM-based temporal modeling to improve predictive
maintenance accuracy.

Hybrid architectures are increasingly favored in PHM for their ability to combine
spatial and temporal learning. Wang et al. [29] proposed a model combining 1D CNN,
Bi-LSTM, and attention layers to predict RUL from aircraft engine data. The fusion of local
convolutional features and long-term dependencies allowed for better prediction of compo-
nent degradation over time. Likewise, Luo et al. [30] applied a 1D CNN-BiLSTM-Attention
model to vibration data from bearings and showed improved early fault prediction accuracy,
though they noted difficulties with capturing early-stage degradation.
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While these models address the issue of temporal dependencies, they often suffer from
long training times, sensitivity to sequence length, and challenges in learning long-range
relationships, especially in large-scale multivariate time series data.

2.3. Transformer-Based Models for PHM

Transformers, originally introduced by Vaswani et al. [18], have reshaped sequence
modeling by using attention mechanisms to capture long-range dependencies without
the need for recurrence. Unlike LSTMs, transformers process input sequences in parallel,
making them more computationally efficient and better suited for modern sensor streams.
Their growing popularity in time-series domains has led to their recent application in
PHM tasks.

Zhang et al. [19] introduced a Dual-Aspect Self-Attention Transformer (DAST) model
for RUL prediction, using sliding windows over raw sensor data to extract temporal
features through attention layers. Chen et al. [31] proposed an attention-based LSTM model,
combining manually engineered features with deep features. While the proposed method
outperformed existing models in terms of prediction accuracy, it exhibited limitations when
applied to varying operational conditions.

These approaches demonstrated that attention-based architectures could outperform
traditional RNN and CNN models in both accuracy and generalization. However, trans-
formers typically require large volumes of labeled data for effective training. In industrial
CPS environments, fault data are scarce, costly to collect, and often imbalanced. As such,
the direct application of transformer models without any adaptation remains limited in
real-world PHM systems.

2.4. Transfer Learning in PHM

While CPS generates vast quantities of data, acquiring labeled data across the full
range of operating conditions remains a significant challenge, particularly in industrial
environments where systems are designed to operate reliably with minimal faults. As a
result, collecting comprehensive labeled datasets is often impractical. To overcome this
limitation, transfer learning can be employed. This approach involves training models
on extensive datasets gathered in controlled laboratory settings and then transferring the
learned knowledge to real-world industrial environments, thereby reducing the reliance on
large-scale data collection under operational conditions [32].

To date, only a limited number of studies have explored transfer learning as a viable
approach for deploying deep and complex architectures in data-constrained environments.
For example, Berghout et al. [33] proposed a DL model based on an LSTM-FC architecture,
incorporating transfer learning by pre-training the LSTM layers on a subset of the PHM
2012 Challenge bearing dataset. The model was then fine-tuned on a different subset of the
same dataset, with the LSTM weights kept frozen during the fine-tuning process. In another
study, Sanakkayala et al. [34] transformed bearing vibration signals into spectrograms to
generate 2D image representations and used pre-trained DL models such as ResNet-50
for feature extraction. The extracted features were subsequently passed to fully connected
layers for fault classification.

Despite these promising efforts, the application of transfer learning for fault detec-
tion in CPS remains limited, particularly in the context of using pre-trained transformer
models. This gap presents a valuable research opportunity, as integrating transfer learn-
ing with transformer architectures holds significant potential to enhance fault detection
performance while addressing the persistent challenge of data scarcity in real-world
industrial environments.
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To address these gaps, this study presents a transfer learning approach based on a
pre-trained transformer architecture, which is fine-tuned on a smaller target dataset with
differing operating conditions. In addition, SHAP model explainability is incorporated to
support interpretation of the model’s predictions. Together, these elements aim to improve
the applicability of DL models for fault detection in real-world CPS settings where labeled
fault data is limited.

3. Methodology

Figure 2 illustrates the proposed transfer learning framework, which utilizes a
transformer-based architecture to enable effective knowledge transfer from a large-scale
source domain to a smaller, domain-specific target domain. In this study, the DL model is
initially pre-trained on a large-scale source dataset until it achieves optimal performance.
Subsequently, the model is fine-tuned and validated on the target dataset using K-fold
cross-validation to mitigate overfitting and reduce bias. As depicted, the model begins
with randomly initialized weights (indicated in red), which are updated during the pre-
training phase. These trained weights (shown in green) serve as the starting point for the
fine-tuning stage, during which they are further adjusted until convergence (shown in
blue). This process enables the model to use knowledge from the source domain to improve
performance on the target dataset, which contains limited labeled data. The transformer
architecture is chosen for its strong ability to capture temporal dependencies and detect
patterns in sequential data.

Pre-training Stage

Randomly Initialized Weights Trained Network On Source Dataset
Transformer Transformer | Classifier
Model Unit Model Unit
Large Source Dataset A

Decoder
Module
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Module

Preprocessing
Encoder
Module
Encoder
Module

>
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> =

[input_]

Decoder
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Encoder
Module

Preprocessing
Encoder
Module
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Figure 2. The proposed transfer learning approach.

The proposed framework differs from existing approaches in two key aspects. First, it
introduces a simplified transformer architecture (shown in Figure 3) specifically designed
to accommodate the constraints of small-scale PHM datasets, in contrast to traditional
transformer models developed for large-scale applications. Second, it incorporates a
transfer learning strategy to improve model adaptability in the presence of domain shift, a
common challenge in real-world CPS scenarios. The following sections provide a detailed
explanation of the architectural design and training methodology.
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Figure 3. Transformer architecture used in the study.

3.1. Transformer Architecture

Transformers are advanced DL architectures designed to extract meaningful insights
from sequential data while accounting for positional context. As illustrated in Figure 3,
a typical transformer consists of several components, such as positional encoding layers,
encoder and decoder stacks, and attention mechanisms [18]. In this study, the transformer
architecture has been simplified to suit the scale and complexity of the available PHM
datasets. Unlike conventional transformer models that employ deep encoder and decoder
stacks, the proposed architecture utilizes a single encoder and a single decoder module.
This design choice aims to reduce model complexity while retaining the fundamental
strengths of the transformer architecture.

The model begins with a positional encoding layer that injects time-related information
into the input vectors. This is followed by multi-head attention mechanisms within both
the encoder and decoder, enabling the model to learn diverse dependencies in parallel.
Finally, a stack of fully connected layers performs the classification task. By adopting
this framework, the model achieves strong performance with limited target-domain data,
reducing the risk of overfitting and improving suitability for deployment in resource-
constrained industrial settings.

3.1.1. Positional Encoding Layer

Unlike recurrent and convolutional models, transformers do not inherently capture the
sequential order of input data. To address this limitation, a positional encoding layer is in-
corporated to embed positional information into the input vectors. These encodings, which
have the same dimensionality as the model inputs, are added directly to the input vectors.
Although positional encodings can be defined as trainable parameters, we adopt fixed sinu-
soidal functions with varying frequencies as introduced in [18] to reduce model complexity.
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The corresponding formulas for these encodings are presented in Equations (1) and (2),
where POS denotes the position index and i refers to the dimension.

PE pos i) = sin (pos /1000%/ dmodet) (1)

PE(p0s 5i41) = €O (pos/lOOOZi/ dmodel) 2)

3.1.2. Attention Layers

At the core of the transformer model is the attention mechanism, which enables the
model to identify meaningful patterns in sequential sensor data [35]. Specifically, the
attention layer computes three distinct, learned representations of the input tensor via
linear transformations: the query (Q), which specifies what we are searching for; the
key (K), which indicates what information is available; and the value (V'), which contains
the content to be retrieved. These projections are mathematically defined in Equation (3):

Q=W;xX, K= WyxX, V= WyxX 3)

In this study, we utilize scaled dot-product attention to compute the attention weights
(«), as shown in Equation (4). In this formulation, the query, key, and value vectors all share
the same dimensionality, denoted by d; = di = dy. The attention score is calculated by
taking the dot product of the query and key vectors, which measures their similarity. This
score is then scaled by the square root of the model dimension D,;,,4,; to stabilize gradients
and passed through a softmax function to produce a probability distribution over the
input sequence:
a(Q,K) = Softmax(QKT ) (4)
Diodet
The softmax-weighted distribution determines the degree of attention allocated to each
element in the input sequence. The output of the attention mechanism is then computed
by multiplying these attention scores with the corresponding value vectors, as shown
in Equation (5).
Attention(Q,K, V) = a(Q,K)V )

Among various attention mechanisms, scaled dot-product attention has been widely
adopted due to its balance of computational efficiency and empirical effectiveness [18].
Finally, in the case of the multi-head attention mechanism, multiple attention heads are
independently trained, and their outputs are concatenated to form the final representation,
as shown in Equation (6) with X being the input sequence, h representing the number of
heads, Attention; being the calculated attention vector for each individual head, and W° as
the output projection matrix to combine the heads.

MH Attention(X) = Concat(Attentiony, ..., Attentiony) W’ (6)

3.1.3. Encoder Stack

The encoder stack consists of multiple sublayers, each comprising a multi-head atten-
tion mechanism followed by an FC feed-forward layer. Both components are wrapped with
residual connections, layer normalization, and dropout layers to enhance training stability.
Each encoder layer maps the input tensor to a fixed-dimensional representation of size
Dy04e1- The use of residual connections helps mitigate the vanishing gradient problem, fa-
cilitating the training of deep networks. Furthermore, the multi-head attention mechanism
enables the model to simultaneously focus on different parts of the input by computing
multiple attention distributions in parallel. This parallelism allows the model to capture
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diverse relationships and patterns within the sequential sensor data, which is essential for
effective fault detection in CPS. The encoder stack is defined in Equations (7) and (8).

Z = LN(X + Dropout(MH Attention(X))) )

In Equation (7), Z represents the output of the first add and normalize sub-layer, LN(.)
denotes the layer normalization function, and FFN(.) is the feed-forward network.

Outputp, ,40r = LN(Z + Dropout(FFN(Z))) (8)

3.1.4. Decoder Stack

Similar to the encoder stack, the decoder stack in a transformer model consists of
multiple identical layers, each comprising three subcomponents: two multi-head attention
mechanisms and a fully connected feed-forward network. Each sublayer is enclosed in
a residual connection followed by layer normalization, which enhances training stability
and supports better gradient flow. The first attention layer in the decoder is typically a
self-attention mechanism. The second is a cross-attention mechanism with Query taken
from the decoder and key and value from the encoder, which enables the decoder to attend
to the encoder’s output. This enables the integration of contextual information from the
input sequence, improving the model’s ability to generate accurate and context-aware
predictions. Overall, the decoder is shown in Equations (9)—(11).

Zy = LN(Outputp, . 4er +— Dropout( MH Attention(Outputy, 4. )) )

In Equation (9), Z; is the self-attention sub-layer output using directly the output from
the encoder. In Equation (10), Z; is the cross-attention output.

Zy = LN(Zy + Dropout(Cross Attention(Zy, Outputp, .i0r)) (10)

Finally, Equation (11) calculates the decoder output using a residual connection and
the feedforward network.

Outputp,.o4er = LN(Z2 4 Dropout(FFN(Z5))) (11)

3.1.5. Classification Output

In the final stage, the output tensors produced by the decoder are passed through a
series of FC layers, interleaved with Rectified Linear Unit (ReLU) activation functions.
The classification head receives input vectors of dimension D4, and the final out-
put layer produces a probability distribution over the target classes. Model training
is performed using the cross-entropy loss function, which is optimized via the gradient
descent algorithm.

3.2. Transfer Learning

Transformer models have shown strong performance across various domains; however,
their effectiveness diminishes when applied to small-scale PHM datasets due to their large
model size and substantial data requirements. A practical solution for using the capabilities
of transformers in such data-constrained scenarios is transfer learning. This approach
involves pre-training a model on a larger, related source dataset (SD) and then fine-tuning
it on a smaller, domain-specific target dataset (TD), thereby facilitating knowledge transfer
between domains [12].

In PHM applications, data scarcity is particularly pronounced for fault scenarios,
which are rare, expensive to simulate, and difficult to annotate. Moreover, the dynamic and
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evolving nature of industrial environments introduces domain shifts, making data collec-
tion even more challenging. To address these issues and enhance model generalizability
under domain shift, this study adopts a transfer learning strategy tailored for PHM tasks.

3.2.1. Pre-Training on the Source Domain

In the pre-training phase, the transformer model is trained on a large-scale dataset
collected under operational conditions different from those of the target domain (as illus-
trated in Figure 2). This approach assumes that transferable temporal patterns exist across
domains and can be captured by the model. The model is initialized with random weights
and trained in a supervised classification setting until performance on the validation set
ceases to improve. The resulting pre-trained weights form the foundation for subsequent
adaptation to the target domain.

3.2.2. Fine-Tuning on the Target Domain

In this phase, several fine-tuning strategies can be employed. These include (1) up-
dating all model parameters, (2) freezing certain layers while fine-tuning others, and
(3) employing a gradual unfreezing strategy, where fine-tuning starts with the final layers
and progressively unfreezes earlier layers. The latter approach is frequently adopted in
literature as it helps balance knowledge retention from the source domain with effective
adaptation to the target domain, thereby reducing the risk of catastrophic forgetting [36].
In this study, multiple strategies are evaluated to determine the most effective method for
transferring knowledge under data-constrained conditions.

3.3. Model Explainability

As DL models are often regarded as black boxes, it is critically important to interpret
their outputs accurately, particularly in scenarios where model predictions serve as the
basis for decision-making about complex systems, such as in the PHM of CPS. In such
applications, both interpretability and reliability are essential attributes. While simpler
ML models, such as decision trees, are inherently interpretable and therefore sometimes
favored despite lower accuracy, the increasing complexity of systems and the growing
volume of sensor data necessitate the use of more sophisticated models [22]. In this context,
XAl techniques play a vital role by increasing the interpretability of complex models and
enabling their adoption in critical decision-making processes.

In this study, the SHAP methodology is used to interpret the output of the fine-tuned
model on the target dataset. SHAP quantifies the contribution of each input feature to the
model’s prediction by evaluating how the output changes when the feature is included
versus excluded, averaging over all possible subsets of features. The resulting SHAP
value assigned to each feature reflects its relative impact on the prediction, with positive
values indicating a positive contribution and negative values indicating a negative influence.
Owing to its model-agnostic nature, SHAP can be applied post hoc to any trained predictive
model, thereby providing a flexible and consistent framework for model interpretability.

Two key mathematical formulations form the basis of the SHAP framework and are
fundamental to understanding how feature attributions are computed. The first is the
SHAP explanation model, which expresses the prediction as a sum of individual feature
contributions, as shown in Equation (12).

M

g(@) =0+ ) iz (12)

i=1

Here, g(2') is the explanation model, M is the number of features, z’ € {0, 1}M isa
binary vector indicating the presence (1) or absence (0) of each feature, and ¢; is the SHAP
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value represents the contribution of feature i. The term ¢ corresponds to the baseline
output of the model when no features are present. This formulation ensures that the sum
of the SHAP values approximates the original model’s prediction and forms the basis for
local interpretability.

The second key formula is the SHAP value computation, derived from cooperative
game theory shown in Equation (13).

¢i(f,x)= ), S|!(|P|F|!S|1)![fsu{i}(xsu{i})—fs(xs)} (13)

SCF\{i}

In this expression, F is the full set of features, and S is a subset of F that does not
contain feature i. The model predictions fs(xs) and fg, () (xsu {i}) represent the output of
the model with and without feature i, respectively. In the formula, |.| operator calculates
the size of each set and ! operator is the factorial operator. The weighting term, based
on factorials, ensures a fair distribution of contributions by averaging over all possible
permutations of feature inclusion. This formulation guarantees three key properties—local
accuracy, missingness, and consistency—which make SHAP values a theoretically sound
measure of feature importance.

4. Experiment

To evaluate the performance of the proposed methodology, we applied it to two
publicly available, real-world CPS sensor datasets: SWaT.Al and SWaT.A6. These datasets,
developed by iTrust at the Centre for Research in Cyber Security, Singapore University of
Technology and Design, consist of time-series data from a six-stage water treatment system.
The SWaT testbed is a laboratory-scale replica of a modern industrial water purification
facility, designed to support research on the security and reliability of CPS. It operates
continuously at approximately five gallons per minute and comprises six stages: raw water
intake, chemical dosing, membrane filtration, ultraviolet dechlorination, reverse osmosis,
and final water handling. Each stage is instrumented with a range of sensors and actuators,
managed by programmable logic controllers (PLCs) and monitored through a Supervisory
Control and Data Acquisition (SCADA) system.

Communication within the system is structured across two network layers, with wired
links facilitating data transmission and collection. The datasets include readings from
51 sensors and actuators, such as flow meters, water level indicators, motorized valves,
pumps, and pressure sensors, sampled at one second intervals. As one of the most compre-
hensive CPS datasets available, the SWaT dataset has been widely adopted in academic
research on anomaly detection and system monitoring [37-39]. The SWaT.Al dataset,
recorded in 2015, captures 11 days of system operation: 7 days under normal conditions
and 4 days during which 41 distinct cyber-physical attacks were conducted, resulting in a
total of 449,920 data records. In contrast, the SWaT.A6 dataset, recorded in 2019, offers a
shorter 4 h session comprising 13,202 data points, with the first 3 h representing normal
operation and the final hour, including 6 unique attack scenarios.

Figure 4 illustrates sample sensor readings from the SWaT.A1l dataset, with normal
and attack conditions highlighted in blue and red, respectively. While some attack events
cause noticeable deviations in sensor signals that are easily identifiable, others result in
more subtle variations, making them difficult to detect through visual inspection alone.
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Figure 4. Four sampled sensor readings from the SWaT.A1 dataset under normal (blue) and attack
(red) conditions.

Although both datasets originate from the same CPS system, they were collected
under different operating conditions and recorded four years apart. Figure 5 shows a 2D
visualization of the datasets using PCA after normalization. Each point represents a row in
the respective datasets, forming two distinct clusters that highlight the variation in data
distributions. The clear difference in probability densities shows the presence of a domain
shift, which validates the suitability of a transfer learning approach. Given its limited size,
the SWaT.A6 dataset alone is insufficient to train complex DL models such as transformer
architectures. Therefore, this study uses a transfer learning strategy: the model is first
pre-trained on the larger SWaT.A1 dataset and subsequently fine-tuned using the smaller
SWaT.A6 dataset to enhance performance under data-constrained conditions.

SWaT.Al Dataset
SWaT.A6 Dataset

25 A

20 A

15 A

10 A

60  -50  -40  -30  -—20  -10 0 10
Figure 5. PCA representation of the normalized datasets.

The SWaT.Al dataset is divided into training, validation, and test sets using a 70%,
15%, and 15% split, respectively. For pre-training, both normal and attack samples are used
to perform a binary classification task, with the validation set used to monitor training
progress and prevent overfitting. Once training convergence is achieved, the model is
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fine-tuned on the SWaT.A6 dataset. To assess the model’s repeatability and robustness,
10-fold cross-validation is applied. Initially, the SWaT.A6 dataset is split into 85% training
and 15% testing subsets, with the test set held out for final evaluation. The training portion
is further divided into 10 folds; in each iteration, 9 folds are used for training and 1 for
validation. During training, model performance is tracked on the validation set, and the
model checkpoint with the best validation score is selected for evaluation on the test set.
Due to the significant class imbalance in the dataset, overall accuracy is not a suitable
evaluation metric. Instead, the Fl-score of the faulty (attack) class is prioritized, as it
provides a more meaningful and fair comparison with state-of-the-art methods.

Feature selection was implicitly handled through the need for cross-dataset compatibil-
ity. Since SWaT.Al and SWaT.A6 have overlapping but non-identical features, we retained
only those common to both datasets to enable transfer learning

The preprocessing pipeline involves several steps: handling missing values, dig-
itization, and normalization to enhance model robustness and accelerate convergence.
Normalization is performed using standard score normalization (z-score), as shown in
Equation (14), calculated based on the mean (¢#) and standard deviation (¢) of the training
set. This transformation is then applied uniformly across all data splits. Due to the sequen-
tial nature of the model, a sliding window technique is employed to segment the dataset
into fixed-length subsequences.

_*H
z = 5 (14)

Given the relatively small size of the SWaT datasets and the typically high capacity of
transformer architectures, we adopt a simplified vanilla Transformer configuration consist-
ing of a single encoder and a single decoder block. This lightweight setup is intentionally
designed to balance model expressiveness with the risk of overfitting in low-data scenar-
ios. By keeping the architecture compact, we ensure the model can still learn meaningful
patterns while remaining robust and computationally efficient. Additionally, this design
makes our method more practical for real-world settings, where labeled fault data is often
scarce and large-scale pre-training is not always feasible. The specific model parameters
used, summarized in Table 1, were selected through empirical testing and reflect the most
promising trade-off between performance and generalizability.

Table 1. The proposed methodology details.

Methodology Section Component Description
Model dimension 64
Encoder count 1
Input dimension 30
Transformer Module Number of heads 4
Decoder count 1
Position embedding Sin Cos
. Layer shapes 30tol6tob64to?2

Classifier Module Activation function ReLu
Window size 16
Process Parameters Batch size 64

Learning rate 0.001

All experiments were conducted using the Python programming language version
3.8.10, with the PyTorch library version 2.4.1 used for DL model construction, training,
and validation. The experiments were executed on a GPU server equipped with an AMD
Ryzen 3970X CPU with 64 cores, 128 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU
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with 24 GB of memory. The equipment was sourced from the university’s facilities at the
University of West London, London, UK.

5. Results and Discussions

In this section, we evaluate and discuss the performance of the proposed methodology
using standard classification metrics. The following evaluation measures are employed
to assess predictive accuracy: accuracy, precision, recall, and F1 Score, as defined in
Equations (15)—(18):

TP + TN
Al : 1

Y TP+ IN + FP + EN (15)

.. TP
Precision : TP~ FD D (16)

TP

Recall : ——— 17
A TP EN 17

TP
F1 Score : (18)

TP + (FP + FN)/2

where TP denotes True Positives, TN denotes True Negatives, FP denotes False Positives,
and FN denotes False Negatives. These metrics provide a robust assessment of classification
performance, particularly in class-imbalanced scenarios, which are common in PHM tasks.

5.1. Pre-Training on SWaT.Al

In the first stage, the model was pre-trained on the SWaT.A1 dataset to extract useful
information from the source domain. The training curves are shown in Figure 6. As
illustrated, training was halted after 200 epochs due to signs of overfitting, indicated
by stagnant validation performance. The model checkpoint with the highest validation
accuracy was selected both for evaluating the test set and as the initialization point for
fine-tuning on the target dataset.

Loss Over Epochs Accuracy Over Epochs

1.000
= Train Loss AN

- Validation Loss

0.08
0.995

0.06
0.990

Loss
Accuracy

0.04
0.985

0.02

0.980

= Train Accuracy
At - \alidation Accuracy

0.00

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 6. Training and validation chart during the pre-training stage.

Table 2 presents the experimental results and compares the proposed method with
other state-of-the-art approaches on the test set of the SWaT.Al dataset. Although improv-
ing performance on SWaT.Al is not the primary goal of the methodology, the results show
that the proposed model outperforms existing methods in terms of accuracy.
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Table 2. Proposed methodology comparison with state-of-the-art.
Methodology Accuracy  Precision Recall F1-Score
Bahadoripour et al. [37] 99.6 99.6 99.6 99.6
Jahromi et al. [40] 95.1 95.3 95.1 95.2
Jahromi et al. [41] 90.83 90.98 90.83 90.90
Bahadoripour et al. [42] 99.0 99.0 98.0 98.0
Nedeljkovic and Jakovljevic [43] 97.9 98.8 83.0 90.2
Moon et al. [44] - 86.51 87.82 87.16
Our proposed method 99.79 98.95 99.39 99.17

5.2. Fine-Tuning on SWaT.A6

Following pre-training on the SWaT.A1 dataset, the learned weights were used to
fine-tune the model on the SWaT.A6 dataset. Figure 7 displays the training curves for loss
and accuracy during the fine-tuning process for one of the folds. To mitigate overfitting
and catastrophic forgetting, training progress was monitored using the validation set,
employing the same strategy as in the pre-training phase. The model with the highest vali-
dation accuracy was selected and evaluated on the test set to determine final performance.
Training was stopped after 200 epochs, as the loss curve had plateaued, and validation
accuracy began to decline.
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>
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0.0 —— Validation Accuracy
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 7. Training and validation chart during the fine-tuning stage.

To evaluate the model’s performance, accuracy, F1-score, and p-values for Fl-scores
are reported in Table 3 and compared against state-of-the-art approaches using K-fold
cross-validation. In addition to the proposed method, several variations were explored.
To assess the impact of transfer learning, a baseline model with the same architecture
was trained from scratch on the target dataset. Another variant involved freezing the
transformer layers and fine-tuning only the classifier, which yielded lower performance
compared to the proposed method.

As shown in Table 3, the proposed model outperforms commonly used baseline mod-
els reported in the literature. To ensure a fair and consistent evaluation, all baseline models
were implemented in PyTorch based on architectural details reported in the literature.
Each model was trained using the same normalized and preprocessed input data, cross-
validation splits, and a sliding window approach with a fixed sequence length and input
features, matching the proposed model’s configuration.

The FC model consists of three fully connected layers with ReLU activations, using
dropout for regularization. It takes flattened input sequences and processes them through
progressively reduced hidden layers, consistent with prior studies [34,45,46]. Another
widely adopted approach, the 2D CNN + FC model [47,48], was also implemented and
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evaluated under the same experimental conditions. This model treats the input as a 2D
matrix (sequence length x sensors) and applies stacked convolutional layers with 64 and
128 filters, followed by adaptive pooling and a three-layer fully connected classifier.

Table 3. Performance of the fine-tuned model on the target dataset compared to state-of-the-art

approaches.

Methodology Accuracy F1-Score p-Value
Locked Transformer Weights 97.50 &+ 0.50 83.25 +4.18 5.00 x 107°
Model Without Transfer Learning ~ 97.71 £ 0.90 85.20 &= 5.63 7.59 x 1074
FC 96.95 £ 0.81 79.61 + 6.92 1.45 x 1074
2D CNN + FC 96.74 £ 0.68 7278 £ 8.13 1.01 x 107°
1D CNN + FC 97.61 £ 0.81 84.74 + 4.56 5.26 x 1074
LSTM + FC 96.95 £ 0.81 78.64 + 5.67 1.53 x 107°

Our proposed method 99.02 £ 0.33 93.38 & 2.25 -

Recognizing that each sensor stream has distinct temporal characteristics, a 1D
CNN + FC model shown to be effective in PHM applications [23,30,49] was included
in the comparison. This model uses a dedicated convolutional path for each sensor stream,
applying two 1D convolutional layers (with two and four filters, respectively), followed by
max pooling and two fully connected layers for classification. Lastly, to capture the sequen-
tial dependencies inherent in sensor data, LSTM + FC models were evaluated [50-52]. The
model uses a two-layer bidirectional LSTM with a hidden size of 64. Its final hidden state
is passed through two fully connected layers for final classification.

For all models, we used a batch size of 64, a learning rate of 0.001, and the Adam
optimizer, consistent with the proposed model. Training was carried out until the validation
loss plateaued or began to decline, and the best-performing checkpoint was selected for
final evaluation. These baseline models were selected to represent a range of widely
adopted deep learning strategies in PHM, including feedforward, convolutional, and
sequence-based architectures.

Figure 8 illustrates the Receiver Operating Characteristic (ROC) curves for the fine-
tuned models across all folds of the K-fold cross-validation. The Area Under the Curve
(AUC) consistently reaches 0.99 for all folds, indicating strong model performance and
suggesting a uniform distribution across the dataset partitions. Furthermore, the presence
of sharp transitions and jagged edges in the ROC curves reflects the class imbalance,
characterized by a significantly higher number of healthy data points.

5.3. Ablation Study

To evaluate the contribution of each subsystem in the proposed model, an ablation
study is conducted by systematically modifying or removing specific components. Each
variant is pre-trained on the source dataset and subsequently fine-tuned on the target
dataset using K-fold cross-validation, and the results are compared to those of the original
model. Five model variants are created for this study as depicted in Figure 9:

e  Variant 1: The multi-head attention layer is replaced with a single-head attention layer
to assess the impact of using multiple attention heads.

e  Variant 2: The sinusoidal positional encoding is substituted with a learnable positional
encoding to evaluate the benefits of fixed versus trainable positional information.

e  Variant 3: The hidden layer in the classifier is removed and replaced with a single fully
connected (FC) layer to reduce complexity.

e  Variant 4: The positional encoding is entirely removed to test the model’s reliance on
positional information.
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Variant 5: The decoder module is eliminated, and the encoder is directly connected to
the final classifier to isolate the encoder’s contribution.
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Figure 8. ROC curve of fine-tuned models in the K-fold cross-validation with 10 folds. Dashed line

represents a random classifier.
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Table 4 shows the ablation study results. As each subsystem is systematically removed
or altered, the final performance is reduced, as shown in the table. This demonstrates the
importance and complementary contribution of each component within the overall model
architecture to its high performance.

Table 4. Performance of the ablation variants.

Methodology Accuracy F1-Score
Variant 1 97.55 £ 0.90 83.99 £+ 6.24
Variant 2 97.82 £0.76 85.93 £4.35
Variant 3 98.09 £ 1.18 88.30 +7.29
Variant 4 98.37 £ 0.54 89.26 & 3.57
Variant 5 98.09 £+ 0.47 86.17 £ 3.57

Our proposed method 99.02 + 0.33 93.38 & 2.25

5.4. SHAP Explainability Results

At the final stage, following model training and validation, it is essential in engineering
applications to analyze the model’s output and quantify the contribution of each sensor
input to the prediction. This step provides insight into the internal decision-making process
of the model. Given that the model’s output directly influences maintenance-related
decisions, it is crucial for system operators to not only verify the reliability of the prediction
but also to identify the specific sensors and data points that contributed most significantly
to the outcome. Such interpretability facilitates a more informed and rapid response to
potential faults, thereby improving system recovery and enhancing operational reliability.

Figure 10 presents the top 15 features that contribute most significantly to the model’s
output based on SHAP values. Each dot represents a single test sample, and the color
indicates the actual normalized value of the corresponding feature: red for high values
and blue for low values. The position of each dot along the Y-axis reflects the SHAP value,
which quantifies the feature’s impact on the model’s prediction for that specific sample.
Positive SHAP values indicate a contribution toward predicting the faulty class, while
negative values contribute toward predicting the healthy class. The spread and density of
the dots reveal how consistently each feature influences the prediction across the dataset.
For instance, features such as AIT202 (sensor measuring the HCl level in the second stage)
and LIT301 (feed water tank level in the third stage) show strong and consistent influence
in one direction, suggesting they are critical indicators of the system’s health state. This plot
shows the most influential features overall and provides detailed insight into how different
values of each feature affect the model’s decision, which is essential for fault diagnosis and
understanding the underlying behavior of the model.

Figure 10 shows the local interpretability for each individual prediction. To calculate
the global feature importance, we can calculate the average on the absolute of SHAP values
of all instances as per Equation (19). In this formula, I; stands for the global importance
of feature j, n is the number of samples, 4)j(i> is the SHAP value for feature j in sample i,
and |.| stands for the absolute operator. In Figure 11, features are sorted based on their

global importance.
n

1
i=-=),

i=1

(19)

‘Pj(i)

As shown in Figure 11, the most influential features based on global SHAP values are
AIT202, LIT301, FIT101 (flow meter sensor in the first stage), FIT301 (flow meter sensor in
the third stage), and MV101 (motorized valve actuator in the first stage). These features
exhibit the highest overall contribution to the model’s predictions, while the remaining
features have comparatively minimal impact on the output.
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Figure 10. SHAP summary plot of the top 15 features influencing the model’s predictions. Each dot
represents a test sample, where color indicates the feature value (red is higher), and the Y-axis shows
its impact on predicting faulty or healthy states.
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Figure 11. Global feature importance. Average of feature impact on model output.

5.5. Discussions

The experimental results demonstrate that the proposed pre-trained transformer
methodology significantly improves classification performance on the SWaT.A6 dataset,
particularly in terms of the Fl-score for the attack class. While conventional models such as
FC, CNN, and LSTM have previously shown reasonable effectiveness in PHM tasks, the
incorporation of transfer learning from a larger dataset yielded a substantial performance
gain in this study, achieving an F1-score of 93.38%. This improvement is primarily attributed
to the effective transfer of temporal knowledge across operational domains. Pre-training
on the SWaT.Al dataset enables the model to learn generalized temporal features that
remain relevant when fine-tuned on the smaller SWaT.A6 dataset. Notably, freezing the
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transformer layers during fine-tuning resulted in a considerable performance drop (F1-score
decreased from 93.38% to 83.25%), highlighting the importance of continued adaptation.
Additionally, our ablation study showed that transfer learning improved the F1-score by
8 percentage points compared to training from scratch, further emphasizing the critical role
of pre-training in achieving high performance under data-constrained conditions.

The adoption of a simplified transformer architecture, consisting of a single encoder
and decoder block, also contributed to reducing the risk of overfitting—a crucial concern
when dealing with small-scale industrial datasets. This makes the proposed approach more
practical for real-world industrial applications, where collecting and labeling large amounts
of fault data is often expensive and time-consuming. Instead, models can be pre-trained
on data collected under controlled laboratory conditions and subsequently adapted to
specific operational environments with limited labeled data. However, despite the strong
performance on the SWaT datasets, it is important to acknowledge the limitations. Both the
source and target datasets are derived from the same CPS testbed, albeit recorded under
different conditions and four years apart. The extent to which this methodology generalizes
to entirely different CPS environments remains an open question. Future research should
apply this approach to other domains, such as smart grids, autonomous systems, or manu-
facturing environments, to validate its broader applicability. Moreover, while a simplified
transformer design was employed, transformer models inherently require more compu-
tational resources than CNNs or LSTMs. This could present deployment challenges in
resource-constrained environments. Therefore, future work should consider incorporating
model compression techniques and hardware-aware optimizations to improve deployment
feasibility without sacrificing performance.

6. Conclusions and Future Directions

This study proposed a transfer learning approach using a pre-trained transformer
model for fault detection in cyber-physical systems. The method was evaluated on the
SWaT.Al and SWaT.A6 datasets, achieving superior performance over traditional deep
learning models, with an accuracy of 99.02% and an Fl-score of 93.38%. These results
highlight the effectiveness of pre-training on a larger dataset to extract transferable temporal
features that remain useful when fine-tuned on a smaller target dataset under different
operational conditions. This helps address a common challenge in industrial environments,
where collecting and labeling large volumes of fault data is often impractical due to cost,
time, and operational constraints.

Furthermore, to assess the interpretability of the proposed model, we applied explain-
able Al techniques using SHAP. This allowed us to analyze the contribution of individual
sensor features to each prediction and identify the key factors influencing the model’s
decision, thereby improving transparency and aiding fault diagnosis in CPS applications.

Future work will expand this methodology in three key directions. First, model inter-
pretability will be enhanced by incorporating explainable Al techniques, enabling greater
transparency in the decision-making process—an essential requirement for industrial adop-
tion. Second, model compression strategies such as pruning and quantization will be
explored to reduce computational overhead and inference latency, facilitating deployment
on resource-constrained systems. Third, the approach will be validated on additional
CPS datasets with varying configurations and fault scenarios to assess its robustness and
generalizability across diverse industrial settings.
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AUC Area Under the Curve

BF Brute Force

CNNs Convolutional Neural Networks
CPS Cyber-Physical Systems

CWT Continuous Wavelet Transform

DAST Dual-Aspect Self-Attention Transformer
DDoS Distributed Denial of Service

DL Deep Learning

Dos Denial of Service

ELM Extreme Learning Machine
FC Fully Connected

10Ts Internet of Things

K Key

KNNs K-Nearest Neighbors
LSTM Long Short-Term Memory

MB Mirai Botnet

ML Machine Learning

MMD Maximum Mean Discrepancy
NLP Natural Language Processing
PCA Principle Component Analysis
PHM Directory of open access journals
PLCs Programmable Logic Controllers
PMU Phasor Measurement Unit

Q Query

ReLU Rectified Linear Unit
ResNet  Residual Network
RNNs Recurrent Neural Networks

ROC Receiver Operating Characteristic

RUL Remaining Useful Life

SAE Stacked Auto-Encoder

SCADA  Supervisory Control and Data Acquisition
SD Source Dataset

SHAP Shapley Additive Explanations
SMOTE Synthetic Minority Over-sampling Technique


https://github.com/pooyasa/pre-trained-trasformer-fd
https://github.com/pooyasa/pre-trained-trasformer-fd

Sensors 2025, 25, 4164 23 of 25

SVR Support Vector Machine

SWaT Secure Water Treatment

TD Target Dataset
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