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Fortifying Cloud DevSecOps Security Using 
Terraform Infrastructure as Code Analysis Tools 

 

Abstract—Fortifying Cloud Security has become 
inevitable due to challenges such as misconfigurations, coding 
errors, and compromised secrets or passwords that impact 
infrastructure as a service during infrastructure such as code 
automation (IaC).  These challenges require code analysis tools 
to enhance security during infrastructure automation. Setting up 
a simple cloud architecture is quick, but human errors are still 
common, especially when cloud infrastructure can be deployed 
with just a few clicks. Terraform provides a ready-made 
infrastructure as code modules to build and scale cloud-hosted 
applications. However, cyber attackers exploit these 
vulnerabilities and gain access to sensitive data or resources 
without authorization due to configuration errors, inadequate 
storage, and infrastructure manipulation, resulting in 
unauthorized deployments or alterations. That affects the 
availability of resources during infrastructure deployment using 
attacks such as DoS attacks, injection attacks, Man in the Middle 
(MITM), malware spread, remote code execution (RCE), and 
phishing attacks to penetrate the cloud infrastructures. The 
paper aims to analyze Terraforms infrastructure as code in 
cloud security to fortify codes and assist DevSecOps engineers in 
identifying misconfiguration in Terraform scripts. The paper's 
contributions are threefold. First, we explore cloud security by 
securing IaC solutions on Terraform. We consider security 
issues, including misconfigurations and coding errors, present in 
Terraform IaC. Secondly, we implement a static analysis tool for 
terraform by comparatively analyzing existing tools. Finally, we 
provide a comparative analysis of terraform IaC on tools 
including Checkov, Tfsec, Tflint, and Terrascan for suitability 
based on their key features and performance metrics to enhance 
security.  

Keywords— Terraform, Cloud Security, IaC, Coding Error, Cyber 
Security, Static Analysis Tool, DevSecOps 

I. INTRODUCTION 
 Ensuring cloud security is critical in securing operating 
systems, web servers, servers, storage systems, and database 
servers in a cloud network environment to ensure connectivity 
without interference from attacks or errors during operational  
processes [1]. Cloud Security in Infrastructure as a Service 
(IaaS) with tools like Terraform entails safeguarding cloud 
infrastructure against potential threats and vulnerabilities. It 
involves implementing security measures to protect resources, 
continuous monitoring for anomalies, and automated recovery 
mechanisms in case of failures. HashiCorp. developed the 
infrastructure-as-code software tool Terraform, which has 
been used to improve security during cloud infrastructure 
deployment to support business IaaS, SaaS, and PaaS 
[1][2][3]. Built-in security and compliance variables in 
Terraform modules help harden and safeguard cloud 
infrastructure when configured according to  
 

 
best practices for cloud 
security. Resources could be publicly exposed if these 
variables mistakenly remain undefined or contain any 
misconfiguration error, thus compromising the production 
cloud environment, ultimately leading to risk. Several static 
code analysis tools are available to examine Terraform code 
for security flaws and violations of best practices. As an 
infrastructure-as-code tool, Terraform plays a critical role by 
enabling the codification of security best practices, making it 
easier to maintain a secure and resilient IaaS environment 
[1][2][3]. Figure 1 depicts the terraform IaC security model, 
how the model could be implemented on various cloud 
infrastructures, and how cyberattacks can be deployed to 
exploit the vulnerabilities. 
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Fig. 1. Terraforms Infrastructure as Code Security Model 
 
 This approach ensures that infrastructure remains robust 
and can withstand disruptions, providing a dependable 
foundation for applications and services hosted in the cloud. 
However, there are existing challenges with IaC solutions like 
Terraform that impact the cloud infrastructure, leading to 
various vulnerabilities. Some of these challenges include: 
• Misconfigurations  
• Coding errors 
• Hardcoded secrets and passwords 
• Excessive data access permissions for employees who 

don't require it. 
• Unrestricted access to a critical S3 bucket. 
• Unnecessary open network ports. 
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• Neglecting essential security patch updates 
 A significant issue in Terraform frameworks is that 
DevSecOps engineers often write code configurations without 
being fully aware of potential misconfigurations and their 
associated risks, which can lead to unnoticed vulnerabilities 
and potential attacks such as Denial of Service (DoS) attacks, 
Injection attacks, Man in the middle (MITM) , Malware 
spread, Remote code execution (RCE), Phishing attacks to 
penetrate the cloud infrastructures. In cloud platforms, 
misconfigurations are one of the critical reasons that result in 
significant data breaches. The goal is to address such problems 
to secure the cloud infrastructure from data breaches. The 
paper aims to analyze Terraforms infrastructure as code in 
cloud security to fortify codes and assist DevSecOps engineers 
in identifying misconfiguration in Terraform scripts. The 
paper's contributions are threefold. First, we explore cloud 
security by securing IaC solutions on Terraform. We consider 
security issues, including misconfigurations and coding errors, 
present in Terraform IaC. Secondly, we implement a static 
analysis tool for terraform by comparatively analyzing existing 
tools. Finally, we provide a comparative analysis of terraform 
IaC on tools including Checkov, Tfsec, Tflint, and Terrascan 
for suitability based on their key features and performance 
metrics to enhance security. 

II. RELATED WORKS 
 The section discusses the state-of-the-art and existing 
literature about exploring cloud security to secure IaC 
solutions on Terraform. We consider security issues, including 
misconfigurations and coding errors, present in Terraform IaC. 
Furthermore,  we discuss a static analysis tool for terraform 
configuration platforms by analyzing existing tools. For 
instance,  Andrei-Cristian Iosif [3] examines vulnerabilities in 
cloud deployments, focusing on the most vulnerable resources. 
Analyzing AWS as a cloud provider and Terraform as an IaC 
framework, the study reviewed 8256 public repositories using 
tfsec, checkov, and terrascan, uncovering 292,538 security 
breaches. The researchers identified instances, modules, and 
security groups as the top three most vulnerable resources, 
with S3 buckets ranking fourth. However, the study's 
limitation is that it only considers AWS, leaving open the 
question of whether these findings apply to other cloud 
providers [3]. The term “code smells,” coined by Kent Beck 
and Martin Fowler, refers to code defects that might cause 
issues. T. Sharma's paper was the first to introduce this concept 
in infrastructure as code (IaC). The study aimed to detect 
common implementation and design issues in Puppet scripts, 
analyzing 4621 Git repositories. They identified 24 issues, 
using Puppet-lint for implementation defects and a custom 
tool, "Puppeteer," for design issues. Common implementation 
problems included improper quote usage, misalignment, and 
lengthy statements, while design issues involved deficient 
modularization and multilayered abstraction. The study did not 
explore the correlation between code smells and actual defects 
in IaC scripts and was limited to security defects in Puppet 
scripts [4]. J. Schwarz [5] extended T. Sharma's research on 
security issues in Infrastructure as Code (IaC) scripts by 
analyzing Chef scripts. They examined Chef scripts from over 
3200 official cookbooks and 35 industrial partner repositories 
using the "Foodcritic" linting tool. The study identified 
common security issues such as improper alignment, lengthy 
statements, and misplaced attributes, similar to findings in 
Puppet scripts by T. Sharma. However, unlike Puppet, 
improper quote usage was less common in Chef scripts. The 
paper focused exclusively on configuration management tools 
like Puppet and Chef, without investigating configuration 
orchestration tools like Terraform [5]. J. Lepiller [6] 

introduced the intra-update sniping vulnerability in 
Infrastructure as Code (IaC) services. This type of 
vulnerability occurs when an infrastructure update process 
moves through unsafe intermediate stages despite transitioning 
between secure ones, such as updating components out of 
sequence. They developed Hayha, a tool focused on 
identifying and recommending secure update practices within 
AWS CloudFormation. While effective for its purpose, 
Hayha's evaluation was limited to CloudFormation templates. 
It did not address broader configuration vulnerabilities or other 
IaC orchestration tools like Terraform. A. Rahman [7] 
conducted in-depth research on secret management in 
Infrastructure as Code (IaC) scripts focusing on best practices 
to enhance security in DevOps workflows. They analyzed 38 
artifacts from grey literature sources like blogs and videos to 
identify 12 practices for IaC secret management. These 
practices include both tool-agnostic approaches like access 
control and tool-specific methods such as using Hashicorp 
Vault. The study recommends leveraging language-specific 
tools like Hiera for Puppet scripts and universal solutions like 
Hashicorp Vault, which is compatible across all IaC 
languages. However, it acknowledges that these practices may 
not cover all possible approaches, and their effectiveness can 
vary depending on specific IaC implementations. The study by 
M. Chiari reviews [8] static analysis methods for Infrastructure 
as Code (IaC) scripts, highlighting popular approaches like 
model verification, machine learning, and string-pattern rules. 
It outlines targeted platforms and defect categories but lacks a 
thorough evaluation of tool efficacy and dynamic analysis 
methods. Further research is needed to fill these gaps and 
provide a comprehensive understanding of current practices. 
The research by Antunes [9] analyzed Docker's security 
vulnerabilities and the effectiveness of static code scanners in 
its codebase. They evaluated security reports, categorizing 
vulnerabilities by causes, impacts, and risks, revealing risks 
like bypass and privilege escalation. However, the scope was 
limited to a few security reports and issues within Docker, 
potentially not representing all vulnerabilities. It also focused 
solely on static code analyzers without exploring other security 
solutions. The paper by Lawall [10] discusses enhancing 
infrastructure software security using the code-matching and 
transforming tool Coccinelle. The authors advocate for 
increased use of static analysis to detect programming flaws 
before software deployment. Coccinelle simplifies the creation 
of static analysis algorithms and automates source code 
inspection. However, the study lacks empirical evidence on 
Coccinelle's effectiveness in improving software security and 
does not compare it with similar tools or techniques. The paper 
by A. Rahman [11] examines how infrastructure as code (IaC) 
scripts can inadvertently introduce vulnerabilities, termed 
"security smells," leading to potential security breaches. The 
study introduces the Security Linter for Infrastructure as Code 
Scripts (SLIC) tool through empirical analysis and static 
analysis techniques. SLIC identifies seven security smells in 
IaC scripts, detecting 21,201 instances across a dataset of 
15,232 scripts from 293 open-source repositories. The study 
submitted bug reports for 1,000 instances, receiving 212 
responses, with 148 acknowledging and addressing the issues. 
However, the research focuses exclusively on security smells, 
limiting coverage of all possible vulnerabilities and relying 
solely on open-source data, potentially affecting broader 
applicability. The study also lacks detailed remediation 
strategies and does not explore underlying causes 
comprehensively, highlighting these as important 
considerations. The paper by L. Williams [12] focuses on 
identifying and categorizing security smells in Infrastructure 
as Code (IaC) scripts as indicators of potential security 
vulnerabilities. Using static analysis and the IaC-Sec tool, the 
study analyzed 1,000 IaC scripts from GitHub, identifying 



67,801 instances of security smells, including 9,175 
occurrences of hard-coded passwords, deprecated functions, 
and weak cryptography. However, the study's exclusive focus 
on security smells limits its evaluation of broader script quality 
aspects such as performance optimization and maintainability. 
These dimensions are crucial for ensuring efficient script 
execution and long-term adaptability in dynamic cloud 
environments, suggesting a more comprehensive analysis 
approach is needed. Another paper by A. Rahman [13] 
examines common errors in Infrastructure as Code (IaC) 
scripts through three initial studies based on defect data from 
open-source repositories. It quantifies the frequency and 
categorizes defects, primarily focusing on syntax and 
configuration assignments. The study identifies three 
consistent operations indicative of defective IaC scripts, laying 
the groundwork for proposed studies on process anti-patterns 
and security-related anti-patterns in IaC [12]. However, the 
paper does not present outcomes or results from these 
proposed investigations, which is a notable limitation. The 
paper by Alghofaili [14] conducts a survey addressing security 
concerns across various tiers of cloud infrastructure and 
reviews existing literature solutions for mitigation. It 
emphasizes the pervasive security challenges in cloud 
computing, highlighting gaps in current research and 
suggesting areas for further exploration to enhance cloud 
system safety. The study provides an overview of existing 
literature on cloud infrastructure security but does not present 
new research findings or empirical data. It suggests potential 
solutions without comprehensive effectiveness analysis and 
may not cover all possible security issues. Despite its focus on 
prominent concerns, it offers a broad perspective on current 
research in cloud infrastructure security 

III. APPROACH 
 This section discusses the implementation process and the 
approach used for the paper from data collection to the security 
assessment on static analysis tools for terraform. The paper 
systematically evaluates misconfiguration issues across 
SadCloud, CloudGoat2, and TerraGoat cloud environments. It 
rigorously assesses the effectiveness of four static code 
analysis tools—tfsec, tflint, checkov, and terrascan—using 
diverse datasets and vulnerable cloud setups. This research 
requirement underscores our selection of a quantitative 
methodology to ensure meticulous analysis and reliable 
findings. The chosen quantitative approach facilitates 
determining tool effectiveness by calculating absolute values, 
true positives, and false positives from security checks 
conducted by each tool. The evaluation of these metrics, 
coupled with the large dataset and varied cloud environments, 
aligns with the quantitative approach's objective of generating 
reliable, numeric insights. By quantifying the results and 
employing statistical analysis, the research aims to provide 
objective and generalized findings, making the quantitative 
methodology suitable for deriving concrete conclusions and 
contributing valuable insights to the field. 

A. Data Collection Approach 
 Data utilized in this study is sourced from open-source 
libraries. The methods described below are employed to 
execute the data collection process: Search and selection or 
Terraform script were accomplished using one of two web 
scraping techniques. 

 GitHub’s API query: The exploration of the GitHub 
repository database was conducted to obtain a list of 
repositories that contain terraform code. This was done 
through the website's API, using Terraform's Hashicorp 
Configuration Language (HCL) syntax. GitHub's API allows 
targeted searches based on timeframes and language filters, 

with each query yielding up to 1000 results spread across ten 
pages [1]. The query for gathering the links is constructed 
using string-interpolated query parameters as follows: 

api.github.com/search/repositories?q=language:HCL&per_
page=100&page={page_number} 

 This technique resulted in a comprehensive list of 269190 
repository links identified as Terraform code, along with their 
relevant metadata [1]. 

 GitHub code search interface: Files with the extensions 
.tf or .hcl were acquired directly from the GitHub database via 
the GitHub code search interface at https://github.com/search.  

The query employed to retrieve the list of .tf and .hcl files is: 

path:*.tf or path:*.hcl 

B. Data Pre-processing 
• Downloaded repositories undergo various sanity 

checks and filters. First, we verify if the repository 
contains Terraform code. This step is crucial because 
GitHub's labelling may yield a few false positives, such 
as non-Terraform or empty repositories initially 
appearing in the scraping results [1]. 

• A Python script developed automates the download 
process of Terraform scripts from a public repository. 
This collection comprises around 1000 .tf files, which 
were meticulously selected in the prior phase of web 
scraping.  

• Eliminating any redundant and unrelated data 

All this pre-processing and download process is carried out 
using a python. Subsequently, these downloaded scripts will 
be input for the analysis and testing process. 

C. Tool Creation 
In this paper, we also introduce 'terraformsolutions,' a 

web application-based tool developed for the analysis of 
Terraform scripts (.tf). This tool assesses code configurations 
to identify vulnerabilities and offers recommended 
remediations. It is implemented in Python, with the user 
interface (UI) built using the Django framework. Our tool 
encompasses checks for AWS, GCP, and Azure cloud 
providers, enhancing its versatility and applicability. 

D. Security Analysis 
This section defines the approach followed for 

conducting a security analysis of each tool 
• Step 1: Metrics calculation involves analyzing each tool's 

precision and false discovery rates using a confusion matrix. 
• Step 2: Tool Key feature exploration compares features like 

IaC platform support, security checks, cloud provider 
compatibility, adoption rates, Docker support, and more. 

• Step 3: Identifying configuration issues in vulnerable cloud 
environments (Sadcloud, CloudGoat2, TerraGoat) through 
penetration testing and configuration reviews. 

• Step 4: Comparative analysis of tools uses results from 
Steps 1, 2, and 3 to assess performance. 

• Step 5: Data Visualization presents calculations and 
analyses using tables and graphs. 

• Step 6: Interpretation uses results to select the best static 
analysis tool for Terraform. 

IV. IMPLEMENTATIONS 
 This section discusses the implementation process and 
highlights the tools used to achieve objectives.  



A. Security Analysis - Static Code Analysis Tools for 
Terraform: The paper evaluates four static code analysis 
tools (tfsec, tflint, checkov, terrascan) across three 
vulnerable cloud environments (SadCloud, CloudGoat2, 
TerraGoat). Performance is assessed by running these 
tools on 1000 Terraform files, measuring efficacy through 
precision, false discovery rate, true positives, and false 
positives from security checks. The formula for absolute 
value is defined as: 

 Absolute V = True Positive + False Positive. 

 This approach offers a solid basis for comparing and 
ranking the tools' performance in identifying security issues. 
Table 1 below summarizes configuration issues identified 
through penetration testing and configuration reviews 
conducted across multiple vulnerable cloud environments. 

 
TABLE 1: Configuration Issues In Various Vulnerable Cloud 

Environments 

 
 

B. Tool Implementation Algorithm 
This section defines the algorithm employed for the 

implementation of customized tool “terraformsolutions” 
The tool initializes critical security pattern recognition using 
regular expressions (regex) and utilizes Python's 'os' module 
for secure file upload, creating dedicated directories for 
isolation. It parses Terraform (.tf) files, analyzing them for S3 
and EC2 security configurations, presenting results as 'failed 
checks' for vulnerabilities and 'passed checks' for error-free 
configurations. 

Figure 2 below shows a Python function, s3_Checks, 
that takes tf_data as input and performs checks using 
regular expressions to find S3 bucket configurations like 
logging, server-side encryption, and MFA-Delete settings. 
The function appends the results to the s3_Checks list for 
further processing or reporting. 

 
Fig. 2. Code for outlining S3 bucket rule definitions for the tool 
 

Figure 3 illustrates a Django view function, 
process_file(request), managing file upload and processing. It 
saves the file, verifies its .tf extension, and conducts AWS S3 
bucket and security group checks using predefined Terraform 
patterns. Results are stored in s3_checks_response and 
security_group_checks_response and then displayed to users 
via an HTML template. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Code for upload and process of terraform files 

V. RESULT AND DISCUSSION 
 This section discusses how terraform security is becoming 
increasingly important for DevSecOps engineers to learn and 
implement. Static code analysis of Terraform code provides a 
detailed report highlighting identified issues along with their 
descriptions and recommended solutions. This process 
involves applying an extensive set of security policies and best 
practices, ultimately fortifying the quality and security of 
cloud infrastructure services. 

A. Comparative Analysis of Tools Based on Key Features 
 Checkov, Tfsec, Tflint, and Terrascan are vital tools used 
for Infrastructure as Code (IaC) security analysis. Checkov, 
maintained by BridgeCrew, supports multiple IaC formats, 
including Terraform, CloudFormation, Kubernetes, and 
others, with over 1000 built-in policies and fast execution 
(<5s). Tfsec by Aqua Security focuses on Terraform with fast 
execution (<0.5s) and 380 built-in checks. Tflint, supporting 
Terraform, offers seven checks and is noted for its ease of use 
across different platforms. Terrascan, now Tenable, supports 
AWS, providing over 500 built-in checks, but is more complex 
to configure due to its Rego language. Each tool supports 
integration with CI/CD pipelines and various output formats, 
ensuring compatibility and ease of adoption across different 
environments. 



B. Customized tool “Terraformsolutions” result 
The output in Figure 4 displays the scan results showing 4 

failed checks for S3 bucket vulnerabilities and 1 failed check 
for security group vulnerabilities detected in the uploaded 
sample.tf file. The sample.tf file reports 5 vulnerabilities: 
• Logging not enabled for S3: Crucial for access details and 

security monitoring. 
• Server-Side Encryption not enabled for S3: Enhances data 

security. 
• MFA-Delete not enabled for S3: Mitigates account takeover 

risks. 
• Versioning not enabled for S3: Prevents accidental data loss. 
• Security group allows ingress from 0.0.0.0 to port 22: Risks 

unauthorized access; avoid unrestricted access to 
uncommon ports like 22. 

Fig 4. The scan results of Terraform file 

C. Calculations Precision and False Discovery Rates 
This research section evaluates each tool's performance 

through precision and false discovery rate calculations, using 
a confusion matrix to analyze true positives, true negatives, 
false positives, and false negatives. This method allows for 
informed comparisons to determine the most effective tool for 
vulnerability identification. Table 2 defines values as follows:  

• True positive (TP): Issues identified by each tool 
against a vulnerable environment or in open-source 
libraries (1000 .tf files). 

• False positive: Absolute value – True positive  
• N/A (Not Applicable): The tool has given no result. 
Absolute values (total number of vulnerabilities) of 

different vulnerable environments and open-source libraries: 
• SadCloud = 84 misconfigurations 
• CloudGoat2 = 200 misconfigurations 
• TerraGoat = 108 misconfigurations 
• Open-Source Libraries= 800 misconfigurations 

 
TABLE 2: Calculated TP and FP of All the Tools 

 
 

 After obtaining True Positive (TP) and False Positive (FP) 
values for each tool, our next step involves calculating and 
comparing two key metrics: Precision (Positive Predictive 
Value - PPV) and False Discovery Rate (FDR). PPV assesses 
the accuracy of positive predictions, while FDR quantifies the 
rate of false positives. Precision or positive predictive value  
(PPV) = TP / TP+FP. False discovery rate (FDR) = FP/ 
(TP+FP) or 1- PPV. The False Discovery Rate graph in Figure 
5 shows that Checkov has the lowest False Discovery Rate 
among all the tools studied.  

Fig. 5. False Discovery Rate Graph 

 Similarly, the Precision Rate graph in Figure 6 indicates 
that Checkov has the highest Precision Rate. Tfsec ranks 
second in precision, followed by Terrascan and TfLint. 

 
Fig.6. Precision Rate Graph 

D. Outcome of the Analysis Tools 
 Based on our study, Checkov by BridgeCrew emerges as 
the optimal tool for Terraform IaC static code analysis among 
those evaluated. It excels for several reasons: Checkov 
supports multiple IaC platforms and cloud providers (AWS, 
GCP, Azure), offers an extensive library of policies, integrates 
seamlessly into CI/CD pipelines, and features a user-friendly 
interface with comprehensive documentation covering over 
1000 built-in policies. Checkov maintains high precision rates 
and exceptional accuracy in identifying configuration issues 
while minimizing false positives, ensuring reliable 
performance. In contrast, Tfsec, Tflint, and Terrascan show 
less versatility, policy coverage, and documentation, with 
varying precision rates and inconsistent performance. 

 
 
 
 
 
 
 
 
 
 
 



TABLE 3: Tools and their Analysis Outcome 

 

CONCLUSION 
 Cloud security incidents, such as AWS S3 bucket 
misconfigurations, highlight how minor errors can lead to 
major data breaches due to inadequate access controls. The 
U.S. Department of Defense's accidental data leak serves as a 
notable example. Secure Coding Guidelines (SCGs) 
frameworks are crucial for secure codebases, but Infrastructure 
as Code (IaC) currently lacks such standards. DevSecOps 
integrates security throughout development stages, addressing 
these vulnerabilities. This study examines Terraform with 
tools like Checkov, Terrascan, TFlint, and TFsec, applying 
DevSecOps to enhance IaC security. The paper intends to find 
an optimal Terraform IaC static code analysis tool by 
evaluating existing tools. Using these tools, we conducted a 
security analysis on 1000 open-source terraform files from 
GitHub repositories and three vulnerable cloud environments: 
SadCloud, CloudGoat2, and TerraGoat. We calculated each 
tool's performance metrics, like true positives, false positives, 
and precision rates. Based on the evaluation results of key 
features and performance metrics, the study concluded that 
Checkov surpasses other tools and stands out as the best 
Terraform static code analysis tool for enhancing cloud 
infrastructure security. This paper aims to provide valuable 
insights for DevSecOps Engineers, helping them select the 
appropriate Infrastructure as Code (IaC) tool for integrating 
security early in the development process. We aim to reduce 
the need for repetitive exploration and research, enhancing 
efficiency, productivity, and decision-making. Ultimately, this 
will strengthen the overall security of cloud deployments. 
 A limitation of the current static analysis approach in this 
research is its inability to detect vulnerabilities that arise only 
during runtime, such as configuration deviations and 
behavioral anomalies, underscoring the need for dynamic 
analysis in future work. To address this, we plan to enhance 
Terraform analysis tools with behavioral analysis capabilities 
to monitor configuration behavior patterns, enabling more 
effective detection of security risks and deviations from best 
practices. That will include evaluating tool performance by 
identifying security checks with high false-positive rates, and 
refining detection accuracy and tool efficiency. Furthermore, 
we also aim to investigate methods for increasing awareness 
of security vulnerabilities in Infrastructure as Code (IaC) with 
a focus on Terraform and also explore the automation of 
remediation processes triggered by tools such as Checkov, to 

reduce time overhead and mitigate the potential for human 
error. 
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