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Abstract: It is vital to study the stability of power systems under small perturbations to
prevent blackouts. This study presents a load-shedding strategy that has been incorporated
within the swing equation to reduce instability and delay the onset of chaotic dynamics.
The objective of this study was to identify the minimal load reductions required after
disturbances to maintain the frequency above a critical value. Analytical techniques such
as eigenvalue analysis and perturbation methods can also be supported with numerical
simulations using bifurcation diagrams, Lyapunov exponents, and the Simulink model.
When compared to the conventional stepwise load-shedding method, the proposed ap-
proach allows for dynamic adjustments and presents a 49% increase in stable regions
and a 45% reduction in recovery time. Performance was also analysed under different
damping, inertia, and load scenarios. These results suggest that the strategy demonstrated
in this research provides a robust and computationally practical solution for modern power
system applications.

Keywords: nonlinear dynamics; swing equation; control; power system; load shedding

MSC: 37M99

1. Introduction
Analysing the stability of nonlinear systems is crucial, particularly under sudden

minute disturbances that may cause blackouts and failures within the system [1,2]. An
important aspect of stability depends on maintaining the frequency of the system within
the given operational limits, which can undergo disruptions caused by sudden disparities
between demand and generation [3]. To reduce such adverse effects, control approaches
can be applied to sustain the stability of the frequency during short-term events.

The swing equation, which is a second-order differential equation, is used to model
the dynamical behaviour of the rotor in synchronous machines [1,4]. Numerical solutions
have been traditionally employed to study the complex behaviours of nonlinear systems [5].
Recent studies have used analytical techniques to provide a deeper insight into stability
boundaries under various conditions [6,7].

Previous studies have shown the evolution of load-shedding techniques from static,
rule-based schemes to more adaptive control mechanisms [8]. Conventional techniques
such as under-frequency load shedding (UFLS) are simple but mostly result in over-
shedding or under-shedding due to fixed thresholds [9,10]. Furthermore, such methods
lack the ability to generate real-time responses and fail to consider the impact of perturba-
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tions. These limitations have influenced the development of data-driven strategies that can
consider shedding actions based on present power grid conditions [11–14].

While a wide range of modern techniques exist, from voltage indicators to AI-driven
and game-theoretic models, many researchers consider load shedding to be an external
corrective action, disconnected from the governing equations of system dynamics.

This study addresses this gap by proposing a control-based load-shedding technique
incorporated directly within the swing equation. The main aim of this study is to analyti-
cally determine the minimal load reduction that is necessary to stabilise the system after
small disturbances, as well as examine the impact of the inclusion of the shedding term to
mitigate chaos. By modifying the swing equation’s damping characteristics by including a
load-shedding term, the method provides insight into the real-time impact of control on
nonlinear system dynamics.

The objectives of the study include deriving the analytical expression for the swing
equation with the incorporation of the load-shedding term and assessing system stability
using eigenvalue analysis, Lyapunov exponents, bifurcation diagrams, and perturbation
techniques. This study also compares the proposed method against the conventional
load-shedding approach using both analytical and numerical methods. It examines the
robustness of the method under different parameters and validates the approach using
Matlab Simulink.

2. Literature Review
The analysis of stability in nonlinear systems during small and sudden disturbances

has become an important area of research, especially within the context of increasingly
complex power grids. Load shedding is one of the most popular adopted emergency
control approaches that can be used to prevent system collapse and maintain the frequency
stability of systems [15].

A vital tool in modelling such intricate systems is the swing equation, which describes
the rotor motion of synchronous generators. It is a second-order differential equation that
is used to study stable regions during perturbations [16,17]. Solving the swing equation
analytically can be challenging due to its nonlinearity; early studies relied solely on numer-
ical methods. However, new strategies have examined the potential of analytical methods,
providing a deeper understanding of system stability regions [5,18]. For example, Cartesian
coordinates’ reformulations have aided in analytical approximations that can be compared
to traditional numerical methods [19], while the ZIP load models have improved for use in
real-world applications through a consideration of certain components—namely current,
impedance, and power [20].

Conventional load-shedding approaches, such as under-frequency load shedding
(UFLS), are used in many sectors due to their simplicity. These strategies detach the
previously determined loads when the frequency thresholds are breached [21]. Although
they are easy to implement, they lack adaptability and are reactive. UFLS does not consider
the impact of perturbations and real-time conditions; it often results in insufficient or
excessive load shedding within the system, which, in turn, increases instability.

To improve on the UFLS method, voltage indicator-based strategies can be used
through an assessment of a system’s voltage margin and estimating how much load
can be shed before the system cascades to instability [22]. These techniques are more
location-specific and responsive. However, their effectiveness is limited to voltage-driven
stability issues and, hence, may not perform well in systems where frequency dynamics
are predominant.

Strategies based on machine learning techniques have become widely used in recent
years to forecast optimal load shedding decisions in real time [12,13]. Using historical data
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and simulations, these approaches can predict disturbances and trigger control methods.
However, these machine learning models depend on large, high-quality datasets, and re-
searchers might find it challenging to use them to generalise across different grid topologies.
They also lack analytical traceability and interpretability.

Considering game-theory approaches to modelling power grids, one can consider
them to be cooperative environments, where different components and agents—like the
generators, regions, or even consumers—decide on the load-shedding strategy based on
mutual understanding [14]. These methods can provide equilibrium-based shedding plans
for grids, reducing instability. However, they involve complex optimisation problems and
generally require strong assumptions about agents, which may be challenging in physical
system spaces.

Hence, this study introduces a control-embedded load-shedding approach where the
shedding term is included in the swing equation. This method models load shedding as a
part of the system’s dynamics but provides an analytical expression for natural frequency,
the damping ratio, and system stability after they have been modified through the control.
Hence, this approach offers both interpretability and predictive power whilst bridging the
gap between theoretical study and real-time applications.

Table 1 compares different load-shedding approaches to aid our understanding of the
importance of the approach suggested in this study.

Table 1. Comparison of load-shedding strategies with the proposed approach.

Strategy Type Real-Time Capable Embedded in
System Control Flexibility Limitations

UFLS (Conventional) No No Low Lacks adaptability

Voltage
indicator-based Partial No Medium Depends on

reactive power

Machine
learning/predictive Yes No High Requires extensive

training data

Game-theory
approaches Yes No High Computationally

intensive

Proposed embedded
method Yes Yes Medium–high

Currently validated
on a single-machine

model

3. Methodology
The equation analysing the rotor’s motion of the machine, including a damping term,

is given by [1,3].
2H
ωR

d2θ

dt2 + D
dθ

dt
= Pm − VGVB

XG
sin(θ − θB) (1)

VB = VB0 + VB1 cos(Ωt + ϕv) (2)

θB = θB0 + θB1 cos(Ωt + ϕ0) (3)

where the following applies:
ωR = constant angular velocity;
H = inertia;
D = damping;
Pm = mechanical power;
VG = voltage of machine;
XG = transient reactance;
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VB = voltage of busbar system;
θB = phase of busbar system;
VB1 and θB1 magnitudes are assumed to be small.
Here, we derive an equation for system frequency, f (t), which relates to the time

derivative of the rotor angle:

f (t) = f0 +
1

2π

dθ

dt
(4)

where f0 is the rated system frequency.
Then, we differentiate both sides with respect to time:

d f
dt

=
1

2π

d2θ

dt2 (5)

Then, we substitute into swing Equation (1) the following:

d f
dt

=
ωR
2H

(
Pm − VGVB

XG
sin (θ − θB)− D

dθ

dt

)
(6)

This equation describes how the frequency, f (t), evolves over time based on power
input, electrical power transfer, and damping.

The aim is to make sure that the system frequency remains above the minimum
threshold fmin to reduce unstable regions. During a small perturbation, the electrical power,
Pe, might drop because of faults in the grids. This might adversely affect nonlinear systems.

Pe =
VGVB

XG
sin (θ − θB) (7)

To study the effect of these perturbations, it is necessary to approximate sin(θ − θB)

using a first-order Taylor expansion around the steady-state condition θ ≈ θB0:

sin (θ − θB) ≈ sin θB0 + cos θB0(θ − θB0) (8)

Load shedding is introduced to alter Pe, reducing the effective electrical power. Let
PLS be the load shed, such that

P′
e = Pe − PLS (9)

d f
dt

=
ωR
2H

(
Pm − (Pe − PLS)− D

dθ

dt

)
(10)

Then, we expand Pe in the swing equation:

d f
dt

=
ωR
2H

(
Pm −

[
VG(VB0 + VB1 cos (Ωt + ϕv))

XG

×(sin θB0 + cos θB0(θ − θB0))− PLS

]
− D

dθ

dt

) (11)

The load-shedding objective is to determine PLS, such that

f (t) ≥ fmin, ∀t (12)

The load-shedding term, PLS, was introduced into the swing equation to evaluate
its effect on system stability [11]. Load shedding was triggered when the rotor angle
deviation exceeded a defined threshold. At each time step, if this threshold was breached,
the system shed a fixed percentage of electrical power. The values tested were 0.05, 0.1,



Mathematics 2025, 13, 1314 5 of 25

and 1.2 per unit (pu). The values were carefully selected to represent light, moderate, and
high levels of load reduction, respectively, and were chosen to examine how increasing
control effort influences system dynamics. The effect of load shedding was studied by
comparing the delay in chaotic parts in bifurcation diagrams and was validated using
Lyapunov exponents.

3.1. Analytical Work
3.1.1. Derivation of the Stability Equation with Load Shedding

The modified swing equation including load shedding is given by

d f
dt

=
ωR
2H

(
Pm − (Pe − PLS)− D

dθ

dt

)
(13)

Expanding Pe:

d f
dt

=
ωR
2H

(
Pm −

[
VG(VB0 + VB1 cos (Ωt + ϕv))

XG
× (sin θB0 + cos θB0(θ − θB0))− PLS

]
− D

dθ

dt

)
(14)

Then, we consider small deviations around the equilibrium θ ≈ θB0, leading to the
following linearised system:

d2θ

dt2 +
D + PLS

2H
dθ

dt
+

ωR
2H

VGVB
XG

cos θB0(θ − θB0) = 0 (15)

This equation follows the form of a standard second-order differential equation:

d2θ

dt2 + 2ζωn
dθ

dt
+ ω2

n(θ − θB0) = 0 (16)

The natural frequency ωn is

ωn =

√
ωR
2H

VGVB
XG

cos θB0 (17)

The damping ratio ζ is modified due to the incorporation of load shedding PLS:

ζ =
D + PLS

2

√
ωR
2H

VGVB
XG

cos θB0 (18)

The characteristic equation was

s2 + 2ζωns + ω2
n = 0 (19)

Then, we solve for the eigenvalues:

s = −ζωn ± ωn

√
ζ2 − 1 (20)

The eigenvalues were plotted for different values of PLS, depicting a leftward shift as
load shedding increased. This confirmed that higher values enhanced system damping and
reduced oscillations, leading to delayed chaos within the system.
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3.1.2. Perturbation Analysis

The standard swing equation, which governs the rotor dynamics of a synchronous
machine including damping and electrical power terms, is given by [4], as follows:

2H
ωR

d2θ

dt2 + D
dθ

dt
= Pm − Pe (21)

where the following applies:

• Pm is the mechanical power input.
• Pe is the electrical power output.

To enhance stability, we introduce the load-shedding term within Equation PLS:

2H
ωR

d2θ

dt2 + D
dθ

dt
= Pm − (Pe − PLS) (22)

where
PLS = PLS0 + PLS1 cos(Ωt + ϕls) (23)

Equation (23) shows a small perturbation effect on the load-shedding term, where
PLS0—this depicts the initial state and is assumed to be very small.

Then, we expand Pe using a first-order Taylor series approximation:

Pe =
VG(VB0 + VB1 cos(Ωt + ϕv))

XG
(sin θB0 + cos θB0(θ − θB0)) (24)

By introducing perturbations in rotor angle,

θ − θB = η (25)

Next, with consideration of the transformations being allowed,

θ − θB = δ0 + η (26)

δ0 = θ0 − θB0 (27)

η = ∆θ − θB1 cos(ωt + ϕ0) (28)

Then, Equation (26) becomes

sin (θ − θB) = sin (δ0 + η) (29)

Substituting Equations (26)–(28) into Equations (1)–(3), we derive the modified swing
equation with excitation:

d2η

dt2 +
ωRD
2H

dη

dt
+ Kη = α2η2 + α3η3 + G1η cos (Ωt + ϕv)

+ G2η2 cos (Ωt + ϕv) + G3η3 cos (Ωt + ϕv) + Q1 cos (Ωt + ϕθ) + Q2 sin (Ωt + ϕθ)

+ Q3 cos (Ωt + ϕv) + P1 cos (Ωt + ϕLS) (30)

α2 =
1
2

K tan δ0, α3 =
1
6

K

G1 =
−VB1

VB0
K, G2 =

−VB1

2VB0
K tan δ0, G3 =

−VB1

6VB0
K

Q1 = Ω2θB1, Q2 =
ΩDωRθB1

2H
, Q3 =

−VB1

VB0
K tan δ0, P1 =

ωR
2H

PLS1
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K =
VGVB0ωR cos δ0

2HXG

where

Q cos (Ωt + ϕe) = Q1 cos (Ωt + ϕθ) + Q2 sin (Ωt + ϕθ) + Q3 cos (Ωt + ϕv) (31)

Thus, Equation (30) reduces to

d2η

dt2 +
ωRD
2H

dη

dt
+ Kη = α2η2 + α3η3 + G1η cos (Ωt + ϕv)

+ G2η2 cos (Ωt + ϕv) + G3η3 cos (Ωt + ϕv) + Q cos (Ωt + ϕe) + P1 cos (Ωt + ϕLS) (32)

Initially, the focus of the analysis is on primary resonance. To study this, multiple scales
are used to find a uniform solution for Equation (32). A small dimensionless parameter,
ε, is introduced to account for the effects of damping, nonlinearities, and the excitation
frequency, which occur in a specific order.

We let
η = O(ε),

ωRD
2H

= O(ε2) (33)

and
VB1 = O(ε3), θB1 = O(ε3), PLS1 = O(ε3) (34)

Then, the final equation from the swing equation derivation above has the following
coefficients:

G1 = ε3g1, G2 = ε3g2, G3 = ε3g3, (35)

Q = ε3q, P1 = ε3 p. (36)

Furthermore, we consider the equation with the detuning parameter σ,

ω2
0 = Ω2 + E2σ, (37)

to allow for the derived final swing Equation (32) to be rewritten as

η̈ + 2ε2µη̇ + (Ω2 + E2σ)η = α2η2 + α3η3 + ε3g1η cos(Ωt + ϕv)

+ ε3g2η2 cos(Ωt + ϕv) + ε3g3η3 cos(Ωt + ϕv) + ε3q cos(Ωt + ϕe) + ε3 p cos(Ωt + ϕLS). (38)

The solution to the above equation is of the following form:

η(t; ε) = εη1(T0, T1, T2) + ε2η2(T0, T1, T2) + ε3η3(T0, T1, T2) + . . . (39)

where T0 is a fast scale describing motions of frequencies, and T1 and T2 are slow scales
describing amplitude variation [1].

The first derivative of this equation is as follows:

d
dt

= D0 + εD1 + ε2D2 + . . . (40)

The second derivative is as follows:

d2

dt2 = D2
0 + 2εD0D1 + ε2(2D0D2 + D2

1) + . . . (41)

where
Dn =

∂

∂Tn
. (42)
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Equation (39) can be rewritten as follows:

η = εη1 + ε2η2 + ε3η3 + . . . (43)

Finding the first derivative with respect to t for Equation (43) and substituting
Equation (40) gives

η(D0 + εD1 + ε2D2 + . . . ) = εη1(D0 + εD1 + ε2D2 + . . . )

+ ε2η2(D0 + εD1 + ε2D2 + . . . ) + ε3η3(D0 + εD1 + ε2D2 + . . . ). (44)

Differentiating for the second derivative with respect to t for Equation (43) and substi-
tuting Equation (41) gives

η(D2
0 + 2εD0D1 + ε2(2D0D2 + D2

1) + . . . ) =

εη1(D2
0 + 2εD0D1 + ε2(2D0D2 + D2

1) + . . . )

+ ε2η2(D2
0 + 2εD0D1 + ε2(2D0D2 + D2

1) + . . . )

+ ε3η3(D2
0 + 2εD0D1 + ε2(2D0D2 + D2

1) + . . . ). (45)

Substituting Equations (43)–(45) into Equation (32) and comparing coefficients of
ε gives

ε1/ : η1D2
0 + η1Ω2 = 0 (46)

ε2/ : η1D2
0 + η2Ω2 + 2D0D1η1 = α2η2

1 (47)

ε3/ : D2
0η3 + 2D0D1η2 + (D2

1 + 2D0D2)η1 + 2µD0η1 + Ω2η3 + ση1

= 2α2η1η2 + α3η3
1 + q cos(Ωt + ϕe) + p cos(Ωt + ϕLS)

(48)

From Equations (46)–(48), it can be seen that the parametric terms do not have key
effects on the system. Hence, only the external forcing term remains [1,4].

The solution to Equation (46) is of the following form:

η1 = A(T1, T2)eiΩT0 + Ā(T1, T2)e−iΩT0 (49)

where A is an undetermined function. Given that

Dn =
∂

∂Tn
, D0 =

∂

∂T0

by integration,

T0 =
1

D0
.

With Equation (49) substituted into (47),

η2D2
0 + η2Ω2 = − 2D0D1

(
A(T1, T2)eiΩT0 + Ā(T1, T2)e−iΩT0

)
+ α2

(
A(T1, T2)eiΩT0 + Ā(T1, T2)e−iΩT0

)2 (50)

With the brackets expanded,

η2D2
0 + η2Ω2 = − 2D0D1 A(T1, T2)eiΩT0 − 2D0D1 Ā(T1, T2)e−iΩT0

+ α2

(
A2e2iΩT0 + Ā2e−2iΩT0 + 2AĀ

) (51)

Due to D0 = ∂
∂T0

and
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∂
(
2D0D1 A eiΩT0

)
∂T0

= 2iΩD1 A eiΩT0 (52)

∂
(
2D0D1 Ā e−iΩT0

)
∂T0

= −2iΩD1 Ā e−iΩT0 (53)

Substituting into the equation and rearranging leads to

η2D2
0 + η2Ω2 = −2iΩD1 AeiΩT0 + α2(A2e2iΩT0 + Ā2e−2iΩT0) + c̄ (54)

where c̄ is the complex conjugate. In this equation, D1 A = 0, to avoid secular terms, η2;
hence, A = A(T2). Replacing Equation (46) into (49) and simplifying, we obtain

η2 = −α2 A2e2iΩT0

3Ω2 − α2 Ā2e−2iΩT0

3Ω2 +
2α2 AĀ

Ω2 (55)

which is also echoed in [1,4].
Replacing Equations (49) and (55) into Equation (48), we obtain

2iµΩ(A′ + µA) + σA − 1
2

qeiϕ − 1
2

peiϕ + 8αe A2 Ā = 0 (56)

where

αe = −3
8

α3 −
5α2

2
12Ω2 .

Expressing A in polar form, we obtain

A =
1
2

ae−i(β+ϕe) (57)

Substituting Equation (57) into Equation (56) gives

Ω(a′ + µa) +
1
2

q sin β ++
1
2

p sin β = 0 (58)

−Ωaβ′ + αea3 − 1
2

q cos β − 1
2

p cos β +
1
2

σa = 0. (59)

Equation (57) can also be written in the following form:

A =
1
2

a cos(β + ϕe). (60)

Substituting A and its conjugate into Equation (49) leads to

η1 = a cos(2Ωt + β + ϕe). (61)

Similarly, replacing into Equation (55) gives

η2 =
α2a2

2Ω2 − α2a2

6Ω2 cos(2Ωt + 2β + 2ϕe). (62)

Substituting the above derivations for η1 and η2 in Equation (39) to obtain the second
approximation, we obtain

η = εa cos(Ωt + β + ϕe) +
ε2a2α2

6Ω2 [3 − cos(2Ωt + 2β + 2ϕe)] + . . . (63)
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Setting ε = 1 and letting “a” be the perturbation parameter, using Equation (63),
Equation (28) may be rewritten as

∆θ = θB1 cos(Ωt + ϕθ) + a cos(Ωt + β + ϕe) +
a2α2

6Ω2 (3 − cos(2Ωt + 2β + 2ϕe)) + . . . (64)

with a2α2
2Ω2 defined as the drift term; because of its quadratic nonlinearity, the oscillatory

motion is not centred, as also seen in [1,4].
To understand the character of Equations (58) and (59), fixed points are found in

alignment with a′ = β′ = 0 to reduce to

µa = − q sin β

2Ω
− p sin β

2Ω
(65)

aσ

2Ω
+

αea3

Ω
=

q cos β

2Ω
+

p cos β

2Ω
(66)

Squaring and adding Equations (65) and (66) will give

µ2 +

(
σ

2Ω
+

αea2

Ω

)2

=
(q + p)2

4Ω2a2 (67)

The analytical results are compared with the numerical simulations for primary reso-
nance when Ω = 8.61 rads−1 with the load-shedding term. The Runge–Kutta fourth-order
and Newton–Raphson methods were used for the simulation perturbation analysis and
compared with the numerical results, as shown in Figure 1. It can be seen that the Newton–
Raphson method yields a better approximation of the numerical solution. The calculated
numerical error of the Runge–Kutta method versus the Newton–Raphson technique com-
pared to the actual numerical solution error was 0.04192 and 0.02314, respectively, ensuring
that the Newton–Raphson method is a suitable fit because of its small error value.

The bifurcation diagrams are generated by incrementing the forcing parameter, r,
while continuing the time integration of the system at each step [1,4,23]. For each value of
r, the maximum amplitude of the oscillatory solution is computed and plotted against r.
This process reveals how the system’s behaviour evolves as the forcing parameter is varied,
showing transitions between periodic states, chaotic states, and even intermittency. r is
considered as follows:

r =
VGVB

XG
sin (θ − θB).

The transformed swing equation was solved in Matlab using the fourth-order Runge–
Kutta method for numerical accuracy, including the load-shedding term. As the load
shedding increased, the minimal point was found where the chaos was delayed for the
system in hand.

The conventional scheme bifurcation diagrams were also produced, where the system
was solved in a step-by-step manner. The findings showed that the chaos happened earlier
in comparison to when the load-shedding term was introduced into the system.

The Lyapunov exponents were produced to quantify the system’s sensitivity to initial
conditions [24]. A positive Lyapunov exponent shows chaos, while a negative exponent
shows stability. As load-shedding values are increased, the Lyapunov exponents shifted
towards negative values, confirming reduced chaos. The chaos began later in comparison
with the case with no load shedding in the system.

A conventional load-shedding method was used for comparison, where the electric
power was performed in a stepwise process with time intervals [25]. Instead of shedding
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the load only when instability occurred, fixed shedding steps were introduced every 5 s.
This method led to chaos occurring earlier, showing that the load-shedding strategy studied
here is more effective in delaying chaos. Hence, it is important to consider the effect of the
parameters on the system [26].

Figure 1. Perturbed solution employing Runge–Kutta and Newton–Raphson algorithms in compari-
son to numerical simulations for the case of primary resonance in the phase plane and time history
for Ω = 8.61 rads−1.

The model assumes a single-machine infinite busbar system with constant parameters,
such as damping, inertia, and generator voltage. These simplifications are needed to derive
analytical results and gain insight into stability mechanisms; while the real system has
more complex variables and reactive power dynamics, and even different topologies, these
assumptions are valid for studying local generator behaviour during short-term transients.
Hence, future research can extend this approach to complex power grid structures and
observe the stability behaviour when more parameters are considered.

4. Results
4.1. Representation of the Analytical Work

Figure 2 shows the eigenvalues calculated for the swing equation without any load-
shedding terms. For negative damping (ζ = −0.5), the eigenvalues have positive real parts,
which means the system experiences exponentially increasing oscillations. This indicates
that the system is unstable, and disturbances are growing.

When the damping ratio is zero, the eigenvalues lie purely on the imaginary axis. That
is, the system exhibits continuous oscillations without decaying in the system.

For under-damped cases (0 < ζ < 1), such as ζ = 0.2 and ζ = 0.5, the eigenvalues
shift leftward but still have imaginary components in the values. This means the system
oscillates but gradually settles down after some time. The closer the damping ratio is to 1,
the better, as decaying occurs quickly.
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Figure 2. Eigenvalues obtained from the swing equation without any load-shedding term when
Ω = 8.61 rads−1.

For critical damping (ζ = 1), the eigenvalues become real and negative, meaning the
system returns to equilibrium without oscillations. This is the ideal damping scenario
desired by researchers and engineers in the sector.

Figure 3 depicts the eigenvalues obtained for the swing equation with the load-
shedding term. For zero load shedding, the eigenvalues remain close to the imaginary axis.

Figure 3. Eigenvalues obtained from the swing equation with load-shedding term when
Ω = 8.61 rads−1.

As load shedding is increased, the eigenvalues shift leftward, signifying improved
damping and enhanced stability. For higher load-shedding values, the eigenvalues move
further into the left-half plane, reducing the imaginary component.

4.2. Representation for the Primary Resonance

The bifurcation diagrams shown in Figure 4 are produced for the swing equation
with the load-shedding term. The swing equation without any load shedding shows early
chaotic behaviour [4]. As the load-shedding term is incorporated within the system, a slight
shift can be seen in the diagrams.
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Figure 4. Bifurcation diagrams when the load-shedding terms are increasing in the scheme analysed
in this study for primary resonance at Ω = 8.61 rads−1.

For higher load-shedding values (PLS = 1.2), the bifurcation diagram shows a nearly
entirely stable regime, where chaotic oscillations are reduced. Instead of multiple bifurca-
tion branches, the system exhibits a single, stable trajectory, confirming that load shedding
helps maintain predictable frequency responses. However, excessive load shedding may
over-stabilise the system, potentially making it slower to adapt to transient changes. When
PLS are greater than 1.2, the system exhibits chaotic response, showing that, when PLS = 1.2,
the system attains a delay in chaos and stays stable for a long time.

Figure 5 shows the Lyapunov exponents for the bifurcation diagrams obtained when
using the load-shedding method described above. Without load shedding, positive Lya-
punov exponents are observed, confirming that the system exhibits dependence on initial
conditions. As PLS increases, the Lyapunov exponents shift to negative values, confirming
that load shedding effectively mitigates chaotic dynamics and ensures predictable system
behaviour. When PLS = 0, the system enters chaos when r = 2.2 [4]. However, when the
load-shedding term is increased to 0.05, the chaos begins at r = 2.3. As the load-shedding
term is increased to 1.2, it can be observed that the chaos begins at r = 2.72, showing that
the strategy considered has delayed the system from entering an unstable region.

The basins of attraction in Figure 6 show the regions of initial conditions that lead
to stable operation. The red and the green regions depict the stable parts. Without load
shedding, the stable basin is relatively small, meaning that even minor disturbances can
drive the system into instability. However, as PLS increases, the stable basin expands,
confirming that load shedding enhances the ability of the system to return to equilibrium
after disturbances. The stability area increases; that is, there is an increase in the number of
pixels, demonstrating a substantial improvement in the system’s dynamic response. These
results reinforce the idea that load shedding should be dynamically optimised to maximise
stability without an excessive energy loss.
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Figure 5. Lyapunov exponents for the primary resonance for the load-shedding scheme when
Ω = 8.61 rads−1.

Figure 6. Basins of attractions with load-shedding term within the swing equation for primary
resonance when Ω = 8.61 rads−1.

4.3. Representation for the Conventional Scheme

The bifurcation diagrams depicted in Figure 7 for the conventional load-shedding
scheme highlight a key difference in stability behaviour compared to the adaptive load-
shedding method. In the conventional approach, where load shedding is triggered at
fixed frequency thresholds, the system still exhibits chaotic oscillations but with an earlier
onset of instability. The bifurcation diagram shows chaotic behaviour occurring at lower
parameter values of r, meaning that the system enters an unstable regime much sooner.
This suggests that the traditional stepwise load-shedding mechanism does not effectively
delay chaos.

Compared to the load-shedding approach discussed in this study—which gradually
shifts bifurcations further into the stability region—the conventional scheme lacks control,
resulting in over-shedding or under-shedding in electric power circuits, both of which con-
tribute to chaotic oscillations. Additionally, instead of a smooth transition into stability, the
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bifurcation diagram for the conventional scheme exhibits abrupt jumps between periodic
and chaotic behaviour, further confirming the inefficiency of a fixed threshold approach in
reducing instability.

Figure 7. Bifurcation diagrams when the load-shedding terms are increasing using the conventional
scheme when Ω = 8.61 rads−1.

4.4. Representation for the Subharmonic Resonance

Figure 8 shows bifurcation diagrams for the subharmonic resonance when
Ω = 19.375 rads−1. In the swing equation, a load-shedding term is introduced and the
output is analysed to identify chaotic behaviour.

Figure 8. Bifurcation diagrams when the load-shedding terms are increasing in the scheme analysed
in this study for subharmonic resonance when Ω = 19.375 rads−1.

The first diagram shows the dynamical behaviour when there is no load-shedding
term in the swing Equation [6,7]. At around r = 2.15, the chaotic behaviour can be seen.
When the load-shedding term is PLS = 0.05, chaos can only be observed at r = 2.2. As the
load-shedding term increases to 1.2, the system cascades to chaos at r = 2.47. This shows
that chaos is delayed when the load-shedding term is incremented slightly, validating the
results of the controlled load-shedding scheme discussed in this study.
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The basins of attraction in Figure 9 depict the regions of initial conditions and stability
for subharmonic resonance. The red and the green sections show the stable regions. Without
load shedding, the stable basin is relatively small; however, as the load-shedding term
increases, the stable basin expands, confirming that load shedding enhances equilibrium.

Figure 9. Basins of attractions with load-shedding term within the swing equation when
Ω = 19.375 rads−1.

Figure 10 shows the relationship between load shedding PLS and an increase in the
stability region for both primary resonance when Ω = 8.61 rads−1 and subharmonic res-
onance when Ω = 19.375 rads−1. It can be observed that the stability increases as load
shedding is incremented. At PLS = 1.2, the stability region increases to a maximum by
49.21% for primary resonance and 45.34 % for subharmonic resonance. The results validate
the bifurcation diagrams and Lyapunov exponents, confirming that the load-shedding term
helps to delay chaotic oscillations.

Figure 10. Increase in stability as the load-shedding term is incremented for primary resonance when
Ω = 8.61 rads−1 and subharmonic resonance when Ω = 19.375 rads−1.

4.5. Load Shedding in the Matlab Simulink Model

Figure 11 illustrates a generic block diagram of the power system with integrated
load-shedding control. The generator block represents the mechanical power input, Pm,
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which drives the system. The power system block models the swing dynamics and includes
the system’s inertia, H, damping, D, and the electrical power output, Pe, reflecting the
classical swing equation formulation. The output of this block is the angle of the rotor, θ,
which is continuously monitored. The control block receives θ and its derivative as inputs
and calculates the appropriate load-shedding action, which is then fed back into the power
system. This structure captures the implementation of the modified swing equation with
control, such as Equation (13), where the damping is effectively improved through the
inclusion of the load-shedding term.

Figure 11. Conceptual schematic of the power system integrated with the proposed load-shedding
control loop.

The Simulink model shown in Figure 12 depicts the swing equation model with
the load-shedding term. To analyse the behaviour around the primary resonance,
Ω = 7.5 rads−1 was chosen, as it is a value closer to the primary resonance, and similar
dynamical observations can be seen. To consider a value closer to subharmonic resonance,
Ω = 18.9 rads−1 was selected.

Figure 12. Simulink model of the swing equation with the load-shedding term when Ω = 7.5 rads−1.

The Poincaré maps in Figure 13 were obtained from the Simulink model above to show
the delay in chaos due to the introduction of the load-shedding term. The first map depicts
the behaviour of the system when there is no load-shedding term and when Ω = 7.5 rads−1.
When a load-shedding term of 1.2 pu is added to the system, a clear delay in chaos can
be seen. For the ‘no load shedding’ map, chaotic behaviour appears when θ ≈ 1.6 with
widely scattered points. In contrast, in the map with load shedding, chaos can be observed
around θ ≈ 1.7. This demonstrates that introducing the load-shedding term again delayed
the chaotic behaviour, enhancing the reliability of the system.
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Figure 13. Poincaré maps from the Simulink model showing the delay in chaos after the load-shedding
term is included for Ω = 7.5 rads−1.

Figure 14 shows the Poincaré maps with and without the load-shedding term when
Ω = 18.9 rads−1. Without the load-shedding term, chaos begins when θ ≈ 1.6103; when
the load-shedding term is included, chaos appears when θ ≈ 1.652, with few points on the
map. This validates the importance of the load-shedding approach for the swing equation.

Figure 14. Poincaré maps from the Simulink model showing the delay in chaos after the load-shedding
term is included for Ω = 18.9 rads−1.

To validate the results found, time-series data were obtained for the rotor speed.
Figure 15 depicts the time-series and phase portraits of the rotor speed in the swing

equation, comparing the system’s behaviour with and without load shedding when
Ω = 7.5 rads−1, which is closer to the primary resonance value. In the case without load
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shedding, irregular oscillations occur for an extended period before gradually settling into a
stable oscillatory pattern. This indicates that disturbances persist longer within the system.
Through the phase portraits, it can be observed that, with load shedding, the system enters
a stable region with fewer spirals in comparison with the case without the load-shedding
term. Hence, we show that the system enters stability quickly when a load-shedding term
is introduced into the equation.

Figure 15. Time-series and phase portraits for the rotor speed with and without load shedding for
Ω = 7.5 rads−1.

With the load-shedding approach, the rotor speed reaches stable oscillations much
earlier. The additional damping effect introduced by load shedding effectively reduces the
amplitude of oscillations and suppresses chaotic behaviour, leading to faster stabilisation.
This ensures the importance of the inclusion of the load-shedding strategy to reduce
fluctuations.

Figure 16 shows the behaviour of the system when an Ω value is considered, which
is closer to the subharmonic resonance. At Ω = 18.9 rads−1, the time-series and the corre-
sponding phase portraits with and without the load-shedding term are compared. It also
validates the importance of the load-shedding term and how it delays the chaos occurring
within the system.

Table 2 compares the proposed load-shedding approach and the conventional (UFLS)
method using performance metrics. The proposed technique delays the onset of chaos,
increasing the critical bifurcation, showing a 26.5% improvement. It also expands the
stability region with a 104% relative increase. Additionally, the system recovery time is
nearly halved, depicting a 45% quicker return to a steady state. Unlike the conventional
method, which disconnects load at fixed intervals, the approach discussed in this study
only sheds load when instability is found, which in turn reduces the power cuts. The
Lyapunov exponent shift also indicates stronger damping and improved resilience within
the system. These findings quantitatively confirm and validate that the proposed strategy
offers more effective control mechanisms for maintaining power system stability.
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Figure 16. Time-series and phase portraits for the rotor speed with and without load shedding for
Ω = 18.9 rads−1.

Table 2. Quantitative performance comparison: proposed method vs. conventional (UFLS) method.

Metric Conventional UFLS Proposed Method Improvement

Chaos onset (r value) 2.15 2.72 +0.57 (26.5% delay in
instability)

Stability region size 24% 49% +25 percentage points
(104% relative increase)

System recovery time 12 s 6.5 s 45% faster restoration

Power cut frequency Every 5 s (fixed step) Only triggered on
instability

Reduced unnecessary
shedding

Lyapunov exponent shift +0.12 → −0.05 +0.12 → −0.15 Greater negative shift
(stronger damping)

4.6. Sensitivity Analysis of the System’s Parameters

Studying how key system parameters affect power system stability is vital for
analysing the robustness of control strategies. A sensitivity analysis was carried out
to examine the influence of the parameters of damping and inertia on the dynamics of the
swing equation when the swing equation with the load-shedding term was considered. By
varying each parameter, phase portraits were plotted and analysed to observe the system’s
behaviour. These findings are particularly relevant for real-world implementation, where
grid parameters can also change to different topologies and conditions.

Figure 17 shows the phase portraits when the damping values were increased in the
swing equation with the load-shedding term. As the value increased by 0.5, the system
quickly converged to an equilibrium point, indicating improved system stability.This
confirms the expected stabilising effect of damping and demonstrates that the proposed
load-shedding strategy maintains its effectiveness even when intrinsic system damping is
low—a common scenario in renewable-heavy grids.
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Figure 17. Phase portraits when damping is altered when the load-shedding term is included in the
swing equation for Ω = 8.61 rads−1.

Figure 18 shows the phase portraits of the swing equation with the load-shedding
term when the inertia is incremented. As inertia increases, the phase portraits become
more compact and the system transitions more slowly but steadily toward equilibrium.
Additionally, the proposed load-shedding strategy remains effective across all inertia levels,
helping compensate for the reduced natural stability in low-inertia systems.

Figure 18. Phase portraits when inertia is altered when the load-shedding term is included in the
swing equation for Ω = 8.61 rads−1.

4.7. Load Disturbance

To further examine the effectiveness of the proposed load-shedding technique, phase
portraits were employed to study the system’s dynamics behaviour under a sudden load
disturbance. A 25% load increase was applied to simulate a realistic disturbance scenario.

Figure 19 shows the phase portraits when a sudden load disturbance was introduced to
the swing equation with the load-shedding term. In the graph, where no control is applied,
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the trajectory forms wider, loosely spiralling loops, indicating sustained oscillations and
slow convergence toward equilibrium. This reflects the system’s reduced ability to self-
stabilise after a small perturbation. In the graph with an active load-shedding control—as
proposed here—the phase trajectory is noticeably tighter and converges more quickly to the
origin, showing improved damping and faster stability recovery. The reduced phase space
figure highlights how the embedded control strategy effectively suppresses the disturbance
and prevents unstable behaviour.

Figure 19. Phase portraits when sudden disturbance is introduced when the load-shedding term is
included in the swing equation for Ω = 8.61 rads−1.

5. Discussion
The results of this study show that the optimised load-shedding method plays a vital

role in improving the stability of the system reducing chaotic oscillations. The eigenvalues
confirm that increasing the PLS values enhances damping and shifts the eigenvalues to the
left half-plane, ensuring a better and more stable response. These results are similar to those
of previous research that has been performed on power system stability, where damping
mechanisms have reduced system collapse. The quantitative analysis of bifurcations and
Lyapunov exponents in this study provides deeper insight and understanding of the swing
equation system, showing an influence of the load-shedding method, which in turn delays
chaotic oscillations.

The proposed approach is compared to the traditional conventional under-frequency
load-shedding scheme, which applies stepwise disconnections based on defined frequency
values. This conventional method often results in under-shedding or over-shedding because
it does not severity of the disturbances. In contrast, the load-shedding method discussed
here ensures that only a minimum amount of load is shed to gain stability back, preserving
system integrity and continuity of service. This aligns with the direction of modern smart
grid technologies, which rely on adaptability and real-time control strategies.

In a practical context, the proposed method can be integrated into real-world nonlinear
systems to enhance operational reliability. One of the main key advantages is its potential
to reduce or prevent blackouts in large interconnected power circuits by providing timely
control actions during perturbations. This approach also offers economic benefits by
decreasing unnecessary disconnections of consumers, thereby minimising financial strain
on households and industries. As blackouts result in significant economic losses, a method
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that preserves stability with minimal load shedding can improve both system performance
and customer satisfaction.

To validate the practical application of the method, a Matlab R2023a Simulink model
was developed, simulating the key parts of physical power systems, including the load and
generators. The results from the Simulink showed similar behaviour to the analytical and
numerical findings, reinforcing the validity of the proposed approach. The block-based
implementation allows the method to be tested in a controlled environment and potentially
extend it to hardware-in-the-loop testing in the future.

While the Simulink model captures the dynamic behaviour of the swing equation, it
does not explicitly include the full equivalent circuit of the power system. Hence, the main
limitation is related to the network topology, line impedances, and generator parameters.
These factors influence the transient responses of the power systems. However, the swing
equation model includes electrical components such as generator reactance, bus voltage,
and power angle; these reflect the system’s electric characteristics. Future research could
focus on incorporating this into multi-machine models or IEEE benchmark test systems to
provide a more detailed and realistic representation of the system’s response.

Another important insight from this study is that excessive load shedding may lead to
adverse effects. If the shedding level surpasses a certain threshold value, the system goes
into unstable regions or will be slow to recover from disturbances. The result indicates
that an optimal range for load shedding exists, where stability balance is maintained.
Over-shedding may slow down recovery, while under-shedding may not be enough to
prevent instability.

Within the context of the computational aspect, this method is highly efficient. The
control logic considered is simple; that is, it monitors the system’s rotor angle or frequency
and activates a proportional load-shedding response when the required thresholds are
exceeded. As iterative measures are not used in the model involved, the approach is
lightweight and suitable for real-time applications. It can be included on standard supervi-
sory control and data acquisition or phasor measurement unit-based infrastructure without
requiring complex computing systems.

Although the current model assumes fixed parameters and does not include real-time
measurement feedback, the strategy is compatible with the future integration of AI-driven
and machine learning techniques. Such incorporation could enable the system to predict
instabilities and adapt shedding approaches in real time. This is particularly relevant, as
power systems increasingly rely on renewable energy sources, which have uncertainty
and greater variability. By embedding the control within the power system dynamics, the
proposed approach lays the groundwork for a system that maintains frequency stability
even under complex conditions.

6. Future Research
Although this study used parameter values that reflect real-world generators and sim-

ilar grid conditions, no actual grid data were used. Incorporating IEEE benchmark systems
(e.g., 9-bus or 39-bus models) and using real operation data would further strengthen the
practical relevance of the results. Future work can focus on validating the method using
real-time simulations and hardware-in-the-loop (HIL) environments.

Future improvements may also involve incorporating the control-embedded technique
with machine learning methods to create predictive load-shedding responses. This will
be helpful in modern power grids with high renewable penetration, where system inertia
is low, and fast control is essential. Hence, extending the complexity of the model and
validating it across real-world scenarios will be crucial for real-time infrastructures and the
development of smart grids.
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7. Conclusions
This study introduced a mathematically involved, control-embedded load-shedding

approach that improves frequency stability in nonlinear power systems by modifying the
swing equation. The main contribution of the work is the inclusion of the load-shedding
term directly into the swing equation; this allows the control mechanism to operate as an
internal dynamic and not as an external correction. Through analytical methods, eigenvalue
shifts, Lyapunov exponent analysis, bifurcation diagrams, and Simulink validation, the
study demonstrated that this approach effectively delays the onset of chaos. It also increases
the stable regions by up to 49% and reduces system recovery time by 45% compared to
the conventional method. The strategy discussed in this study also avoids unnecessary
disconnection by shedding only a minimal load required for the system to stabilise, making
it efficient and economically beneficial. Its computational simplicity ensures that it can be
practically implemented using standard SCADA- or PMU-based infrastructure, without the
need for complex algorithms. This positions the method as a viable candidate for real-time
stability enhancement in modern, increasingly dynamic power systems. Ultimately, the
study bridges the gap between theoretical control models and their practical applications,
offering a robust framework for reducing instability in critical grid operations.
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