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ABSTRACT 

Electricity distribution is moving towards active, more flexible, smarter and decentralized energy systems. This 

transition requires System Operators (SO) to dynamically monitor and control the power flow across the network. 

Demand Response (DR) can be considered as an alternative solution to the costly investment of upgrading 

conventional Distribution Networks (DN). Hence, the role of DR as a considerable potential of elastic demands 

in the Active Distribution Network Management (ADNM) is vital. The aim of this paper is to review the recent 

literature and pilot implementations towards residential DR activation and applications at the electricity 

distribution level. Background concepts, DR programmes and key participants in ADNM are explained. DR 

activation strategies for residential demand responsiveness at the network level are categorized and discussed 

together with the challenges and future directions of this technology. The most relevant DR innovation trials in 

Great Britain (GB) and their outcomes are also discussed.  

HIGHLIGHTS 

• Review of residential Demand Response for distribution network management  

• Classification based on strategies, applications and network constraints  

• Analysis of the most relevant innovation trials in Great Britain  

• Discussion of barriers, challenges and future direction in the implementation of residential Demand Response  
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1. Introduction 

The Climate Change Act (CCA) 2008 made the United Kingdom (UK) the first country to introduce long-term, 

legally-binding targets to mitigate climate change [1]. The CCA also prompted many countries thereafter to 

review their environmental policies and this resulted in the creation of worldwide legally binding ‘carbon 

budgets’. By 2016, 189 countries had become a party of the United Nations Framework Convention on Climate 

Change (UNFCCC) to adopt strategies and regulations for achieving net-zero emission target. To date, five more 

countries, Sweden, France, Denmark, Hungry and New Zealand have also set carbon-budgets into law, while 

others, Spain, Chile and Fiji have proposed legislations [2]. 

In GB, the target of this proposed legislation was the reduction of carbon dioxide emission by a minimum of 

27% by 2020, a reduction of 90% in the carbon intensity from energy generation by 2030 [3] as well as final target 

of 80% for 2050 [4]. Along with deploying clean energy technologies, there is also a great requirement for improving 

the energy usage efficiency [5], i.e., using less energy to deliver the same service. On the other hand, the change in 

the load shapes due to the introduction and growth of new loads in the network introduced a new challenge faced by 

the future networks. DR can provide an intelligent way of managing efficiently electricity demand and supply from 

decentralized energy sources [6].  

An analysis from Guidehouse Insights (former Navigant) predicted triple growth in the global residential DR 

capacity from 2019 baseline to reach to 47.4 GW by the end of 2028 [7]. After North America, where DR has been 

implemented widely for decades, Europe is next in line with GB being the first country to open various DR markets 

to consumers [8]. A UK energy consumption analysis [9] reported that the 46% increase in the number of households 

and the 17% population growth since 1970 have drastically changed the total domestic electricity consumption. 

Therefore in spite of improvement in the efficiency of home appliances, their frequency usage, cyclic length as well 

as energy consumption are still rising [10]. With expected dramatic rise in Heat Pumps (HP) and Electric Vehicles 

(EV) by 2050 [11-12], the load demand as well as the number of voltage violations will also rise [13], thus causing 

concerns for Distribution Network Operators (DNO). The adverse effects of integrating these new loads can be 

alleviated through DR by optimizing their operation time [14].  

Advancements in automated infrastructure and technology in DN have enabled residential consumers to 

participate in demand curtailment plans as reviewed by Haider et al [15]. Optimization-based home energy 

management algorithms have recently been developed for DR activation of prosumers. The objective of these 

systems is to find the optimal consumption schedule for consumers considering various factors such as their 

consumption profiles, energy cost and environmental concerns. Comprehensive literature reviews have been 

conducted in this area where factors such as DR programmes, optimization techniques and smart technologies have 

been considered [16-23]. In a more advanced approach, Antonopoulos et al. [24] have provided a comprehensive 

systematic review on applying Artificial Intelligence (AI) and Machine Learning (ML) techniques to Home Energy 

Management Systems (HEMS) and network optimization by predicting the available DR capacity and price 

adjustment. Their analysis shows that after game theory and mechanism design techniques, the majority of researches 

applied AI at residential level. 

There is a need for smart solutions to minimize the cost of the DN to accommodate the previously mentioned 

changes in the electricity consumption pattern and integration of more decentralized flexible generators. This has 

driven the typical managing functionalities of DNOs to now shift to Distribution System Operators (DSOs) with a 

https://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
https://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
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view to ensuring a smarter and active network [25-26]. This transformation is also aligned with net-

zero decarbonization policies [27]. The characteristics and challenges in this transition to DSO are depicted in Figure 

1. The future role of a DSO should consider improving the engagement of electricity users to provide real-time 

flexibilities in support of local demand-supply balancing and system optimization. DR as an alternative and 

innovative solution necessitates customers’ awareness of opportunities to participate in available programmes [28]. 
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Figure 1. DNO to DSO transformation – features, challenges and the DR as an alternative solution [29] 

Many approaches have been used in reviewing DR, using various categorization strategies. A thorough review of 

DR in smart grid in [30] shows the advantages of DR in reducing peak load and in enhancing reliability. Kang et al 

[31] confirmed the same benefits of DR but using an economic approach and with the use of energy storage. The 

application of DR has also been extended to microgrids and this has been extensively reviewed in [32]. They 

concluded that the simulation results may not be practical due to the simplicity of modeling the microgrids parameters 

as well as the assumptions of customers’ willingness towards participating in DR. However, these findings could be 

used as the baseline for further work for real implementation. 

A meta-analysis of 32 residential DR programmes by Srivasta et al [33] concluded that there is a direct correlation 

between the success of the programmes with geography of urbanization, the energy policies and regulations, and the 

economic development. A review of international DR implementation [34] shows the adoption of DR programmes 

are being pursued globally due to their advantages to all participants especially with the increase in the use of 

renewable sources. Other studies [35-36] identified and analyzed the DR barriers for price-base DR and direct load 

control. The main barriers for both consumers and DSOs are uncertainties in benefits and limited deployment of 

appliance control technologies such as HEMS.    
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Accessing the right data to accurately model the demand profile is a key enabler in order to manage the DR 

effectively. Consequently the European Union's Third Energy Package legislation proposed in 2007 required 

European states to rollout, where economically viable, electricity smart meters to 80% of households by 2020 [37]. 

Smart meters provide a two-way communication interface between customers, DSOs and suppliers [38]. This will 

enable the introduction and employment of more dynamic electricity tariffs and improve low voltage (LV) networks 

monitoring, thus leading future DSOs to gain additional roles [39]. A comprehensive review on smart meter data 

analytics [40] specified three key applications of these data on DR programmes: load analysis, load forecasting and 

load management. 

The importance of such data has triggered a significant interest in recent researches to employ data-driven 

approaches, AI and machine-learning enabled analysis to evaluate DR capacity. Numerous literature focus on 

applying these techniques to extract and analyze the information from real-time smart meter readings, historical data, 

weather forecasting, etc. The typical applications of these techniques consist of generating a bunch of clusters of 

households with homogeneous characteristics patterns using supervised machine learning techniques [41-43]. For 

extracting consumption patterns, unsupervised learning techniques [44-45] have been a preferred approach while for 

efficiency ranking, non-parametric data-driven method [46-48] have been utilized. Other applications model the end-

users energy load profile using data-driven approach [49-53] and AI/machine learning techniques [54-60] to predict 

the potential quantity of available flexibility from end-users under various DR schemes and price variations. In 

advanced and smart grid systems, these techniques merge the data into the network or price optimization models to 

adjust the network control policy or market strategies with the aim of balancing constraints management and demand-

supply [61-66].  

These new technologies together with advancements in infrastructure such as Internet of Things (IoT) [67] and 

local generations, have enabled the emergence of a new energy platform, Peer to Peer (P2P) energy. A report by Sia 

Partners [68] states that peer to peer energy trading community can result in reduction of up to 11% in consumers 

energy bill and nearly 2% profit from their Photovoltaic (PV) generation. Recent studies [69-72] proposed a P2P 

energy market platform to coordinate DR in a decentralized way with some focus on LV grid connected Microgrids 

[73-77] and Nanogrids [78]. An evaluation of P2P mechanisms in the GB electricity network by Zhou et. al. [79] 

concluded a potential economic and technical benefit for consumers. In a proposed P2P energy sharing framework 

[80], three different models are introduced: bill sharing (BS), mid-market rate (MMR) and auction-based pricing 

strategy (APS). In the former, the trading price among participants is calculated based on the consumption and 

production of each consumer within the community, while the price is set by the retailer in MMR based on 

community’s demand and generation. On the other hand, in APS energy trading is done through an auction-based 

system.  

1.1 Scope of the paper 

Based on the technical review papers studied, DR implementation has either been investigated on its general effect 

in reducing peak demand or improving the system reliability. However, there are no in-depth analyses of what 

constraints can be managed across different levels of the DN through residential DR. Hence, the purpose of this 

paper is to investigate and review the activation strategies and resources, development and performance of the 

residential DR from the network’s perspective. The main contributions of this review compared to the existing ones 

are that it: 
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• Discusses the existing DR applications and solutions from network perspective as a direction for DSOs 

to maximize the usage of available flexibility in the network. 

• Investigates and categorizes the applications and impact of residential DR in managing different 

constraints in the DN at different voltage levels considering different solution designs and frameworks 

as a guideline for researches and industry practitioners in the field  

• Provides a state-of the art review and categorization of the residential DR innovation pilots in GB projects 

as a beneficial guideline for future network planning studies 

• Identifies the processes, requirements, capabilities and challenges involved in the effective and widely 

utilization of flexible low-voltage loads in optimizing the DN as a path to future research direction 

1.2.  Literature Search Strategy 

The methodology adopted for searching for relevant materials for this review paper is depicted in Figure 2. A 

combination of two of the largest databases of peer reviewed publications, Scopus and IEEE Explore, was the main 

tools utilized. These were the most relevant search engines on DR and related topics, with materials published in an 

array of different journals.  The main keywords used were: 

• ‘Demand Response’ AND ‘Active Distribution Network Management' 

• ‘Flexible Demand’ AND ‘Distribution Network’ 

• ‘Optimization’ AND ‘Distribution Network’ 

• ‘Demand Response AND ‘Aggregators’ 

The broad number of results returned from these queries were scrutinized and filtered. All papers cited in this work 

are related to residential DR and network management.  

 

Figure 2. Literature search strategy 

A total of 226 publications were reviewed for this paper, mostly from 2010 onwards. While there has been a low 

number of publications prior to 2011, a rapid increase is observed from 2012 to 2020. This result is very much in 

line with the increase in worldwide activity in DR around that period. 
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1.3. Structure of the paper 

We identified the processes involved in the implementation of DR for DN constraints management. A breakdown 

of this hierarchical structure is shown in Figure 3 and this paper is developed around this structure. For clarification, 

it is worth mentioning that this categorization started as a basic outline for the paper but was later developed fully 

with progress in reviewing and analyzing the literature. Chapter 2 gives a classification of DR mechanisms. Key 

participants and their interactions in the energy network are explained in chapter 3. The objectives of the DR 

controllers are reviewed in terms of both economic and technical targets in chapter 4. DR frameworks and 

applications in managing various constraints in the DN are presented in the chapter 5 and 6 respectively. Chapter 7 

provides a brief overview of the DR strategies in microgrids. Chapter 8 summarizes the most relevant pilots 

implemented in GB. Chapter 9 tackles the main challenges and future directions in DR implementation at residential 

level and is followed by a conclusion. 

2. Classification of Demand Response Mechanisms 

The two main categories of DR programmes are incentive-based and price-based. The former provides consumers 

with predefined incentives for their participation in DR schemes, especially during system stress conditions. In price-

based DR, tariffs offered to consumers vary at different times during the day. This type of scheme is usually more 

suitable for the residential market while the incentive-based ones are more appropriate for larger customers or 

aggregated demands [81]. Figure 4 shows the classification and differentiation of various DR programmes which are 

discussed in the next sub-section. The concept behind this classification is further developed in the following section. 
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Figure 3. Classification of DR implementation reviewed 
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Figure 4. Classification of demand response programmes [82] 

 

2.1 Incentive-Based Programmes 
 

Direct Load Control (DLC) is a programme where SOs are given remote access to customers’ equipment to control 

systems or local reliability contingencies. One example is the “Shetland Northern Isles New Energy Solutions 

(NINES)” project which was trialed in GB to control electric storage heaters during network emergency conditions 

or peak load periods [83]. 

Interruptible/Curtailed (I/C) Load programmes consist of operators requesting customers for pre-defined load 

curtailment and where non-responders are penalized [84]. Since the residential loads are normally considered as 

aggregated loads, this facilitates the operator’s communication and management.  

Demand Bidding/Buyback (DB) programmes give consumers the opportunity to participate in the electricity 

market by bidding for specific load curtailment [85]. They are run in short periods such as hour or day ahead and are 

seen as low risk for consumers.  

Capacity Markets (CM) programmes involve participants pledging to provide defined load curtailment and they 

may get penalties for non-compliance. These programmes normally run over medium to long time periods. This 

scheme was recently implemented in GB where bids are made from the combination of DR (including embedded 

generation and storage) and existing generation capacity [86]. 

Ancillary Service Markets (ASM) programmes provide reserve services based on the extent and timeliness of 

consumers’ responses [87]. Their participants are predominantly large and regular energy consumers.  

Emergency Demand Response (EDR) programmes are voluntary schemes where pre-defined incentives are 

offered to customers for their demand curtailment during reliability events [88]. Non-compliance does not result in 

penalties. 

2.2 Price-Based Programmes 
 

Fixed pricing is the traditional pricing system with constant price over specific periods e.g., season or year. 

Electricity bill reduction in this case is only possible by lower consumption.  

Time-of-Use (ToU) are pre-determined rates for specific time periods during the day or week. Customers are 

informed of these tariffs days or even months ahead. Generally, ToU tariffs are higher during peak times as they 
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reflect the mean price of wholesale market. For instance, the ToU tariff known as the Economy 7, was introduced to 

residential customers in GB in 1978 with different pricing bands for day and night [89]. 

Dynamic Time-of-Use (dToU) rates have a shorter notification period for prices, typically one hour ahead or less. 

However, although prices can be closer to the actual tariff, there is the possibility of delayed responses due to 

customers losing foresight. The potential of this kind of tariff in providing DR was investigated in the Low Carbon 

London (LCL) trial [90]. This pilot resulted in bill reduction in 85% of households. 

Critical Peak Pricing (CPP) consists of rates during critical peaks and these are normally higher than average 

ToU rates. Since more customers are engaged, the reliability of the system is enhanced thus leading to higher demand 

curtailment [91]. 

Real-Time Pricing (RTP) offers a dynamically changing tariff reflecting the real price of wholesale market. This 

is based on uniform time steps, e.g. hourly or day ahead, thus allowing customers to alter their consumption to their 

benefit. A Day-Ahead RTP (DA-RTP) [92] is an alternative RTP where the electricity price is predicated and 

announced to the customers in a day-ahead basis. 

Vickrey-Clarke-Groves (VCG) is a centralized mechanism, based on voluntarily provided load information by 

consumers, utilized to determine the price for specific periods [93]. Incentives are also offered to customers in a bid 

to encourage them to provide correct information. This pricing scheme is also useful in lowering electricity 

consumption as well as load shifting.  

3. Players and Interactions in GB Flexibility Market 

Developments in the power network have created new roles and relationships for all interacting players within the 

electricity system [94]. In fact, the modern electricity systems can now be modeled as a networked environment 

where duplex communication exists between participants. A report published by Origami in 2019 [95] indicated that 

although a majority of countries are moving towards a DSO flexibility markets using more decentralized and 

distributed energy usage using DR as a grid security support, they are still in at a trial stage. GB, Australia and North 

America are the only countries that have a roadmap and plan to turn this to a business as usual solutions. 

Since the focus of the trials and innovation pilots categorized and analyzed in this paper are focused on GB 

network, this section provides useful definitions of the key players in the flexibility market of the future DSO in GB. 

Figure 5 shows a block diagram illustrating the communication between various players within the GB energy 

network [96]. As can be seen, the key participants are consumers, electricity suppliers, DSOs, aggregators and data 

sharing platforms with Office of Gas and Electricity Markets (Ofgem) as the regulatory body. However, the actual 

model can vary according to network structures of each country. 

The role of DSO is to provide a secure network with services including voltage control and network restoration. 

DSOs do not generate or sell energy as this is the responsibility of energy suppliers. The cost of DSO services, also 

known as Distribution Use of System (DUoS), is normally added to consumer’s bill which is regulated by Ofgem. 

Usually residential consumers pay a fixed rate of DUoS and the electricity price are limited to certain ToU tariffs. 

Incentives are offered to DSOs to investigate innovations for efficiency and power quality improvement. As 

discussed previously, the current GB distribution network is operated by DNOs whose roles are now changing to 

DSOs. The current GB network is serviced by six different DNOs that are responsible for specific regional areas 

[97]. Energy Suppliers acquire electricity from either wholesale markets or directly from generators, which is then 

sold to individual customers. There are currently six main suppliers in GB [98] and their primary focus is to provide 
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a competitive tariff to maximize their market share. This has been the driving force behind the move towards dynamic 

tariffs. 

Consumers are now able to take an active role in the network and this has created new sources of flexibility. One 

in four households are now equipped with smart meters that can provide accurate and real time energy consumption 

data profiles. Besides relaying their demand information, they can also monitor and control their consumption. 

Ofgem reported a total customer savings of £6.43 billion in 2010, with 34% attributed to load shifting/ToU tariffs 

[99].  

The benefits of using smart meter can go far beyond price-based DR. In practice, a successful DR model at low-

voltage level is only feasible if considered in an aggregated level. Aggregators collect the demand flexibility and 

local generation across their domain regardless of energy supplier or DSO and this increases the network reliability. 

They act as an interface between energy consumers and other stockholders [100]. This third party entity’s role is to 

enable the active participation of small responsiveness demand in DR programmes. They are also more 

knowledgeable of market rules compared to individual households and their responsibilities include satisfying all 

participants’ interests.  

An Energy management system, comprising energy monitoring, control, and optimization, requires a dynamic 

data exchange between DSOs, energy suppliers and individual or aggregated end users. For security and privacy 

reason, home energy consumption data will be available through a centralized and single point thus requiring a data 

access & data sharing framework. The Data Communication Company (DCC) [101] is responsible for data 

communication establishment and management in GB. This network entity acts as an interface between smart meters 

and other authorized entities in the network. Smart meters can thus preserve their smart functionality regardless of 

consumer’s energy supplier. However, the optimal platform for data exchange interaction between aggregators and 

DSOs as well the communication standard needs to be defined by DSOs.  

It is worth mentioning that a survey by KPMG5 in 2020 [102] reported that the key challenges that the DSOs in 

Europe are facing is the lack of comprehensive understanding and definition of market rules and regulations. This 

slows down the development of the required tools and infrastructures of enablers for DSO model implementation 
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Figure 5.   Block diagram of DR participants’ interaction in future GB DSO network [96]  
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and the usage of DR. A framework and the role of independent aggregators need to be defined in order to allow their 

maximum participation s into the energy markets [2].  

4. Demand Response Targets 

The strategies adopted when designing and implementing DR control mechanisms can be based on economic and 

technical aspects. The literature reviewed has been classified according to these two aspects.  

4.1 Economic Targets  

The economic target of DR control schemes refers to the consideration of electricity cost and incentives in the 

objective function of Residential Demand Response Aggregators (RDRA). The algorithms and control mechanisms 

for DR reviewed in this paper are considered from the network point of view, with RDRAs as the studied targets. 

These aggregators interact with their associated households in order to implement DR services, taking into account 

their own profit. Their strategy is based on either minimizing cost or maximizing profits/incentives. Several attempts 

have been made in studying the roles and advantages of RDRA [103-105]. Applying RDRA to provide an active 

energy management environment has also been considered in a diverse range of studies [106-108]. 

   Based on their objectives, DR aggregators have been grouped into three categories applying various price-based 

tariffs including ToU, Day-Ahead (DA) and RTP as presented in Table 1. Profit and social welfare maximization 

focus on single RDRAs serving multiple households. On the other hand, for the electricity market category, several 

aggregators are considered.  

Table 1. Classification of papers based on RDRAs’ objectives 

 

    In the first category, the aim of each RDRA is to provide and sell the DR services to the SOs. This is done 

through compensation payment to consumers for the changes in their energy usage. 

Generally, the DR objective function can be defined as [96]:  

                                               𝑚𝑎𝑥{𝑅 −  ∑ 𝐶ℎ(𝑃ℎ)}ℎ⋲𝐻                                                                      (1) 

where the proceeds of the RDRA and the consumers‘ incentives are represented by R, Ch is the cost and Ph is 

power consumption of end user per hour.  

RDRAs have modeled various dynamic tariffs to improve the market decision-making and pricing scheme 

designs. For instance, the RDRA’s objective function proposed in [110] was to maximize the end-user’s surplus 

DR Tariff 

Objective 

ToU DA RTP 

Profit Maximization [109, 110] [111, 112, 113] [109, 112, 114, 115] 

Social Welfare 

Maximization 
[116, 117, 118, 119, 120] 

[119, 121, 122, 123, 124, 125, 

126, 127, 128] 

[110, 116, 117, 119, 120, 123, 

125, 127, 129, 130, 131, 132,133] 

Electricity Market [134] [122, 135, 136, 137, 138, 139] [139, 140, 141, 142, 143] 



11 

 

which was calculated by the differentiation between the total agreement and the actual payment of households. The 

simulation results indicated an approximate 20% reduction in consumer bills as well as flatter load profiles over time.  

  In the second category, each entity at the network, seeks to enhance its own profit. This implies that the goal of 

energy consumers may not necessarily be in line with the RDRA’s one. A unified approach was used in [133] to 

reduce consumers’ electricity cost as well as flattening the average load profile. This study was developed based on 

the proposed framework on [144] to solve its communication problems and shorten processing time by using a 

parallel architecture. In a different approach, RTP and ToU were combined to mitigate DN overloading [117].  

Similar to profit maximization, in the electricity market category the aim is to maximize the DR availability for 

sale. However, the role of SOs and the contributions of other aggregators in the network are also considered. In other 

words, the electricity market is modeled with all network entities having a self-interested and non-cooperative nature. 

In this model, SOs aim to minimize the cost of network operation by providing rewards to RDRAs.  

4.2 Technical Targets  

The residential responsive demand can contribute in the management of the DN at two levels: local DR, where 

the focus of the implementation is on the low voltage networks, and wide-area DR management, which analyzes 

the application of DR at Medium Voltage/Low Voltage (MV/LV) network levels. Table 2 presents an overview 

of recently published literature in this area. In local DR, the system model comprises one SO that serves a 

secondary substation which plays the role of an aggregator connected to several domestic loads. However, detail 

about the DR request and control strategies from the SO is [145] not a requisite and is assumed to be known. At 

MV/LV network level, the SO interacts with RDRAs in LV feeders to improve the reliability and security of the 

DN.                          

Table 2. Technical DR targets classification. 

Network Level Local DR  (LV)                 Wide-area DR (MV/LV) 

Ref 

[146, 147, 148, 149,150, 151,152, 153, 

154, 155, 56, 157, 158, 159, 160, 161,162, 

163, 164, 165, 166, 167]  

[153, 168, 169, 170, 171, 

172, 173, 174, 175, 176]  

 

Generally, consumers can contribute towards solving operational issues in the network through DR events. In the 

case of a DR event, the required demand limit is either allocated to each consumer/feeder or the required load 

curtailment is automatically applied. The former action refers to EDR programmes where contribution in the DR 

scheme is voluntary whereas the latter relates to DLC programmes. 

The strategies to define the allowable demand for each household/feeder can be categorized into: Curtailment 

Potential Scheme (CPS), Flexibility Energy Scheme (FES) and a combination of both.  A categorized list of research 

work is shown in Table 3. In CPS, individual available DR is considered for determining the total required 

curtailment. In FES, the objective function of the feeder controller also takes into account the household’s 

characteristics. Therefore, the DR mechanism seeks to maximize the consumer’s comfort while also maintaining the 

network constraint within limits. However, this increases the complexity of the computational process and 

necessitates the use of more advanced optimization techniques. 
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Table 3. Categorization of methodologies for calculating the allowable demand of households. 

Methodology 

Curtailment Potential Scheme 

(CPS) 

Flexibility Energy Scheme 

(FES) 
CPS/FES 

Ref 

[117, 147, 151, 158, 159, 160, 

162, 163, 165,  177] 

[149, 152, 154, 155, 156, 

166, 167, 178, 173, 174, 175] [157] 

5. Demand Response Solution 

The interaction between DR participants in the network has been modelled through several frameworks in the 

literature. The overall goal of a DR framework is to determine an optimal load scheduling in order to manage the 

DN.  The model consists of households connected to a Load Service Entity (LSE) such as a DSO. Upon receiving a 

DR event signal from the LSE, households adjust their controllable appliances’ operations accordingly to: 

• Maximize the social welfare  

• Limit the overall household demand within thresholds during peak time 

• Meet all household and network constraints  

 

As an example, a residential DR was proposed in [64, 178] as a multi objective function to minimize power losses 

in the network while maximizing the use of flexible demand. It was concluded that the voltage sensitivity to changes 

in demand is greater at the buses located at the end of the feeder. It was also shown that the selection of setting 

parameters for DR objective is important to avoid rebound peaks. 

A DR framework and structure should be able to provide an integrating environment for all entities, with specific 

attributes, in the network. Therefore DR can maintain network constraints within the boundary limits while meeting 

all DR participants’ goals. Three framework models from the literature are discussed further. 

A multi-layer framework comprises several layers where entities within the same layer have similar attributes or 

functionalities [179, 181]. For example, a two-layer framework proposed in [139], as shown in Figure 6, has all direct 

participants in electricity market in the first layer. The entities in the second layer, on the other hand, are consumers 

providing DR services.  

ISO

PEV Aggregators Retailers DR Aggregators

First La
ye

r
Se

co
n

d
 La

ye
r

PEV Owners Consumers

 

Figure 6. Multi-layer framework [139] 
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A Hierarchical Framework comprises entities in different levels where they are able to communicate with entities 

on their upper level. Typically DR controllers, e.g., LSE and DSO, are located at the top level whereas end users are 

in the lower levels. This structure is also known as supervisor-employee model. In the three-level structure [134] 

shown in Figure 7, aggregators are defined in the second level, acting as an interface between the first and third level.  

 

Electric Utility Operator

Aggregator1 AggregatorJ

Household 1 Household i Household l Household N

Reward λ1 
for DR service

 λJ 
d1 dJ 

Total demand 
pattern from 

each aggregator

P1 P1 PJ PJ X1(P1)  Xi(Pj)

Demand load 
pattern

Xl(PJ)  XN(PJ)

…
Compensation across
From each aggregator

 

Figure 7. Hierarchical framework [134] 

A Multi-Agent-System (MAS) framework models network entities as agents with specific characteristics, 

functionalities and behaviors [157]. Although autonomous, they interact with each other to reach the overall 

system goals by splitting and sharing the tasks. In [182] four types of agents, as depicted in Figure 8, are introduced 

to represent generators, wholesale markets, retailers and households.  

The main difference between the Hierarchical and Multi-layer frameworks is that in the former, each entity can 

only interact with another one in its upper level while in the latter there is no restriction in communications between 

layers. 

 The complex nature of the future electricity network makes MAS the most suitable model due to its decentralized 

structure where each intelligent agent can act independently and simultaneously [170]. This can also maximize the 

network stability in the occurrence of local fault or communication failure [94]. A comprehensive literature on DR 

implementation studies using MAS have been presented in [183]. A review of the applications of MAS in 

managing smart grids [184] showed the benefits of this decentralized approach in reducing cost, enhancing 

customer welfare and in providing a framework to maximize integration of low carbon technologies. However, 

Generator Agent
Generator

Generator Agent
Generator

Wholesale Market

HOME

Home Agent

HOME

Home Agent

HOME

Home Agent

HOME

Home Agent

RetailerRetailer

Wholesale Market 
Agent

Retailer 
Agent

Retailer 
Agent

 

Figure 8. MAS framework [182] 
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the proposed MAS frameworks in the literature are limited in terms of scalability [139, 134], adoptability [185] , the 

number of manageable network constraints [153, 168, 186], DR scenarios [14, 35, 38] and types of agents [187, 

188]. 

6. Demand Response Application for Distribution Network Management 

The DNs mainly deal with three major operational issues: transformer overloading, voltage limits and network 

congestion. Generally, network congestion occurs at MV networks while transformer overloading is mostly at LV 

networks. A classification of these categories from the literature is provided in Table 4. 

6.1 Transformer Overloading Management 

 Exceeding the maximum capacity of a MV substation or MV/LV transformer can be the cause of overloading 

issues at LV feeders. During such conditions, the duration of the DR event and the extent of load shedding are two 

parameters considered for maintaining the demand within acceptable limits.  

Many approaches have been devised and studied with the aim of overcoming the overloading challenges in DNs. 

One such DR control strategy involved the integration of local generation to relieve congestion [151]. Another study 

[152] applied a direct load control approach based on a merit order and confirmed the achievability of a 100% PV 

penetration in the LV network. Similarly, [154] proposed an EDR mechanism aimed at lowering the transformer 

power demand. However, in these studies the demand allocation is assigned to consumers without considering their 

individual characteristics. These can increase the possibility of a power rebound. [155-156] addressed this issue using 

a MAS framework where households’ atributes, including user constraints, satisfaction level and appliances, are also 

taken into account during a DR event. Hence, the drawbacks of having a new peak load after DR event duration can 

be lessened. 

Table 4. Classification of DR application 

Constraint Reference 

Voltage [145, 147, 150, 155, 158, 159, 163, 165, 166, 167, 173, 174, 175, 189, 190]  

Transformer Overloading [151, 152, 154, 156, 160] 

Congestion [145, 147, 150, 155, 158, 159, 163, 165, 166, 167, 173, 174, 175, 189, 190] 

Combination [146, 149, 157, 168, 191] 

6.2 Congestion Management 

Price-based DR is the main mechanism proposed in the literature to manage the congestion at the DN. The 

methodology is split into four steps: 

• DR Aggregators update their load profiles based on individual demand from their corresponding households. 

• An initial demand bid is sent to the DSO in a day ahead or real time market.  

• The DSO adds a supplementary cost to the existing tariff in case of any possible congestion. 

• Accordingly, aggregators adjust their demands based on the updated price. 



15 

 

Several methods have been presented in order to determine the congestion price. In [153] a Locational Marginal 

Pricing (LMP) is applied and showed peak overloading of 1% and 2% during night and morning respectively. [169] 

used a dynamic thermal model of the transformer which also verified the effectiveness of such a price-adjustment 

programme as an economic tool to reduce peak demands.  

In a different real-time pricing DR [172], the pricing tariffs and additional overloading costs are allocated 

distinctively to each zone (feeder) of the network. This can provide a more localized and distributed control of the 

network. However, the proposed pricing scheme faces many challenges. For instance, since the consumers have to 

pay the price of local problem at the network, their attitudes toward DR participation can decrease. 

 Consumers in RTP can decide about their consumption behavior at any given time. Therefore, a direct DR control 

mechanism is usually necessary along with price-based DR in order to guarantee the provision of adequate flexible 

demand. A combination of both DR types can ensure the generation-demand balancing in the DN [169]. An approach 

in [171] integrates both incentive and price-based DR schemes, based on the available DR size under normal 

conditions and during emergency conditions respectively.       

6.3 Voltage control  

The uncertainity in renewable energy generation and increase in demand can cause the voltage to exceed its 

allowable limits. Voltage violations, under-voltage and overvoltage, can occur at both LV and MV feeders. This can 

lead to voltage drops and consequently power cut. The literature mainly considered the incentive-based DR such as 

DLC or EDR where consumers in pre-agreed contracts can be involved in load reduction schemes if required. 

At the LV network, this problem, in the case of solar energy, has been mainly addressed by controlling the active 

power through PV invertors. In order to alleviate the voltage constraint in the network, several methods of droop 

control, such as Active Power-Voltage (P-V) [157-159], Reactive Power–Voltage (Q-V) [148, 177] and Active 

Power-Frequency (P-f) [160], have been proposed and applied. The maximum output set point is determined for the 

PV invertor where it is decreased during voltage drop issues.  

A distributed DR mechanism is applied in other studies to control the power usage of home appliances. In [155]  

the amount of load curtailment for each household is determined and allocated according to the size of their electrical 

panel. However, voltage problems at LV feeders are primarily studied in the form of a combined approach together 

with congestion management.  

At MV feeders, to improve the voltage stability of the network, the identification of the buses characteristics 

regarding their voltage sensitivity is required. Many studies [150, 174, 189, 192] have shown that DR can be used as 

an effective tool to reduce the overall voltage drop across the network and to increase it at the end of the feeders. The 

main concerns in designing and applying DR mechanisms are the determination of the quantity and optimal load 

curtailment at each feeder. The former is mostly calculated using optimisation techniques which aim at determining 

the minimum required DR size [173] or maximum load capacity of each bus [174]. The latter is usually determined 

by voltage sensitivity analysis using several methods such as: 

• Voltage Deviation Index (VDI) [193-196] 

• Updated version of Jacobian matrix [197-198] 

• Direct approach dependent on the network topology [199-200] 
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• Adjoint network model [201] 

• Y-matrix model [202-203] 

• Constant current model [204-205] 

• Bus power flow model [175, 202-203] 

                                                                                                                                                                                                                                                                   

After calculating the voltage senstivity of all buses in the network, two methodologies are utilized in the literature 

for shedding the required demand reduction: 

Loop procedure [189, 192] is one in which the load shedding procedure initially begins at the buses with the 

biggest magnitude of voltage deviation. The process terminates when the voltage is back within the statutory limit. 

This method is applicable especially when the required amount of DR is not identified. 

Distributed Curtailment [150, 208] is another methodology in which the total required load curtailment is 

distributed among buses based on their voltage sensitivity. This technique is mainly suitable where the total required 

DR size is known. 

One important issue to consider in DR implementation is addressing Demand Response Mismatch (DRM) [209], 

which are inconsistencies between scheduled and actual DR. Inclusion of reactive power and voltage dependency in 

DR calculations can help to mitigate this problem and improve reliability of power systems [210-211].  

6.4 Unified Approach 

Due to the correlative nature of constraints at the DN, several studies have examined unified-based approaches 

where more than one constraint are considered. A hierarchical agent-based model is proposed in [157] that analyzed 

both voltage and thermal limits. The PV output and heat pump are controlled using CPS-DLC and FES 

methodologies respectively. In [149] a two-level hierarchical DR framework consisting of two DR controllers is 

presented: one for improving the voltage profile and the other for controlling the transformer overloading. The first 

target is achieved through incentives allocated to consumers for shifting their loads.  In the latter, this is done through 

peak load shaving. A new approach is presented in [146] to mitigate the voltage and current constraints within the 

limits. Unlike other studies, where the DR objective function is to minimize the power losses and/or voltage deviation 

index, here the maximization of the allowable total demand is considered.  

7. DR Strategies in Microgrid  

   The need for implementing microgrids has been accentuated by the challenges to efficiently manage the 

integration of distributed energy resources (DER) with the view to decentralize, decarbonize and improve grid 

reliability and resilience at lower cost [212]. Microgrids have two operating capabilities: autonomous and on-grid. 

In on-grid mode, local power generation is the first choice for meeting demand of the microgrid, and any excess 

power required or generated are either imported from or supplied to the grid. In autonomous mode, it is vital for 

generation to match demand for stability of the microgrid [213]. Several approaches have been investigated to 

maintain this balance. One of the most efficient and reliable methods is through DR [214-215]. [216] proposed a 

flexible microgrid where boundaries can be adjusted based on factors such as DR levels and customer comfort 

amongst others. This method resulted in utilities cost reduction of up to 19% compared to static microgrid operation. 

DR control mechanisms are either performed offline, e.g., incentive-based [214, 216] and day-ahead [215] , or, 

online, such as RTP [213]. Studies have shown that the latter is more reliable, efficient and practical when dealing 
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with uncertainties in the microgrid [217]. However there are still serious concerns about the resilience, efficiency 

and stability of microgrids due to the dynamic nature of DERs [218-223]. Most research works have only studied 

microgrids under normal conditions or with minor faults [220-231]. Recent studies have proposed, developed and 

implemented various multi-objective optimization (MOO) methods to improve the reliability of microgrids under 

major network faults, system failures and load unbalance [232]. In this paper a new decentralized control strategy 

for microgrids in both offline and real-time environments have been performed using a combination of MOO and 

fuzzy decision making to improve the fault ride through capability. The disturbance in that microgrid has been 

modelled as non-linear constraints for MOO to guarantee the optimum power sharing. H.R. Baghahee et al. [233], 

have used multi objective particle swarm optimization to overcome the computational burden for optimum 

coordination of overcurrent relays in meshed and interconnected networks. It is to be noted that the application of 

MOO is not limited to the improvement of stability and resilience only. It can also be used in designing and 

optimizing hybrid energy systems [234-238], in cost minimization of the system over long operation periods [239], 

as well as in optimization of transmission system devices [240]. 

Detailed studies in the use of intelligent algorithms, such as evolution and metaheuristic, as solutions to multi-

objective optimization have been performed in areas such as microgrids and renewable energy generations [153,187-

190]. Results demonstrated the effectiveness of such techniques in achieving global optima. In [218, 241] a novel 

load flow methodology has been presented for radial and meshed networks, which can solve nonlinearities in the 

load flow. Using this method, [242] introduced a hierarchical 3-level control strategy to calculate the reactive set 

points of DR controllers in any type of microgrid. This control scheme can enhance the stability and ameliorate 

power sharing using more accurate power calculations. A similar approach [241, 243] was adopted to include 

nonlinear and sensitive loads.  

Moreover, optimal sizing and optimal power management strategies are also integrated with modern DR schemes. 

In this kind of solution, the initial set points of the control system are determined by a robust power flow algorithm 

that can efficiently solve the load flow problem in the microgrid with high values and uncertainties in R/X ratio and 

load multiplier. 

However, adopting an optimized and coordinated energy management system such as a multi-microgrid approach 

can be more efficient and cost effective. This strategy discourages individual microgrids from misusing common 

resources and instead acts towards the best interests of the whole system [215] . 

8. Overview of GB Demand Response Innovation Pilots  

Innovation pilots are projects that apply novel solutions as replacements for expensive upgrades of the network 

with a view to providing economic benefits to both consumers and the DNO [244]. This section briefly reviews the 

activities in terms of residential DR related pilot projects that have been trialed in GB. They are classified using the 

following categories: global demand response, active network management and community engagement.  

8.1 Global Demand Response  

The trials in this category have the aim of introducing various DR pricing schemes to financially encourage 

consumers to lower or shift their peak power consumption. ToU and dToU have been the only implemented tariffs 

so far in GB and their efficacy has been investigated through different pilots [245] as summarized in Table 5. 
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Table 5. Summary of relevant innovation pilots in GB network with the focus on global DR. 

Category  ToU dToU 

Trial 

Customer Lead 

Network 

Revolution 

Ireland Electricity 

Smart Metering 

Behaviour Trials 

Energy Demand 

Research Project 

Northern Ireland 

Powershift 

Low Carbon 

London 

Organisation 
Northern 

Powergrid 

Commission for 

Energy Regulation 

within the Republic 

of Ireland 

EDF, E.ON, Scottish 

Power and SSE 

Northern Ireland 

Electricity. 

EDF, UK Power 

Networks 

Location 
North of 

England 
Ireland 

London and the 

southeast of England 
Northern Ireland London 

Time Period 2010-2015 2009-2010 2007-2010 2003- 2004 2010-2014 

Innovation 

Assess the 

impact of low 

carbon 

technologies 

including PVs, 

HPs and EVs 

and ToU for 

residential, 

industrial and 

commercial 

customers 

Investigate the 

potential of smart 

meters, ToU tariffs 

and Demand Side 

Management 

(DSM) stimuli on 

load 

reduction/shifting 

•Trials by four energy 

suppliers ,   

•Investigate the effect 

of supplying 

information on long 

term consumption 

Evaluating the 

potential of shifting 

peak demand 

through ToU tariff 

Investigating the 

impact of dToU on 

demand-supply 

balancing and 

network constraint 

management 

Scale 
11,000 homes 

(2000 others) 
5,028 homes 60,000 homes 200 homes 5,533 homes 

Solutions and 

Technologies 

ToU,  Smart 

meters 

 

5 ToU rates,  bi-

monthly billing 

with a  demand 

reduction incentive 

Financial incentives for 

consumption below 

target Smart meters 

•3 ToU rates   

•Keypad meter with 

an IHD 

dToU 

Communication 

Strategies 

Home display 

 

bi-monthly billing,  

monthly billing, bi-

monthly billing 

with an electronic 

energy monitor 

•Real time display, 

•Letters, 

•Website 

 Text messaging 

Investment £31 million - £9.75 million - £28 million 

Key Lessons 

Learned 

Reduce 

residential peak 

demand by 

6.39% between 

4pm-8pm 

Households on 

average saved 

2.5% on bills 

Results showed that 

overall there was no 

significant reduction in 

consumption 

Annual bills 

decreased by 5.5% 

8% reduction in 

demand 

 

8.1.1 Time-of-Use Tariffs  

The main finding of these trials verified that ToU tariffs can trigger a shift in the demand of households from peak 

to non-peak period, although there exists a high variation in the outcomes of the trials. It was also found that the 

effect on peak demand was more significant than that of overall energy consumption. Some projects adopted various 

ToU tariffs for better comparison. The Energy Demand Research Project (EDRP) [246-247], for instance, used two 

ToU tariffs from energy suppliers Électricité de France (EDF) and Scottish and Southern Energy (SSE). While EDF’s 

tariff was daily-based, SSE’s incorporated seasonal price as well. Peak demand reductions of 8% and 4% were 

observed for weekends and weekdays respectively for a total of 1936 participants [245]. The Ireland Electricity Smart 
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Metering Trials (IESMT) [248] adopted five different ToU tariffs and showed 2.5% - 9% demand reduction from 

approximately 5000 households [245]. Another pilot, the Customer Lead Network Revolution (CLNR) [249], 

resulted in a reduction of 6% in peak consumption for 600 households [250]. A decrease of 75W in peak load per 

household was obtained through the Energy Control for Household Optimization (ECHO) [251] pilot, which was 

developed to control shiftable appliances. The Sunshine Tariff [252] yielded a daily 13% demand reduction for 

consumers equipped with automated control technology. The outcome of these pilots also concluded that together 

with economic incentives, education is also a requisite for the successful introduction of ToU. Currently, the 

emphasis of implementing ToU tariffs is focused principally on awareness and energy engagement. 

 

8.1.2 Dynamic Time-of-Use Tariffs 

The Low Carbon London (LCL) [253] pilot was the first dToU scheme implemented in the UK. It was aimed to 

explore the DR potential in various trials run by suppliers or DNOs. The outcomes indicated an increase of up to 

14% in consumption during low price periods and a reduction of 9% during high price ones. This resulted in bill 

reduction for 85% of households with a mean saving of 4.9%. 

8.2 Active Network Management 

ADNM with residential DR services was implemented by some trials. A summary of three major trials aiming to 

investigate the efficiency of DR in ADNM platforms for managing network constraints and increasing DERs’ 

penetration is provided in this section and in Table 6.  

Table 6. Summary of relevant innovation pilots in GB network with the focus on ADNM. 

Trial Shetland Trial Customer Load Active System 

Services 

Accelerating Renewable Connections (ARC) 

Organisation Scottish and Southern 

Electricity  

Electricity North West SP Energy Network 

Location Shetland islands Clusters across GB Scottish borders and East Lothian area 

Time Period 2013-2017 2014-2016 2012-2014 

Innovation Evaluating the effectiveness 

of DSM on active network 

management 

Evaluating the application of 

innovative voltage, 

management technologies to 

provide DR services 

Combination of  ADNM scheme and 

community engagement to manage the 

generation-supply by generators and locally-

produced energy 

Scale 234 homes 60 primary substations serving 

approximately 485,000, 

Domestic and industrial and 

commercial customers 

Covers geographical area of 2700km2 

Solutions and 
Technologies 

Battery and DSM enabled 

appliances, ADNM 

Cash incentives 

Smart voltage control, 

advanced active network 

management system 

PV, wind turbines, modification of network 

equipment, 

Incentive on connections engagements 

Communication 

Strategies 

Website, phone, home visit, 

local meeting 

Leaflet, website Workshop with local community, online tools, 

Investment £21 million £8,084 million £8.46 million 
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Trial Shetland Trial Customer Load Active System 

Services 

Accelerating Renewable Connections (ARC) 

Key Lessons 

Learned 

DSM with ADNM platform 

can be an alternative for 

future DN, 

Learning and improving the 

relationship with customers 

in order to change their 

consumption behaviour 

ADNM with DR can 

successfully provide voltage 

and frequency support without 

affecting power quality of 

network devices 

Reduced  infrastructure,  Lower cost over 

traditional solution 

Save energy cost for local communities 

The Customer Load Active System Services (CLASS) [254] project was a successful pilot that provided a good 

insight on the voltage/demand relationship for all participants. The use of smart voltage controllers in major 

substations demonstrated the application of innovative voltage management approaches to provide DR. Results 

showed that DR potential of up to 3.3GW was achieved. 

The Shetland Trial [255] provided DR services to 234 participants by replacing their old storage and water heaters 

with modern smart storage heaters, which were selected for their demand shifting potential. The ADNM computes 

next day schedules based on requirements obtained daily from devices, before updating them with instructions. The 

potential for a flexible framework for future changes to the network was clearly demonstrated by this pilot. The 

Accelerating Renewable Connections (ARC) [256] trialed a combination of ADNM and local community 

engagement schemes to manage locally generated sources and supply through community engagement. Connections 

of 49.5MW from wind farms and 2.2MW from PV panels were successfully deployed to local households. Through 

this project, consumers could potentially save around £1.9 million over the lifetime of the systems. More recently 

Smart Energy Isles pilot [257] aimed to increase penetration of renewable energies in a microgrid by improving the 

existing ADNM. This on-going trial allows local communities to benefit from the maximized local generation. 

8.3 Community Engagement 

These trials were designed to investigate the potential of local communities to engage in DR programmes. The 

aim was for DNOs to collaborate with consumers to lower demand and maximize the local available DR with a view 

to deferring network reinforcement investment. Several pilots [239] were implemented to change the customers’ 

behaviors, and avoid peak demands by shifting consumption to non-peak periods. An overview of recent community-

related pilot projects, categorized according to their focus, is provided in the following sub-section and summarized 

in Table 7.  

 

8.3.1 Integrating Low-Carbon Technologies  

This category aims at assessing the efficiency of incorporating renewable energy resources into the DN.  The Sola 

Bristol project [258] for example, equipped participating households with PV panels, energy storage units and 

operated under ToU pricing. Although the results confirmed the benefits of integrating storage and ToU tariffs, the 

project could only be economically viable with higher integration of DERs. It was found that a significant effect on 

DR would be possible with PV installed in no less than 60% of households. Customer awareness of these energy 

schemes is instrumental in improving engagement. My Electric Avenue [259] was another such trial and it 

investigated the effect of charging clusters of EVs on the networks during peak periods. The results from analyzing 

various LV networks across Britain indicated that with an EV penetration of 40%-70%, 32% of LV feeders would 

necessitate intervention. A recently started trial, Multi Asset Demand Execution (MADE), is assessing the potential 
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flexible DR from multiple energy assets including EVs, HPs and PVs under fixed and dToU tariffs. Conflicts of 

interest in the provided DR methodology between local community and network operator, technical and 

environmental impact on the whole network and possible energy consumers’ saving are the expected key learnings. 

8.3.2 Customer Awareness 

In this category, the objective of trials is to raise awareness and to educate customers about the energy schemes. 

Consumers are kept up-to-date with the development of the trial and their benefits in order to encourage them and 

maintain their interests in the schemes. The Energywise [260] project was developed to focus on fuel poor consumers 

to provide them with the prospect of taking part in DR opportunities. The motivations for customers to engage with 

this project included energy cost reduction, better knowledge of energy consumption and provision of 

complementary energy devices. The Solent Achieving Value from Efficiency (SAVE) [261], was another such 

project, which aimed at evaluating the viability of energy efficiency schemes and engagement in order to alleviate 

network constraints. This trial involved the use of energy coaches working at local community level to improve 

awareness of responsible energy usage and sustainability. People were encouraged towards sustained behavior 

change through the use of drivers such as community engagement events. 

8.3.3 Incentives  

These pilots aimed at maximizing customer engagement by providing attractive incentives. The Activating 

Community Engagement (ACE) [262] trial developed and run an online game where customers earned credits for 

reducing their consumption during specific periods. Prizes were awarded to winning communities as well as 

individual participants. In a different community engagement trial, the Power Savers Challenge [263], customers 

whose demands were less than the previous year were rewarded. 251 households took part in this trial and a total 

demand reduction of 201MW was achieved. 70% of participating communities reached their targets, achieving a 

reduction of 4% as compared to 2013. Another such pilot, Energy Action [264], implemented a reward scheme for 

10 communities to maintain their consumption under the transformer maximum capacity. The study concluded that 

financial community incentives were not enough to guarantee a high level of response due to the unpredictability of 

community demands.  

9. Discussion of Key Challenges and Future Directions  

The DR researches and trials reviewed in this paper show that utilization of flexibility provided from residential 

loads or local generations can be beneficial for DSOs and end-users in several means. An incremental interest in 

innovation projects trialed in GB proves the potential of this solution in managing the networks’ constraints. 

However, in reality, the wider DR implementation for residential energy users faces several challenges and 

limitations. This has restrained the projects’ scopes and scales and concealed the actual value hidden in the back of 

these available energy resources. This section classifies the key challenges according to technical, social and financial 

perspectives and provide some recommendations as a future direction for researchers in this field and industry 

practitioners.   
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Table 7. Summary of relevant innovation pilots in GB network with the focus on community engagement  

Category Trial Organisation Location 
Time 

Period 
Innovation Scale 

Solutions and 

Technologies 

Communication 

Strategies 
Investment Key Lessons Learned 

E
d

u
ca

ti
o
n

 

Solent 

Achieving 

Value from 

Efficiency 

Scottish and 

Southern 
Electricity  

Solent 
2014-

2019 

Testing cost 

effectiveness of 

energy efficiency 
measurements 

and engagement 

4,600 

homes 

•Financial incentive, 

•Community energy 

coaches 

•Deploying LED lighting 

•Personalized data-driven 

messaging,  

•One-by-one written 
contact, 

•Community engagement 

£7 million 

Consumers engaged better 

with local community than 
DNOs 

Energywise 
UK Power 

Networks  

Tower 
Hamlets, 

East 

London 

2014 – 

2017 

Testing the 

effects of demand 
reduction 

techniques for 

fuel poor 

customers 

538 

homes 

•ToU, incentives 

(vouchers, etc.) 

•Smart meters, smart 

energy monitor and 
devices,  

•Temperature monitoring 

equipment 

•Face-to-face 

communication, 
•Dedicated support line, 

•Community engagement, 

•Engagement strategy and 

materials 

£5.49 million 
Successful engagement due 

to tailored approach 

In
ce

n
ti

v
es

 

Activating 

Community 

Engagement 

Northern 
Powergrid 

County 
Durham 

2015 – 
2017 

Community 

engagement 

through online 
gaming to 

achieve demand 

reduction 

- 

•Incentives based on 

demand reduction, 

•Smart plugs 

•Online game, 

 •Posters and flyers, 

•Educational programme, 

•Council website, 

•Community engagement 

£1.1 million 

•Complete understanding at a 

participant level is crucial 

•Importance of providing 
adequate and not 

overwhelming information to 

participants 

Power 
Savers 

Challenge 

Electricity 

North West  
Stockport 

2013 - 

2015 

Increasing 

capacity for 
renewable energy 

generation on the 

DN 

251 

homes 

•Incentives based on the 

consumption of previous 
year 

•LED light bulbs, shower 

timers, Plug-in timers 

•Newsletter, online, 

•Events and advice, 

•Home display, 
•Community engagement 

- 

•Participants well supported 

and engaged 

•Importance of providing 

adequate and not 
overwhelming information to 

participants 

Community 
Energy 

Action 

Western 
Power 

Distribution 

10 

locations 

from 
central to 

south 

west 

England 

2012- 

2013 

Assessing the 

feasibility of 

reducing peak 

demand by DSM 
in predictable and 

reliable 

834 

homes 

Cash incentives for    each 

peak and overall 

consumption reductions 
targets for each community 

•Newsletter, online,  
•Leaflet,  

•Door knocking 

- 

Methodology was not 

successful and not 

recommended as a way to 
reduce demand 
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Category Trial Organisation Location 
Time 

Period 
Innovation Scale 

Solutions and 

Technologies 

Communication 

Strategies 
Investment Key Lessons Learned 

In
te

g
ra

ti
n

g
 l

o
w

-c
a
rb

o
n

 t
ec

h
. 

Sola Bristol 

Western 

Power 

Distribution  

Bristol 
2011-

2016 

Assessing 
feasibility of 

integrating low-

carbon tech. 

using new 
technologies 

and storage 

management 

61 

homes 

•Sunshine tariff (ToU) 

•PV, energy storage, DC 

circuits 

Home display, 

community engagement, 

website 

£2.8 million 

•Understanding of 

customers’’ use of energy to 
maximise and tune energy 

management 

•Possible savings for 

customers  
•Demonstrate the benefits of 

deploying DR aggregation 

through in-home Multi 

energy asset 

My Electric 

Avenue 

Scottish and 

Southern 

Energy  

Across UK 
2013-

2015 

Directly control 

EVs to manage 

local LV 
network 

- 

Lease on EV at a reduced 

rate, free/minimal cost 

charging point installation, 

Esprit (innovative piece of 
technology for directly 

controlling EV charging) 

Local community event 

and engagement, 

newsletter, social media 

£9 million 

•Need of intervention with 
increase in the penetration of 

Evs     

•Forecast of around £2.2 

billion savings by 2050 

Multi asset 

demand 
execution 

(MADE) 

Western 

Power 

Distribution   

South West, 

South 

Wales,West 
midlands, 

East 

Midlands 

2019-
2020 

 Providing 
higher DR 

services 

through 

multiple energy 

assets at  
household level 

5 
homes 

•EVs,  

•Hybrid heating  systems  

• Solar PV 

Website, Direct 
communication 

£1.655 million 

•Possible savings for 

customers  

•Demonstrate the benefits of 
deploying DR aggregation 

through in-home Multi 

energy asset 
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DR Infrastructures refer to initial requirements and advanced technologies for enabling DR services for 

households. In order to efficiently utilize the smart and postponable appliances and local energy generations, which 

are consider as flexibility resources, end-users need to be equipped with energy consumption monitoring and control 

devices. One of the key prerequisites is smart metering devices that increase LV visibility by enabling a dynamic 

and bi-directional data communication in near real-time between consumers and network entities [265]. However, 

the installation of these devices has faced several economical and technical challenges.  

In GB, the initial rollout plan of smart meters by 2020 has now been re-scoped to 2024. Customers widely 

experienced functionality failures in the original smart meters (first generation) particularly when switching between 

energy suppliers [266]. Moreover this version of smart meter is not compatible with all types of PV cells. These 

issues were resolved in the second generation meters [267], first introduced in 2018. The old-type meters have to be 

upgraded, and this can be done remotely [268]. In addition, smart meters cannot be connected to about 30% of 

households due to poor internet connectivity causing communication difficulties between in home-display and smart 

meters. Therefore, further investigation is warranted to come up with alternative solutions to overcome these 

communication issues. Nevertheless, it is predicted that 4.5% of households may not been able to access smart meters 

due to the solutions being extremely expensive [267]. A report by trade body Energy UK warns the Department for 

Business, Energy and Industrial Strategy (BEIS) that despite the 2024 extension, in the best case scenario, only 68% 

of the targeted 85% can be achieved [269]. The amount and accuracy of data that is needed to achieve an acceptable 

level of profile estimation is yet to be determined.  

Despite the challenges, the rollout of smart meters can facilitate innovative and new ways of active engagement 

of consumers in the energy market. The participation of consumers in DR programmes can be done manually through 

e.g. in-home display or automatically through HEMS. However, moving towards a smart and digital future, energy 

providers are seeking to model dynamic electricity tariffs to mitigate network constraints in real time. This requires 

a fast and dynamic response of consumers using HEMS.  

On the other hand, the literature undertaken in recent years shows the significant role of aggregators in enabling 

extensive DR market from local load/generation at LV level that are individually too small for playing an active role 

in the markets. Aggregators can enhance the network reliability by providing aggregated loads independent from 

energy suppliers or geographical area that are run by various DSOs. However, the integration of smart assets with 

customer’s ownership to the grid requires a standardized “physical” connection to maintain network stability and 

reliability. It also requires monitoring and control functionalities at network’s level. 

 Implementation of energy management system and demand side response can be delayed or paused if suitable 

infrastructure and communication protocols and transmission are not put in place. Inevitably, energy providers, 

market and SOs need to facilitate appropriate gateway and interfaces to be integrated to flexibility providers at low-

voltage level. The focus of most of the research studies and innovation pilots are on commercial framework for 

aggregators and flexibility providers. There is less investigation on enabling the market, digitalization platforms and 

coordination between DSO, transmission SOs and independent aggregators.  

A comprehensive review by M. Andoni et. al. [270] shows a considerable interest in literature on using recent 

technologies such as Blockchain and IoT platforms for digitalization. Blockchain can provide a secure and 

standardize data communication platform for the interaction of intelligent and smart devices at both network and 

customers levels. They can also be used in P2P and local energy trading. However, these findings are still in a very 
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early stage and further investigations along with practical case studies are needed to prove that the model can be used 

in a decentralized, scalable, secure and economically viable way.  

However, several factors still need to be addressed by SOs and energy regulators and these include the modeling 

of aggregators by DSOs, the suitability of industry standard and the role of aggregators in the energy markets. In 

addition, the market model should ensure a level playing field for all network entities with defined and clear 

role/responsibilities. This includes a solution design architecture with end to end data exchange model in a multi-

agent system which can model the interaction of all entities. Despite significant recent studies on providing DR 

models through a MAS framework, there are still limitations in terms of scalability, adoptability, network constraints, 

DR scenarios and types of agents. Hence, there is a need to develop a coordinated model that considers the interest 

and objective of each individual type of network entity (agent) in a decentralized platform.  In order to enhance the 

reliability of the network, a combination of incentive-based and price-based DR is also desired to be included in the 

DR model [171].  

However to accommodate these new innovations and technologies, the required infrastructural changes in the 

conventional electricity network will necessitate a considerable financial investment [271]. This creates the issue of 

where the responsibility lies for setting up these arrangements [272]. Authors in [273] have referred to this concern 

as an incentive-problem and suggested that the cost of installations should be shared among network entities so that 

all DR participants can benefit from this service. What is clear is that a harmonized partnership between public and 

private sectors is needed to enable the research work in a real-environment.  

Consumer Engagement is the key to success for DR implementation. Lack of adequate awareness about the 

advantages of these programmes as well as inexperience in using these new technologies are the main issues. Some 

projects have been trialed on a small scale of energy consumers aiming to encourage them to change their sustained 

behaviour. Moreover, low amount of incentives are offered to households with small DR capacity. Customers should 

be equipped with PV and plug-in EV (PEV) that provide more flexibility and hence fair economic benefit. More 

focus is recommended on localized approaches to consider DR within a local community through the use of user-

friendly software applications and tools to raise customer awareness. Market rules and competitive rewards schemes 

can be extended to local communities where each community can get incentives for the reduction within that 

community. 

However, some studies [274] show that even if consumers have high attitudes towards participating in DR 

programmes, they can still encounter some challenges. For instance, controlling the energy usage all day long is not 

practically possible for end-users even though home energy displays can make them aware of their electricity 

consumption and price. HEMS can solve this problem to a certain extent. The load scheduling can be programmed 

automatically taking into account network constraints and users’ comfort level.  

Besides education, awareness and incentives, data privacy and security are also major challenges. In GB the smart 

meter data is available to energy providers, SO and third parties through a central database, DCC.  This requires 

policies and regulations that guarantee safety, security and liability of data exchange.  

Technical Concerns are more significant for residential consumers due to the complexity of determining the 

accurate amount of available DR. This is because of the sporadic and unpredictable nature of domestic loads. Some 

external factors such as social events and weather conditions can also affect the consumption behavior of users [275]. 



26 

 

To mitigate these issues, uncertainties in demand and generation should be considered in improving forecasting 

techniques at distribution level. This will help DR service providers to plan more accurately their actions [274].  

Another concern is the peak rebound where a new peak can occur due the high number of demands shifting from 

peak to non-peak time. A coordinated DR algorithm and control mechanism is required to prevent such issues and 

thus enhance the network reliability [87]. In addition, the complexity issues arising from the huge data interaction in 

the network along with characteristics such as types of information and data transfer rate are among the key 

challenges faced by DSOs and energy providers.  

Most of the proposed DR strategies relies on the implementation of HEMS to optimize home energy consumption. 

HEMS can schedule appliances that consume power in adjustable timeslots where their operations can be stopped, 

adjusted, or shifted to other timeslots. Based on such an energy management mechanism, HEMS proposed in studies 

can be categorized as conventional, advanced and smart. The optimization algorithm of the former is based on 

exclusively load management in response to a price signal e.g. [276-279] whereas the second group considers the 

price prediction e.g. [182, 280-281]. The latter applies Machine Learning techniques, AI and data-driven algorithms 

to DR strategies [282-283]. The principles of DR mechanisms in advanced and smart HEMS are fundamentally 

similar to the conventional HEMS, but are embedded with some sort of intelligence to improve the DR optimisation 

performance. The recent studies in this field show a considerable interest on the last category by applying AI 

solutions. AI is the preferred choice for residential level as it can provide an automated decision-making mechanism 

considering various customers’ characteristics, energy usage, preferences and comfort level.  

AI can also address the various challenges introduced so far in this paper, related to complexity of LV network, 

by improving the forecasting of demand, generation and electricity price, big data management, and performance 

and accuracy of optimisation algorithms at both customer and network levels. However most of the studies on AI 

applications are limited to a small scale data and simulation environment. Hence, further investigations and real-case 

scenarios need to be conducted in order to determine the most appropriate techniques in AI for different optimisation 

purposes.   

10. Conclusion  

The traditional role of DNOs’ are now transforming to a DSO one due to changes and challenges within the 

modern electricity network. This provides facilities for wider implementation of DR to manage network constraints 

as a less-costly alternative solution to upgrading the network infrastructure. This paper provides a comprehensive 

review of the relevant researches and trials in GB on the residential DR mechanisms, targets, solutions and 

applications in managing DNs. 

The DR objective function is investigated in terms of both economic and technical targets for both LV and MV 

feeders. Hence, the focus of this work is on the network level where the main stakeholders are consumers, DSOs, 

energy suppliers and aggregators. The DR applications and control strategies in microgrids are also reviewed. The 

outcomes of both literature and pilots demonstrated that DR can be an effective, reliable and economic alternative 

solution to network upgrading. 

The challenges and obstacles faced by DR implementation are also explored from financial, social and technical 

perspectives. It is also shown that consumer engagement is one of the most important requirements for the success 

of implementing DR. Considering the various individual characteristics of consumers in algorithms and 
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methodologies, can provide the DSOs with a better understanding of available flexibility demands for future 

planning. 

In this work the authors reviewed 226 papers and have identified limitations in the proposed DR implementations. 

There is still a need for comprehensive frameworks in wide-area networks to model the interaction among 

participants under real time environments. Most proposed platforms focused solely on one aspect of the DR targets, 

either the technical target where the aim of DR algorithms is to manage the power flow across the network, or the 

economic target intended at minimizing electricity cost. This gap can be addressed by including both the technical 

and economic aspects in DR control schemes. 

It has been discussed in the paper that residential consumers have intermittent energy consumption characteristics. 

This requires the consideration of a more direct approach in peak demand curtailment along with price-based DR as 

a means of demand-supply support. Very few studies have so far explored the combination of both incentive-based 

and price-based DR mechanisms in their algorithms and implementations. A distributed intelligent platform can 

activate the opportunities for residential flexible loads shifting and shedding that include both DR mechanisms. 

Our review also presented the relevant innovative pilots in residential DR implementation trialed in GB network. 

One of the key findings is that the role of local community in providing flexible demand and network support is 

getting more prominent. Due to the individual low flexible load at residential level, flexibility services provided 

through DR aggregators seems to be more practical to provide technical support to the network. However, the 

thorough quantification of potential and available responsive demands and their effectiveness in managing the 

network under real time is still needs further investigation. 

Our work has shown that the future of DR implementation is trending towards the use of new data driven 

technologies such as AI and Blockchain and P2P energy transaction. Although these are slowly becoming well 

established, there is still the need for more in-depth research to find optimal solutions for the challenges discussed in 

this paper. Researches and pilot projects are inexorably paving the way for these techniques to play a leading role in 

the future of DR implementation. 
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