
UWL REPOSITORY

repository.uwl.ac.uk

Fortifying Cloud DevSecOps security using terraform infrastructure as code

analysis tools

Singh, Rashika, Yeboah-Ofori, Abel ORCID: https://orcid.org/0000-0001-8055-9274, Kumar,

Saurabh and Ganiyu, Aishat (2025) Fortifying Cloud DevSecOps security using terraform

infrastructure as code analysis tools. In: 2024 International Conference on Electrical and Computer

Engineering Researches (ICECER), 04-06 Dec 2024, Gaborone, Botswana.

http://dx.doi.org/10.1109/ICECER62944.2024.10920371

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/13358/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Fortifying Cloud DevSecOps Security Using
Terraform Infrastructure as Code Analysis Tools

Abstract—Fortifying Cloud Security has become
inevitable due to challenges such as misconfigurations, coding
errors, and compromised secrets or passwords that impact
infrastructure as a service during infrastructure such as code
automation (IaC). These challenges require code analysis tools
to enhance security during infrastructure automation. Setting up
a simple cloud architecture is quick, but human errors are still
common, especially when cloud infrastructure can be deployed
with just a few clicks. Terraform provides a ready-made
infrastructure as code modules to build and scale cloud-hosted
applications. However, cyber attackers exploit these
vulnerabilities and gain access to sensitive data or resources
without authorization due to configuration errors, inadequate
storage, and infrastructure manipulation, resulting in
unauthorized deployments or alterations. That affects the
availability of resources during infrastructure deployment using
attacks such as DoS attacks, injection attacks, Man in the Middle
(MITM), malware spread, remote code execution (RCE), and
phishing attacks to penetrate the cloud infrastructures. The
paper aims to analyze Terraforms infrastructure as code in
cloud security to fortify codes and assist DevSecOps engineers in
identifying misconfiguration in Terraform scripts. The paper's
contributions are threefold. First, we explore cloud security by
securing IaC solutions on Terraform. We consider security
issues, including misconfigurations and coding errors, present in
Terraform IaC. Secondly, we implement a static analysis tool for
terraform by comparatively analyzing existing tools. Finally, we
provide a comparative analysis of terraform IaC on tools
including Checkov, Tfsec, Tflint, and Terrascan for suitability
based on their key features and performance metrics to enhance
security.

Keywords— Terraform, Cloud Security, IaC, Coding Error, Cyber
Security, Static Analysis Tool, DevSecOps

I. INTRODUCTION
 Ensuring cloud security is critical in securing operating
systems, web servers, servers, storage systems, and database
servers in a cloud network environment to ensure connectivity
without interference from attacks or errors during operational
processes [1]. Cloud Security in Infrastructure as a Service
(IaaS) with tools like Terraform entails safeguarding cloud
infrastructure against potential threats and vulnerabilities. It
involves implementing security measures to protect resources,
continuous monitoring for anomalies, and automated recovery
mechanisms in case of failures. HashiCorp. developed the
infrastructure-as-code software tool Terraform, which has
been used to improve security during cloud infrastructure
deployment to support business IaaS, SaaS, and PaaS
[1][2][3]. Built-in security and compliance variables in
Terraform modules help harden and safeguard cloud
infrastructure when configured according to

best practices for cloud
security. Resources could be publicly exposed if these
variables mistakenly remain undefined or contain any
misconfiguration error, thus compromising the production
cloud environment, ultimately leading to risk. Several static
code analysis tools are available to examine Terraform code
for security flaws and violations of best practices. As an
infrastructure-as-code tool, Terraform plays a critical role by
enabling the codification of security best practices, making it
easier to maintain a secure and resilient IaaS environment
[1][2][3]. Figure 1 depicts the terraform IaC security model,
how the model could be implemented on various cloud
infrastructures, and how cyberattacks can be deployed to
exploit the vulnerabilities.

Infrastruture Codes
Script ConfigurationsCodes

Terraforms
Static

Analysis

Software
Development

Git Push

Git hub
Environment

Git Pull
Config Cloud

Storage

Cloud Storage

DevSecOps Terraform Infrastructure as Code
Security Model

Coding Error
Remote Access trojan

Logic Bomb
False Data Injection

Miconfigurations

Credential
Stuffing
Attack

Terraforms
Configurations
EC3 Instances

Fig. 1. Terraforms Infrastructure as Code Security Model

 This approach ensures that infrastructure remains robust
and can withstand disruptions, providing a dependable
foundation for applications and services hosted in the cloud.
However, there are existing challenges with IaC solutions like
Terraform that impact the cloud infrastructure, leading to
various vulnerabilities. Some of these challenges include:
• Misconfigurations
• Coding errors
• Hardcoded secrets and passwords
• Excessive data access permissions for employees who

don't require it.
• Unrestricted access to a critical S3 bucket.
• Unnecessary open network ports.

1st Rashika Singh
School of Computing and Eng

University of West London
United Kingdom

rashikasingh64@gmail.com

1st Abel Yeboah-Ofori
School of Computing and Eng

University of West London
United Kingdom

Abel.yeboah.ofori@uwl.ac.uk

2nd Saurabh Kumar
BTech in Computer Sc.and Eng

University of Allahabad
India

saurabhkumar4829@gmail.com

3rd Aishat Ganiyu
School of Eng, Phys and Math

Royal Holloway University
United Kingdom

aishat.ganiyu.2021@live.rh
ul.ac.uk

• Neglecting essential security patch updates
 A significant issue in Terraform frameworks is that
DevSecOps engineers often write code configurations without
being fully aware of potential misconfigurations and their
associated risks, which can lead to unnoticed vulnerabilities
and potential attacks such as Denial of Service (DoS) attacks,
Injection attacks, Man in the middle (MITM) , Malware
spread, Remote code execution (RCE), Phishing attacks to
penetrate the cloud infrastructures. In cloud platforms,
misconfigurations are one of the critical reasons that result in
significant data breaches. The goal is to address such problems
to secure the cloud infrastructure from data breaches. The
paper aims to analyze Terraforms infrastructure as code in
cloud security to fortify codes and assist DevSecOps engineers
in identifying misconfiguration in Terraform scripts. The
paper's contributions are threefold. First, we explore cloud
security by securing IaC solutions on Terraform. We consider
security issues, including misconfigurations and coding errors,
present in Terraform IaC. Secondly, we implement a static
analysis tool for terraform by comparatively analyzing existing
tools. Finally, we provide a comparative analysis of terraform
IaC on tools including Checkov, Tfsec, Tflint, and Terrascan
for suitability based on their key features and performance
metrics to enhance security.

II. RELATED WORKS
 The section discusses the state-of-the-art and existing
literature about exploring cloud security to secure IaC
solutions on Terraform. We consider security issues, including
misconfigurations and coding errors, present in Terraform IaC.
Furthermore, we discuss a static analysis tool for terraform
configuration platforms by analyzing existing tools. For
instance, Andrei-Cristian Iosif [3] examines vulnerabilities in
cloud deployments, focusing on the most vulnerable resources.
Analyzing AWS as a cloud provider and Terraform as an IaC
framework, the study reviewed 8256 public repositories using
tfsec, checkov, and terrascan, uncovering 292,538 security
breaches. The researchers identified instances, modules, and
security groups as the top three most vulnerable resources,
with S3 buckets ranking fourth. However, the study's
limitation is that it only considers AWS, leaving open the
question of whether these findings apply to other cloud
providers [3]. The term “code smells,” coined by Kent Beck
and Martin Fowler, refers to code defects that might cause
issues. T. Sharma's paper was the first to introduce this concept
in infrastructure as code (IaC). The study aimed to detect
common implementation and design issues in Puppet scripts,
analyzing 4621 Git repositories. They identified 24 issues,
using Puppet-lint for implementation defects and a custom
tool, "Puppeteer," for design issues. Common implementation
problems included improper quote usage, misalignment, and
lengthy statements, while design issues involved deficient
modularization and multilayered abstraction. The study did not
explore the correlation between code smells and actual defects
in IaC scripts and was limited to security defects in Puppet
scripts [4]. J. Schwarz [5] extended T. Sharma's research on
security issues in Infrastructure as Code (IaC) scripts by
analyzing Chef scripts. They examined Chef scripts from over
3200 official cookbooks and 35 industrial partner repositories
using the "Foodcritic" linting tool. The study identified
common security issues such as improper alignment, lengthy
statements, and misplaced attributes, similar to findings in
Puppet scripts by T. Sharma. However, unlike Puppet,
improper quote usage was less common in Chef scripts. The
paper focused exclusively on configuration management tools
like Puppet and Chef, without investigating configuration
orchestration tools like Terraform [5]. J. Lepiller [6]

introduced the intra-update sniping vulnerability in
Infrastructure as Code (IaC) services. This type of
vulnerability occurs when an infrastructure update process
moves through unsafe intermediate stages despite transitioning
between secure ones, such as updating components out of
sequence. They developed Hayha, a tool focused on
identifying and recommending secure update practices within
AWS CloudFormation. While effective for its purpose,
Hayha's evaluation was limited to CloudFormation templates.
It did not address broader configuration vulnerabilities or other
IaC orchestration tools like Terraform. A. Rahman [7]
conducted in-depth research on secret management in
Infrastructure as Code (IaC) scripts focusing on best practices
to enhance security in DevOps workflows. They analyzed 38
artifacts from grey literature sources like blogs and videos to
identify 12 practices for IaC secret management. These
practices include both tool-agnostic approaches like access
control and tool-specific methods such as using Hashicorp
Vault. The study recommends leveraging language-specific
tools like Hiera for Puppet scripts and universal solutions like
Hashicorp Vault, which is compatible across all IaC
languages. However, it acknowledges that these practices may
not cover all possible approaches, and their effectiveness can
vary depending on specific IaC implementations. The study by
M. Chiari reviews [8] static analysis methods for Infrastructure
as Code (IaC) scripts, highlighting popular approaches like
model verification, machine learning, and string-pattern rules.
It outlines targeted platforms and defect categories but lacks a
thorough evaluation of tool efficacy and dynamic analysis
methods. Further research is needed to fill these gaps and
provide a comprehensive understanding of current practices.
The research by Antunes [9] analyzed Docker's security
vulnerabilities and the effectiveness of static code scanners in
its codebase. They evaluated security reports, categorizing
vulnerabilities by causes, impacts, and risks, revealing risks
like bypass and privilege escalation. However, the scope was
limited to a few security reports and issues within Docker,
potentially not representing all vulnerabilities. It also focused
solely on static code analyzers without exploring other security
solutions. The paper by Lawall [10] discusses enhancing
infrastructure software security using the code-matching and
transforming tool Coccinelle. The authors advocate for
increased use of static analysis to detect programming flaws
before software deployment. Coccinelle simplifies the creation
of static analysis algorithms and automates source code
inspection. However, the study lacks empirical evidence on
Coccinelle's effectiveness in improving software security and
does not compare it with similar tools or techniques. The paper
by A. Rahman [11] examines how infrastructure as code (IaC)
scripts can inadvertently introduce vulnerabilities, termed
"security smells," leading to potential security breaches. The
study introduces the Security Linter for Infrastructure as Code
Scripts (SLIC) tool through empirical analysis and static
analysis techniques. SLIC identifies seven security smells in
IaC scripts, detecting 21,201 instances across a dataset of
15,232 scripts from 293 open-source repositories. The study
submitted bug reports for 1,000 instances, receiving 212
responses, with 148 acknowledging and addressing the issues.
However, the research focuses exclusively on security smells,
limiting coverage of all possible vulnerabilities and relying
solely on open-source data, potentially affecting broader
applicability. The study also lacks detailed remediation
strategies and does not explore underlying causes
comprehensively, highlighting these as important
considerations. The paper by L. Williams [12] focuses on
identifying and categorizing security smells in Infrastructure
as Code (IaC) scripts as indicators of potential security
vulnerabilities. Using static analysis and the IaC-Sec tool, the
study analyzed 1,000 IaC scripts from GitHub, identifying

67,801 instances of security smells, including 9,175
occurrences of hard-coded passwords, deprecated functions,
and weak cryptography. However, the study's exclusive focus
on security smells limits its evaluation of broader script quality
aspects such as performance optimization and maintainability.
These dimensions are crucial for ensuring efficient script
execution and long-term adaptability in dynamic cloud
environments, suggesting a more comprehensive analysis
approach is needed. Another paper by A. Rahman [13]
examines common errors in Infrastructure as Code (IaC)
scripts through three initial studies based on defect data from
open-source repositories. It quantifies the frequency and
categorizes defects, primarily focusing on syntax and
configuration assignments. The study identifies three
consistent operations indicative of defective IaC scripts, laying
the groundwork for proposed studies on process anti-patterns
and security-related anti-patterns in IaC [12]. However, the
paper does not present outcomes or results from these
proposed investigations, which is a notable limitation. The
paper by Alghofaili [14] conducts a survey addressing security
concerns across various tiers of cloud infrastructure and
reviews existing literature solutions for mitigation. It
emphasizes the pervasive security challenges in cloud
computing, highlighting gaps in current research and
suggesting areas for further exploration to enhance cloud
system safety. The study provides an overview of existing
literature on cloud infrastructure security but does not present
new research findings or empirical data. It suggests potential
solutions without comprehensive effectiveness analysis and
may not cover all possible security issues. Despite its focus on
prominent concerns, it offers a broad perspective on current
research in cloud infrastructure security

III. APPROACH
 This section discusses the implementation process and the
approach used for the paper from data collection to the security
assessment on static analysis tools for terraform. The paper
systematically evaluates misconfiguration issues across
SadCloud, CloudGoat2, and TerraGoat cloud environments. It
rigorously assesses the effectiveness of four static code
analysis tools—tfsec, tflint, checkov, and terrascan—using
diverse datasets and vulnerable cloud setups. This research
requirement underscores our selection of a quantitative
methodology to ensure meticulous analysis and reliable
findings. The chosen quantitative approach facilitates
determining tool effectiveness by calculating absolute values,
true positives, and false positives from security checks
conducted by each tool. The evaluation of these metrics,
coupled with the large dataset and varied cloud environments,
aligns with the quantitative approach's objective of generating
reliable, numeric insights. By quantifying the results and
employing statistical analysis, the research aims to provide
objective and generalized findings, making the quantitative
methodology suitable for deriving concrete conclusions and
contributing valuable insights to the field.

A. Data Collection Approach
 Data utilized in this study is sourced from open-source
libraries. The methods described below are employed to
execute the data collection process: Search and selection or
Terraform script were accomplished using one of two web
scraping techniques.

 GitHub’s API query: The exploration of the GitHub
repository database was conducted to obtain a list of
repositories that contain terraform code. This was done
through the website's API, using Terraform's Hashicorp
Configuration Language (HCL) syntax. GitHub's API allows
targeted searches based on timeframes and language filters,

with each query yielding up to 1000 results spread across ten
pages [1]. The query for gathering the links is constructed
using string-interpolated query parameters as follows:

api.github.com/search/repositories?q=language:HCL&per_
page=100&page={page_number}

 This technique resulted in a comprehensive list of 269190
repository links identified as Terraform code, along with their
relevant metadata [1].

 GitHub code search interface: Files with the extensions
.tf or .hcl were acquired directly from the GitHub database via
the GitHub code search interface at https://github.com/search.

The query employed to retrieve the list of .tf and .hcl files is:

path:*.tf or path:*.hcl

B. Data Pre-processing
• Downloaded repositories undergo various sanity

checks and filters. First, we verify if the repository
contains Terraform code. This step is crucial because
GitHub's labelling may yield a few false positives, such
as non-Terraform or empty repositories initially
appearing in the scraping results [1].

• A Python script developed automates the download
process of Terraform scripts from a public repository.
This collection comprises around 1000 .tf files, which
were meticulously selected in the prior phase of web
scraping.

• Eliminating any redundant and unrelated data

All this pre-processing and download process is carried out
using a python. Subsequently, these downloaded scripts will
be input for the analysis and testing process.

C. Tool Creation
In this paper, we also introduce 'terraformsolutions,' a

web application-based tool developed for the analysis of
Terraform scripts (.tf). This tool assesses code configurations
to identify vulnerabilities and offers recommended
remediations. It is implemented in Python, with the user
interface (UI) built using the Django framework. Our tool
encompasses checks for AWS, GCP, and Azure cloud
providers, enhancing its versatility and applicability.

D. Security Analysis
This section defines the approach followed for

conducting a security analysis of each tool
• Step 1: Metrics calculation involves analyzing each tool's

precision and false discovery rates using a confusion matrix.
• Step 2: Tool Key feature exploration compares features like

IaC platform support, security checks, cloud provider
compatibility, adoption rates, Docker support, and more.

• Step 3: Identifying configuration issues in vulnerable cloud
environments (Sadcloud, CloudGoat2, TerraGoat) through
penetration testing and configuration reviews.

• Step 4: Comparative analysis of tools uses results from
Steps 1, 2, and 3 to assess performance.

• Step 5: Data Visualization presents calculations and
analyses using tables and graphs.

• Step 6: Interpretation uses results to select the best static
analysis tool for Terraform.

IV. IMPLEMENTATIONS
 This section discusses the implementation process and
highlights the tools used to achieve objectives.

A. Security Analysis - Static Code Analysis Tools for
Terraform: The paper evaluates four static code analysis
tools (tfsec, tflint, checkov, terrascan) across three
vulnerable cloud environments (SadCloud, CloudGoat2,
TerraGoat). Performance is assessed by running these
tools on 1000 Terraform files, measuring efficacy through
precision, false discovery rate, true positives, and false
positives from security checks. The formula for absolute
value is defined as:

 Absolute V = True Positive + False Positive.

 This approach offers a solid basis for comparing and
ranking the tools' performance in identifying security issues.
Table 1 below summarizes configuration issues identified
through penetration testing and configuration reviews
conducted across multiple vulnerable cloud environments.

TABLE 1: Configuration Issues In Various Vulnerable Cloud

Environments

B. Tool Implementation Algorithm
This section defines the algorithm employed for the

implementation of customized tool “terraformsolutions”
The tool initializes critical security pattern recognition using
regular expressions (regex) and utilizes Python's 'os' module
for secure file upload, creating dedicated directories for
isolation. It parses Terraform (.tf) files, analyzing them for S3
and EC2 security configurations, presenting results as 'failed
checks' for vulnerabilities and 'passed checks' for error-free
configurations.

Figure 2 below shows a Python function, s3_Checks,
that takes tf_data as input and performs checks using
regular expressions to find S3 bucket configurations like
logging, server-side encryption, and MFA-Delete settings.
The function appends the results to the s3_Checks list for
further processing or reporting.

Fig. 2. Code for outlining S3 bucket rule definitions for the tool

Figure 3 illustrates a Django view function,
process_file(request), managing file upload and processing. It
saves the file, verifies its .tf extension, and conducts AWS S3
bucket and security group checks using predefined Terraform
patterns. Results are stored in s3_checks_response and
security_group_checks_response and then displayed to users
via an HTML template.

Fig. 3. Code for upload and process of terraform files

V. RESULT AND DISCUSSION
 This section discusses how terraform security is becoming
increasingly important for DevSecOps engineers to learn and
implement. Static code analysis of Terraform code provides a
detailed report highlighting identified issues along with their
descriptions and recommended solutions. This process
involves applying an extensive set of security policies and best
practices, ultimately fortifying the quality and security of
cloud infrastructure services.

A. Comparative Analysis of Tools Based on Key Features
 Checkov, Tfsec, Tflint, and Terrascan are vital tools used
for Infrastructure as Code (IaC) security analysis. Checkov,
maintained by BridgeCrew, supports multiple IaC formats,
including Terraform, CloudFormation, Kubernetes, and
others, with over 1000 built-in policies and fast execution
(<5s). Tfsec by Aqua Security focuses on Terraform with fast
execution (<0.5s) and 380 built-in checks. Tflint, supporting
Terraform, offers seven checks and is noted for its ease of use
across different platforms. Terrascan, now Tenable, supports
AWS, providing over 500 built-in checks, but is more complex
to configure due to its Rego language. Each tool supports
integration with CI/CD pipelines and various output formats,
ensuring compatibility and ease of adoption across different
environments.

B. Customized tool “Terraformsolutions” result
The output in Figure 4 displays the scan results showing 4

failed checks for S3 bucket vulnerabilities and 1 failed check
for security group vulnerabilities detected in the uploaded
sample.tf file. The sample.tf file reports 5 vulnerabilities:
• Logging not enabled for S3: Crucial for access details and

security monitoring.
• Server-Side Encryption not enabled for S3: Enhances data

security.
• MFA-Delete not enabled for S3: Mitigates account takeover

risks.
• Versioning not enabled for S3: Prevents accidental data loss.
• Security group allows ingress from 0.0.0.0 to port 22: Risks

unauthorized access; avoid unrestricted access to
uncommon ports like 22.

Fig 4. The scan results of Terraform file

C. Calculations Precision and False Discovery Rates
This research section evaluates each tool's performance

through precision and false discovery rate calculations, using
a confusion matrix to analyze true positives, true negatives,
false positives, and false negatives. This method allows for
informed comparisons to determine the most effective tool for
vulnerability identification. Table 2 defines values as follows:

• True positive (TP): Issues identified by each tool
against a vulnerable environment or in open-source
libraries (1000 .tf files).

• False positive: Absolute value – True positive
• N/A (Not Applicable): The tool has given no result.
Absolute values (total number of vulnerabilities) of

different vulnerable environments and open-source libraries:
• SadCloud = 84 misconfigurations
• CloudGoat2 = 200 misconfigurations
• TerraGoat = 108 misconfigurations
• Open-Source Libraries= 800 misconfigurations

TABLE 2: Calculated TP and FP of All the Tools

 After obtaining True Positive (TP) and False Positive (FP)
values for each tool, our next step involves calculating and
comparing two key metrics: Precision (Positive Predictive
Value - PPV) and False Discovery Rate (FDR). PPV assesses
the accuracy of positive predictions, while FDR quantifies the
rate of false positives. Precision or positive predictive value
(PPV) = TP / TP+FP. False discovery rate (FDR) = FP/
(TP+FP) or 1- PPV. The False Discovery Rate graph in Figure
5 shows that Checkov has the lowest False Discovery Rate
among all the tools studied.

Fig. 5. False Discovery Rate Graph

 Similarly, the Precision Rate graph in Figure 6 indicates
that Checkov has the highest Precision Rate. Tfsec ranks
second in precision, followed by Terrascan and TfLint.

Fig.6. Precision Rate Graph

D. Outcome of the Analysis Tools
 Based on our study, Checkov by BridgeCrew emerges as
the optimal tool for Terraform IaC static code analysis among
those evaluated. It excels for several reasons: Checkov
supports multiple IaC platforms and cloud providers (AWS,
GCP, Azure), offers an extensive library of policies, integrates
seamlessly into CI/CD pipelines, and features a user-friendly
interface with comprehensive documentation covering over
1000 built-in policies. Checkov maintains high precision rates
and exceptional accuracy in identifying configuration issues
while minimizing false positives, ensuring reliable
performance. In contrast, Tfsec, Tflint, and Terrascan show
less versatility, policy coverage, and documentation, with
varying precision rates and inconsistent performance.

TABLE 3: Tools and their Analysis Outcome

CONCLUSION
 Cloud security incidents, such as AWS S3 bucket
misconfigurations, highlight how minor errors can lead to
major data breaches due to inadequate access controls. The
U.S. Department of Defense's accidental data leak serves as a
notable example. Secure Coding Guidelines (SCGs)
frameworks are crucial for secure codebases, but Infrastructure
as Code (IaC) currently lacks such standards. DevSecOps
integrates security throughout development stages, addressing
these vulnerabilities. This study examines Terraform with
tools like Checkov, Terrascan, TFlint, and TFsec, applying
DevSecOps to enhance IaC security. The paper intends to find
an optimal Terraform IaC static code analysis tool by
evaluating existing tools. Using these tools, we conducted a
security analysis on 1000 open-source terraform files from
GitHub repositories and three vulnerable cloud environments:
SadCloud, CloudGoat2, and TerraGoat. We calculated each
tool's performance metrics, like true positives, false positives,
and precision rates. Based on the evaluation results of key
features and performance metrics, the study concluded that
Checkov surpasses other tools and stands out as the best
Terraform static code analysis tool for enhancing cloud
infrastructure security. This paper aims to provide valuable
insights for DevSecOps Engineers, helping them select the
appropriate Infrastructure as Code (IaC) tool for integrating
security early in the development process. We aim to reduce
the need for repetitive exploration and research, enhancing
efficiency, productivity, and decision-making. Ultimately, this
will strengthen the overall security of cloud deployments.
 A limitation of the current static analysis approach in this
research is its inability to detect vulnerabilities that arise only
during runtime, such as configuration deviations and
behavioral anomalies, underscoring the need for dynamic
analysis in future work. To address this, we plan to enhance
Terraform analysis tools with behavioral analysis capabilities
to monitor configuration behavior patterns, enabling more
effective detection of security risks and deviations from best
practices. That will include evaluating tool performance by
identifying security checks with high false-positive rates, and
refining detection accuracy and tool efficiency. Furthermore,
we also aim to investigate methods for increasing awareness
of security vulnerabilities in Infrastructure as Code (IaC) with
a focus on Terraform and also explore the automation of
remediation processes triggered by tools such as Checkov, to

reduce time overhead and mitigate the potential for human
error.

REFERENCES
[1] A Large-Scale Study on the Security Vulnerabilities of Cloud

Deployments. 10.1007/978-981-19-0468-4_13.
[2] JavaTpoint: Resiliency in Cloud Computing. Available at:

https://www.javatpoint.com/resiliency-in-cloudcomputing
[3] Iosif, Andrei-Cristian & Gasiba, Tiago & Zhao, Tiange & Lechner,

Ulrike & Albuquerque, Maria. (2022).
[4] T. Sharma, M. Fragkoulis and D. Spinellis, "Does Your Configuration

Code Smell?," 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), Austin, TX, USA, 2016, pp. 189-200.

[5] J. Schwarz, A. Steffens and H. Lichter, "Code Smells in Infrastructure
as Code," 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC), Coimbra,
Portugal, 2018, pp. 220-228, doi: 10.1109/QUATIC.2018.00040.

[6] J. Lepiller, R. Piskac, M. Sch¨af, and M. Santolucito, “Analyzing
infrastructure as code to prevent intra-update sniping vulnerabilities,”
in Proc. 27th Int. Conf. Tools Alg. for the Constr. and Anal. of Syst.,
TACAS’21, Part II, ser. LNCS, vol. 12652. Springer, 2021, pp. 105–
123

[7] A. Rahman, F. L. Barsha and P. Morrison, "Shhh!: 12 Practices for
Secret Management in Infrastructure as Code," 2021 IEEE Secure
Development Conference (SecDev), Atlanta, GA, USA, 2021, pp. 56-
62, doi: 10.1109/SecDev51306.2021.00024.

[8] M. Chiari, M. De Pascalis and M. Pradella, "Static Analysis of
Infrastructure as Code: a Survey," 2022 IEEE 19th International
Conference on Software Architecture Companion (ICSA-C), Honolulu,
HI, USA, 2022, pp. 218-225, doi: 10.1109/ICSA-C54293.2022.00049.

[9] A. Duarte and N. Antunes, "An Empirical Study of Docker
Vulnerabilities and Static Code Analysis Applicability," 2018 Eighth
Latin-American Symposium on Dependable Computing (LADC), Foz
do Iguacu, Brazil, 2018, pp. 27-36, doi: 10.1109/LADC.2018.00013.

[10] Lawall, Julia & Hansen, René & Palix, Nicolas & Muller, Gilles.
(2010). Improving the Security of Infrastructure Software using
Coccinelle. ERCIM News. 2010. 54.

[11] A. Rahman, C. Parnin and L. Williams, "The Seven Sins: Security
Smells in Infrastructure as Code Scripts," 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), Montreal,
QC, Canada, 2019, pp. 164-175, doi: 10.1109/ICSE.2019.00033.

[12] A. Rahman and L. Williams, "Different Kind of Smells: Security Smells
in Infrastructure as Code Scripts," in IEEE Security & Privacy, vol. 19,
no. 3, pp. 33-41, May-June 2021, doi: 10.1109/MSEC.2021.3065190.

[13] A. Rahman, "Anti-Patterns in Infrastructure as Code," 2018 IEEE 11th
International Conference on Software Testing, Verification and
Validation (ICST), Västerås, Sweden, 2018, pp. 434-435, doi:
10.1109/ICST.2018.00057.

[14] Alghofaili, Y., Albattah, A., Alrajeh, N., Rassam, M.A., Al-rimy,
B.A.S. (2021) Secure Cloud Infrastructure: A Survey on Issues, Current
Solutions, and Open Challenges. Applied Sciences. 11(19), 9005.

[15] M. Artac, T. Borovšak, E. Di Nitto, M. Guerriero, D. Perez-Palacin and
D. A. Tamburri, "Infrastructure-as-Code for Data-Intensive
Architectures: A Model-Driven Development Approach," 2018 IEEE
International Conference on Software Architecture (ICSA), Seattle,
WA, USA, 2018, pp. 156-15609, doi: 10.1109/ICSA.2018.00025

[16] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, "Adoption,
Support, and Challenges of Infrastructure-as-Code: Insights from
Industry," 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Cleveland, OH, USA, 2019, pp.
580-589, doi: 10.1109/ICSME.2019.00092.

[17] A. Yeboah-Ofori, S. K. Sadat and I. Darvishi, "Blockchain Security
Encryption to Preserve Data Privacy and Integrity in Cloud
Environment," 2023 10th International Conference on Future Internet
of Things and Cloud (FiCloud), Marrakesh, Morocco, 2023, pp. 344-
351, doi: 10.1109/FiCloud58648.2023.00057.

[18] A. Yeboah-Ofori, I. Darvishi and A. S. Opeyemi, "Enhancement of Big
Data Security in Cloud Computing Using RSA Algorithm," 2023 10th
International Conference on Future Internet of Things and Cloud
(FiCloud), Marrakesh, Morocco, 2023, pp. 312-319, doi:
10.1109/FiCloud58648.2023.00053

	I. Introduction
	II. RELATED WORKS
	III. Approach
	A. Data Collection Approach
	B. Data Pre-processing
	C. Tool Creation
	D. Security Analysis

	IV. Implementations
	A. Security Analysis - Static Code Analysis Tools for Terraform: The paper evaluates four static code analysis tools (tfsec, tflint, checkov, terrascan) across three vulnerable cloud environments (SadCloud, CloudGoat2, TerraGoat). Performance is asses...
	B. Tool Implementation Algorithm

	V. Result and Discussion
	A. Comparative Analysis of Tools Based on Key Features
	B. Customized tool “Terraformsolutions” result
	C. Calculations Precision and False Discovery Rates
	D. Outcome of the Analysis Tools
	Conclusion
	References

