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Analysing the Swing Equation using MATLAB Simulink
for Primary Resonance, Subharmonic Resonance and for

the case of Quasiperiodicity.

Abstract: The swing equation plays a significant role in the analysis of stability and frequency response
various power systems and mechanical systems. MATLAB Simulink simulates and analyses different
systems, including synchronous generators with various excitation methods. This research aims to study
the swing equation by modelling the system in Simulink. Swing equation analysis can be applied to tackle
power instabilities in the electrical grid, to avoid power outages by monitoring the small disturbances
that occur within the system. This paper shows the time series, phase portraits, and Poincaré maps
generated using data from the simulated model. It highlights the occurrence of period doublings which
lead to loss of synchronisation and the resulting instability in the system that descends into chaos when
the variables are changed in the Simulink model. The integrity diagrams were also identified for primary
resonance, subharmonic resonance, and quasiperiodicity, offering valuable information to understand the
system’s nonlinear behaviour. Using the swing equation in MATLAB Simulink provides a robust tool for
analysing, simulating, and optimising systems. Hence this study provides an enhanced understanding
of the system’s behaviour in Simulink for primary resonance, subharmonic resonance and for the case
of quasiperiodicity. Additionally, it validates the analytical and numerical findings from prior works by
the same authors.
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1 Introduction
The swing equation, which represents the
nonlinear behaviour of synchronous generators,
has been thoroughly examined in numerous
research studies in recent years. These
models are key for analysing the stability of
complex synchronous machines in dynamical
systems. Researchers have used Simulink to
create enhanced swing equation models to remove
simplifying assumptions, resulting in a more
precise depiction of system dynamics, [1], [2]. The
improved models have been employed to examine
the performance of synchronous generators in
various situations, such as when coupled to
steady loads or infinite buses, yielding valuable
information on stability and frequency regulation,
[3], [4]. Furthermore, MATLAB Simulink
provides clear visualisation when the different
excitation frequencies are then considered within
the systems, [5].

The swing equation studies and examines
the dynamical behaviour of the rotor of the
machine and small external disturbances, [2],
[6]. Also studies have shown that modifying
and altering certain variables in the equation

results in different behavioural patterns within
the system. Therefore, the system faces difficulty
coming to its original condition, exhibiting little
alterations that eventually lead to chaos within
the structure, [7]. Studying the core principles
of chaos theory will yield crucial insights for
managing the nonlinear system, [8].

Initially, the swing equation is modelled on
Matlab Simulink whereby primary resonance,
subharmonic resonance and quasiperiodicity are
examined when changing the excitation frequency
of the system. The produced results were then
compared and validated to the analytical and
numerical results obtained from previous works
of the same authors, [2], [6], [9], [10]. Different
values of Ω are considered and Poincaré maps
were plotted to compare the analytical methods
with Simulink model to obtain strong conclusions
for this study.

This work aims to comprehend the process
of modelling the swing equation using Simulink
and provide validation for the analytical
methodologies used to better the understanding
of academics and scholars. Hence, the objective
is to highlight advancements in this specific
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study of the swing equation using a Matlab
model and to focus on understanding this model
to offer new perspectives on ongoing concerns
regarding the stability of dynamical systems.

1.1 Brief Literature Review
MATLAB Simulink models are key in studying
intricate behaviour of the nonlinear systems. It
allows for modelling, simulation and thorough
analysis of complex power systems, [11]. These
provides engineers and researchers within the
electrical field to visualise the system on
the digital computer before implementing the
methods on the actual power grids, [12], [13].
Storage plants also use Simulink models to
understand the process at different speeds and at
variable loads providing assurance with the safety
within the systems, [14]. It helps in the modelling
and simulation of models, which in turn enables
the development of novel chaotic systems with a
wide range of dynamic behaviours, [15].

Within the domain of modelling on Simulink,
numerous investigations have then examined
diverse applications and methodologies. The
Simulink models have been used in diagnosing
faults in control systems and also simulate
power systems by breaking down the complex
components, [16], [17], [18], [19]. These models
also been utilised in studying the vehicle gearbox
and memristors in chaotic systems, [20],[21], [22].

This study also examines the integrity
diagrams for primary resonance, subharmonic
resonance and for the case of quasiperiodicity
when the variable is altered. An analytical
approach based on the isolated resonance
approximation can be used to obtain integrity
diagrams and determine their boundaries prior
to the occurrence of period doublings, [23], [24].
Stochastic Bifurcation limits are derived using
this method considering different amplitudes and
initial conditions, [25], [26]. It is also found
that attractors lose the stability without chaos
occurring within the system when a system goes
into bistable state, [27], [28].

Primary resonance is when the excitation
frequency of the system is approximately equal
to the natural frequency of the system , while
subharmonic resonance occurs when disturbances
are multiples of the natural frequencies. Both of
these resonances can result in system instability
and equipment damage, [29], [30]. Methods
such as the incremental averaging method and
numerous scales yield precise analytical solutions
that offer valuable insights into the resonant
behaviour of nonlinear systems, including Duffing
oscillators with different damping processes, [31],

[32]. Moreover, the investigation of subharmonic
resonance are used for diagnostic imaging withing
ultrasonic contrast agents, [33]. Quasiperiodicity
is when the ratio of the frequencies is an irrational
number. All three cases are studied through the
Simulink model. It is vital to study all three cases
to get a better understanding of the behaviour of
the swing equation system.

Bifurcation diagrams are a useful tool for
analysing integrity diagrams in dynamics, as
mentioned in various research publications. They
provide crucial information about the dynamical
behaviour of the system and the stability, [34],
[35], [36]. Hamiltonian systems use bifurcation
diagrams to study the intricate and chaotic
behaviour within this domain, [37]. Hence it
is important to consider and obtain bifurcation
diagrams for nonlinear systems in order to
understand the complexity of the structure to
provide an in-depth analysis for future research.

2 Methodology
2.1 Analytical Work
The swing equation is formulated from the Law
of Rotation which explains the motion of rotating
systems. It derived with the help of Newton’s
second law of motion in synchronous generators
and applied on the rotor of the swing equation.
The analytical work shown below studies both
mechanical and electrical torques on the rotor.
Previous study done related to this concept are
referenced by [2], [6], [9], [10].

The equation analysing the rotor’s motion of
the machine including a damping term is given
by [23].

2H

ωR

d2θ

dt2
+ D

dθ

dt
= Pm− VGVB

XG
sin (θ − θB) (1)

V B = VB0 + V B1 cos (Ωt+ ϕv) (2)

θB = θB0+ θB1 cos(Ωt+ ϕ0) (3)

with
ωR = Constant angular velocity,
H= Inertia,
D= Damping,
Pm= Mechanical Power,
VG= Voltage of machine,
XG = Transient Reactance,
VB= Voltage of busbar system,
θB = phase of busbar system,
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VB1 and θB1 magnitudes assumed to be small.

A deeper understanding of this equation is
essential to understand the concept of stability
and its dynamical behaviour. This analytical
work uses Taylor expansion and algebraic
methods to formulate the equation to obtain more
results using the digital computers, [7], [8], [33].
Hence changes can be made to the variables of
the swing equation to observe and analyse the
intricate behaviour of this system.

2.1.1 The Swing Equation Model from

MATLAB Simulink

The swing equation, equation (1), explains both
the electrical and mechanical torque of the rotor
of the machine and studies the behaviour of
the angle of the rotor and speed when a small
change is introduced. Analysing the acceleration
of the machine and the torques provides a strong
foundation for engineers to overcome difficulties
within the systems, [23]. Hence modelling this
concept to obtain real-time values will be ideal to
study the equation in detail.

The rotor of the machine used by the swing
equation, explains the intricate behaviour of both
electrical and mechanical elements of the system.
Hence studying the stability of this machine is
vital to comprehend the abrupt alterations to
the parameters of the equation. Stability can be
observed through changing the load and inputs
of the systems over time and hence reducing the
cascade of chaos within power systems, [32].

The following Simulink model shown in Figure
1 was used to analyse the swing equation for this
study.

Fig. 1: MATLAB Simulink model used to
represent the Swing Equation.

2.1.2 Integrity Diagrams

Integrity diagrams are of crucial significance in
nonlinear dynamics since they allow for the
evaluation of the dynamic integrity of systems.
These diagrams are crucial for measuring the safe
basin and erosion profiles, which are fundamental

tools for analysing dynamic integrity, [38]. The
notion of dynamical integrity has become a key
consideration in the design of structures, with
significant research dedicated to the management
of basin erosion processes, [39]. The concept
of global safety, a new approach to evaluating
systems, has had a considerable influence on
the analysis, control, and design of mechanical
and structural systems. The integrity diagrams
play a vital part in maintaining the stability
and the performance of the nonlinear system,
[40]. This is exemplified by analysing vibrational
systems, both with and without discontinuities,
[41]. Nonlinear Robust Control strategies
need integrity diagrams to show solutions when
different variables are affected by some external
disturbances, [42].

These diagrams also utilise surrogate models
to decrease simulation time, uphold correctness,
and enable incorporation into circuit simulators
for thorough setup analysis during the design
phase. Adjustable dead bands are investigated in
networked control systems to minimise network
traffic. The primary emphasis is on stability
analysis utilising robust stability theory, [43].
In addition, nonlinear robust control methods
that rely on integrity are employed to address
non-modelled dynamics and uncertainties in
multivariable systems, hence guaranteeing both
robustness and feasibility, [44].

2.2 Results from the Simulink Model

2.2.1 Primary Resonance

The results for primary resonance was obtained
for the Simulink model. Figure 2, Figure 3,
Figure 4, Figure 5 and Figure 6 show time series,
phase portraits and Poincaré maps that were
plotted and compared to the analytical results
obtained from the previous research work, [2].
The produced figures from MATLAB Simulink
show similar behaviour to the analytical work
hence providing a strong validation to this study.

Fig. 2: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 8.61 rads−1.
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Fig. 3: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 8.43 rads−1.

Fig. 4: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 8.282 rads−1.

Fig. 5: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 8.275 rads−1.

Fig. 6: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 8.2601 rads−1.

2.2.2 Subharmonic Resonance

Similarly, Figure 7, Figure 8, Figure 9,
Figure 10 and Figure 11 were obtained for
subharmonic resonance from the Simulink model.
Results obtained for subharmonic resonance were
compared to the analytical findings from previous
research, [6]. The graphs show similar behaviour
to the analytical work, hence providing strong
confirmation for this study,[6], [10].

Subharmonic resonance is when the excitation
frequency is twice the natural frequency of
the system. This results in the occurrence
of low-frequency oscillations and the possibility
of equipment damage, [6], [10]. Studies
have demonstrated that by employing Melnikov
methods, chaos in the pendulum equation may be

mitigated during ultra-subharmonic resonance.
This allows for the manipulation of chaos
patterns, enabling them to be regulated into
period-n orbits by making precise adjustments to
certain parameters, [45].

The Ω was reduced and it was observed that
the system was losing its stability and entering
into chaos.

Fig. 7: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 26.01 rads−1.

Fig. 8: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 21.042 rads−1.

Fig. 9: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 19.4162 rads−1.

Fig. 10: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 19.375 rads−1.

2.2.3 Quasiperiodicity

Considering quasiperiodicity where the Ω value is
considered to be irrational values, figures similar
to the analytical work done previously, [9], were
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Fig. 11: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 19.37251 rads−1.

produced and compared. Figure 12, Figure 13,
Figure 14, Figure 15 and Figure 16 show the
behaviour of the nonlinear system as Ω is reduced
exemplifying the significance of the Simulink
model.

Fig. 12: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 2π rads−1.

Fig. 13: Time series, Phase portrait and Poincaré
map from Simulink when Ω = π rads−1.

Fig. 14: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 2π/3 rads−1.

2.2.4 Comparing Analytical Method

with the Simulink model

The following Figure 17, Figure 18 and Figure 19
were produced to compare the analytical method

Fig. 15: Time series, Phase portrait and Poincaré
map from Simulink when Ω = π/2 rads−1.

Fig. 16: Time series, Phase portrait and Poincaré
map from Simulink when Ω = 2π/8 rads−1.

with the Simulink model to validate the results
further.

For primary resonance shown in Figure 17, an
Ω value 8.2601 rads−1 approximately closer to the
natural frequency of the system is considered and
the Poincaré maps obtained from the analytical
work and the simulink model respectively. Both
clearly showing similar patterns for the system’s
behaviour.

Figure 18 depicts subharmonic resonance
where the Ω = 19.37251 rads−1. The Poincaré
maps obtained from both the analytical and
the Simulated model also shows close to similar
behaviours validating the Simulink model.

Figure 19 was produced for the case of
quasiperiodicity where the Ω is now π/8.5 rads−1.
This also provides strong comparison between
the analytically obtained Poincaré map to the
Simulink modelled Poincaré map.

Fig. 17: Poincaré maps from analytical method
and Simulink model respectively for Primary
Resonance when Ω = 8.2601 rads−1.

2.2.5 Integrity Diagrams
Bifurcation diagrams are essential tools for
comprehending nonlinear dynamical systems as
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Fig. 18: Poincaré maps from analytical method
and Simulink model respectively for Subharmonic
Resonance when Ω = 19.37251 rads−1.

Fig. 19: Poincaré maps from analytical
method and Simulink model respectively for
Quaisperiodicity when Ω = π/8.5 rads−1.

they visually depict the system’s behaviour
as a parameter Ω is systematically modified.
These diagrams identify the specific moments at
which the system’s solutions undergo qualitative
changes, shifting from stable fixed points to
either periodic or chaotic behaviour. It can be
used to identify these critical points to derive
significant parameter values and accompanying
state variables. These inputs are crucial for
integrity diagrams that illustrate the dynamic
behaviours and resilience of the system in the
parameter space. This approach also gives a
more efficient computing method for analysing
system behaviour, [39], [41]. Integrity diagrams
also show the safe areas for the systems and it is
crucial to stay below the integrity curve to avoid
operating at r values exceeding that of the cliff
face.

Integrity diagrams are obtained by examining
the stability of various behaviours when system
parameters change, based on bifurcation
diagrams. Illustrating the period-doubling
precursor to chaos, the initial step involves
creating a bifurcation diagram by manipulating
a control parameter Ω, and documenting
the system’s stable or periodic solutions.
The identification of critical locations where
period-doubling bifurcations occur, resulting in
the emergence of chaos, has been accomplished.

The areas denoting stable equilibrium locations,
periodic trajectories, and chaotic dynamics are
indicated. An analysis is conducted to determine
how the boundaries between these behaviours
change in response to perturbations. Prior to
and following perturbations, the integrity zones,
which denote the parameter ranges in which
the system maintains a specific stable state, are
computed. The reduction percentage is then
derived by comparing the area of these regions
before and after the disturbance.

Fig. 20: Integrity Diagrams for Primary
Resonance when Ω = 8.27 rads−1, 8.43 rads−1

and 8.61 rads−1.

Figure 20 depicts the changes happening
within the primary resonance. As the Ω is
increased the erosion takes place quicker.

Figure 21 and Figure 22 show the integrity
diagrams for the subharmonic resonance and
quasiperiodicity respectively. As the r value is
increased when the Ω is increased the system’s
behaviour alters.

The reduction percentage is calculated for the
integrity diagrams for primary resonance and
analysed. When Ω = 8.27 rads−1 the reduction
percentage is 24.56% but as Ω is increased to the
reduction percentage also increases to 38.17%.
8.6 rads−1 exemplifying that the stable region
reduces as the parameter is changed.

Therefore, it has been confirmed that the
system’s integrity is significantly compromised
as the parameter is increased. For subharmonic
resonance, when the Ω is equal to 19.4162 rads−1

, results in approximately a 44.13% decrease in
stable behaviour. At Ω = 26.01 rads−1, the rise
in bias results in a reduction of around 51.28%,
indicating that the consistent performance of the
system is greatly reduced.
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Fig. 21: Integrity Diagrams for Subharmonic
Resonance when Ω = 19.4162 rads−1, 21.042
rads−1 and 26.01 rads−1.

Fig. 22: Integrity Diagrams for Quasiperiodicity
Ω = π/8 rads−1, π/2 rads−1 and π rads−1.

Considering the case of quasiperiodicity, as
Ω is varied from π/8 rads−1, π/2 rads−1 and
π rads−1, the stable region is diminished. The
stable region is reduced to 39.01% when Ω = π/8
rads−1, but rapidly increases in value to 67.23%
as Ω is increased to π rads−1.

3 Discussion
The main objective of this study is to thoroughly
analyse the dynamical behaviour of the swing
equation when altering parameters within the
system. This paper also compares the analytical
methods and numerical simulations to provide
strong results for the research. This work
also aims to comprehensively comprehend the

dynamics of the swing equation and its influence
on power system stability by using the Simulink
tool.

Analytical tools are essential for evaluating
the resonances in the swing equation. Through
the utilisation of mathematical modelling and
computations, these methods offer precise
insights that are based on minimal assumptions.
The simulated model provides graphical
representations of the behaviour of the swing
equation for primary resonance, subharmonic
resonance and quasiperiodicity when variables are
changed. These graphs provide authentication
to the analytical results obtained. This method
also provides engineers to make sound decisions
when considering the stability of electric grids.

Load variations are a common occurrence
in power systems within nonlinear dynamics.
The swing equation implemented in Matlab
offers insight into the analytical and numerical
findings acquired earlier. The data acquired from
these scenarios is vital for the administration of
the electrical grid, aiding in preserving system
stability and reliability. Obtaining a better
understanding of the dynamics in the swing
equation can be helpful in reducing power outages
within electric systems and aid in avoiding
unavoidable circumstances.

4 Conclusion
This comprehensive analysis on the swing
equation and its MATLAB Simulink model
compare and validate the results obtained from
the research done by the same authors. The
time series, phase portraits and Poincaré maps
all obtained from the simulink model show
the dynamical behaviour of the power system
when Ω is altered. Bifurcation diagrams were
studied in detail to obtain the integrity diagrams
and improving the understanding of the swing
equation and its behaviour. The results derived
from the Simulink model for primary resonance,
subharmonic resonance, and quasiperiodicity
exhibit analogous behavioural patterns to the
prior analytical work conducted by the same
authors.

This study builds upon the recent research
studies carried out by the same researchers,
advancing their prior discoveries. Its objective is
to improve current methods by providing a deeper
comprehension of the fundamental mathematics,
rather than substituting them. This research
enhances the understanding of fundamental
principles and system stability in power systems,
specifically focussing on the Simulink model.
It adds to improving control techniques and
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preventive measures for power systems. Its
objective is to reduce the disruptive consequences
resulting from the actions advantageous to power
system engineers and researchers.

The findings also show substantial information
regarding dynamical behaviour of the swing
equation. This can help to improve power
systems which are complex with minute intricate
detailing within the electronics sector.

In the future, scholars may explore methods
to enhance these conditions within the context
of swing equations in power grids. This
could yield significant novel insights into the
enduring sustainability and adaptability of power
networks. They can also deepen our knowledge
of complex nonlinear systems and generate
enhancements that improve resilience.

Declaration During the preparation of this
work the authors used Grammarly for language
editing. After using this service, the authors
reviewed and edited the content as needed and
take full responsibility for the content of the
publication.
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