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Abstract - Optimizing truss structures entails determining the most efficient arrangement and dimensions of members to fulfill 

specific goals, such as reducing weight and maximizing strength. Implementing the self-adaptive enhanced vibrating particle 

system (SA-EVPS) as a metaheuristic optimization technique for enhancing structural components in civil structures offers 

substantial potential for improving the efficiency and functionality of such components. This study presents a novel algorithm 

developed for optimizing the geometry and size of a 45-bar truss structure. Through extensive simulations and comparative 

analysis with seven recent metaheuristic algorithms, including the Whale Optimization Algorithm (WOA), the Marine Predators 

Algorithm (MPA), Sine Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO), Moth-Flame Optimization (MFO), Grey Wolf 

Optimizer (GWO), and the Enhanced Vibrating Particle System (EVPS), the proposed algorithm demonstrates superior 

effectiveness in delivering enhanced structural performance by simultaneously optimizing member dimensions and structural 

geometry. The findings of this study indicate that the proposed SA-EVPS algorithm provides an effective and robust solution for 

improving the efficiency and reliability of structural optimization processes, with promising applicability to the optimization of 

a 45-bar truss structure. This advanced algorithm facilitates the identification of ideal geometries and member dimensions for 

structural components, considering factors such as load-bearing capacity and material optimization. 

Keywords - Optimization, Metaheuristic algorithms, Self-Adaptive, SA-EVPS algorithm, Truss structures.  

1. Introduction  
Metaheuristic algorithms represent a category of 

optimization techniques designed to address complex 

problems by identifying optimal solutions. These algorithms 

seek the best solution by exploring a broad search space 

(exploration) and concentrating on promising regions 

(exploitation) to avoid convergence in local optima [1-3]. 

Inspired by natural phenomena, these algorithms are 

recognized for their capacity to efficiently and effectively 

explore the solution space. Because of their capacity to attain 

nearly optimal solutions for various problems, both 

continuous and discrete, metaheuristic algorithms are realistic 

optimization approaches [4]. Metaheuristic algorithms and 

Artificial Intelligence (AI) methods connect within the 

broader context of optimization and problem-solving [5-7]. In 

the framework of AI, encompassing machine learning 

algorithms, neural networks, and evolutionary algorithms, 

there is a continual need for optimization. This optimization is 

necessary for tasks such as refining models, training weights, 

and adjusting parameters. On the other hand, metaheuristic 

algorithms offer a universal method for addressing 

sophisticated optimization problems, utilizing effective and 

heuristic exploration of solution spaces [8, 9]. A metaheuristic 

algorithm is considered adaptable when employed across 

diverse challenges without requiring specific modifications to 

its structure. In contrast to alternative methods, metaheuristic 

algorithms usually consider problems as black boxes, 

concentrating exclusively on the system’s inputs and outputs 

[10]. Engineers only need to possess proficiency in 

representing their problems for metaheuristic algorithms, and 

unlike gradient-based optimization, the majority of 

metaheuristic algorithms do not rely on derivations; instead, 

they stochastically optimize problems. Metaheuristic 

algorithms excel in avoiding local optima, making them 

remarkably suitable for challenges with expensive derivatives 

or unknown factors [11]. These algorithms can be used to 

address a wide variety of challenges without the need for 

gradient information. This flexibility has led many 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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researchers, particularly in the field of civil engineering, to 

employ these algorithms in diverse applications. Previous 

investigations have studied various traditional approaches, 

including linear and nonlinear programming, genetic 

algorithms, and other heuristic methods, for optimizing truss 

structures, focusing on minimizing weight, maximizing 

strength, and improving overall performance. [12-14]. Truss 

optimization has been significantly advanced with the 

incorporation of metaheuristic algorithms, including Particle 

Swarm Optimization (PSO), Artificial Bee Colony (ABC), 

Cuckoo Search (CS), Tabu Search, Bat Algorithm (BA), 

Genetic Algorithms (GA), and Differential Evolution [15, 16]. 

These algorithms have effectively tackled the complicated and 

inherent complexity of truss optimization [17, 18]. 

The Vibrating Particle System (VPS) algorithm, derived 

from the concept of particle vibrations, has been utilized to 

address various optimization problems, notably in structural 

optimization [19, 20]. It has demonstrated effectiveness in 

exploring the search space and avoiding convergence local 

minima. Enhancements to the fundamental VPS algorithm 

have been implemented to improve its rate of convergence and 

precision. These enhancements consist of integrating the 

adaptive mechanisms of VPS with complementary 

optimization strategies. Self-adaptive algorithms have 

recently become increasingly recognized due to their capacity 

to adjust parameters dynamically throughout the optimization 

process, improving performance across various problems. 

Research has shown that self-adaptive approaches can 

contribute to more robust and effective optimization solutions 

[21-23]. Comparative studies of optimization algorithms for 

truss structure design have emphasized the strengths and 

shortcomings of each technique [24-26].  

These studies frequently highlight the necessity of 

balancing the search for new solutions and improving current 

ones during the search process, resulting in the development 

of more advanced algorithms such as the SA-EVPS. For 

instance, Yue et al. [27] presented an approach that applies 

Particle Swarm Optimization (PSO) to identify damage in 

composite structures by optimizing target parameters. The 

population is assessed with a fitness function, and through 

iterative steps, the particle swarm converges on the damaged 

location. The study reveals that the suggested technique 

exhibits higher convergence speed and improved robustness 

compared with an imaging approach based on a genetic 

algorithm.  

In a separate study, Wu et al. [28] presented an advanced 

artificial bee colony (ABC) algorithm that combines the finite 

element method with artificial neural networks. The study 

employs the concept of surrogate finite element methods 

integrated with Physics-Informed Neural Networks (PINNs) 

to tackle the geometrically nonlinear optimization challenge 

in a 10-bar truss structure considering size, shape, and 

topology. According to the study, employing metaheuristic 

algorithms can greatly accelerate the optimization process. In 

a related study, Jawad et al. [29] employed the ABC algorithm 

for truss structure optimization, focusing on factors such as 

displacement, stress, and buckling criteria. Nodal coordinates 

and cross-sectional areas were considered design parameters 

to optimize the shape and size of the truss structure. Their 

findings validated the algorithm’s proficiency, highlighting its 

superiority in achieving optimized weight, standard deviation, 

and efficiency in structural computations. The authors also 

utilized the Dragonfly Algorithm (DA), a recently developed 

optimization technique to enhance truss design within a 

discrete optimization framework [30]. They assessed the 

capability of this algorithm by comparing it with a range of 

different metaheuristic algorithms. The outcomes revealed 

that the DA surpasses other algorithms by achieving lighter 

structures, minimizing the need for structural analysis, and 

ensuring all necessary constraints are adequately met. 

Moving on, Gomes and Almeida [31] developed a robust 

inverse optimization approach utilizing a sunflower 

optimization algorithm for detecting damage in plate 

structures. In this approach, the process of evaluating damage 

involves minimizing an objective function that is influenced 

by the modal parameters of CFRP laminated structures. The 

results attained specify that this approach effectively 

recognizes the severity and location of fault in the composite 

plate. Additionally, the improved algorithm reveals superior 

proficiency and precision when compared to applied genetic 

algorithms. Diverse metaheuristic algorithms have been 

applied to produce more efficient solutions within an 

acceptable timeframe, tackling a range of complex challenges 

in civil engineering optimization. Some of these methods 

consist of Artificial Algae Algorithm [32, 33], Tabu Search 

[34], Fruit-Fly Optimization [35, 36], Harmony Search [37, 

38], Arithmetic Optimization Algorithm [39], Sunflower 

Optimization (SFO) algorithm [40], Levy Flight Distribution 

(LFD) [41], Volleyball Premier League Algorithm [42], 

Beluga Whale Optimization [43], Harris Hawks Optimization 

[44], Sine Cosine Algorithm (SCA) [45], Political Optimizer 

(PO) algorithm [46], Bat Algorithm (BA) [47], and 

Lichtenberg Algorithm [48]. 

Additionally, Kaveh et al. [49] applied the Vibrating 

Particle Systems (VPS) algorithm to identify damage in truss 

structures, incorporating a model for viscous damping. This 

technique evaluates the movements of particles toward their 

stable position. To improve the performance of VPS, the 

authors presented the Enhanced Vibrating Particle System 

(EVPS) algorithm by modifying specific parameters. This 

Enhanced system has proven useful in addressing various 

optimization difficulties. As an example, Hosseini et al. [50] 

developed a method for improving the effectiveness of dome 

truss structures. The researchers used random parameters to 

represent Uncertain variables when evaluating the reliability 

of the structure. He and Cui [51] developed an innovative 

metaheuristic approach focused on optimizing the size and 
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shape of truss structures. Their algorithm utilizes discrete 

variables for sizing and continuous variables for design. With 

the Medalist Learning Algorithm (MLA) implementation, 

their study achieved improved solutions for truss design 

optimization problems. Moreover, Kaveh et al. [52] employed 

the enhanced, modified dolphin operator in combination with 

the EVPS to evaluate three broadly recognized steel-framed 

structures. Furthermore, the authors concentrated on 

advancing the EVPS algorithm by minimizing the effect of 

adjusting parameters. In this research, to reduce the 

complexity of computation related to prior damage detection 

approaches, the authors introduced an innovative objective 

function. In their study, they calculated the modal parameters 

of the structure and presented a novel technique for optimizing 

frame structures utilizing time history analysis. This was 

attained through the application of metaheuristic algorithms 

that depend on node displacement. In addition, Haji 

Mazdarani et al. [53] established a reliability-based technique 

for designing 3D steel frames with concentric bracing. They 

used a function to minimize the total weight, with the bracing 

design serving as a variable in the optimization process. 

In short, traditional metaheuristic algorithms utilized for 

optimization of truss structures often suffer from limitations 

such as slow convergence rate to local optima and difficulty 

in dealing with complex search spaces. Although the 

Vibrating Particle System (VPS) algorithm has exhibited 

potential to address these challenges, it still has limitations in 

flexibility, convergence speed and solution accuracy for 

complicated truss optimization problems. Therefore, a 

stronger, adaptable, reliable, and effective optimization 

algorithm is required to efficiently tackle the complexity of 

truss design problems. An enhanced Vibrating Particle System 

(VPS) algorithm, capable of self-adjusting its parameters, 

offers an efficient substitute. Hence, regardless of the current 

research efforts, there is still inadequate information and a 

need for further research on the evolution of the SA-EVPS 

algorithm for optimizing truss structures. This research seeks 

to overcome this gap by assessing the SA-EVPS algorithm to 

tackle these challenges. This study addressed the development 

of the SA-EVPS algorithm for geometry and sizing 

optimization of a 45-bar truss structure. The results of this 

investigation were compared with other optimization 

techniques, highlighting the algorithm’s improved 

convergence rate and quality of the solutions. 

2. Methods 
This section presents the methodology of the SA-EVPS 

algorithm, an optimization method inspired by physical 

phenomena such as particle vibrations and developed with 

self-adaptive mechanisms. The EVPS algorithm represents an 

enhanced description of the VPS algorithm developed by 

Hamed Fathi et al. [55]. The algorithm’s efficiency depends 

on the precise selection of the acceptable range for the initial 

population, as defined by Equation (1). 

𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑. (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) (1)  

Where xi
j is the jth parameter of the ith particle, xmax  and 

xmin are the maximum and minimum limits of design 

parameters within the search space, respectively.  

Another variable, referred to as “memory,” keeps track of 

the quantity of available memory capacities derived from the 

most optimal configurations attained by the samples. Equation 

(2) shows how the vibration is influenced by the damping 

level. 

𝐷 = (
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)
−𝛼

 (2)  

In this equation, iter represents the iteration count; itermax 

is the maximum cycles, and α is a fixed number. The quantity 

±1 is arbitrarily employed. In addition, the population’s new 

positions are adjusted using Equation (3). 

𝑥𝑖
𝑗
= {

[𝐷. 𝐴. 𝑟𝑎𝑛𝑑1 + 𝑂𝐻𝐵𝑗]         (𝑎)

[𝐷. 𝐴. 𝑟𝑎𝑛𝑑2 + 𝐺𝑃𝑗]             (𝑏)

[𝐷. 𝐴. 𝑟𝑎𝑛𝑑3 + 𝐵𝑃𝑗]             (𝑐)

 (3) 

   

OHB, GP, and BP are calculated individually for each 

variable, with A defined in the following manner as Equation 

(4). 

𝐴 = {

(±1)(𝑂𝐻𝐵𝑗 − 𝑥𝑖
𝑗
)           (𝑎)

(±1)(𝐺𝑃𝑗 − 𝑥𝑖
𝑗
)              (𝑏)

(±1)(𝐵𝑃𝑗 − 𝑥𝑖
𝑗
)              (𝑐)

 (4)  

𝜔1 + 𝜔2 + 𝜔3 = 1 

The variables ω1, ω2, and ω3 denote the significance 

assigned to OHB, GP, and BP, respectively. Additionally, 

rand1, rand2, and rand3 represent arbitrary numbers evenly 

spread within the [0, 1] interval. Figure 1 provides a schematic 

representation of the SA-VPS algorithm. The EVPS algorithm 

incorporates eight parameters, namely p, ω1, ω2, ω3, HMCR, 

PAR, Neighbor, and Memory size, which are ascertained 

throughout experimentation. Although these parameters are 

initially set with specific values in the EVPS algorithm, they 

remain constant, taking on the values of 0.05, 0.2, 0.3, 0.3, 

0.95, 0.1, 0.1, and 4, respectively. The EVPS parameters play 

an important role in controlling search accuracy, exploration 

and exploitation phases, convergence speed, and the overall 

behavior of the algorithm. Consequently, these parameters 

significantly affect the method’s behavior. Before the primary 

optimization process, all eight parameters undergo 

optimization using the EVPS algorithm modified to the 

specific problem at hand. Subsequently, the main optimization 

is executed. 
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Fig. 1 Visual illustration of the SA-EVPS algorithm 

3. Results and Discussions 
This study involves the analysis of a 45-bar truss structure 

featuring a total span of 2000 inches and a depth of 200 inches 

under the influence of three downward forces. Figure 2 

illustrates the geometry and configuration of this structure.  

The structure experiences simultaneous application of 

three vertical loads. At nodes 15 and 19, two loads of P1 = 60 

kips each are exerted, and at node 17, a load of P2 = 80 kips is 

imposed. Stress limits of 30 ksi, both in tension and 

compression, apply to all elements of the truss structure. This 

section considers the results from the shape and size 

optimization analysis of the 45-bar truss structure. These 

outcomes have been evaluated using various statistical criteria 

such as mean, best, worst, standard deviations, and medians. 

For assessing the effectiveness of the method, the SA-EVPS 

algorithm is compared to seven well-known methods such as 

the Marine Predators Algorithm (MPA), Whale Optimization 

Algorithm (WOA), Sine Cosine Algorithm (SCA), Multi-

Verse Optimizer (MVO), and Enhanced Vibrating Particle 

System (EVPS). In this study, nodal displacement was 

constrained within ±2.0 inches in both horizontal and vertical 

directions. Figure 3 illustrates the nodal displacement of the 

45-bar truss structure in both X and Y directions.  
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Fig. 2 Geometry and configuration of a planar 45-bar truss structure 

 

 
Fig. 3 Displacement of nodes in the X and Y directions for the 45-bar truss structure 

As illustrated in Figure 3, the largest displacements along 

the X and Y directions are equal to -1.0354 and -2 inches, 

respectively. The material’s density used was 0.283 lb/in3, and 

the elastic modulus measured 30,000 ksi. The challenge 

involves 45 sizing variables corresponding to the cross-

sectional areas of truss elements and 9 shape parameters 

representing the vertical coordinates (i.e., y-coordinates) of 

nodes 2, 4, 6, 8, 10, 12, 14, 16, and 18. Consequently, there 

are 54 design variables in total. A limitation is placed on the 

shape variables, allowing only discrete integer values.  

The minimum and maximum limits for the shape variables 

are 100 inches and 1400 inches, respectively. As for the sizing 

variables, selecting cross-sectional areas for members (A1 to 

A45) must fall within the range of 0.1 to 15 in², with 

increments of 0.1 in². The optimization techniques considered 

in this research are coded using MATLAB software. The 

results for the best, mean, and worst optimum weight of the 

45-bar truss structure are presented in Table 1. As presented 

in Table 1, all the models achieved for the truss structure 

satisfy the designated design constraints. Nevertheless, the 

SA-EVPS algorithm has produced the most advantageous 

optimal weights. Convergence curves in the optimization of 

truss structures demonstrate the development of objective 

functions, such as minimizing weight or maximizing stiffness 

during the iterations of an optimization algorithm. These 

curves are crucial for the effectiveness of the optimization 

procedure. The convergence curve shows the rate at which the 

optimization algorithm approaches a solution. A steeper initial 

slope indicates faster convergence, while a gentler incline 

indicates slower progress. Figure 4 shows the convergence 

curves of the present study and competing algorithms in 

optimizing the 45-bar truss. As shown in Figure 4, the EVPS 

and SA-EVPS algorithms have demonstrated exceptional 

design outcomes characterized by favorable relative 

convergence rates. The ranking of each optimization 

algorithm based on the Friedman test is demonstrated in Table 

2. This table shows the best weight and the mean weight of 30 

independent runs obtained by EVPS and seven different 

optimization algorithms. SA-EVPS algorithm has achieved 

better results than all algorithms, according to the Friedman 

test.  
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Table 1. Weight results of optimizing the 45-Bar truss structure (lb)

Statistics 

Tool 
MPA WOA SCA MVO MFO GWO EVPS 

Present 

Study 

Mean 7237.49859 19052.3032 43796.5235 16014.123 17914.47 5839.84602 4910.37363 4814.92601 

Best 6415.80364 12362.8406 34239.1057 11046.2183 5517.92055 5167.95654 4499.1858 4205.93002 

Worst 8413.4653 31620.5867 63457.6809 20237.8398 34238.9602 7053.19251 5566.75091 5810.11732 

Std 469.678158 4118.14371 7016.27398 2419.16541 6749.263 473.348275 314.821469 411.325128 

Median 7180.64285 18782.1296 42485.416 15596.8047 16579.6329 5752.00992 4841.24801 4818.02925 

 
Fig. 4 Convergence curves of optimizing the 45-Bar Truss Structure 

Table 2. Ranking of each algorithm based on the friedman test

Statistic Tool MPA WOA SCA MVO MFO GWO EVPS Present study 

Best Rank 4 6.4333 8 5.6 5.9 3 1.6 1.4667 

Mean Rank 3.7667 4.4333 8 6.6333 6 4.1667 2 1 

Overall Best 4 7 8 5 6 3 2 1 

Overall Mean 3 5 8 7 6 4 2 1 

 

In the optimization process, 30 independent runs are 

conducted for each example, with a consistent population size 

of 30 in all problems. In the EVPS algorithm α, p, ω1, ω2, 

PAR, HMCR, memory size, and Neighbor are 0.05, 0.2, 0.3, 

0.3, 0.1, 0.95, 4, and 0.1, respectively. The optimized 

geometry of the 45-bar truss, achieved through the SA-EVPS 

algorithm, is illustrated in Figure 5. This figure illustrates that 

the optimized geometry of the 45-bar truss, attained through 

the SA-EVPS algorithm, represents the most efficient set of 

dimensions achieved through an iterative procedure, meeting 

specific performance objectives such as minimizing weight or 

maximizing stiffness. The optimum outcomes for section 

areas and elevation results of each optimization technique are 

presented in Tables 3 and 4. These tables include the 

numerical outcomes demonstrating the performance of 

different algorithms. 

Table 3. Section results of optimized the 45-bar truss structure in^2 (Cross sectional area) 

Section 
This study  

area in^2 

EVPS area 

in^2 

GWO area 

in^2 

MFO area 

in^2 

MVO area 

in^2 

SCA area 

in^2 

WOA area 

in^2 

MPA area 

in^2 

A1 2.9 3 3.1 3.2 6.3 5.1 3.9 3.2 

A2 1 1 1.7 2.5 2.6 10.5 2.4 1.9 

A3 0.4 0.7 1.1 1.5 3.6 4.9 5 3.6 

A4 2.8 3 3.4 4 3.5 6.7 8.2 3.2 
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A5 0.1 0.2 1.1 0.3 4.1 5.5 4 0.8 

A6 0.6 0.7 1.2 1.4 0.3 4 6 0.8 

A7 0.8 0.6 0.5 0.5 8.1 12.9 6.5 3 

A8 0.2 0.4 1.1 2.3 2.2 4.7 7.7 1.3 

A9 3.3 3.1 3.8 3.3 3.9 4.8 3.3 3 

A10 0.2 0.2 0.3 0.6 4.5 13.4 3.5 0.4 

A11 0.2 0.3 0.8 0.8 0.8 8.7 1.9 0.7 

A12 0.4 0.8 0.4 0.4 1.2 6.7 0.4 0.6 

A13 0.1 0.1 1.3 0.9 2 12.3 1.4 1.3 

A14 3.3 3.3 4.3 3.2 4.3 7.4 4.2 3.5 

A15 0.2 0.3 0.7 0.4 0.7 5 0.8 0.7 

A16 0.2 0.5 0.5 0.6 2.7 11 1.5 0.5 

A17 0.2 0.4 0.6 0.5 3.8 4.1 4.4 0.5 

A18 0.1 0.2 0.2 0.3 3.9 12.6 2.1 0.3 

A19 3.9 3.8 3.4 4.5 6.7 4.5 12.6 5.2 

A20 0.2 0.3 0.2 0.2 1.4 0.7 1.4 0.5 

A21 0.1 0.3 0.6 0.9 3.1 1.9 0.9 0.2 

A22 0.1 0.1 0.3 0.6 1.3 9.7 1.8 2.1 

A23 0.1 0.1 0.5 1 0.3 7.9 8.4 0.8 

A24 3.6 3.9 3.6 4 7.3 6.2 8.7 4.2 

A25 0.2 0.5 0.1 0.1 4.2 9 4.5 1.7 

A26 0.2 0.3 0.2 0.8 2.6 1.4 3.4 0.7 

A27 0.1 0.2 1.1 1 2.5 10 2 0.6 

A28 0.1 0.1 0.5 0.6 1.5 2.4 1.4 0.5 

A29 4.6 4.4 4.3 4.1 9.8 7.6 5.6 5.8 

A30 1.7 1.5 1.3 1.3 1.9 3.8 2.3 1.9 

A31 0.1 0.3 0.3 0.5 1.3 1.9 0.4 0.5 

A32 0.1 0.5 1 0.5 11.3 4 9.6 1.5 

A33 0.8 0.9 0.8 0.9 0.9 8.9 1.3 1.2 

A34 4.8 4.2 5.4 4.3 8.2 6.4 8 6.8 

A35 0.2 0.2 0.8 0.9 0.9 6.5 2 1 

A36 0.3 0.4 0.4 0.4 3.5 13 3.6 2 

A37 0.7 1.1 1 0.8 4.4 7.4 4.5 1.1 

A38 1.8 1.7 1.4 1.5 1.1 8 2.4 0.9 

A39 4.9 5.2 5.1 5.5 7.6 7.4 10.4 6.3 

A40 0.1 0.3 0.3 0.3 0.5 13.9 4.4 0.6 

A41 1.3 1.3 1.3 1.9 2.4 10.9 2.5 2.1 

A42 0.3 0.3 0.3 0.5 2.6 6.3 0.9 0.5 

A43 2 1.9 2.1 2 2.6 10.2 4.7 2 

A44 6.5 6.5 6.5 6.5 7.8 10.5 7.8 6.8 

A45 0.3 0.4 0.4 0.5 1.2 11.5 3.7 0.7 

Table 4. Elevation results of optimized the 45-bar truss structure in^2 (Vertical coordinates) 

Elevation 

Variable 

This Study 

in^2 

EVPS       

in^2 

GWO      

in^2 

MFO      

in^2 

MVO      

in^2 

SCA        

in^2 

WOA      

in^2 

MPA       

in^2 

Y1 104 113 111 113 153 399 155 122 

Y2 188 197 194 185 177 448 149 202 

Y3 263 271 274 280 271 473 266 271 

Y4 334 345 344 340 258 490 297 318 

Y5 406 407 399 408 326 593 283 384 

Y6 474 469 464 469 402 543 361 434 

Y7 464 462 475 473 385 632 378 438 

Y8 427 426 427 426 325 341 318 405 

Y9 297 296 294 289 230 297 199 297 
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One of the primary reasons for the SA-EVPS algorithm’s 

improved performance compared to current optimization 

techniques lies in its self-adaptive process. Traditional 

metaheuristic algorithms, such as Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO) and 

Genetic Algorithms (GA), depend significantly on pre-set 

parameters that they initially set or manually modify during 

the optimization process. This can negatively impact their 

performance, especially in tackling challenging problems like 

truss structure optimization, where the search domain is 

significant and nonlinear. The comparison of deformations in 

both the original and optimized truss structures provides 

valuable insights into how optimization has impacted the 

structural response. Displacement in members of the 45-bar 

truss is shown in Figure 6. As shown in Figure 6, the optimized 

truss structure exhibits lower deformations than the original, 

indicating that the optimization process has effectively 

improved structural performance by redistributing loads or 

adjusting member sizes. In this study, the optimized truss met 

the design criteria for deformation limits and indicated a 

successful outcome. This is remarkably important in the area 

of structural engineering, where providing safety and 

serviceability standards is crucial. 

 
Fig. 5 Comparison of the original and optimized geometry of the 45-bar truss structure 

 
Fig. 6 Comparison of deformation between the original and optimized structure 

 

Comparing stress levels at each node between the original 

and optimized truss structures offers significant information 

about how the optimization procedure has impacted the 

overall structural performance. In Figure 7, the narrow range 

between the highest and lowest stress ratios highlights the 

outstanding capability of the suggested technique for 

optimizing the design of the 45-bar truss structure. The figure 

shows that stress levels at nodes in the optimized truss 

structure are lower than in the original, indicating that the 

optimization has successfully decreased extreme stress among 

nodes. This signifies that the optimization procedure has 

improved the load-carrying capacity of the truss, leading to a 

more efficient distribution of forces throughout the structure. 

From Figures 6 and 7, the obtained results satisfy all the 

limitations of stress and displacement described for the 

problem. The stress ratio is typically calculated as the ratio of 

the actual stress to the allowable stress for each element.  

Figure 8 illustrates the stress ratio of each element 

corresponding to the best design of SA-EVPS. According to 

Figure 8, a reduction in stress ratios for some members in the 

optimized truss indicates an overall improvement in structural 

efficiency, suggesting that the optimization procedure has led 

to a more balanced distribution of forces. The highest 

magnitude of the stress ratio of elements is 100% for this 

structure. 
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Fig. 7 Stress distribution in the members of optimized truss 

 
Fig. 8 Stress ratio among members in the 45-bar truss structure 

In the construction sector, the SA-EVPS algorithm can 

offer a more effective way to design truss structures and other 

structural elements, reducing material expenses by finding 

optimized designs that need fewer resources or are easier to 

construct. Optimized truss structures can enhance load 

distribution and general stability, which is significant for 

safety in some important structures such as bridges and 

buildings. Applying the SA-EVPS algorithm can anticipate 

potential weak points in structures and minimize the risk of 

damage. To evaluate the real-world application for this 

research, it’s significant to compare the SA-EVPS algorithm 

with other reputable optimization algorithms. SA-EVPS can 

be contrasted with a genetic algorithm (GA) frequently 

applied for structural optimization. In real-world applications, 

genetic algorithms are regularly utilized to optimize structural 

designs, but SA-EVPS could provide benefits by converging 

more rapidly and enhancing capability in complex designs 

more efficiently [54]. Particle Swarm Optimization (PSO) is 

another algorithm widely applied in structural optimization. 

Both SA-EVPS and PSO are population-based, but SA-EVPS, 

with its self-adaptive nature, could propose more optimal 

stability between exploration and exploitation [55]. Real-

world engineering challenges usually include large-scale 

optimization, so trying SA-EVPS on structures with a lot of 

members could show its strength. It is worth mentioning that 

although SA-EVPS is self-adaptive, it still relies on initial 

parameters and scalability issues in large truss structures. 

Inappropriate parameter settings can reduce the convergence 
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rate, increase the risk of rapid convergence to a local optimum 

and cause non-optimal results. Its applicability is restricted 

due to a lack of validation in various real-world problems. 

Similar to other metaheuristic approaches, it is probabilistic 

and can become trapped in local optima. 

4. Conclusion 
This study presented an efficient methodology for 

optimizing the design optimization of a 45-bar truss structure 

through the application of the SA-EVPS algorithm. 

Furthermore, a comparative investigation is conducted, 

evaluating the performance against seven recently developed 

metaheuristic algorithms. The optimized configuration of the 

45-bar truss, achieved with the SA-EVPS algorithm, signifies 

the most productive arrangement of dimensions derived from 

an iterative process, reaching defined targets such as weight 

minimization or maximizing structural rigidity. According to 

the results of this study, the optimized truss structure exhibits 

enhanced structural functioning by redistributing loads or 

adjusting member dimensions efficiently. Furthermore, stress 

levels at the joints in the optimized truss structure demonstrate 

that the optimization procedure has effectively reduced 

overstressing among the joints. The Friedman test, assessing 

the ranking of each optimization algorithm in accordance with 

both the best weight and the mean weight across 30 

independent runs, exposed that the SA-EVPS algorithm 

surpassed other algorithms in this research. Remarkably, the 

SA-EVPS algorithm demonstrated a superior capability for 

preventing local optima compared to alternative optimization 

methods. Additionally, it exhibited greater accuracy relative 

to other algorithms, considering aspects such as optimal and 

least efficient designs, average and standard deviation, 

convergence speed, and solution fitness. This innovative 

algorithm holds significant potential to play a crucial role in 

determining optimal dimensions for structural elements by 

considering factors like load-bearing capacity and material 

efficiency. By integrating self-adaptive features and 

enhancing the behaviour of vibrating particles, the algorithm 

demonstrates exceptional capabilities in determining the 

design space and identifying optimal configurations for the 

truss structure. Although the SA-EVPS algorithm is self-

adaptive, its effectiveness may depend on the initial parameter 

selections, possibly resulting in suboptimal outcomes. It may 

also encounter challenges with scalability when used in large 

truss structures due to the increased difficulty of the search 

space. Furthermore, its performance has not been extensively 

evaluated across diverse real-world design cases, which limits 

its broader applicability. As with many metaheuristic 

algorithms, SA-EVPS is probabilistic and does not guarantee 

finding the global optimum, leaving it vulnerable to getting 

stuck in local optima in complex structures. Future work 

developing the SA-EVPS algorithm for optimizing truss 

structures could emphasize covering the algorithm for 

multiobjective optimization, allowing for the simultaneous 

consideration of multiple criteria such as weight, cost and 

structural integrity. Combining hybrid methods with other 

optimization methods, advancing computational proficiency 

for different structures, and integrating real-world restrictions 

could develop the algorithm’s applicability.  
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