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Abstract

Obligations are essential part of security policies, which specify what actions a user is
obliged to perform in the future. One interesting feature of obligations is unenforceable,
that is, the system cannot guarantee that each obligation will be fulfilled. Indeed,
obligations go unfulfilled for a variety of reasons. For example, a user may have a family
emergency that leads her having little time to discharge assigned obligations. We argue
that delegation of obligations can be regarded as a means of providing opportunity for
obligations to be discharged. However, this opportunity will be wasted if users who
received delegation do not fulfil the obligations eventually. In this paper we propose a
mechanism that incentivises users to accept and fulfil obligations for others by rewarding
users credits. The amount of credits that can be earned depends on their trust rating,
which reflects precisely how diligent of individuals in fulfilling obligations in the past.
Users are motivated to raise up their trust ratings by fulfilling obligations for others,
in order to earn more credits in the future. To evaluate our approach, we develop
a multiple-agent system that simulates a number of different profiles for agents and
run experiments for one-hop delegation and cascaded delegation with those agents.
The experiments show a rich set of results, one of which confirms that delegation with
incentives achieves the best outcome in terms of the number of obligations being fulfilled.
Also, we implemented the modified ϵ-greedy algorithm, one of the closely related existing
works, in our experimental framework and compared its performance to our approach.
The results show that our approach offers greater flexibility and efficiency, as well as a
higher obligation fulfilment rate.

Keywords: Delegation of Obligations, Trust, Incentive, Multi-agent systems

1 Introduction

Obligation and authorisation are essential building blocks to form security policies [14, 18,
19, 21, 27], which define the correct behaviour of an information system. A system adopt-
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ing this type of policy-based approach for governing agents’ behaviour is called normative
multiagent systems [4, 11, 12]. Obligations in such systems define what activities have to
be performed by whom and when, and these obligatory actions are integral part of the
control procedures in many organisations. For example, a course leader is obliged to submit
a course assessment report to an external examiner at least three days before the exam
board meeting. As the example illustrates, the system can determine whether and when
the obligation is fulfilled, but cannot force the course leader to submit the report on time.
In other words, the system cannot ensure that obligations can always be fulfilled, but in-
stead it should give every opportunity for obligations to be discharged, in order to ensure
the correct operation of a system.

One of such opportunities is to allow a user to delegate her assigned obligations to
others. We refer to the user who performs a delegation as a “delegator”, and the user who
receives a delegation as a “delegatee”. Indeed, there are a number of organisational motives
behind the delegation of an obligation [6, 24]. For example, a user may have been assigned a
few obligations which need to be fulfilled at similar sort of deadline. However, due to other
work commitments, it would be desirable for the user to delegate some of the obligations to
others who have similar competence but have less constraints. There has been some work on
delegation of obligations, most of which focuses on operational semantics for delegation and
mechanisms for monitoring the fulfilment of delegated obligations [24], as well as identifying
responsibilities among users who involved in the delegation of obligations [3]. In multi-agent
systems, the study of delegation mechanisms has been receiving a great deal of attention [10,
25], particularly trust-based approaches that are closely related to our discussion here.
For example, Chris and Nir [5] explored various strategies for increasing or decreasing
trust values for agents positioned differently within a delegation chain. Afanador et al. [1]
examined the effectiveness of several multi-armed bandit algorithms as a trust system to
determine which agents should be delegated tasks.

As the literature suggested, allowing the occurrence of delegation provides an opportu-
nity for the delegator’s assigned obligations to be discharged, however, it is not clear that
why the delegatee would be willing to fulfil obligations for others unless there is an incentive
for them to do so. If delegatees eventually leave the delegated obligations to go unfulfilled,
then all the complexities resulting from managing the delegation become unnecessary. The
question of how to incentivise delegatees to discharge delegated obligations, to the best of
our knowledge, has not yet been adequately investigated. Such considerations are the focus
of this paper. More specifically, the contributions of this paper are as follows:

• We introduce a simple trust computation method on the basis of the Subjective Logic
model to compute trust rating of users, reflecting their performance on fulfilling obli-
gations. We discuss a number of possible ways of updating the trust ratings for the
delegator and delegatee when a delegated obligation is fulfilled or violated. We also
discuss the notion of responsibility with respect to fulfilling an obligation; in particu-
lar, who is held responsible for a delegated obligation being violated.

• We further propose a credit rewarding scheme that rewards delegatee credits for fulfill-
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ing obligations, but the amount of credits that can be rewarded is determined by her
trust rating. From the delegator’s perspective, he needs to pay credits to the delegatee
on her efforts to fulfil the delegated obligation, thus the scheme avoids the situation
where users are always seeking to delegate their assigned obligations to others.

• When a delegated obligation arises in the system, we define a set of eligibility criteria
for delegatees to bid for the obligation. We also define a number of possible risk
preferences a delegator may take in terms of choosing a delegatee, since the chosen
delegatee has uncertainty of whether to fulfil the delegated obligation.

• We explore the incentive mechanism in the face of cascaded delegation of obligations
with which users on a delegation chain may have different perception on fulfilling the
obligation.

• We develop a sophisticated multi-agent system and run experiments to evaluate our
models. The results reveal that allowing delegation with the proposed incentive mech-
anisms results in much less obligations being violated in the system for the one-hop
delegation case, as well as the cascaded delegation case.

• We implement the modified ϵ-greedy algorithm [1], one of the closely related works for
cascaded delegation, in our experimental framework and compared its performance
with our models. The results suggest that our approach offers greater flexibility and
efficiency, yielding better performance in terms of the fulfilment rate for delegated
obligations.

• We consider the practical application of our proposed model by discussing two real-
world scenarios: one for one-hop delegation and the other for cascaded delegation.

In the next section, we summarise relevant background materials on the trust model
we employ, and present a simple way of defining obligation properties. We introduce a
protocol for obligation delegation and explore incentive schemes for one-hop delegation as
well as cascaded delegation in Section 3. In Section 4, we develop a multi-agent system as our
experimental framework and conduct sophisticated experiments to evaluate our models. We
also compare our models to existing work with respect to its experimental performance. In
Section 5, we discuss how our contributions improve and extend related work, and consider
the practical application of our models. We conclude the article with a summary of our
contributions and some ideas for future work in Section 6.

2 Background

In this section we introduce a simple trust model based on the Bayesian principles and
define essential properties of obligation.
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2.1 Trust Model

While many more complex trust models exist, we adapt Josang’s widely used Subjective
Logic based approach [17], which is a relatively straightforward model grounded on Bayesian
principles. The use of this model simplifies our experiments and allows us to highlight our
approach.

An opinion held by an agent x about agent y regarding issue i is represented by a tuple:

ωx
y:i = ⟨αx

y:i, β
x
y:i, γ

x
y:i, δ

x
y:i⟩

where αx
y:i + βx

y:i + γxy:i = 1, and δxy:i ∈ [0, 1]. (1)

The values of αx
y:i, β

x
y:i and γxy:i respectively represent the degrees of belief, disbelief, and

uncertainty regarding the proposition that the agent y will behave as agent x expects with
respect to issue i. The base rate parameter δxy:i represents the a priori degree of trust that
the agent x has about y, before any direct evidence has been acquired.

Opinions are formed and updated based on observations of past performance using
two parameters rxy:i and sxy:i, capturing, respectively, the number of positive and negative
experiences observed by x about y with respect to i. With these two parameters, x’ opinion
about y is computed as follows:

αx
y:i =

rxy:i
(rxy:i + sxy:i + 2)

βx
y:i =

sxy:i
(rxy:i + sxy:i + 2)

γxy:i =
2

(rxy:i + sxy:i + 2)
(2)

For an initial opinion with no evidence, therefore, αx
y:i = 0, βx

y:i = 0, γxy:i = 1, and δxy:i is
typically set to 0.5. Given an opinion computed through Equation 2, a single-valued trust
rating, which can be used to rank and compare individuals, can be obtained as follows.

T (ωx
y:i) = αx

y:i + δxy:i · γxy:i (3)

2.2 Obligation Trust

There exists a number of policy languages being designed for specifying obligation policies.
The most common approach is to use the temporal logic to capture time constraints asso-
ciated with obligations [13, 28]. However, we take an approach that is similar to [7, 16],
which defines a simple data structure capturing the essential components of an obligation.

We assume the existence of a clock, whose ticks are indexed by the natural number N.
A time interval i = [t1, t2], where t1, t2 ∈ N and t1 < t2, is the set {t1 ⩽ t ⩽ t2}. We define
an obligation obl as a tuple ⟨u, a, i⟩, where u is a user, a is an action, i is a time interval
during which u is obliged to take action a. At a particular point of time t, an obligation
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obl = ⟨u, a, [ts, te]⟩ may be in one of three states: active, satisfied, or violated. We say obl
is satisfied if u has fulfilled the obligation (performed action a) at t and t ∈ [ts, te]. We say
obl is violated if the obligation has not been fulfilled, but te has passed (t > te). We say obl
is active at t if it is neither satisfied nor violated.

It is important to keep the system always in a desirable state where no obligations
go violated. However, since the system cannot enforce users to fulfil obligations, some
obligations may go violated. What the system can do is to monitor the status of the
obligation (e.g., whether it has been violated at some point of time) and to use reward and
blame mechanisms to incentivise users to fulfil obligations.

We introduce the concept of obligation trust for every user, which represents an user’
trustworthiness to fulfilling obligations. Our approach to computing obligation trust for a
user is based on the evidence the system has observed regarding the user’s performance on
fulfilling obligations in the past. The evidence we have is a sequence of good (satisfaction
of an obligation) and bad (violation) experiences with that user. These experiences can be
used to estimate the probability that the user will make obligations being satisfied in the
future, and such a probability distribution is called the user’s obligation trust in this paper.

Formally, let H be a history of obligation stratification events, whose members are the
form of ⟨u, obl , sts⟩, where sts ∈ {satisfied, violated}, representing that the status of obliga-
tion obl is caused by user u. Let rsysu:obl represent the observed number of obligations that are
satisfied by u and let ssysu:obl represent the observed number of obligations that are violated
by u, where the superscript sys represents the system who is an opinion owner. Then we
can compute the obligation trust, T (ωsys

u:obl ), of an user u by following the Equations 2 and 3.
In other words, T (ωsys

u:obl ) represents the system’s opinion on the obligation trust rating of u.
It can be seen that the initial value for T (ωsys

u:obl ) = 0.5 when rsysu:obl = ssysu:obl = 0, but it will
be updated as new evidence appears in the history H. When rsysu:obl and ssysu:obl are obvious
from context, we will simply write ru for rsysu:obl , su for ssysu:obl , and T (u) for T (ωsys

u:obl ).

3 An Incentive Scheme for Obligation Delegation

In this section, we first introduce the protocol for how the delegation of obligations operates
and examine how to update trust ratings as a means of assigning blame or rewards to
individuals involved in the delegation process. We then explore the concept of earning
reward credits as the key incentivising mechanism and define risk preferences regarding
how delegators choose delegatees to maximise their reward credits. Finally, we examine
how the incentivising scheme works in cascaded delegation settings.

3.1 Delegating Obligations

In many situations, a user needs to delegate her assigned obligations to someone else, so that
the obligations can be discharged by others rather than left to be violated. For example, a
user may have too many obligations that need to be discharged within the same period of
time, or a user may need to deal with other urgent tasks whose completion are in conflict
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with the deadline of assigned obligations. Let us first introduce a delegation protocol, and
its resulting data structures. We write deleg(obl ,W ) to denote a delegation request, meaning
that the responsible user appearing in obligation obl requests to delegate it to some user
w in the group W . The delegation request deleg(obl ,W ) will be evaluated by running a
protocol, resulting in a delegatee w being chosen. We informally describe how the protocol
works as follows:

1. A user u starts off broadcasting a delegation request delg(obl ,W ) to a group of users
W in the system. This group of users, for example, has a similar competence level or
job responsibilities within an organisation.

2. On receipt of the delegation announcement, each user w ∈ W who wishes to put
themselves forward will evaluate it with respect to their own schedule. If w is eligible
to bid, w will submit her current obligation trust T (w) to u;

3. Based upon several such bids being received in response to the announced delegation,
u selects the most appropriate user to be assigned with the obligation obl .

4. Finally, u sends an award message to the successful bidder w, and also informs others
whose bids were not successful.

In Sects. 3.3 and 3.4, we elaborate on how each user w assesses the eligibility against her
own schedule, and how u makes a choice when multiple bids are received.

Following a successful running of the delegation protocol, we assume that the delegatee
w has agreed to discharge the delegated obligation, while the delegator still remains as a
responsible user for the obligation. We call delegatee w as an obligated user for the delegated
obligation. We introduce a data structure, namely delegated obligation, that records an user-
obligation assignment that arises from a delegation request being evaluated. A delegated
obligation obld extends obl tuple with one additional element w, that is obld = ⟨u, a, i, w⟩,
where w is a user obligated to take action a during the time period i, whereas u is the
original user taking responsibility for the fulfilment of obld . Specifically, suppose that a
delegation request deleg(obl ,W ) is evaluated at time t, then this results in updating obl as
obld , where obld = ⟨u, a, (t + 1, te), w⟩. We assume that u is no longer able to fulfil obld
once it is generated, and only w can, that is because our incentives schemes introduced in
Sect. 3.3 would make u fulfil the obligation herself if she is capable to do so. However, user
u may take some penalty if obld goes violated, thus keeping u in the data structure provides
convenience for linking it to Hobl .

3.2 Updating Obligation Trust

We now explore how to incentivise users to discharge delegated obligations when delegations
described above occur in the system. In such cases, it is not straightforward to give an ap-
propriate assignment of blames or rewards to individuals who are involved in the delegation
process.

6



Let us first clarify the notion of responsibility with respect to an obligation. Given an
obligation obl = ⟨u, a, i⟩, we say that u is held responsible for fulling the obligation. If obl
goes violated, the responsible user u should be blamed for the failure. However, when a
delegated obligation obld = ⟨u, a, i′, w⟩ arises, we must determine to what extent u is held
responsible for obld . Broadly speaking, there are three possible cases: retain, share and
transfer.

Retain The first retain case means, following a successful delegation of obligation, user u
is still solely responsible for obld . If w does not complete the obligation within the
time interval i′, w is not going to be blamed but u will. It is obvious that, in this
case, there is no incentive for w to fulfil obld , and thus we will not further study it in
this paper.

Share The share of responsibility means, after successful delegation, responsibility for ful-
filling the obligation concerned is shared between u and w. In other words, both u
and w are held responsible for making obld being fulfilled.

Transfer In the transfer case, when the delegation succeeds, the responsibility for fulfilling
obld is transferred to the delegatee w; in particular, the delegator u is no longer held
responsible for obld .

For the share and transfer cases, it is interesting to explore a number of ways for assigning
rewards and blames to both u and w, in order to incentivise obld to be fulfilled. This is
achieved by proposing different ways of updating obligation trust for u and w as follows.

Given a delegated obligation obld , there are two users involved: delegator u and delegatee
w. We introduce two weighting functions fr : {u,w} → [0, 1] and fs : {u,w} → [0, 1],
where fr(u) + fr(w) = 1 and fs(u) + fs(w) = 1. With the weighting function fr, the full
positive update value of 1 is distributed among users u and w. The function fs serves
the negative update among u and w in an analogous fashion. More specifically, given a
delegated obligation obld and weighting functions fr and fs, we update r and s for users u
and w as follows:

(ru, su) =

{
(ru + fr(u), su) if obld is satisfied

(ru, su + fs(u)) otherwise
(4)

(rw, sw) =

{
(rw + fr(w), sw) if obld is satisfied

(rw, sw + fs(w)) otherwise
(5)

The two weight functions provide great flexibility on designing a number of possible ways
of updating r and s for both users u and w to different degrees. We discuss the flexibility
with the following four approaches: the first approach responds to the case of transfer of
responsibility whereas the rest of the three approaches address the sharing of responsibility
case.

1. The first approach reflects that w is only user taking responsible for the fulfilment
outcome of obld . More specifically, if w satisfies obld , the system counts it as one
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positive evidence added to rw (fr(w) = 1), and there is no update on ru (fr(u) = 0).
On the other hand, if w violates obld , then the negative evidence is only added to sw
(fs(w) = 1), not to su (fs(u) = 0). It means that u transfers the responsibility of
fulfilling obld to w when the delegation succeeds. This may be acceptable to w, as
w takes advantage of this to “repair” her positive evidence. However, as the system
get evolved, when w sees herself not be able to fulfil obld , she may choose to further
delegate it to someone else, as she does not want to be penalised with the negative
evidence being incremented. We will explore the situation of cascaded delegation in
Sect. 3.5.

2. When considering sharing of responsibility between u and w, it is not necessary to hold
u and w equally responsible for the fulfilment outcome of obld . This is the approach
we consider here. Unlike the first approach, if w violates obld , then the system counts
it as one negative evidence added to su (fs(u) = 1), while sw (fs(w) = 0) remains
unchanged. Like the first approach, if obld is satisfied, one positive evidence is added
to rw only (fr(w) = 1 and fr(u) = 0). This way of updating obligation trust possesses
two appealing characteristics:

• User w is incentivised to satisfy obligations for others, because this helps to repair
its obligation trust rating by increasing its rw value;

• If u decides to delegate an obligation to others, then u needs to choose an ap-
propriate user so as to ensure that its own su would not increment.

Note that this approach is not without its problems. It may lead u to only delegate
obld to someone w who she knew, because, for any stranger w, there is no negative
impact on w’s trust rating if obld goes violated. In other words, the incentive for w
to fulfil obligations for others is weak in this setting.

3. We now look at a situation in which the weight is evenly divided between u and w,
holding them equally responsible for the fulfilment of obld , that is fr(u) = fr(w) =
fs(w) = fs(u) = 0.5. If w satisfies obld , ru = ru + 0.5 and rw = rw + 0.5. Likewise,
if w violates obld , su = su + 0.5 and sw = sw + 0.5. However, someone may argue
that this approach leads u being unfairly rewarded: u may never fulfil obligations for
herself or others, but her obligation trust is still increasing due to all obligations for
which she is originally responsible are being fulfilled by others.

4. We can rectify the unfairness of the third approach by adjusting the weighting function
that gives one positive evidence to w (fr(w) = 1) when obld is discharged by w. If
obld goes violated, u and w are equally penalised by adding 0.5 to their s parameters
(fs(w) = fs(u) = 0.5). Of course, we can slide a bit more negative weights on either
direction - towards w or u, for example, setting fs(u) = 0.6 and fs(w) = 0.4. However,
the principle is that both u and w should be blamed if obld is violated.

Following the discussion of the four approaches to updating obligation trust, we believe
that the weights setting at the fourth approach is the most appropriate one in terms of
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incentivising w to fulfil obld with respect to the sharing of responsibility, whereas the first
approach is the straightforward one corresponding to the transfer of responsibility. We
report our experimental results on the effects of these two approaches in Sect 4.

3.3 Earning Reward Credits

In essence, the four approaches being discussed focus on the ways of updating obligation
trust for users involved in the fulfilment of delegated obligations. However, it is not clear
why a user who has high or full obligation trust is willing to accept a delegated obligation
and discharge it within a deadline. This in fact leads to a more fundamental question:
What is user’s obligation trust used for?

Before addressing this question, let us extend the structure of obligation to include
an element, called reward credit. That is, obl = ⟨u, a, i, c⟩, where c ∈ R is reward credit
associated with obl . It means, when obl is fulfilled by u, u is rewarded with the credit c.
Of course, u would not receive c if obl goes unfulfilled. For ease of exposition we consider c
to be a constant for every obligation. Similarly, obld is extended to be ⟨u, a, i′, c, w⟩.

We then take some ideas from the Principal-Agent model [15] to propose an incentive
mechanism that utilises each user’s obligation trust. If a user decides to delegate one of her
assigned obligations to someone else, she has to pay the delegatee some of the reward credit
associated with the obligation. Likewise, if a user is willing to take some effort to fulfil an
obligation for others, her effort should be paid off by some credit from the obligation. Our
basic idea is that a user whose obligation trust is high can charge relevantly more credits,
while a user whose trust rating is low receives relevantly less credits.

Formally, suppose that a delegated obligation obld is discharged by user w and c is a
reward credit associated with obld , w’s payoff (or “utility”) is π = c× T (w), where T (w) is
w’s obligation trust. This serves as an incentive for users to fulfil obligations for others not
only to earn credits but also to bring up their trust rating in order to earn more credits in the
future. From delegator u’s point of view, u’s payoff (or “profit”) is the difference between
the credit c associated with obld and the credit paid to delegatee w, that is ϕ = c − π. A
user w, for example, has a full trust rating (T (w) = 1) can earn the whole credit c, thus
there is no payoff left for u.

For simplicity, we assume that u is rational with an objective of choosing a delegatee w to
maximise her payout ϕ. Choosing a user w who has the least trust rating indeed maximises
ϕ, but has a high risk that obld will go violated, leading to losing credit c completely and her
obligation trust being reduced, for the case of share responsibility. Let us look at a simple
example to examine the possible choices of u in more details. Given a delegated obligation
obld whose reward credit is c = 100, there are three users w1,w2, w3 eligible to accept obld ,
where T (w1) = 0.2, T (w2) = 0.6, T (w3) = 0.3. Hence u can earn a payoff ϕw1 = 80,
ϕw2 = 40 and ϕw3 = 70 by choosing w1, w2 and w3 respectively. In other words, u has
probability of 0.2 of earning 80 credits by delegating obld to w1; 40 credits with probability
of 0.6 by delegating obld to w2; 70 credits with probability of 0.3 by delegating obld to w3.

With this example, which user w1, w2 or w3 should u delegate obld to? We define three
types of delegator u with respect to their risk preference when choosing w:
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• Risk-averse delegators: This type of user u prefers to take a low uncertainty on whether
delegated obligations will be satisfied, thus she always choose a delegatee w whose trust
rating is high but with a low return of payoff (credits). This type of u would choose
w2 as a delegatee for the example above.

• Risk-seeking delegators: This type of user u is willing to take a greater uncertainty on
the obligation fulfilment in exchange for the potential of higher return of credits. In
other words, u would choose w with least trust rating in order to receive the highest
payoff. A risk-seeking u would choose w1 as a delegatee.

• Risk-average delegators: This type of user u is seeking a choice that achieves a great
balance between return of credits and likelihood of obtaining the return. Taking the
example above, u first calculates 1

3

∑3
i=1(ϕwi × T (wi)) = 20.33 and then chooses w3

whose value ϕw3 × T (w3) = 21 is closest to 20.33.

In Sect. 4, we run experiments to evaluate the performance of earning credits by the
three types of delegators.

3.4 Eligibility of Delegatees

With the credit reward scheme introduced above, delegators would only wish to delegate
obligations to others when they are legitimate to do so, because, compared with discharging
obligations themselves, they are worse off in terms of earning credits by letting others fulfil
their obligations. However, from the delegatee’s perspective, they may wish to earn as much
credits as they can by fulfilling obligations for others. When a delegation request for an
obligation arises in the system, the system may want to restrict who are the eligible users
to bid for accepting the obligation. We certainly want to exclude a user who already has a
large number of active obligations whose deadlines clashed with the one at request.

Figure 1: A schedule for w at t4

We introduce a mechanism that establishes a schedule for each user in the system in
terms of their assigned obligations. A schedule of a user w is a kind of look-up table that
is indexed by time clocks. When an obligation is assigned to w, its fulfilment deadline te
is marked in the schedule. Fig. 1 shows an example of schedule for w where there are two
obligations whose deadline is at t4, four obligations at t8, and five obligations at t10.

We also implement a restricted window of size n on the schedule, where n indicates the
number of time clocks the system would look at, in order to determine how busy w is within
the window. Then we can define a threshold h: The system may say that w is not eligible
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to accept more obligations if the number of marks within the window n exceeds h. This
tends to encode rules such that “you cannot work more than h hours in the next n days”.
Take the example in Fig. 1, suppose that h = 11 and n = 7, when an obligation obl arises
in the system at t4, user w is not allowed to bid obl , because her current active obligations
within the current window n = 7 (shown in dotted boarder in Fig. 1) reaches the threshed
h = 11. Of course, we can restrict that h ⩽ n in case that each time clock is only allowed
to complete one obligation. For example, if we set h = 5, then it means that within the
next time window n = 7, the number of active obligations should not exceed 5.

Having defined criteria for assessing whether or not a user is eligible to accept a delegated
obligation, we are now in a position to confirm the computation for Step 2 of the delegation
protocol introduced at Sect. 3.1. We can also see that how u chooses a delegatee w at Step
3 of the protocol depends upon their risk preference on earning credits.

3.5 Cascaded Delegation of Obligations

There are some situations where the obligated user w may wish to further delegate obld to
a third user who is better qualified to fulfil obld . Take the example of Fig. 1, user w, at t6,
may realise that she is no longer able to discharge one of her previously awarded obligations,
whose deadline is at t10, and then she sends out a delegation request for the obligation in the
system at t6. Such a delegation chain is formed when an obligation is delegated from one
user to another, who in turn delegates the obligation to a third user, and so on. We model
the delegation chain by generalising the data structure of delegated obligations as obld =
⟨u, a, (ts, te), c, ⟨w⟩ki=1⟩, where ⟨w⟩ki=1 is a sequence of users with the index running from i = 1
to i = k. For example, obld = ⟨u, a, (ts, te), c, ⟨w⟩3i=1⟩, where ⟨w⟩3i=1 = ⟨w1, w2, w3⟩ and w3

is the fourth user in the delegation chain, since the first user in the chain would always be
the originator u. Note that, given obld = ⟨u, a, (ts, te), c, ⟨w⟩3i=1⟩, ts is the time obld awarded
to w3, which should not be close to te yet, otherwise w3 would not have sufficient time to
fulfil it. When it is clear from the context, we also write dc = ⟨u,w1, . . . , wk⟩ to denote a
delegation chain.

Let us now examine whether we need to adjust the incentive mechanism in face of del-
egation chain. The first one is about how to update obligation trust for users appearing
in a delegation chain. For the case of transfer of responsibility, we take the straightfor-
ward approach that gives one positive update to the last user wk who fulfils the obligation
obld , whereas giving one negative update to wk if obld is violated. However, for the share
responsibility case, we believe that it is sensible to update our trust in users in the dele-
gation chain to various degrees, in order to reflect that a particular outcome of obligation
fulfilment (satisfied or violated) should not reflect equally on all the users’ responsibilities
for this outcome, and therefore on their trustworthiness. More specifically, we apply the
full weight 1 to the last user who discharged the obligation. If the obligation goes violated,
we apply an increasing proportion of weight along the delegation chain. For example, the
last user in the chain receives the most negative weight added to her s evidence parameter,
while the originating user (the first one in the chain) is given least negative weight. Given
a delegation chain dc = ⟨u,w1, . . . , wk⟩, and vj ∈ dc where j denotes a position in the
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sequence dc, we compute the negative weight added to sj as:

2× j

|dc|2 + |dc|

where |dc| is size of the delegation chain dc. Given obld = ⟨u, a, (ts, te), c, (w)3i=1⟩, it may
not be possible for the originating user u to know in advance that w1 will sub-delegate obld
to w2, and in turn w1 would not know w2 will sub-delegate obld to w3. Thus it may not be
fair to penalise u equally as the last user w3 who failed to fulfil obld . In other words, users
at the back of chain who are willing to bid the obligation should bear more responsibilities
for fulfilling it.

u
w1 w2

w3

c=100

p(w ) = 0.3
c  = 30

 1
 1

p(w ) = 0.5
c  = 15

2

2

p(w ) = 0.8
c  = 12

3

3

risk seeking
risk average ris

k a
ve

rs
e

Figure 2: An example of a delegation chain

With respect to earning reward credits by users in the delegation chain, we take our
previous approach that a delegator needs to pay the delegatee’s effort in fulfilling obligations.
However, the amount of reward credits available to earn decreases along the delegation chain.
Take an example of a delegation chain shown in Fig. 2, where w3 can only earn 12 credits
(T (w3) × c2) despite her trust rating being high (T (w3) = 0.8), that is because w2 herself
only has 15 credits to give away, and this 15 credits is what she earned from c1 (T (w2)×c1).
The best position here is u who can earn 70 credits if the obligation is eventually fulfilled
by w3. We can see that c2 is relevantly low, which means it does not have much credits to
earn in c2, and thus is may be difficult to attract anyone to bid for fulfilling the obligation.
This is reasonable because it indirectly forces w2 to fulfil the obligation as a priority, rather
than sub-delegating it. Unless there exists someone w3 who only cares about increasing her
obligation trust, not on how much credits she can earn from fulfilling the obligation.

When comes to risk perception of users in the delegation chain, our scheme provides
great flexibility. That is, each user in the chain is free to take their own decision on how
to choose a delagatee w. The decision can be made on the basis of their perception of
which risk preference (risk-averse, risk-seeking, or risk-average) is the most appropriate one
at a particular position of the chain. This results in a delegation chain where various risk
preferences are adopted by users along the chain. Let us revisit the example in Fig. 2, where
u took a risk-seeking approach for choosing w1 in order to maximise her credit return 70,
while w1 took a risk-average approach when choosing w2. User w2 tends to choose someone
w3 who is most likely to fulfil the obligation by taking the risk-averse approach. We will
be running experiments to confirm the performance of obligation fulfilment when allowing
such a flexible cascaded delegation versus one-hop delegation only.
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4 Evaluation

We developed a simulated multi-agent system to run experiments for evaluating our ap-
proach as described above. To provide an accurate assessment of our incentivising mecha-
nisms, we simulate agent behaviour to closely resemble real-life user behaviour. Note that,
for consistency with the agent-based environment, we refer to users in our model as agents
in this section. In the following, we first outline our experimental framework and then
present and analyse our experimental results. Finally, we implement the modified ϵ-greedy
algorithm within our framework and compare its performance with our models.

4.1 Experiments

4.1.1 Experimental Setup

In our experiments, we create a fixed number of agents of 100, which is split into three
groups with roughly equal in size: 33 risk-seeking agents, 33 risk-averse agents and 34 risk-
average agents. We make the system generate 3000 obligations every 50 time ticks. Each
obligation is randomly assigned to one of the 100 agents, and its fulfilment window te − ts
is different, ranging from minimum 30 time ticks to maximum 80 time ticks.

At every time tick, there are a number of possible actions an agent can choose to take:
acting on active obligations, bidding for delegated obligations or taking a rest (do nothing).
We believe that it is reasonable to take into account the following assumptions on the setting
of agents’ behaviour:

• When an agent exhibits a “busy” status at a particular point of time, reflected by
a large number of active obligations, the system should, at that time tick, make the
agent highly likely act on these obligations and less likely participate in bidding other
obligations.

• On the other hand, when an agent has fewer active obligations, the system should as-
sign the agent a high probability of bidding obligations while relatively low probability
of acting on the outstanding obligations.

Given an agent u, we write P u
t (act) to denote the probability that agent u acts on the

active obligations at time tick t. We write P u
t (bid) and P u

t (rest) in an analogous fashion.
We require that P u

t (act)+P u
t (bid)+P u

t (rest) = 1. We set a fixed value for P u
t (rest) as 0.2,

which represents that every agent always has an equal chance 0.2 of taking a rest at every
time tick. In other words, we always have P u

t (act) + P u
t (bid) = 0.8.

We then define the eligibility criteria for bidding by setting the restricting window n
as 50 time ticks and the threshold h as 40, which means an agent is not allowed to bid
if her active obligations exceed 40 within the next 50 time ticks. Let mu

t be a number of

active obligations for agent u at time t. We compute P u
t (act) =

mu
t
h × 0.8. Suppose that

an agent u’ active obligations reaches the threshold at time t, that is mu
t = h, then we

have P u
t (act) = 0.8, while P u

t (bid) = 0.8 − P u
t (act) = 0. It means u will not participating
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in bidding at time t. In short, as the system evolves, P u
t (act) and P u

t (bid) have dynamic
updates between each other, which automatically enforces the eligibility criteria for agents
to bid.

4.1.2 Interpreting Acting on Obligations

We are now in a position to interpret the action of acting on active obligations as two
separate concrete actions for agents: fulfilling obligations and delegating obligations. In
other words, we split P u

t (act) into P
u
t (ful) and P u

t (del), that is P
u
t (act) = P u

t (ful)+P u
t (del),

where P u
t (ful) represents the probability that agent u fulfils an active obligation at time

t, while P u
t (del) represents the probability that u sends a delegation request at time t to

the system for other agents to bid. In fact, P u
t (ful) has exactly the same semantics as u’s

obligation trust rating, and thus we can compute P u
t (ful) as Tt(u)×P u

t (act). We then have
P u
t (del) = P u

t (act)− P u
t (ful).

Having set up the probability of taking each possible action at every time tick, we
classify the 100 users into another three groups with respect to their profile of managing
obligations: diligent, potential and unmotivated. The three profiles are reflected by the
different assignment of prior trust values θ with 0.6, 0.4, 0.2 respectively. Table 1 provides
an interpretation of the three profiles when the system boots up. It can be seen that, given
an agent u and the number of active obligations m1 being assigned to u at time t1, she
would take m1

h × 0.8 chance of acting on the active obligations, 0.8 × (1 − m1
h ) chance of

participating in bidding an obligation, and 0.2 chance of not taking any action. When
breaking the probability of acting on obligations into the likelihood of fulfilling obligations
and the likelihood of delegating obligations, we need to consider the agent’s profile. For
example, a user u belonging to the potential profile has initial trust rating of T (u) = 0.4.
Hence, at time t1, she would take 0.4 × (m1

h × 0.8) chance of executing an obligation and
0.6× (m1

h × 0.8) chance of delegating an obligation. Of course, when the system evolves, all
of these probability values get dynamically change, relying on their performance of fulfilling
obligations.

With our setting above, the system now has in total nine types of users representing
different behaviour in terms of fulfilling obligations and choosing delegatees. For example,
a diligent agent has three possible ways of choosing delegatees: risk-seeking, risk-averse and
risk-average. It is the same for potential and unmotivated agents.

Profile ID
Acting on obligations

Bidding obligations Doing nothing
Fulfilling obligations Delegating obligations

Diligent 0.6× (m1
h × 0.8) 0.4× (m1

h × 0.8) 0.8× (1− m1
h ) 0.2

Potential 0.4× (m1
h × 0.8) 0.6× (m1

h × 0.8) 0.8× (1− m1
h ) 0.2

Unmotivated 0.2× (m1
h × 0.8) 0.8× (m1

h × 0.8) 0.8× (1− m1
h ) 0.2

Table 1: Agent’s behaviour at time t1
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4.1.3 Implementing the Delegation Protocol

We implement a communication protocol between agents for managing the delegation pro-
tocol defined in Sect. 3.1. This communication protocol runs in parallel to each possible
action taken by an agent defined in Table 1. It takes 1 time tick for announcing a delegation
request. We implement a time window [ti, tj ] allowing multiple agents to bid, which means
it will not accept any bid after tj . The length of the bidding window [ti, tj ] is defined as
10% of the remaining time ticks of a delegated obligation. For example, if an obligation has
100 time ticks left before it becomes violated, then we make the bidding window having 10
time ticks. Note that we set 1 time tick (tj + 1) for confirming a successful bidder.

We also implement the transfer and share responsibility cases described in Sect. 3.2 on
updating obligation trust and computing credits for one-hop delegation as well as cascaded
delegation.

4.1.4 Adding Incentives

Unlike humans, agents themselves would not proactively earn credits by fulfilling obligations
unless there exists an incentive motivating them to do so. For example, given an unmoti-
vated agent u at time t1 whose trust rating is T1(u) = 0.2, and assume that u has outstanding
obligations mu

t1 = 20 which makes P u
t1(act) = 0.4, we can compute P u

t1(ful) = 0.2∗0.4 = 0.08
meaning that the agent only takes 8% chance of fulfilling obligations at time t1. As the sys-
tem evolves, some of u’s outstanding obligations would become violated due to low P u

t1(act)
starting off, which results in P u

t (act) going even further down whereas P u
t (del) is increased.

In other words, agent u ends up delegating obligations to others at most of the time and
barely fulfilling any obligation herself. This suggests that agents need an incentive to make
their P u

t (ful) go up gradually as the system evolves.
Our approach to providing an incentive is to shift a value from P u

t (del) to P u
t (ful) at

every 50 time ticks, and the amount being shifted is determined by the credit growth rate of
agent u during this period. In other words, we compute the credit growth rate by comparing
the agent’s credit, for example, at t50 with her credit at t1, that is (cut50 − cut1)/c

u
t1 . We

introduce an exponential decay function f(x) = e−2x, where e is Euler’s constant, x ∈ [−1, 1]
represents the credit growth rate, and f(x) indicates the corresponding value that needs
to be shifted from P u

t (del) to P u
t (ful). We can see from Fig 3 that, if the agent’s credit

growth rate is negative, a proportionally large f(x) value is shifted from P u
t (del) to P u

t (ful).
If the growth rate is positive, then a proportionally small value is shifted to P u

t (ful). Of
course, we normalise the f(x) value as s ∈ [0, 0.8] for shifting, that is computing P u

t (del)−s
and P u

t (ful) + s. In summary, our incentivising approach here is to keep P u
t (ful) with a

proportional increase at every 50 time ticks.
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Figure 3: An exponential decay function for changing trust rating

4.2 Results

4.2.1 The Effect of Incentives

We run the above settings for 3000 time ticks, which generates 180, 000 obligations in total.
We now compare the results with respect to the following cases:

• Delegation with no incentive: This case considers the opportunity of allowing delega-
tion to occur, which leads to agents’ behaviour defined in Table 1 getting dynamically
changed over the time. In order to make a comparison, we check the obligation fulfil-
ment rate for the transfer of responsibility and the share of responsibility cases. As we
expected, Fig. 4 shows that the fulfilment rate for both cases is similarly low, about
35%. That is because, with no incentive imposed, agents’ trust rating goes down
over the time, resulting in more and more obligations being violated. The change of
agents’ trust rating is illustrated in Fig. 5a and 5b. We can see that, for the transfer
case, diligent agents’ trust rating drops significantly at initial 1000 time ticks and then
stabilises around 0.35 during the remaining times. However, for the share case, the
trust rating of diligent agents goes down gently over the time from 0.6 to 0.38. Note
that the change pattern of trust rating for both potential and unmotivated agents is
consistent for the share and transfer cases.

• Delegation with incentives: This case takes into account the incentive mechanism we
introduced within our experimental settings. Basically, the likelihood of each user
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to fulfil obligations gets increase over the time because of the incentive to increasing
their trusting rating with the exponential decay function. Fig. 5c and 5d show that,
for both transfer and share cases, the trust rating of diligent users does not fall but
instead levels off around 0.6 over the time. This is because their credit growth rate
has been keeping as positive and most likely that the increase of their trust rating
at every 50 time ticks has gradually reached the limit (as seen little change of the
f(x) value when x ∈ [0.5, 1] in Fig. 3). In comparison, the trust rating of both
potential and unmotivated agents has went up (with a significant grow for unmotivated
agents) to around 0.52 for both transfer and share cases. This demonstrates that
our incentivising mechanism takes a great deal of effect, resulting in the number of
obligations being fulfilled (reaching 68%) as shown in Fig. 4

Figure 4: A comparison for obligation fulfilment

• Cascaded delegation with incentives: This case relaxes the restriction on the one-hop
delegation to support all the features of cascaded delegation introduced in Sect. 3.5.
An agent, at every time tick, has a P u

t (del) chance of choosing to further delegate an
obligation that has been previously delegated to her, provided that the obligation has
reasonable fulfilment window remaining (we set at least 40% of the original window
as a condition). With the incentive mechanism employed, Fig. 4 shows another great
result (67%) on the percentage of obligations being fulfilled. Looking at the change
of trust rating for the different types of agents, Fig. 5e and 5f show little difference
on the increase tread in comparison with the ones in Fig. 5c and 5d.

4.2.2 Further Analysis

Our experiments produce a rich set of data capturing the behaviour of nine different types
of agents with respect to fulfilling and delegating obligations. We would like to do further
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(a) The transfer case - no incentive - one hop (b) The share case - no incentive - one hop

(c) The transfer case - incentive - one hop (d) The share case - incentive - one hop

(e) The transfer case - incentive - cascaded (f) The share case - incentive - cascaded

Figure 5: The change of agents’ trust rating over 3000 time ticks
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(a) The share case - incentive enabled - one hop (b) The share case - incentive enabled - cascaded

Figure 6: The fulfilment rate of delegated obligations for nine profiles of agents

analysis on the data in order to verify some intuitive features of our model.
Let us take a look at whether or not agents with different risk profiles indeed exhibits

different fulfilment ratios for their obligations being delegated. Fig. 6a shows results for the
share case with incentive employed for one-hop delegation. We can see that agents who are
taking a risk-averse approach always achieve the highest fulfilment rate (about 46%) for
their obligations being delegated, no matter how diligent they fulfil obligations themselves.
That is because they always choose a delegatee among others, who is most likely to fulfil
the delegated obligation. Similarly, agents with risk-seeking profiles are always making
the lowest fulfilment rate (about 41%), while agents with risk-average sit in the middle
achieving around 44% fulfilment rate for their delegated obligations. Fig. 6b also shows the
same pattern for the fulfilment rates of delegated obligations for the cascaded case.

Secondly it would be interesting to observe whether there exist differences between the
transfer and share cases. We make a comparison between these two cases against a number
metrics including the fulfilment rate of delegated and non-delegated obligations, trust rating
and earned credits. However, we cannot see an obvious sign that one case’s performance
is outweighed by the other. For example, as illustrated in Fig. 4, the fulfilment rate for all
obligations in the share case is only slightly different compared to the one for the transfer
case.

When making a comparison between cascaded delegation and one-hop delegation, at first
glance, there is no obvious difference between them in terms of the number of obligations
being fulfilled, as showed in Fig. 4. On the number of delegated obligations being fulfilled,
Fig. 6a and 6b show that the one-hop delegation case performs slightly better than the
cascaded delegation case. This is because agents who involved in cascaded delegations may
have different profiles, causing unstable trend in fulfilling those obligations. Furthermore,
when looking into the data about the fulfilment of awarded obligations, we observe some
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interesting differences for these two types of delegation. Let us take an example of the
share case in which the incentive is imposed, Fig. 7 shows that the unmotivated agents make
much more awarded obligations being violated in the one-hop delegation case in comparison
with the corresponding number of violation for the cascaded delegation case. Intuitively,
the unmotivated agents, in the cascaded case, often delegate awarded obligations further
down the chain to potential or diligent agents, thereby these agents have a better chance
to discharge the obligations. In contrast, diligent agents, who have risk-seeking profile in
particular, have less awarded obligations being violated in the one-hop delegation case.
This is due to the fact that the cascaded case give diligent users opportunities to earn more
credits by delegating obligations further to less trustworthy (potential and unmotivated)
agents who may eventually violate the obligations. The same pattern is available for the
potential agents as seen in Fig. 7. We can also clearly see that unmotivated agents lead to
much more awarded obligations being violated than the number of potential and diligent
agents.

In summary, the analysis of our experimental results reveal the following guidelines,
which provide important insights when implementing our models in practice.

• One-hop delegation with incentive is the preferred option in comparison with the
cascaded delegation, since the cascaded delegation adds more complexity in forming a
delegation chain to fulfill a delegated obligation but it does not offer a better fulfilment
rate of obligations overall.

• A system incorporating our incentive model is free to choose either the transfer of
responsibility for delegation or the share of responsibility for delegation, because both
cases exhibit a very similar performance in all metrics.

• It is recommended to implement all the three risk profiles for choosing delegatees.
While agents with different risk profile have slight different performances in terms
of fulfilling delegated obligations, that difference can be neglected in comparison to
versatility that is available for agents to earn credits.

4.3 In Comparison to the ϵ-Greedy Algorithm

To the best of our knowledge, the only comparable work to what we have developed is
by Afanador et al. [1] who considers the problem of cascaded delegation as a recursive
Multi-Armed Bandit (MAB) problem. They evaluated the effectiveness of several modified
MAB algorithms, including the ϵ-greedy, Thompson sampling, and the Upper Confidence
Bound (UCB) algorithm, in the cascaded delegation settings. In this section, we choose to
implement their ϵ-greedy algorithm in our simulated multiple-agent systems and compare
its performance to ours, because the ϵ-greedy algorithm typically represents the features of
the MAB approach.

The ϵ-greedy algorithm [26] is a simple method for balancing exploration and exploita-
tion by selecting a random agent to delegate to with a probability of ϵ (exploration), while
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Figure 7: The number of awarded obligations being violated for the one-hop delegation and
cascaded delegation

choosing the agent with the highest historical success rate with a probability of 1 − ϵ (ex-
ploitation). With the algorithm, a delegating agent makes a decision on choosing which
agent to delegate to on the basis of the expected utility of such a delegation. For example,
agent A needs to delegate an obligation, and has 3 neighboring agents: B , C , and D . Each
agent has a certain expected utility for fulfilling or onward delegating the obligation. Using
the ϵ-greedy algorithm, agent A will take a probability of ϵ to explore by choosing one of B ,
C , or D at random. With probability of 1 − ϵ, agent A will exploit by choosing the agent
with the highest estimated utility (based on previous successful fulfilment of obligations). If
agent A chooses to delegate to agent B , then agent B may either execute the obligation or
delegate to one of its own neighbors, again using the ϵ-greedy algorithm. After the obliga-
tion is fulfilled, the actual utility is recorded, and the estimates for the agents involved are
updated, refining future delegation decisions. The algorithm uses a recursive approach to
calculate the utility of every possible delegation throughout multiple agents in a network.
The goal is to create an optimal chain of delegations from the delegating agent to other
agent in the network.

To ensure fair and accurate comparative results, our approach and the ϵ-greedy algo-
rithm must be implemented in the same simulated multi-agent environment. Therefore, we
made several adjustments to our experimental framework. First, we arranged the 100 agents
in a 10 × 10 grid to establish interconnections among them. In our approach, whenever a
delegating agent (delegator) broadcasts an obligation request, only the directly connected
agents receive the announcement, and they will see whether they are eligible to bid based
on the bidding criteria. The delegator will consider only those who submitted the bid. This
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(a) Trust rating - our approach (b) Trust rating - ϵ-greedy

Figure 8: The change of agents’ trust rating

adjustment is reasonable for our approach, as we can simply treat the interconnected agents
as a group that is formed with similar competence in fulfilling obligations. In contrast, the
ϵ-greedy algorithm requires to build such a network of connected agents as part of its in-
put. This is, in fact, one of the limitations of the ϵ-greedy approach, as it requires complex
recursive calculations to obtain an utility for each possible delegation across the network of
agents. To mitigate these complex recursive calculations, we made a second adjustment by
limiting the depth of the delegation chain to five. In other words, in the ϵ-greedy algorithm,
once the visited chain reaches a depth of five, the node is treated as a leaf node, and its
neighbouring nodes are no longer visited. For our approach, a delegation depth of five is
sufficient to capture all of its design features without compromising functionality.

Note that our approach and the ϵ-greedy algorithm differ in how delegatees are chosen
in the cascaded delegation setting: In our approach, a delegator makes a local decision on
which agent to delegate an obligation to, based on the delegator’s risk profile (perception),
while the ϵ-greedy algorithm determines onward delegations by maximising expected utility
across a global network of agents. This means we can retain all the experimental setup
elements that are irrelevant to the delegation decision-making process, such as the agent
performance profiles (diligent, potential, and unmotivated), trust rating, reward credits, as
well as incentives (the exponential decay function f(x)).

When looking at the trust ratings of different types of agents in Fig. 8a and Fig. 8b,
the increasing trend for diligent, potential, and unmotivated agents is consistent between
our approach and the ϵ-greedy algorithm, which is due to the effect of the incentivising
mechanism f(x). However, there are a few subtle differences that we would like to highlight:
for diligent agents, the ϵ-greedy algorithm stabilises the trust rate at 0.6799, which is lower
than the results of our approach for all three risk profiles: risk-averse (0.6904), risk-seeking
(0.6870), and risk-average (0.6828). For potential agents, the trust rating stabilises at 0.6635
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(a) Our approach vs ϵ-greedy (b) Our approach (risk profiles) vs ϵ-greedy

Figure 9: The fulfilment rate of cascaded delegated obligations

using the ϵ-greedy algorithm, which is lower than the risk-averse (0.6729) and risk-seeking
(0.6784) profiles in our approach, but higher than the risk-average profile (0.6624). These
results indicates that the ϵ-greedy algorithm operates effectively within our experimental
framework.

The most anticipated result from comparing our approach with the ϵ-greedy algorithm
is shown in Fig. 9a, where our approach consistently achieves a higher fulfilment rate of del-
egated obligations compared to the ϵ-greedy algorithm across all three performance profiles
(diligent, potential and unmotivated). Fig. 9b presents additional results (fulfilment rates)
for agents with different risk profiles. For diligent and unmotivated agents, the ϵ-greedy al-
gorithm performs worse than any type of risk taker in our approach. However, for potential
agents, the ϵ-greedy algorithm only slightly outperforms the risk-average profile by a margin
of 0.001 but performs significantly worse than both the risk-averse and risk-seeking agents.
Fig. 9b also shows that there is no clear pattern indicating whether diligent, potential, or
unmotivated agents perform better than one another. This is expected, as the incentives
(f(x)) have a significant impact on increasing agents’ trust rating, and the majority of obli-
gations delegated from unmotivated or potential agents are fulfilled by diligent or potential
agents.

In summary, our experimental comparison results suggest that our approach outperforms
the ϵ-greedy algorithm in terms of the fulfilment rate of cascaded delegated obligations. This
demonstrates that adopting our approach leads to fewer obligation violations in the sys-
tem, which is the key goal of implementing obligation delegations. We would also like to
highlight one point regarding computational efficiency, as observed through our experiment:
Unlike the ϵ-greedy algorithm, which involves complex recursive computations over a net-
work structure, our approach enables a delegator to broadcast a delegation request to any
set of agents deemed appropriate, and choose an appropriate delegatee based on their own
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risk perception, demonstrating both efficiency and flexibility.

5 Discussion

While we have referred to the work of Afanador et al. [1] in our experimental study, it
is worth highlighting here some related approaches which attempt to address the issues
of obligation fulfilment. Also, of the significant experimental results we presented for our
models, we explore their practical applications by illustrating real-world scenarios where
these models can be applied.

5.1 Related Work

There has been considerable research on the frameworks for modelling and managing obli-
gations. However, to the best of our knowledge, no previous work has studied incentive
mechanisms for fulfilling obligations in the presence of delegation. In this section we are
going to review the existing work that are most closely related to ours and highlight the
novelty of our contributions.

Firstly, there exists a sizeable body of work on exploring interactions between authori-
sation and obligations. Irwin et al. [9, 16, 22, 23] formally study the problem of maintaining
accountability for system states when there exist dependencies between obligations, that is,
one or more obligations provide necessary privileges or resources to enable the fulfilment
of other obligations. A state is said to be accountable if the only reason for obligations
going unfulfilled is due to user’s negligence rather than a lack of necessary authorisation
or resources. In order to focus on incentive schemes for discharging obligations for others,
we assume that actions in the obligations are not subject to access control, and thus they
can always be fulfilled. Of course, one of interesting future work is to model and analyse
the accountability problem in our framework. Also there has been some work to structure
incentives that motivate users to fulfil obligations in access control systems. For example,
Chen et al. [7] look at a number of ways of applying obligations to account for the risk
incurred by granting access requests. Like ours, they proposed incentives for users to fulfil
obligations but the incentives are about granting users with risky access or restricting users
from future access. Baracaldo and Joshi [2] use obligations as a means to deter insider
attacks. Basically, one of conditions determining whether to grant an access request is to
evaluate how trustworthy of the requester in fulfilling an obligation resulting from granting
the access. Similar to ours, their approach to computing a trust value for each user is based
on user’s historical performance of fulfilling obligations, but their computation model is
more complex to account for strategic malicious users who adapt its behavioural pattern to
earn a high trust value.

Another strand of work close to ours is delegation of obligations or tasks. Schaad and
Moffett [24] identify the delegation of obligations as a recurring phenomenon in an organ-
isation context and propose policy constructs in Alloy to deal with delegation operations
and reviews. Specifically, when a subject delegates an obligation to another subject, the
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delegating subject loses its assignment to the obligation but a new review obligation is cre-
ated and assigned to her as a means to account for the delegated obligation. Unlike ours,
their work does not address how to incentivise and monitor subjects to fulfil their assigned
obligations. Ben-Ghorbel-Talbi et al. [3] use a logical method to define different kinds of
responsibilities when delegation of obligations is occurred, including functional responsibil-
ity, causal responsibility, liability and sanctions. However, there is no study of complexity
in terms of managing and reasoning with these responsibilities when a large number of del-
egation operations are granted and some of which may result in conflicting responsibilities.
Norman and Reed [20] present the use of the Hamblin logic capturing a responsibility-based
semantics of delegation, which provides a rich account of how responsibility is transferred,
acquired and discharged during and after delegation. In particular, their theoretical model
is able to capture the case of a task being delegated to a group and to analyse the consequent
responsibilities of each of the parties involved in the group. This inspires us to consider how
to incentivise users in a group to work in a collaborative manner to discharge a delegated
group obligation. Burnett and Oren [5] evaluate a number of different weighting strategies
which are used to update trust for individuals involved in a delegation chain. Unlike our
work, none of their strategies tends to incentivise users to executing tasks with the excep-
tion of Chen et al. [8]. This work explores some simple incentive mechanisms for users to
fulfil obligations for others but does not consider delegating the responsibility of fulfilling
the obligations. Also their experimental work is preliminary without thorough examination
of the proposed incentive mechanisms.

In short, we believe that our research is complimentary to some of the above mentioned
work by providing a fair rewarding scheme that encourages users to discharge obligations
for others, and conducting a series of controlled experiments with a simulated system and
a rigorous statistical analysis of the results.

5.2 Practical Considerations

Delegation of obligations is commonplace and naturally arises in the real world. In many
situations, an individual’s workload becomes overwhelming. To avoid failure, obligations
must be delegated to other team members. In the delegation process, it is essential to
consider why team members would accept the delegated obligation and how the delegator
selects the most suitable individual to ensure the obligation’s fulfilment. Our models are
designed with these factors in mind, and the results of our experiments confirm that our
models effectively tackle the issue of obligation fulfilment. In the following sections, we
introduce two scenarios to illustrate the practicality of our proposed models: one involving
one-hop delegation and the other focusing on cascaded delegation.

5.2.1 One-Hop Delegation in Team Collaboration

Context Sarah and John are both team members on a project with no seniority between
them. They are jointly responsible for ensuring that the project is completed on time and
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within budget. Sarah, feeling the pressure of a heavy workload, seeks to delegate some of
her responsibilities to balance tasks more evenly across the team.

Delegation Sarah and John discuss the team’s workload, and Sarah proposes that John
take full responsibility for conducting the weekly project status meetings. After clearly
communicating the objectives and providing necessary documentation, Sarah entrusts John
with complete control over this aspect of the project. From that point on, Sarah no longer
needs to be involved in preparing for or running the meetings.

Obligation Once John accepts the task, he is fully accountable for leading the meetings
and ensuring they are effective. Sarah no longer needs to manage or oversee this specific
duty. However, both Sarah and John will share in the credit for the successful outcome
of the meetings, as they are vital to the project’s overall progress. The completion of this
obligation is now entirely in John’s hands.

Incentive for John To motivate John to fulfill the obligation with excellence, both Sarah
and John agree that the success of the meetings will be recognized as a joint achievement,
factoring into their overall team performance evaluations. Additionally, if John manages
the meetings well, it can bolster his reputation as a strong contributor, opening the door to
future leadership roles or opportunities within the company. This shared recognition acts
as an incentive for John to fully engage in the task and ensures that both will benefit from
the successful management of the project.

Outcome With John handling the weekly meetings independently, Sarah is free to focus
on other key responsibilities. John, motivated by the shared credit and the potential for
professional growth, diligently fulfills his role. The project progresses smoothly, with both
team members benefiting from their complementary efforts. John’s ownership of the task
empowers him to demonstrate leadership, while Sarah can devote more time to high-level
project concerns.

5.2.2 Cascaded Delegation in Construction Project Management

Context In a large construction project, such as building a skyscraper, multiple team
members are responsible for different aspects of the project, but there is no formal hierarchy
or seniority between them. The project has multiple phases, from design to construction,
and involves collaborative decision-making and responsibility delegation across the team.
Each person is accountable for their tasks, and once a responsibility is delegated, the original
delegator is no longer involved in completing that specific obligation.

Primary Delegation In the initial stage, a team member (Alex) who is focused on the
overall project timeline and budget, takes on the responsibility of ensuring the foundation
is completed on schedule. However, due to other priorities, Alex decides to delegate this
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responsibility to another team member, Jordan, who has expertise in foundation work.
Before delegating, Alex evaluates the risk of whether Jordan will be able to complete the
task successfully. Alex takes into account Jordan’s track record, skill set, and workload, as
Alex knows that failure to complete the task will affect both of them.

Cascaded Delegation Jordan, now fully responsible for overseeing the foundation work,
realises that managing all aspects of it would be too time-consuming and decides to further
delegate specific duties. Jordan asks Morgan to oversee the day-to-day on-site work for
the foundation, including managing the schedule and quality of the construction teams.
Jordan provides Morgan with all the necessary information and documentation and hands
over full responsibility for this task. Jordan is aware that Morgan’s performance directly
impacts whether the foundation is completed successfully. If Morgan fails, Jordan will face
significant penalties, but Morgan will receive the harshest consequences as the person who
accepted the final delegation. Therefore, Jordan chooses Morgan carefully, assessing their
ability to deliver under pressure.

Further Delegation Morgan takes on the responsibility for the day-to-day oversight
but realizes that the project is too large to handle alone. Morgan decides to delegate
specific tasks related to different parts of the foundation work, such as concrete pouring,
rebar installation, and excavation, to Casey. Casey is now responsible for managing these
specific tasks, ensuring they are completed correctly and on time. Morgan knows that the
successful execution of these tasks is critical for completing the foundation. If Casey fails,
Morgan will face penalties for delegating the task poorly, but the greatest penalty will fall
on Casey. Morgan takes this risk into account before making the delegation, considering
Casey’s attention to detail and past performance.

Accountability and Penalties If the foundation work is completed successfully, every-
one in the delegation chain (Alex, Jordan, Morgan, and Casey) receives their proportion of
credits. However, if the foundation is not completed on time or fails to meet the required
standards:

• Casey, the last person in the delegation chain, will receive the most significant penalty,
as they were responsible for directly managing the critical tasks.

• Morgan, who delegated to Casey, will also face penalties, but they are less severe
because Morgan delegated responsibly based on an assessment of Casey’s capability.

• Jordan, who delegated to Morgan, will face a smaller penalty, as the failure occurred
further down the chain, outside their direct control.

• Alex, the original delegator, receives the least penalty because they delegated early on,
and the ultimate failure occurred after multiple layers of delegation and responsibility.
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Outcome In this model, each person carefully evaluates the risk before delegating tasks,
knowing that once the responsibility is passed on, they are no longer required to fulfil the
obligation but will still bear some responsibility if the task is not completed. The individual
at the end of the chain (Casey) carries the greatest risk and responsibility but also has the
most control over the task.

This approach ensures that while delegation can help distribute workload, everyone
remains incentivised to choose their delegate wisely and avoid passing the responsibility to
someone incapable of fulfilling the obligation.

6 Concluding Remarks

In this paper we argue that one effective means of managing obligation fulfilment is via
delegation of obligations. We propose a protocol for managing the delegation process that
involves with announcement, bidding and awarding steps. We further develop a model that
combines trust update with a credit rewarding scheme to incentivise users to fulfil delegated
obligations. We also explore how the incentive mechanism can be extended to the case where
cascaded delegation of obligations occurs. We develop a multi-agent system for all the fea-
tures of our model and run experiments on the system to evaluate the model’s performance.
In particular, we implement the incentive mechanism using an exponential decay function,
which enables agents to increase their probability of fulling obligations proportionality in
line with their past performance. We conduct a comprehensive analysis of our experimental
results to measure agents’s performances in terms of change of trust rating, fulfilment rate
of obligations, etc. We also compare agents behaviour and performance in the transfer
responsibility versus the share responsibility, as well as one-hop delegation versus cascaded
delegation. To highlight the novelty of our models, we implement the modified ϵ-greedy
algorithm from the work of Afanador et al. [1] within our experimental framework and
compare its performance with our models. The results suggest that our models outperform
the ϵ-greedy algorithm in terms of efficiency, flexibility, and the fulfillment rate of cascaded
delegations. Since our experiments have confirmed the advantages of our models, we explore
their practical applications by presenting two real-world scenarios.

One immediate future work is to investigate the interaction with authorisation when
delegation of obligation occurs. For example, when John delegates an obligation of preparing
the quarterly sales report to Charlie, Charlie may not have permission to view the sales
database. Who should grant the authorisation to Charlie: the system or John? What are
the security implications for doing so? We would like to take a formal approach to study
the balance between authorisation and obligation fulfilment.
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