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Abstract—The rapid advancement of deepfake voice tech-
nologies has resulted in alarming cases of impersonation and
deception, highlighting the urgent need for robust tools that can
not only distinguish real audio from fake but also recognise
the generative algorithms responsible. The ability to not only
detect deepfake audio but also recognise the generative methods
used is essential for forensic investigations, legal proceedings,
and regulatory enforcement. Without robust and explainable
detection frameworks, legal professionals and investigators lack
the tools needed to effectively monitor, investigate, and prosecute
cases involving deepfake misuse. In this work, we take a voice
biometrics approach, shifting the focus from identifying who
is speaking to identifying which algorithm is speaking. Doing
so allows our approach to inherently handle unseen classes
while achieving competitive performance for deepfake speech
algorithm recognition. Our system leverages a voice-focused
ResNet101-based x-vector extraction model and combines diverse
audio features, and our experimental novel feature LFCC-
HF, enhanced with Linear Discriminant Analysis and cosine
similarity clustering. This approach allows for a more transparent
and interpretable decision-making process by usinga single voice
similarity decision boundary compared to the ensemble-based
methods commonly used in the literature. Unlike previous works
that rely on an ensemble of models, which convolute the decision-
making process, our method achieves comparable results while
using a significantly lighter-weight architecture, with our model
having 14.84 M parameters compared to 95 M and 317 M
parameters for Wav2Vec2 base and large. Furthermore, we
demonstrate the benefits of targeted data augmentation, which,
combined with feature fusion and our novel feature, improves
system robustness and adaptability, increasing our F1 Score from
0.624 to 0.763, a 22.275% increase over our best single feature,
and a 40.775% increase over the best ADD 2023 Track 3 baseline.
Importantly, the system achieves interpretability through its
back-end classification process, where decisions are based on
a transparent, learned threshold for voice similarity to known
voiceprints. This work offers a foundation for advancing more
robust and interpretable solutions in the field of deepfake speech
detection.

Index Terms—Deepfake Detection, Deepfake Audio, Generative
Algorithm Recognition, Synthetic Speech Detection

I. INTRODUCTION

Advancements in deepfake technologies have led to increas-
ingly realistic synthetic speech, posing significant challenges
for security and trust in voice-based systems. Deepfake voice
cloning and impersonations are already rampant, having been
used in an elaborate $35 million dollar bank heist in the UAE
[1], spreading malicious disinformation using the stolen voices
of UK politicians [2], and framing a US school principal
for racial abuse [3]. The latter case is particularly egregious,
as it marks one of the first instances in the United States
where a victim was compelled to appear in court, with detec-
tives relying on audio analysis tools to expose the deepfake.
This case highlights the need for robust tools capable of
not only distinguishing real speech from fake but providing
interpretable insights into the decision-making process.

Binary classification approaches, (real vs. fake), often fail
to meet the requirements of high-stakes applications such as
legal proceedings, where transparency and interpretability are
paramount [4]. Furthermore, identifying the specific algorithm
used to generate the deepfake, a process known as algorithm
recognition, is essential for tracing the source of the forgery,
improving forensic analysis, and providing transparent results.
The ability to not only detect deepfake audio but also attribute
it to specific generative methods is essential for forensic
investigations, legal proceedings, and regulatory enforcement.

An interpretable framework for deepfake voice classifica-
tion, capable of classifying deepfake speech to specific gen-
erative methods, offers several advantages. It provides clear,
interpretable evidence of how a decision was reached, enabling
stakeholders such as legal professionals, investigators, and
regulators to make informed decisions. Moreover, algorithm
classification supports efforts to track the evolution of deepfake
techniques, aiding in the development of proactive defences
against emerging threats.

In this work, we take a voice biometrics approach and
propose an interpretable framework for the detection of deep-



fake speech and generative algorithm classification that can
inherently handle unseen classes. By leveraging speaker x-
vectors extracted using a voice focussed ResNet101 trained
from an untrained state, combined with Linear Discriminant
Analysis (LDA) for dimensionality reduction and cosine sim-
ilarity clustering, our framework offers robust performance
while maintaining an interpretable back-end. The system clas-
sification back-end is interpretable, utilising voice similarity
to known voice prints, in this case each algorithm is a
voiceprint. Additionally, the processing requirements for such
a system are far lower than contemporaries who predomi-
nantly utilise the transformer architecture with models such
as Wav2Vec2 [5] [6]. Finally, we demonstrate the benefits
of targeted data augmentation, which, combined with feature
fusion and our novel Linear Frequency Cepstral Coefficient-
High-Frequency (LFCC-HF) feature which is designed to
capture high-frequency information by focusing exclusively on
higher frequency regions, doing so improves system robustness
and adaptability.

II. RELATED WORK

The majority of current research focuses solely on binary
classification, aiming to distinguish real speech from fake.
This approach is evident in challenges such as ASVSpoof
[7], which emphasise the development of countermeasures
for automatic speaker verification. While effective for real
vs. fake classification, this binary perspective overlooks the
importance of identifying the specific generative methods
responsible for deepfake speech. Notably, the Audio Deepfake
Detection Challenge (ADD) 2023 Track 3 introduced the task
of algorithm recognition [8], an important first step towards
understanding the origins and characteristics of different deep-
fake generative methods. Without classifying the generative
algorithm used, it leads to a shallow comprehension of the
threat landscape, and the opportunity to develop more adaptive
and comprehensive detection systems is missed.

Deep learning models, particularly ResNet-based architec-
tures, have demonstrated impressive performance in deep-
fake speech detection. Studies utilising ResNet variants have
reported high accuracy on benchmark datasets such as
ASVSpoof 2021 DeepFake (DF) dataset [9] and Logical
Access (LA) dataset [10] as well as the ADD 2023 Track
3 dataset [5]. These deep learning models excel in extracting
high-level features from spectrogram representations, making
them highly effective for binary classification tasks like distin-
guishing real vs. fake speech Combining x-vectors extracted
from such models for classifying deepfake voice algorithms
remains under-explored.

Further, several works have explored the task of algorithm
recognition utilising the ADD Track 3 dataset such as the
previously mentioned Lu et al. [5] and Qin et al. [6], where
both utilised model fusion, providing impressive performance
but in doing so convolute the decision-making process. Zeng
et al. [11] and Wang et al. [12] additionally provide strong
results, but at the cost of using larger classification models
such as Wav2Vec2 and WavLM.

While numerous deepfake detection methods have been pro-
posed, including ensemble-based architectures and transformer
models [6, 5], these approaches often lack interpretability,
making them impractical for forensic and legal applications.
Regulatory agencies and law enforcement require systems that
not only provide accurate classifications but also justify their
decisions in a transparent manner. Black-box AI models can
create challenges in court proceedings, where evidence admis-
sibility requires clear reasoning and traceability of decision-
making.

Various cepstral-based features have been used to success-
fully classify real from deepfake speech such as LFCC [13],
novel features from gamma tone cepstral coefficients (GTCC)
[9], mel frequency cepstral coefficients (MFCC) [10] and
constant Q cepstral coefficients (CQCC) [14]. Most existing
approaches rely on the selection of single audio features, such
as MFCCs, spectrograms, or x-vectors [15], based on varying
justifications. This fragmented approach fails to leverage the
complementary strengths of multiple feature types in a co-
herent and explainable manner. Recent work by Firc et al.
has shown that no single feature set performs consistently
well across all datasets or deepfake algorithms, as different
features capture complementary aspects of audio manipulation
and generative patterns [16]. This inconsistency underscores
the importance of systematically combining multiple feature
sets to leverage their strengths while mitigating their individual
weaknesses. However, current practices often address this
challenge by employing ensembles of classification models,
which, while effective, significantly increase model complexity
and reduce interpretability.

III. METHODOLOGY

A. Features and X-Vector Combinations

The proposed system leverages five distinct audio repre-
sentations, LFCC, MFCC, CQCC, GTCC, and LFCC-HF,
to capture complementary aspects of the audio signal. We
introduce a novel variant of LFCC, named LFCC-HF, that is
computed using only the portion of the audio that is greater
than or equal to 3 kHz. The threshold of 3 kHz was chosen
based work by Maltby et al. that showed that there exists more
difference between human and deepfake speech at roughly
3 kHz and above [17], indicating the presence of vocoder
artefacts due to being generated in the mel-spectrum.

ResNet101 has been shown to be effective for speaker
diarisation (determining who is speaking and when) [18].
This motivated our approach to adapt it for classifying which
algorithm is speaking rather than which person. The x-vector
embedding representations are the neuron activations within
convolutional neural network-based models [19], generally
corresponding to the first fully connected layer of the deep
learning model. The input audio is segmented into utterances
using energy-based Voice Activity Detection (VAD). Each
utterance is further split into 14 ms segments, which are
processed by the ResNet101 model to extract speaker x-
vectors. After all utterance segments for an audio file are



Fig. 1. Diagram showing cosine similarity-based classification between
respective classes: Human, Deepfake Speech Algorithm 1, and Deepfake
Speech Algorithm 2. The angles θ1 and θ2 represent the cosine distance
and thus similarity between speaker vectors.

processed, the mean of the vectors is computed and used as
the final speaker x-vector for that audio sample.

The audio features we included are designed to extract both
speaker-specific and generative-method-specific characteris-
tics, ensuring robust classification and algorithm recognition.
LFCCs are a widely used feature set in speech processing,
similar to MFCCs but based on a linear frequency scale.
This linear scale allows LFCCs to retain high-frequency infor-
mation, making them suitable for detecting subtle variations
between synthetic and real voices.

B. Classification Methodology and System Architecture

For our classification system, we took a voice biomet-
rics approach, treating each algorithm as a separate speaker
identity. Similar to a speaker verification system, our system
learns that x-vectors that are closer together are related to the
same speaker, or generative algorithm in this case. Distinct
clusters for different generative algorithm classes (e.g., Aliyun,
Databaker, HiFiGAN), also known as voiceprints, are obtained
from the cluster centroid of the known speaker vectors.
New voice samples are then classified based on proximity
to the nearest known voiceprint, with decision boundaries
delineating regions of influence for each algorithm based on
cosine similarity to the voiceprint as in Figure 1. Classes
that are not similar to any known voiceprint are classified
as ”unknown” via an optimal decision similarity threshold
learned during training using the validation set. This method
inherently allows the system to deal with unknown classes
and out-of-distribution (OOD) data as voice prints that are not
near a known class would be classified as unknown. This is
different to separate dedicated OOD detection stages used to
filter out OOD before giving it to the classification system like
with Lu et al. [5]. These are unlike traditional deep learning
models that use softmax-like functions to finalise a decision
from a known set of seen classes.

The proposed classification system follows a structured
pipeline to classify deepfake speech algorithms as seen in

Figure 2. Initially, audio features are extracted from both
train and test audio using four complementary representa-
tions: LFCC, MFCC, CQCC, and GTCC. These features
are processed through a ResNet101-based x-vector extractor,
producing 256-dimensional x-vectors for each feature type.
The resulting x-vectors are then concatenated into a 1,024-
dimensional composite x-vector, representing a combination
of all feature types.

Once extracted, the x-vectors undergo LDA for dimen-
sionality reduction, enhancing discriminative power while
minimizing redundancy. LDA is particularly effective under
the assumption that the classes, which are represented by
voiceprint clusters in our case, are normally distributed with
a shared covariance matrix. The reduced x-vectors are then
classified using a cosine similarity-based thresholding mech-
anism, which determines the similarity of the test x-vector to
known voiceprints or algorithm classes. This approach allows
the system to classify test samples as belonging to one of
several algorithm categories (e.g., Algorithm 1, Algorithm 2,
or Human), or assign them to an Unknown category if no
sufficient similarity is found based on a learned threshold
during training.

C. Model and Training Methodology

For our ResNet101-based x-vector extractor we trained our
model using a modified GitHub recipe by Landini et al. [20].
To do this we created a Kaldi-style directory for our ’wav.scp’
file to map utterance ID to the full path of the corresponding
audio file and an ’utt2spk’ file that maps each utterance ID to
the corresponding speaker ID, both files must be in the same
directory. Input audio was then split into segments by energy-
based VAD with each of these segments being labelled to the
full path of the audio via the ’wav.scp’ file. These utterances
were then further split into 14 ms segments and then fed to
the model for training with 60 frequency bins being used for
MFCC. During training of the x-vector model, the training data
was augmented with the Room Impulse Response (RIR) [21]
and MUSAN [22] noise and reverb datasets, doing so increases
robustness by simulating diverse acoustic environments and
enhances generalisation. With this, the x-vector model we
used was pre-trained using the VoxCeleb1, VoxCeleb2 and
CN-CELEB datasets for the purpose of automatic speaker
recognition [18], the details of the data they used can be seen
in Table I, with the model being trained until validation loss
stagnated. After pre-training, our model was further fine-tuned
on a very wide breadth of speech data including DIHARD-
III, AISHELL-4 and VoxConverse. The Standup dataset used
to pre-train our ResNet model was developed as an in-house
proprietary dataset, the full breakdown of these datasets can
be seen in Table II. We used an initial learning rate of 0.01
which progressively decayed to a final learning rate of 0.00005
using the stochastic gradient descent (SGD) optimiser.



Fig. 2. Classification system pipeline.

TABLE I
DATASETS USED FOR INITIAL TRAINING OF RESNET101 MODEL.

Dataset Duration No. Speakers Details
VoxCeleb1 323 hours 1,211 General speech dataset
VoxCeleb2 2,290 hours 5,994 Large speaker dataset
CN-Celeb 264 hours 973 Chinese speaker dataset

TABLE II
FINE-TUNING DATASETS USED FOR MODEL ADAPTATION.

Dataset Language Duration Ref
DIHARD-III English 61 hours [23]
VoxConverse English 50+ hours [24]

Standup (internal) English 45 mins In-House
Zeroth Korean 54 hours [25]
Kokoro Japanese 58 hours [26]

CN-Celeb 1 & 2 Chinese 650k utterances [27] [28]
Chime 6 English 40+ hours [29]

Alimeeting Chinese 109 hours [30]
AISHELL-4 Chinese 120 hours [31]

IV. EXPERIMENTAL SETUP

A. Datasets

For our experiments, we used the ADD 2023 Track 3
dataset [8]. Track 3 of the ADD 2023 dataset is intended
for the subtask of algorithm classification, not just real vs
fake but which generative algorithm was used to generate the
deepfake speech while also including the human speech class.
The training and development/validation sets of ADD 2023
Track 3 contains 7 classes while the test set contains the 7
classes seen in the training and development sets but also an
unseen 8th class. This 8th class in the test set aims to test
systems for robustness, and is more aligned to a real-world
scenario. To contribute further to a real-world scenario and

TABLE III
ADD 2023 TRACK 3 PARTITION COUNTS.

Class (Label) #Training Set #Development Set #Testing
Human (6) 3,200 1,200 10,507
Aliyun (0) 3,200 1,200 9,512
Databaker (1) 3,200 1,200 10,474
Aispeech (2) 3,200 1,200 7,169
HiFiGAN (3) 3,200 1,200 10,461
WaveNet (4) 3,200 1,200 10,391
World (5) 3,200 1,200 10,507
Baidu (7) 3,200 1,200 10,469
Total Number 22,400 8,400 79,490

suboptimal conditions, the testing set contains clean, noisy,
and compressed audio produced using undisclosed methods,
the full counts and breakdown of the dataset can be seen in
Table III. Further, we saw this dataset as a suitable way to test
the inherent OOD detection capabilities of our approach.

B. Data augmentation

The test set of the ADD 2023 Track 3 dataset contains
audio affected by noise and compression. To address this, we
applied data augmentation to the training and development
audio. For noise and reverberation, we selected samples from
the MUSAN [22] and RIR [21] datasets, applying them sys-
tematically to introduce controlled variability into the audio.
From these augmentation datasets we further split the RIR
into real RIR and simulated RIR to further see the effects
on classification performance. Further, we implemented a
CutMix-style approach to generate new synthetic data [32].
Using audio from the training we generate new synthetic audio
samples. We randomly sampled multiple audio files from the
training set, from these audio files we separated them by



TABLE IV
ADD 2023 TRACK 3 BEST ABLATION RESULTS IN DESCENDING ORDER.

Features Augmentation F1 Score
All Codec, Env, Cutmix, Baseline 0.763
All Baseline + CutMix 0.761
All Env Noise + Codec 0.750
All Codec, Env, Cutmix 0.751
All CutMix 0.722
All All RIR + Environmental Noise 0.729
All Environmental Noise 0.735
All Baseline 0.690
All Codec 0.703
All Simulated RIR 0.698
All Real RIR 0.697

utterance via energy-based VAD into smaller segments. We
then took these segments and applied a random combination
of data augmentation techniques to the audio such as noise,
reverb, compression or any combination of the three. From
these augmented segments we then stitch them together to
form different permutations, producing new unseen synthetic
data.

V. RESULTS DISCUSSION

A. Results

Table IV shows our ablation results for different augmen-
tation strategies using the highest performing feature combi-
nation of LFCC + MFCC + CQCC + GTCC + LFCC-HF.
Our best F1 score of 0.763, achieved using all features with
the Codec, Environmental Noise, and CutMix augmentation, is
competitive with single-model baselines in the literature, such
as Lu et al. [5], which achieved similar performance without
ensemble methods, shown in Table VI. Our lightweight audio
focussed ResNet101-based architecture delivers high perfor-
mance while maintaining interpretability through a transparent
thresholding process. This is unlike ensemble-based methods,
such as those employed by Qin et al. [6], which obscure
decision-making through complex model fusion. Our approach
emphasises clarity and computational efficiency. Compara-
tively, our voice-focussed ResNet101 model has far fewer
parameters than contemporaries at 14.84 M parameters vs 95
M and 317 M parameters for Wav2Vec2 base and large.

Table V presents our ablation study results showing the F1
score improvements for all feature combinations under our best
augmentation strategy (Codec, Env, Cutmix, Baseline) for the
ADD 2023 Track 3 dataset. Our initial F1 score results using
single features rival those of the challenge baselines. The ADD
2023 Track 3 baseline classifiers scored 0.5350 and 0.5416,
the difference between them being that they used different
types of thresholds for the detection of OOD data samples.
Among the single feature combinations, our MFCC achieved
the highest performance with an F1 score of 0.624, while
our novel LFCC-HF feature scored the lowest at 0.517, this
is probably due to the majority of the signal energy being
below 3 kHz. This result aligns with the expectation that
high-frequency components alone, which potentially obtain
deepfake generation artefacts, as in LFCC-HF, may lack suf-

TABLE V
F1 SCORE IMPROVEMENTS FOR FEATURE COMBINATIONS USING THE

HIGHEST PERFORMING AUGMENTATION.

Combination F1
Score

Absolute Relative
(%)

LFCC + MFCC + CQCC +
GTCC + LFCC-HF

0.763 0.246 47.58

LFCC + MFCC + CQCC + GTCC 0.747 0.230 44.49
MFCC + CQCC + GTCC + LFCC-
HF

0.737 0.220 42.55

LFCC + MFCC + CQCC + LFCC-
HF

0.736 0.219 42.36

MFCC + CQCC + GTCC 0.734 0.217 41.97
LFCC + MFCC + GTCC + LFCC-
HF

0.731 0.214 41.39

LFCC + MFCC + CQCC 0.730 0.213 41.20
LFCC + CQCC + GTCC + LFCC-
HF

0.728 0.211 40.81

LFCC + CQCC + GTCC 0.728 0.211 40.81
LFCC + MFCC + GTCC 0.724 0.207 40.04
LFCC + CQCC + LFCC-HF 0.716 0.199 38.49
MFCC + CQCC + LFCC-HF 0.713 0.196 37.91
MFCC + GTCC + LFCC-HF 0.708 0.191 36.94
LFCC + MFCC + LFCC-HF 0.707 0.190 36.75
CQCC + GTCC + LFCC-HF 0.705 0.188 36.36
MFCC + CQCC 0.702 0.185 35.78
LFCC + GTCC + LFCC-HF 0.700 0.183 35.40
LFCC + CQCC 0.699 0.182 35.20
MFCC + GTCC 0.693 0.176 34.04
LFCC + MFCC 0.692 0.175 33.85
CQCC + GTCC 0.687 0.170 32.88
LFCC + GTCC 0.681 0.164 31.72
CQCC + LFCC-HF 0.664 0.147 28.43
MFCC + LFCC-HF 0.660 0.143 27.66
LFCC + LFCC-HF 0.657 0.140 27.08
GTCC + LFCC-HF 0.641 0.124 23.98
MFCC 0.624 0.107 20.70
CQCC 0.609 0.092 17.79
LFCC 0.594 0.077 14.89
GTCC 0.585 0.068 13.15
LFCC-HF 0.517 0.000 0.00

ficient discriminatory information. However, when combined
with other features, LFCC-HF provided complementary infor-
mation, this is particularly evident in the final configuration,
where adding LFCC-HF increased the F1 score from 0.747
to 0.763, displaying its complementary value. Without LFCC-
HF, our results would fall short of Zeng et al. [11], where they
reported an F1 score of 0.754, while employing Wav2Vec2,
a significantly larger model. Overall, we improve upon our
best single feature of MFCC by 22.275% when combining all
feature together shown in Table V, and improve upon the best
ADD 2023 Track 3 baseline of 0.542 by 40.775% shown in
Table VI.

Upon reviewing our confusion matrix for our best feature
and augmentation combination, we can see the performance
and systems ability to handle unseen classes. Figure 3 presents
the confusion matrix for our highest-performing feature com-
bination (LFCC + MFCC + CQCC + GTCC + LFCC-HF).
The matrix shows strong classification accuracy across most
seen classes, such as Databaker, Wavenet, and World, each
with dominant diagonal entries, indicating correct predictions.
Of note, the OOD class (Baidu/Unk), which was not seen



Fig. 3. Confusion matrix for the best feature combination.

during training, is largely clustered along the correct prediction
axis, with 5,378 out of 10,469 samples correctly classified as
“Unknown”, displaying the inherent OOD detection capability
of our system. This is unlike typical softmax-based classifiers
that force all samples into one of the known categories, our
similarity-based approach with a learned threshold allows the
model to identify inputs that do not match any known gen-
erative voiceprint. While some misclassification into similar
generative algorithms is observed, notably a mix-up between
the OOD and Databaker classes likely due to overlapping
voiceprints, the system still demonstrates a clear ability to dis-
tinguish novel algorithms from known ones without requiring
a dedicated OOD pre-step.

B. Marginal Gain

To quantify the contribution of individual features in our
ablation study we use marginal gain. We define marginal gain
as ∆f(x,C) as the improvement in F1 score when a feature
x is added to a feature combination C. Formally, the marginal
gain is expressed as:

∆f(x,C) = f(C ∪ {x})− f(C)

where:

• C: set of features in the current combination (e.g., C =
{MFCC,CQCC}),

• f(C): F1 score of the model using the feature set C,
• f(C ∪ {x}): F1 score of the model when feature x is

added to the feature set C,
• x: the feature whose marginal gain is being calculated.

To compute the average marginal gain of a feature x across
all combinations, we take the mean of ∆f(x,C) over all valid
feature combinations C (excluding those that already include
x):

Average Marginal Gain of x =
1

|S|
∑
C∈S

∆f(x,C)

where:
• S: set of all feature combinations C that do not include

x,
• |S|: the number of such combinations.
Table VII presents the average marginal gain of individual

features in improving the system’s F1 score. This metric
quantifies the contribution of each feature by measuring the
improvement in classification performance when the feature is
added to various combinations. First to note, is that all features
have a positive gain, showing that each feature provides a
positive contribution. Among the features, CQCC exhibited
the highest average marginal gain (0.0583), followed closely
by MFCC (0.0577) and LFCC (0.0524). These results indicate
that CQCC and MFCC are the most complimentary for distin-
guishing between deepfake algorithms. In contrast, LFCC-HF
demonstrated the lowest average marginal gain (0.0225), re-
flecting its limited standalone discriminative power. However,
the complementary value of our novel LFCC-HF is shown
when combined with other features, as our best F1 results
were only attained using LFCC-HF.

VI. CONCLUSION

In this work, we have demonstrated an effective and more
interpretable approach to deepfake speech recognition by
leveraging a voice biometrics-inspired framework. Our system
integrates a voice-focussed ResNet101-based x-vector extrac-
tion, LDA for dimensionality reduction and cosine similarity
clustering for classification. This architecture offers both more
robust performance as it can inherently deal with unseen
classes and interpretability through voice similarity, making
it a more suitable choice for forensic and regulatory appli-
cations. A voice biometrics similarity approach provides the
ability to both detect deepfake audio and recognise specific
generative algorithms, enhancing transparency in automated
decision-making, a necessary factor for legal and regulatory
applications.

Through the systematic combination of diverse feature rep-
resentations, MFCC, LFCC, GTCC, CQCC, and our novel fea-
ture LFCC-HF, along with targeted data augmentation strate-
gies, we achieved a significant improvement in classification
performance in our ablation studies. Specifically, the F1 score
increased by 22.275%, from 0.624 to 0.763 by combining all
features versus our best single feature, and a 40.775% increase
over the best ADD 2023 Track 3 baseline of 0.542. Notably,
our system surpasses the performance of Zeng et al. [11],
who reported an F1 score of 0.7541, while employing a sig-
nificantly lighter-weight architecture compared to Wav2Vec2.
Furthermore, our solution delivers results comparable to Lu et
al.’s [5] models that did not incorporate dedicated OOD detec-
tion, but a lower score than their systems that did incorporate
a dedicated OOD classification pre-stage. While our proposed
system can inherently deal with unseen data, incorporating a



TABLE VI
ADD 2023 TRACK 3 F1 SCORE COMPARISON.

Ref Model Features Augmentation F1 Score OOD
[5] Model Fusion Fusion Codec+Env+CutMix 0.896 kNN
[6] ResNet34SimAM-ASP, ResNet34-GSP,

ResNet34SE-ASP, ECAPA-TDNN-ASP, LCNN,
AASIST-SAP, Wav2Vec-ECAPA, wavlm-ECAPA

Wav2Vec2 - 0.831 Max Similarity

[5] SENet18 STFT - 0.779 -
Ours ResNet101 All Codec, Env, CutMix 0.763 Voice Similarity
[11] ECAPA-TDNN Wav2Vec2 Noise, reverb, mixup 0.754 Threshold
[12] ResNet101-Temporal-Frequency-Transformer

(TFT)
Log mel spec, WavLM Noise, random sam-

pling, time stretching,
time masking, freq.
masking

0.736 Threshold

[33] RawNet2, SE-Res2Net50, HuBERT Raw, LFCC, HuBERT Noise, remove silence 0.735 Manifold-based
multi-model
fusion

Ours ResNet101 MFCC Codec, Env, CutMix 0.624 Voice Similarity
Ours ResNet101 CQCC Codec, Env, CutMix 0.609 Voice Similarity
Ours ResNet101 LFCC Codec, Env, CutMix 0.594 Voice Similarity
Ours ResNet101 GTCC Codec, Env, CutMix 0.585 Voice Similarity
[8] ResNet LFCC - 0.542 Threshold
[8] ResNet LFCC - 0.535 OpenMax
Ours ResNet101 LFCC-HF Codec, Env, CutMix 0.517 Voice Similarity

TABLE VII
AVERAGE MARGINAL GAIN OF INDIVIDUAL FEATURES IN IMPROVING F1

SCORE.

Feature Average Marginal Gain
LFCC-HF 0.0225
GTCC 0.0458
LFCC 0.0524
MFCC 0.0577
CQCC 0.0583

dedicated OOD detection mechanism represents the next step
in advancing performance, as current models in the literature,
including ours, tend to plateau around an F1 score of 0.75-
0.77 without a dedicated OOD pre-classification step to filter
out OOD data samples. This hurdle highlights the potential
of our lightweight and explainable framework as a foundation
for further research into robust deepfake detection systems.
Addressing these challenges remains a key direction for future
work, as further advancements in this field will likely depend
on developing more sophisticated methods for managing un-
seen data distributions. OOD data detection remains an open
problem, and tackling it is essential for building systems that
are both reliable and adaptable to new challenges. Finally,
In the future we aim to perform further testing on different
datasets to evaluate the capability of this approach for binary
classification, multi-class classification and further classifica-
tion tasks that involve OOD data. And while our primary
focus in this work was building a lightweight and robust
algorithm classification framework, the system’s design also
allows for enhanced interpretability. Specifically, the use of x-
vectors extracted from a convolutional neural network opens
the door to backtracking and showing influential regions in
the various spectrograms via deconvolution techniques. This,
coupled with cosine similarity-based classification, allows for
potential reasoning about which parts of the audio most

influenced a given classification. Although we do not fully
explore this explainability component in this paper, it lays the
groundwork for future work aimed at providing deeper insights
into the model’s decision-making process
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