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Complex software systems, meant to facilitate organizations, undergo frequent upgrades that can erode the system architectures.
Such erosion makes understandability and maintenance a challenging task. To this end, software modularization provides an
architectural-level view that helps to understand system architecture from its source code. For modularization, nondeterministic
search-based optimization uses single-factor single-objective, multifactor single-objective, and single-factor multiobjective, which
have been shown to outperform deterministic approaches. The proposed MFEMO approach, which uses both a heuristic (Hill
Climbing and Genetic) and a meta-heuristic (nondominated sorting genetic algorithms NSGA-II and III), was evaluated using five
data sets of different sizes and complexity. In comparison to leading software modularization techniques, the results show an
improvement of 4.13% in Move and Join operations (MoJo, MoJoFM, and NED).

systems can undergo structural and quality deterioration [6].
The software system is less flexible, more difficult to un-
derstand and maintain due to its low quality [7]. To this end,

1. Introduction

Software creation, operation, and maintenance require a

systemic, structured, and quantifiable approach. Software
systems demand functional changes as part of their software
evolution [1, 2]. To this end, an understanding of the
software system is developed through its corresponding
documentation [3-5]. In situations where there is no doc-
umentation or when documentation is outdated, adding new
features to meet frequently changing customer requirements
remains a challenging task. As a result of nonupdated
systems’ failure to meet requirements, complex software

approaches such as software modularization (SM) are used
to solve the problems effectively [4]. According to a study
published by Candela et al. [8], the analysis phase accounts
for 40% to 60% of management effort. The modularization
quality (MQ) metric is based on the weighted edges of the
software system graph and is used to evaluate the parti-
tioning quality. The edge weights are described in the lit-
erature using different relationships, such as direct [9, 10],
indirect [11-13], and semantic similarity [11, 14]. These
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methods enhance coupling and cohesion while considering a
single objective with a single relationship factor or a single
objective with a multifactor (MF) relationship [15].

SM is an NP-Hard problem and has been solved in the
past through search-based optimization. The search-based
approach, proposed by Hwa et al. [16], enhances cohesion
and coupling [17, 18], and improves the software structure
by enhancing the criteria for coupling and cohesion
[9, 18, 19]. Moreover, meta-heuristic approaches [17, 20] are
also used to solve modularization problems such as Barros
[21] investigated the software clustering problem’s efficiency
and efficacy of using two composite objectives. An experi-
mental investigation revealed that eliminating the composite
objectives from the software clustering problem allows a
multiobjective (MO) evolutionary algorithm to identify
better solutions faster. Morsali and Keyvanpour [3] classified
each of the techniques in this software clustering. Similarly,
Srijoni et al. [9] presented SMARTKT code comments that
include application-specific knowledge that matches 72% of
human-annotated ground truth. The authors consider the
well-known MO evolutionary algorithms (NSGA II and
NSGA III) to overcome MO optimization [20]. In five
different data sets, modularization based on combined
features consistently outperforms modularization based on
structural and nonstructural features. Furthermore, the
proposed MF MO function, which includes structural and
nonstructural functionalities, outperforms combined-based
objective functions in leading optimization algorithms by
more apparent and comprehensible modules. The results
also suggest that the MO optimization strategy-based meta-
heuristic algorithm outperforms other techniques. As a
result, using a MF MO approach with five objectives and
three relationship factors, this study provides an enhanced
hybrid approach for reconstructing software systems’ ar-
chitectural design. Coupling and cohesiveness are consid-
ered as single objectives in TurboMQ’s MO formulation.
Among other things, Turbo MQ is also mentioned, as well as
the five objectives of the maximizing clustering approach
(MCA), roughly equal size cluster approach (RESCA),
cluster cohesiveness approach (CCA), Cluster Connected-
ness Approach (CCoA), and intracluster connection density
(ICD), as well as three MF formulations of direct, indirect,
and semantic features.

The primary contribution of this research is summarized
as follows:

(i) The research presented an enhanced hybrid for-
mulation of a MO problem by considering five
major quality objectives.

(ii) Proposing a new concept of MF relationships that
collectively considers the direct, indirect, and se-
mantic features.

(iii) Researchers have not investigated heuristic and
meta-heuristic approaches for solving the problem
of SM while considering direct, indirect, and se-
mantic features at the same time.

The remaining sections of the paper are organised as
follows: Section 2 discusses the relevant work that has been
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done. Section 3 describes the suggested MF, MO strategy,
which is comprised of several factors and multiple objec-
tives. Section 4 discusses the MO formulation, while Section
5 discusses the experimental setup. Section 4 discusses the
MO formulation. Section 6 discusses the findings and the
analysis that was done as a result of them.

2. Related Work

Over the past two decades, there has been a lot of research on
the automated modularization of software systems to im-
prove system quality by optimising the software architec-
ture. Most SM approaches use clustering techniques [22, 23],
divided into data clustering techniques and graph clustering
techniques. Mkaouer et al. [24] presented a novel MO search
approach using NSGA-III, which may improve package
structure, decrease the number of changes, preserve se-
mantic coherence, and reuse change history. Wen et al. [25]
proposed algorithms and optimization methods for indexes.
Similarity Abualigah et al. [26] presented H-KHA, a novel
hybrid of the krill herd (KH) and harmony search (HS)
algorithms, to improve global (diversification) searchability
by increasing the number of searchable items in a collection.
When a new probability component, dubbed distance, is
included into the KH algorithm, the exploration search-
ability of krill individuals in their pursuit of the ideal global
solution improves significantly. Some of these approaches
have been modified for numerous purposes such as ex-
traction of modules [16] regrouping software systems [9],
extraction of functional elements [27], and so on. On the
other side, SBOT has been used to expeditiously build SM
and is an essential part of software system architecture. The
SBOT for regrouping in terms of MQ suggested by Hwa et al.
[16] and Erdemir and Buzluca [28] used it. The SBOT was
enhanced, evaluated, and calibrated by few previous studies
[28-30]. It is an effective way for single and multi-
relationship factors (MFs), such as connectivity, artifact
sharing, and semantics. The modularization problem was
designed using single factor [31, 32] MO optimization
problems using hill climbing (HC) and genetic algorithm
(GA).

Praditwong et al. [9] improved the search-based ap-
proach by taking module cohesion and coupling under
consideration and using an MO evolutionary algorithm. The
new MO approach included search-based enhancements
that were more effective than the SO formulation. They used
the HC algorithm to address two MOs: the ECA (equal
cluster size approach) and the MCA (maximize cluster
approach). Later, Barros et al. [19] used a new objective to
assess the efficacy of the ECA and MCA formulations. Their
empirical analysis revealed that, like with MCA and ECA,
equivalent results could be achieved with fewer objectives.
The distinction “the gap between the maximum and a
minimum number of artefacts in a module shall be reduced”
was used instead of the previous one. To solve the problem,
Chhabra et al. [20] used NSGA-II, which addressed four
MO:PCI, PCI, IPCD, and PCI. Schmidt explored eight
MOs, including standarised cumulative component de-
pendence, subsystem relational cohesion, efferent subsystem
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coupling, erent subsystem coupling, distance to subsystems,
and number of forbidden outgoing-type dependence,
number of package cycles, and range of subsystem compi-
lation units, using NSGA-IIL. [32]. Although the search-
based strategy has been broadly investigated, an effective
approach is used for single and MF, that is, direct, indirect,
and semantic features, and the problem of modularization is
also formulated using the MO optimization problem of a
single factor [20] using HC. Similarly, Huang et al. [15]
proposed a novel search-based approach for grouping
software modules based on various relationship factors. They
argue that all existing approaches analyse the whole system
as though it were a single factor, which leads to the following
problems. To begin, the system’s overall quality cannot be
determined by a single factor: certain modules can form
semantic relationships, while others can form structural
ones. Second, the user of the approach should select a factor
without knowing which one is the most effective.

This research examined a new approach for optimising
MF MO. Researchers adopted a meta-heuristic technique
to solve the search optimization problem, and we followed
a search-based approach because it consistently produces
better results. Owing to its significance in the early
modularization of software, we used the weighting scheme
for class connections to achieve this task. The usage of this
concept has been proposed as a new SM mechanism for
module reconstruction. To the best of my knowledge, no
MF, MO approach has been given. The proposed approach
outperforms prior approaches because it evaluates several
connections with the same weight equal to 1 rather than
only binary values. As a result of our experiment results,
we were able to develop an effective and optimal SM
approach.

2.1. Single-Factor Single-Objective SM. To solve the problem
of SM, several researchers have used several different factors
(features) in their research. Files, macros, function calls,
user-defined data types, and even global access variables
were used by Anquetil [33], while nonformal features in-
cluded comments, identifiers, URLs, and even developer
names. Artifacts were also identified as files, routines, classes,
and processes.

2.1.1. Existing Single-Factor Approach. Researchers have
used formal and informal, static, and dynamic relationships
that are based on structural and nonstructural factors.
However, the three types based on their nature are direct,
indirect, and semantic. The following is a list of researchers
who have investigated the connections, which are sum-
marized in Table 1.

2.1.2. Existing Single-Objective Approach. In a single ob-
jective, only one objective is optimised.

min
maxF(M)|M € ¥

F(M=#)= (1)

In equation (1), M* refers to modularization, while ¥ is
for the modularization feasible set. The most common
problem with modularization is single-objective optimiza-
tion, where F is the function of minimization or maximi-
zation. Search-based module clustering approaches are used
to explore the possible partitions in the search space, and this
approach is used to discover the optimal solution. Following
on from a previous study that used a single-factor formu-
lation known as MQ [16] to reveal better solutions
throughout the search, we have concentrated on TurboMQ
presented as one of the internal metrics that has been used in
many research papers to evaluate the quality of recovered
architectures as indicated in equation (2) to reveal better
solutions throughout the search. The Turbo MQ measure-
ment was created in order to overcome the two limitations of
the Basic MQ measurement. Turbo MQ is significantly faster
than Basic MQ and supports multidimensional graphs with
edge weights (computational complexity is O(V)).For an
MDG partitioned into k clusters, the Turbo MQ measure-
ment is obtained by multiplying the Cluster Factor (CF) for
each cluster by the Turbo MQ measurement.

k
TurboMQ = Z CFi,

i-1
0.
ifpi =0, &)

cF={ %
2u+e

| otherwise.

Cluster factor (CFy) is the sum of its modules. Each CF;
measures the ratio of intra (1) and interedge (¢) Ck weight
sum. Researchers also employ additional objective functions
in their studies. The objective function is summarized in
Table 2.

2.2. MF MO SM. The software system can be modelled as a
graph, with nodes representing classes and edges repre-
senting relationships between them. A metric called MQ is
calculated across the weighted edges of the software system’s
graph representation to measure the quality of a given
clustering partitioning problem. A parameter that describes
the “relationship” between modules is known as an issue
parameter. The edge weights are described in the literature
using several different relationship factors: Direct [9, 38],
indirect [30], and semantic similarity [39] were extensively
studied. In addition, details such as changing history [39],
physical locations of modules [40, 41], and design evolution
features [42] were considered.

2.2.1. Existing Single-Objective Approach. The parameter-
ized variant of single-factor SM is MF. MF allows each
cluster of nodes or each node-to-node edge to have different
weights depending on different relationship criteria,
resulting in a clustering that incorporates multiple aspects of
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TaBLE 1: Work-related to direct, indirect, and semantic relationship.
S. No. Papers Entity Direct Indirect Semantic
01 [33] Class Method call Not used Comments
02 [34] Class Method call, references, and extends  Not used Not used
03 [31] Class Member function Not used  Members variable names, class, and function names
TaBLE 2: Work-related to single-objective function. (MOEAs) to optimise many objectives at the same time.
: - Instead of using the term MO, we chose MF to emphasise
S. No. Paper Fitness function . .
— that many factors are weighted during actual cluster for-
01 [10] MQ, turbo MQ i mulation. Unlike Praditwong et al. [9], this research aims to
02 [35] Entropy-based objective function . .
" . develop new approaches that incorporate multiple elements
03 [36] Entropy-based objective function . .
04 (4] Cohesion and coupling and factors to get a single solution. Table 3 shows the work
05 (37] MQ related to MOs.

module relationships. Hwa conducted a study on MF and
presented the MF module clustering (MFMC) formulation
in their analysis [15]. They modified the SF formula to create
two MF-focused search-based approaches, which they then
applied and evaluated with the HC algorithm. The results of
the empirical evaluation reveal that formulations of MEMC
yield modularization that are on average 10.69% more
comparable than SF formulations. Different edges are
assigned different weights according to their relationships,
resulting in a cluster with several module clustering features.
MF relationships between modules are represented by the
number of modules (n) and the number of MF relationships
(m), that is, G=(N, E). Each edge is represented by E as
follows by Huang et al. [15].

e=(n,n, W),n,n, € Nyatb,

(3)
W= Wab (1)a Wab (2)’ ©ttoab (I’l)

Based on different types of relationships, W, is the
weight of the edges between n, and n,. When the edge
weights are added together, the strength of the connections
between the two edges is revealed.

2.2.2. Existing MO Approach. MOs optimise more than one
objective. Each of the existing approaches merges the twin
objectives of cohesion and coupling into a single target
feature to avoid aggravating the suboptimal solution result.

F(M") = min (F1 (M), F2(M)), .. .,

(4)
Fm(M)|M e vy.

The target function is represented by F, and the total
number of targets is represented by m. Praditwong et al. [9]
provide a novel method for applying Pareto front optimality
to an MO issue (the set of all nondominated solutions in an
objective space). Scalable modularization solutions are
among the MO modularization approaches that provide
developers additional options to select from based on their
requirements. The optimal Pareto scale integrates a variety of
dimensions into a single common metric scale.

Our study aim is to employ MO module optimization,
which involves using multiobjective evolutionary algorithms

3. Proposed MF MO Approach

Numerous approaches have been used to various factors that
degrade the structure and results of SM. Taking the call
dependency graph (CDG) as a direct, the majority of them
were only used for modularization (structure features).There
are not enough tools to extract indirect and semantic fea-
tures. As a result, the proposed approach considered both
direct and indirect features, as well as semantic features. The
recommended method involves using an MF, MO evolu-
tionary formulation approach with five objectives and three
relationship factors. MQ and MMQ are MO formulations
that combine the two objectives of minimal coupling and
high cohesion into a single objective. We considered
BasicMQ and TurboMQ, as well as the five objectives and
three relationship factors:

(1) Maximizing clustering approach (MCA)

(2) Cluster connectedness approach (CCoA)

(3) Roughly equal size cluster approach (RESCA)
(4) Cluster cohesiveness approach (CCA)

(5) Intracluster connection density (ICD)
The three factors formulation includes

(1) Direct (connectivity)
(2) Indirect (artifact sharing)

(3) Semantic

The proposed hybrid MF with MO formulation con-
siders both structural (direct and indirect) and nonstruc-
tural (semantic) relationship features at the same time. The
structural characteristics investigated (Global variable,
Macros, Overriding, and Class containment) include in-
direct features (Inheritance, Function Calling, Class Call-
ing, Interface, Class lies inner, and Static Inner Class
Calling) and Calling Dependency (Inheritance, Function
Calling, Class Calling, Interface, Class lies inner, and Static
Inner Class Calling).The similarity between identifiers and
comments is one of the nonstructural features considered.
Figure 1 depicts the whole process of the proposed en-
hanced hybrid MF MO. The general structure of the
proposed methodology is given in Figure 2. The following is
the suggested strategy: First, an object-oriented software
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TaBLE 3: Work related to multiobjectives.

S.No. Paper Fitness function
01 [75] Class inter and intramodule change coupling, index module counts, and size
02 [43] FUP-based cohesion and semantic relatedness

The cohesion of relational subsystems (maximize), for composite components, there is a standard subsystem dependency

(converge to 1.0), coupling error in a subsystem (minimize), subsystem coupling (minimize), distances between subsystems

03 [44] (minimize), restrict the number of outbound-type dependencies (minimize), and the number of cycles on packages

(minimize), subsystem compilation units (minimize)
04 [34] Intra and intercluster dependency, cluster count, and module count per cluster
05 [20] Package connectivity index, density of intrapackage connections, and package size index
06 [20] minimize modifications to the package’s structure, maintain semblance coherence reuse affects history
07 [45] Package structure, minimum change, MCA, and ECA

Object oriented
Input N System

Source Code

Entity and
Features
Extraction

N

Direct & Indirect

A 4

Semantic Features

Features
A4 A4 A
1. Inher{tance 1 Global Variable Code Features Texture Features
2. Function Call 5
2. Overriding
3. Class Call
3. Macros
4. Interface 45 a v y
5. Class Inner Call ' Came ass Extracting Extracting
6. Static Inner Class ontainment Identifiers Comments
A 4 A 4 Creating Co- <
. Applied Jaccard occurrence Matrix
Creating CDG |« PP NM Tokenization
v
v
Use of Search-Based Algorithms < Creating Co- .
occurrence Matrix
7'y
v
IDE-TIDE |« Apply Co-sine Apply TE

Similarity

Fi1GURE 1: Process of Structural and Nonstructural feature extraction.

system is used to extract entities (classes) and relationships
(direct, indirect, and semantic). Second, assigning weights
to different relationships (in this paper, we used weight 1),
then aggregating the weights and allocating them to the
relationship, shows their strength. In the third phase, a
Weight Class Connection Graph (WCCG) is constructed
based on the relationships to represent the software system,

and then MFMO criteria are defined, and an Evolutionary
Algorithm is used to them to provide the software system’s
output.

3.1. Entity and Relationships Extraction. Classes are the
building blocks of OOPS that encapsulate an entity’s
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l

OUTPUT

ell Modularized
System

FIGURE 2: Proposed approach schematic diagram.

properties and functions. According to the [46] recon-
struction of the architecture, a class is vital in software. It is
an essential part of object-oriented software. The smallest,
architecturally significant elements are entities [47]. They
participate in the clustering phase of the automated
software clustering and modularization process and be-
come cluster participants [37]. Although these classes are
linked by structural, dynamic, static, semantic, and con-
ceptual relationships [9].Our research focused on direct,
indirect, and semantic connections. Fact Extractor System
for Java Software and Fact Extractor System for Java
Software were used in this study (FESJA). Using the FESJA
to extract the relationships, which are described briefly as
follows:

3.2. Direct Relationships. The researchers [20, 27] have
considered some direct relationships that will represent the
system in its true meaning.

(1) Inheritance (I). Access to all of class A’s methods and
attributes is denoted by class B.

(2) Function Call (FC). Container class B invokes at least
one method from container class A.

(3) Class Call (CC). Class A contains a class B object.

(4) Interface (IBI). Class A inherits an interface’s abstract
methods when it implements.

(5) Class Lies Inner (CLI). Entity-to-object connection in
which a function parameter is an entity A.

(6) Static Inner Class (SIC). Class A has access to the
private static data of members of outer class B.

3.3. Indirect Relationships. The following are some indirect
relationships that researchers frequently use to depict the
system. The description of extracting indirect relationships is
given. The whole process is explained in Figure 3.
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Feature Extraction ]—b[ Structural Information ]—b[ Obtaining Relationship ]
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[ Apply Meta-Heuristic Algorithm ]4—[
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Creation CDG
Measurements
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FIGURE 3: Proposed approach indirect relationship extraction.

(1) Global Variable (Gv). When Class A and Class B
share a global variable.

(2) Overriding (O). Class B and C have access to the
parent class.

(3) Macros (Mc). Class A and B macros are the same.

(4) Same Class Containment (SCC). When two classes
share objects.

3.4. Semantic Relationships. Similarities between comments
and extracted identifiers are considered semantic charac-
teristics for SM:

(1) Maximize similarity between comments
(2) Identifier name similarity should be maximized

(3) Maximize the existing inheritance relationship be-
tween two identifiers

(4) If a call relation exists, it should be maximized inside
the module and minimized across it

Figure 4 shows the entire process. This study used
synthetic features like function calls, variable calls, and
inheritance. It appears to be a better SM, but we could
potentially get a better SM by extracting from identifiers,
comments, and other nonsynthetic characteristics in soft-
ware systems’ source code. Misra [11] proposed combining
synthetic and nonsynthetic features to remodularize the
software system. The comments and identifiers are taken
from the source code. This work used Jaccard-NM instead of
Jaccard after extracting direct relationships since Jaccard-
NM produces better results and eliminates the random
decision after two similarities [48].

The feature metric data table N * P, where N denotes the
entity and P denotes the features, can also be analyzed. Itis a
MoJo (Move and Join (MoJo) Operation)-based evaluation
metric that can be used to test the stability of two modu-
larizations and calculate their distance. Instead, a low MoJo
score indicates that two partitions are comparable. These
steps are specified [47, 49].

3.5. Assigning of Weights. Numerous quality criteria, in-
cluding cohesion and coupling, are used to evaluate the
system’s efficiency, ensuring that the system’s categories
are coupled in such a way that a good SM is produced.
Since it is based on basic forms of relationships, instances,

and cumulative weights between classes, the relationship
between classes is complicated. The connections will be
assigned weights both internally and externally as a result
of this research. Following the weighting formula [20], the
weights of each relationship are added together to pro-
duce an aggregate sum of all contributing relationships in
this study.

Wk=) % Nk(Ci,CH+Y Y .NK(Ci,Cj),

i=1 jeNi i=1 j¢Ni

W =Wab(1),Wab(2),...,Wab(n). (5)

In equation (5), C stands for Classes. Classes Ci and Cj
have Ny instances between them, while classes with the same
cluster have Ni instances. The W, is a na/nb edge-weighted
average based on relationships. It is revealed by adding the
weights of the two edges.

4. MO Formulation

This study considered the MCA, RESCA, CCA, CCoA, and
IICD Approach.

4.1. Maximizing Clustering Approach (MCA). The following
set of objectives is used by MCA:

(1) The number of intraedge clusters should be increased
(2) To minimize the overall number of interedge clusters
(3) The number of clusters should be increased

(4) The MQ value should be maximized

(5) To reduce the number of separate clusters

Maximizing clusters, which is uncommon in SM,
eliminates isolated clusters. To expand the number of
clusters, not all modules inside a cluster need to be concise.
More clusters in a system means more advantages from
modularization [9].

4.2. Roughly Equal Size Cluster Approach (RESCA). A
modular structure with roughly equal-sized clusters is
produced in ECA, which helps in cluster disordering. It
prevents large clusters and isolated clusters [9, 19]. Only one
objective is different between MCA and MCA: the number
of modules in a cluster.
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FIGURE 4: Proposed approach of semantic relationship extraction.

4.3. Cluster Cohesiveness Approach (CCA). The CCA mea-
sures how closely related artifacts in a cluster or node are.
The cluster’s intraedge connectivity is examined [9].

Rn Rn
CCA(Ci,Cj)=Y > .[ Y WkNKk(Ci,Cj) |, (6)
Ri jeNi Ri

where Y'Y jeni> denotes the total number of relationships
in the given cluster.

4.4. Cluster Connectedness Approach (CCoA). Using the
CCoA, you may determine how well objects in various
clusters are connected to one another,

Rn Rn
CCoA(Ci,Cj) =) > . WKNk(CiCj), (7)
Ri j#Ni Ri

where Zﬁ?zﬁm, represent the total of all nonclustered
connections.

4.5. Intracluster Density Approach (ICDA). The optimum
cluster size has almost equal numbers of artefact distribu-
tions inside clusters. However, this is not always feasible
because when creating random clusters based on similarity
and dissimilarities, it tends to divert to one side. Skewness in
artefact distribution within clusters will be avoided by using
the cluster size index (CSI). To cope with such a problem, we
used ICD, which is defined as follows:

o
intracluster connection density (ICD) = ==&, (8)
Cmax

The minimum and maximum number of classes in a
cluster is Cpin and Cp,y. The value decreases as the cluster
size is larger, whereas it increases as the cluster size gets
smaller.

5. Experimental Setup

To assist the MFMO in producing high-quality SM results in
the form of an optimised solution through the use of SM
techniques. The experimental setup includes (1) a

description of the software system, (2) data collection, (3)
multiple criteria for evaluating the results, and (4) search-
based modularization approaches.

5.1. Software System Description. This paper aims to develop
object-oriented software systems with a reasonable number
of clusters and lines of code (LOCs). These five databases
(software systems) were selected for their varying sizes and
program complexity. Table 4 shows the description of the
software system (data set).

5.2. Collection of Results. Approaches based on search are
contentious because they work on the same chromosomes
or, in some cases, on many runs at the same time. Owing to
the stochastic nature of SBOT, we must collect data for
each test programme (a total of 30 occasions). In an MO
algorithm, we collect nondominated sorted solutions,
while for a single objective, we pick the best-dominated
iteration.

5.3. Evaluation Results Criteria. In this study, the modula-
rization of heuristic and meta-heuristic algorithms was
examined using five Java software systems, which were
evaluated using two fundamental approaches: internal cri-
teria and external criteria. The internal characteristics of the
resulting modularization are evaluated by an internal as-
sessment evaluation. MQ [16], cohesion and coupling [21],
and the number of clusters and cluster size [50] are only a
few of the quality characteristics for an internal modularized
system. The focus of this study is TurboMQ, a popular re-
search internal evaluation tool. The second evaluation is
external, and its objective is to analyse and describe the
degree of similarity between the achieved modularization
and the expert-produced modularization (the software
system’s or developer’s lone author) for resembling as much
as possible as defined by Schmidt et al. [33]. For external, we
compared the modularization provided by the algorithms
with the expert decomposition using MoJo [43, 47] and
MoJoEM [27, 47].
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TaBLE 4: Description of the software system (data set).
System name sLOC Blank lines LOC Classes Function Variable
Bash master 32,979 8,279 41,258 239 847 2,372
Bunch-master 21,000 4,099 25,099 166 1,144 2,047
PMD-master 10,642 3,240 13,882 290 1,093 407
NekoHtml Master 6,871 1,474 8,345 48 393 659
Servlet-master 2,614 1,488 4,102 27 247 230
Bash master 32,979 8,279 41,258 239 847 2,372

5.3.1. MoJo and MoJoFM. It is necessary to migrate from
one modularized system to another expert-dissect system in
order to use the MoJo method. It is referred to as a distance
criteria because the MoJo method is used when the mini-
mum number of MoJo steps required to move from a
modularized system to a decomposed expert system is less
than the number of steps required to move from a
decomposed expert system. It is a distance criterion because
the modularized and expert decomposed systems become
more similar as the number of MoJo steps lowers. This is
how it is described:

mno (A, B)
max (mno (VA, B))

MoJoFM =1 — 9)

The least number of steps required to convert modu-
larization system A to B is denoted by mno (A, B), while the
maximum number of the lowest steps required for MoJo to
convert A to B is denoted by max (mno (A, B)). The fun-
damental difference between MoJo and MoJoFM is that
MoJoFM requires expert decomposition, which is the pri-
mary difference between the two. It is more likely that the
modularized system will more closely resemble the expert-
constructed system if the MoJoFM values increase and the
Mo]Jo value decreases.

It should be noted that contacting the developer of a
software system that is about to be reviewed is difficult due to
the developer’s busy schedule or the risk of quitting the
company. However, as countless academics have demon-
strated [27, 47], there is always a middle ground that should
be pursued. To cope with this scenario, we have a few
options.

(i) Identify the module and the number of entities
(here, classes) that are associated with it

(ii) Validate the existing module’s source code with
comments

(iii) Modules with less than five classes should be
combined

(iv) Software development expertise was enlisted

5.3.2. Nonextreme Distribution (NED). According to Als-
waitti et al. [27], a good modularization system has module
sizes that are neither too large nor too small. The modu-
larized software system, on the other hand, has a well-
balanced class distribution in each module. The two con-
ditions should be avoided by an algorithm when dealing with
nonextreme distributions (NED). (i) Some files belong to

one of a few large clusters or are classes within one of them
(black holes). (ii) The majority of clusters are singletons
(dust clouds). The NED provided by Prajapati and Chhabra
[43] and Rahman et al. [51] to examine the extreme dis-
tribution of module size is given below, and it can be found
by following the instructions.
NED — Y&, Mi, NED|Mi| )
! (10)

where Miis NED if 5{|Mi|)100.

The number of modules and the objective system are
shown in equation (10). The solutions with the highest
NED values are the most suitable and stable. They consider
cluster sizes of less than 5 to more than 100 to be excessive.
According to the definition, “the ratio of the number of
files in the nonextreme cluster to the software’s total
number of target source data” is the ratio described. The
better the module class distribution, the better the NED
value.

6. Results and Analysis

The comparison of relationships across algorithms and al-
gorithm-based comparison have been discussed in this
section.

6.1. Comparison of Relationship across Algorithms. This
section contrasts direct and indirect, semantic, and com-
bined relationships. Three external evaluations, include
MoJoFM (should be high), MoJo (should be minimal), and
NED; centred on these relationships (should be maximum),
Table 5 compares algorithmic relationships.

6.2. Relationships Comparison Using Algorithms. On the
basis of three data sets, this section examines the effects of
GA, the NSGA II, and the HC on direct, indirect, semantic,
and combined relations in each data set. In Table 6, the
letters R1 and R2 represent direct and indirect relationships,
R3 represents semantic relationships, and R4 represents
combining relationships. Using MoJoFM, we can compare
three different relationship factors across three different
algorithms. The higher the value of MoJoFM, the more the
system will be similar to the expert system. The total number
of counts for GA is 5, NSGA is 8, and HC is 2. The count
shows the dominance of the NSGA, which means MO
performance. The NSGA shows better results on five data
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TaBLE 5: Comparison of relationship across algorithms.
Results of external evaluation of bash data set
. Direct indirect Semantic Combined
Algorithms
MoJoFM MoJo NED MoJoFM MoJo NED MoJoFM MoJo NED
GA 83.09 39.73 96.40 83.20 39.46 96.68 83.54 38.67 97.40
NSGA 83.35 39.13 97.00 83.35 39.13 96.82 83.38 39.13 96.79
HC 83.42 38.43 97.26 83.29 39.26 96.91 83.32 39.20 97.37
Average 83.28 39.09 96.88 83.28 39.28 96.80 83.41 39.00 97.18
Results of external evaluation of bunch data set
. Direct indirect Semantic Combined
Algorithms
MoJoFM MoJo NED MoJoFM MoJo NED MoJoFM MoJo NED
GA 66.54 53.53 94.57 65.00 56.00 94.57 65.90 54.56 94.97
NSGA 66.47 53.43 96.28 66.64 54.7 96.40 66.00 54.4 95.72
HC 65.87 54.6 95.38 65.67 54.8 95.34 65.92 54.47 95.18
Average 66.29 53.85 95.41 65.77 55.16 95.43 65.94 54.47 95.29
Results of external evaluation of NekoHTML data set
Aloorithms Direct indirect Semantic Combined
& MoJoFM MoJo NED MoJoFM MoJo NED MoJoFM MoJo NED
GA 25.04 28.10 81.25 25.76 25.57 83.10 23.09 30.06 81.25
NSGA 25.37 28.10 85.00 24.95 28.70 84.02 23.82 28.90 85.62
HC 22.52 28.6 85.27 25.28 28.53 83.05 23.47 29.13 84.02
Average 24.31 28.26 83.84 25.33 27.60 83.39 23.46 29.36 83.63
Results of external evaluation of PMD data set
. Direct indirect Semantic Combined
Algorithms
MoJoFM MoJo NED MoJoFM MoJo NED MoJoFM MoJo NED
GA 31.65 16.88 99.00 31.01 16.58 96.89 31.45 16.78 96.94
NSGA 31.71 16.36 98.35 31.48 17.01 98.34 31.74 16.32 97.83
HC 31.51 16.92 97.35 31.63 16.94 97.27 31.67 16.83 97.27
Average 31.62 16.72 98.23 31.37 16.84 97.5 31.62 16.64 97.34
Results of external evaluation of servlet data set
. Direct indirect Semantic Combined
Algorithms
MoJoFM MoJo NED MoJoFM MoJo NED MoJoFM MoJo NED
GA 32.61 15.40 66.67 37.25 14.94 90.86 38.84 13.93 66.67
NSGA 35.26 14.80 67.53 37.10 14.03 88.39 37.38 14.10 68.88
HC 33.47 14.93 70.00 34.49 14.83 71.48 37.52 14.10 69.50
Average 33.78 15.04 68.06 36.28 14.60 83.57 37.91 14.04 68.35
TaBLE 6: Evaluation of algorithms on MoJoFM.
Results of external evaluation with respect to MoJoFM
Aleorithm Bash Bunch NekoHTML
8 R1 R2 R3 R1 R2 R3 RI R2 R3
GA 83.09 83.20 83.54 66.54 65.00 65.90 25.04 25.76 23.09
NSGA 83.35 83.35 83.38 66.47 66.64 66.00 25.37 24.95 23.82
HC 83.42 83.29 83.32 65.87 65.67 65.92 22.52 25.28 23.47
PMD Servlet
R1 R2 R3 R1 R2 R3
GA 31.65 31.01 31.45 32.61 37.25 38.84
NSGA 31.71 31.48 31.74 35.26 37.10 37.38
HC 31.51 31.63 31.67 33.47 34.49 37.52
GA NSGA HC
Total count 5 3 )

sets with respect to the MoJoFM evaluation metric. Table 7
represents the comparison of three relationship factors with
respect to three algorithms based on MoJo. The lower the
value of MoJo, the more the system will be similar to the
expert system. In Table 7, the total number of counts for GA
is 2, NSGA is 12, and HC is 1. The count shows the

dominance of the NSGA, which means MO performance.
The NSGA shows better results on five data sets with respect
to the MoJoFM evaluation metric.

Table 8 represents the comparison of three algorithms
across NED values that are higher than the NED value, more
like the original system. The total number of counts for GA is
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TaBLE 7: Evaluation of algorithms on MoJo.
Results of external evaluation with respect to MoJo

Aleorithm Bash Bunch NekoHTML

& R1 R2 R3 R1 R2 R3 R1 R2 R3
GA 39.73 39.46 38.67 53.53 56.00 54.56 28.1 25.57 30.06
NSGA 39.13 39.13 39.13 53.43 54.7 54.4 28.1 28.7 28.9
HC 38.43 39.26 39.20 54.60 54.8 54.47 28.6 28.53 29.13

PMD Servlet
R1 R2 R3 R1 R2 R3
GA 16.88 16.58 16.78 15.40 14.94 13.93
NSGA 16.36 17.01 16.32 14.80 14.03 14.10
HC 16.92 16.94 16.83 14.93 14.83 14.11
GA NSGA HC
Total count ) 12 )
TaBLE 8: Evaluation of algorithms on NED.
Results of external evaluation with respect to NED

Aleorith Bash Bunch NekoHTML

gortim R1 R2 R3 R1 R2 R3 R1 R2 R3
GA 96.40 96.68 97.40 94.57 94.57 94.97 81.25 83.10 81.25
NSGA 97.00 96.82 96.79 96.28 96.40 95.72 85.0 84.02 85.62
HC 97.26 96.91 97.37 95.38 95.34 95.18 85.27 83.05 84.02

PMD Servlet
R1 R2 R3 R1 R2 R3
GA 99.00 96.89 96.94 66.67 90.86 66.67
NSGA 98.35 98.34 97.83 67.53 88.39 68.88
HC 97.35 97.27 97.27 70.00 71.48 69.50
GA NSGA HC

Total count 3 7 5

3,NSGA is 7,and HC is 5. The NSGA shows better results on
five data sets with respect to the NED evaluation metric.

7. Discussion and Conclusion

The concept of computing information-theoretical similarity
is uncommon in search-based software engineering (SBSE).
SBSE experts will not use the information-theoretical sim-
ilarity measure when it comes to SM. Rather than focusing
on how to evaluate structural and semantic similarity, this
study looked at how to improve the hybrid idea of mixed
relationships by combining structural and nonstructural
similarity into a single platform to modularize the software
system. Furthermore, five (or more) objectives are optimised
and used at the same time. As a result, an MO meta-heuristic
algorithm based on MF relationships is a feasible alternative.

Tables 5 to 8 show the results of five data sets using three
different approaches and three different relationships. Since
data sets differ in size and complexity, three techniques,
MoJo, MoJoFM, and NED, show different responses on five
data sets. To begin with, the three behaviours of the algo-
rithms are distinct in the Bash data set, indicating that GA
performs better on R3, which is a combined relationship,
while NSGA performs better on R1 (Direct-Indirect Rela-
tionships), R2 (Semantic Relationships), and HC performs
better on R1 (Direct-Indirect Relationships). The behaviour
of these three algorithms is the contrary. Because there are
no direct-indirect interactions between classes in the Bash

data set, and because comments (semantic behaviour) are
absent from the source code, cohesion and coupling are
minimal in the Bash data set. The three algorithms also
diverge from the Bunch data set. NSGA outperforms GA and
HC in three relationships. The direct and indirect rela-
tionships are reasonable in the source code; however,
comments appear in every class. On the NekoHTML data
set, the NSGA surpasses the NSGA on Direct Indirect and
Combined, except for Semantic. The three algorithms are
also not the same as the Bunch data set. On three rela-
tionships, GA and HC report poor results. However, NSGA
provides better results. Despite the fact that the direct-in-
direct relationships in the source code are reasonable,
comments appear in each class. However, when it comes to
the NekoHTML data set, the NSGA once again outperforms
the HC on Direct Indirect and Combined, with the ex-
ception of Semantic, where relations between classes are fair
due to the absence of correlations inside classes. Except for
semantic, NSGA performs better on direct indirect and
combined in the PMD data set, where the direct-indirect
relationship is satisfactory, but class comments are zero
(mostly empty). This is because the data set has almost no
comment relationships and few direct-indirect relationships
in classes, and HC beats GA and HC in all three
relationships.

In conclusion, since NSGA is a more refined variant of
GA, it produces better outcomes than HC and GA. As a
result of greed, HC shows no reasonable result. Table 5
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shows relationship comparisons based on external evalua-
tions using MoJoFM, MoJo, and NED. Apart from
NekoHTML, where the source code has semantic rela-
tionships that produce better results due to semantic co-
hesiveness among the classes, combined relationships
perform better in the Bash, Bunch, PMD, and Servlet data
sets. We concluded that NSGA outperforms other algo-
rithms, whereas SM benefits from combining relationship
features. Our MFMO approach has been completely dem-
onstrated by the beneficiaries of this enhanced hybrid ap-
proach. In addition, five objective functions are optimised
and used at the same time. As a result, finding an MO meta-
heuristic algorithm with MF relationships for improved SM
is a plausible choice.
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