
UWL REPOSITORY

repository.uwl.ac.uk

Optogenetic Multiphysical Fields Coupling Model for Implantable

Neuroprosthetic Probes.

Dong, N., Johnson, E, Berlinguer-Palmini, R. and Nikolic, Konstantin ORCID: https://orcid.org/0000-

0002-6551-2977 (2024) Optogenetic Multiphysical Fields Coupling Model for Implantable 

Neuroprosthetic Probes. IEEE Access, 12. pp. 129160-129172. 

http://dx.doi.org/10.1109/ACCESS.2024.3441571

This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/12848/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Received 15 July 2024, accepted 5 August 2024, date of publication 12 August 2024, date of current version 20 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3441571

Optogenetic Multiphysical Fields Coupling Model
for Implantable Neuroprosthetic Probes
NA DONG1, EMILY JOHNSON2, ROLANDO BERLINGUER-PALMINI2, HONGZE ZHONG3,
FAHIMEH DEHKHODA3, AHMED SOLTAN 4, KONSTANTIN NIKOLIC 5, (Member, IEEE),
NIR GROSSMAN6, JOHANNES GAUSDEN 3, RICHARD BAILEY 3,
ANTHONY O’NEILL 3, (Senior Member, IEEE), ANDREW JACKSON 2,
ANDREW TREVELYAN 2, PATRICK DEGENAAR 3, (Senior Member, IEEE),
AND XIAOHAN SUN 1
1National Research Centre for Optical Sensing/Communication Integrated Networking, Southeast University, Nanjing 210096, China
2Faculty of Medical Sciences, Newcastle University, NE1 7RU Newcastle upon Tyne, U.K.
3School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, U.K.
4School of Engineering, Nile University, Giza 3247010, Egypt
5School of Computing and Engineering, University of West London, W5 5RF London, U.K.
6Department of Brain Sciences, Faculty of Medicine, Imperial College London, SW7 2AZ London, U.K.

Corresponding authors: Xiaohan Sun (xhsun@seu.edu.cn) and Patrick Degenaar (patrick.degenaar@newcastle.ac.uk)

This work was supported in part by the Fundamental Research Funds for the Central Universities of China under Grant 2242022k30023,
in part by Nanjing International Joint Research Project of China under Grant 202201017, in part by the Wellcome Trust under
Grant 102037/Z/13/Z, in part by the Seventh Framework Programme under Grant 24986, and in part by the Engineering and
Physical Sciences Research Council under Grant NS/A000026/1.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Administration of the Animals in Science Regulation Unit of the Home Office, U.K.

ABSTRACT Optogenetic-based neuroprosthetic therapies are increasingly being considered for human
trials. However, the optoelectronic design of clinical-grade optogenetic-based neuroprosthetic probes still
requires some thought. Design constraints include light penetration into the brain, stimulation efficacy,
and probe/tissue heating. Optimisation can be achieved through experimental iteration. However, this is
costly, time-consuming and ethically problematic. Hence it is highly desirable to have an alternative to
excessive animal trials. Thus, a simulation tool for optimising probe design can be an important benefit for
the community. The challenge is to understand the interplay between the optical, neural and thermal aspects
in the interaction of probe and living neural tissue. In this work, we propose a model which combines these
aspects to allow clinically orientated neuroprosthetic teams to design neuroprosthetic probes for optogenetic
therapies. Our model provides analyses for optical, thermal and optogenetic electrophysiological processes
based on the energy equivalence and exchange among different physical fields. To validate and calibrate the
model, optogenetic implantable neuroprosthetic arrayed probes based on miniature LEDs were developed.
Then, optical, thermal measurement and neural photocurrent recording experiments were implemented on
the probes. We can then provide analysis on exemplar arrayed neural probes.

INDEX TERMS Optogenetics, prosthetic brain implants, multi-physical fields couplingmodel, tissue optics,
bioheat transfer, opto-neuro interaction.

I. INTRODUCTION
The field of implantable bioelectronics is steadily increas-
ing. Applications include sensory neuroprosthetics, spinal,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yogendra Kumar Prajapati .

heart, and brain pacemakers, peripheral nerve bioelectronic
medicine, and motor bionics. Underpinning the medical
space is a requirement for advanced neural interfaces. Opto-
genetics [1] – the genetic photosensitization of neural tissue
is an important tool for stimulating neural tissue. It has
been used in human trials since 2015 [2], with the first
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FIGURE 1. The schematic illustration of the OMFC model. (A) The overview of an implantable optogenetic neuroprosthetic system; (B) Optical
analyses for Lightwave propagation and light diffusion in the tissue, the phase function of Mie and Rayleigh scattering in the tissue, from which the
irradiance distribution is obtained to generate the opto-heat in (C) and supply the ChR2 kinetics in (D); (C) Thermal analyses for heat produced by
probe, opto-tissue absorption and associated bio-heat, respectively, to obtain temperature change distribution 1T by the heat transfer model within
the simulated volume of the tissue; (D) Opto-neuro analyses, incorporating the ChR2 kinetics and spontaneous neural activities to form a modified
neuron model so that firing rate distribution can be obtained as a final result.

results having been published recently [3] for retinal pros-
thetic applications [4], [5]. At the same time, closed-loop [6],
[7] optogenetic solutions to the treatment of human focal
epilepsy are at an earlier stage of exploration [8], [9]. These
specific applications require the development of an optoge-
netic neuroprosthetic system and corresponding implantable
probes.

Progress has been made in developing several prototypes
of optogenetic implantable neuroprosthetic probes, from
the early fibre-optic-based implants [10], to highly-compact
µLED based non-invasive visual prosthesis [5], deep brain
implants [11] and photonic-circuits based brain implants [12].
Each of these techniques has specific pros and cons. However,
in all cases, there is a need to understand the stimulus profile
for light emitted within a given thermal limit. This is particu-
larly true forµLED based optrodes, as heat is generated close
to the target neural tissue. These design constraints must be
fully understood to optimise the probe architecture for a given
clinical application.

Past efforts to explore the optical emission profile have
included linear models such as Kulbelka-Munk [10], which
provides some insight for collimated light. However, the
emission functions of LEDs typically have Lambertian
emission functions [5], and even optical fibers will emit dis-
persively. As, such, Azimipour and ourselves have explored
Monte-Carlo approaches [13], [14], [15], and Yona et al. has
explored numerical beam spread function approaches [16].

The second consideration is the thermal effect, due to either
light absorption or heating effects from inefficiencies in the
LEDs. Current standards for implantable medical devices
state that the surface temperature of an implant should not
exceed +2◦ C [13] above ambient. As such, the probe emis-
sion radiance will ultimately be limited by thermal effects
due to inefficiencies photonic generation and coupling (as
opposed to internal reflection). McAlinden et al. explored
thermal-optical relationships for their probe [17], though
they did not consider the fundamental heating of the tis-
sue due to the absorbed light, as per Stujenske et al. [18].
Dubois et al. explored the issue further for optical fibres [19],
and we did similarly for LED emissive probes [13]. Fur-
thermore, we developed a method to use LEDs to measure
their own temperature profile after being turned off [20],
[21].We could, therefore, explore temperature cycling in non-
human primates.The third consideration is how the optical
emission results in actual neural stimulation – i.e., increased
(or decreased [22]) firing rates. We can use the 4-state
photocycle model of channelrhodopsin-2 (ChR2) [23] to
understand the optically induced current provided to neurons.
This model has also been computationally integrated into
a Hodgkin-Huxley neuron model to describe the cell-level
optogenetics [24], [25], and, more recently, combined with
meanfield theories or networking configurations to describe
themechanisms ofmoremacroscopic optogenetic neuromod-
ulation [26], [27]. However, up to now, such biophysical
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analysis of neural operation has little cooperation with opti-
cal and thermal analysis to explore the effective stimulus
potential of a given probe architecture. Though efforts have
been made, e.g by Peixoto et al. [28], it lacks experimental
validations and calibrations.

These three considerations could allow probe designers
to explore the trade-offs between the optical, thermal and
biophysical characteristics. Furthermore, it allows scientists
to consider the effect of given design constraints on the ther-
apeutic effects, whether open loop or closed loop [29], [30].

In this paper, we propose an optogenetic multiphysical
fields coupling (OMFC) model for optimising and under-
standing the performance of implantable neuroprosthetic
probes. We have validated and calibrated the model predic-
tions with experimental data for each analysis. Then, using
our validated model, we have explored implications for a
standard concept optogenetic neuroprosthetic probe.

II. THE OMFC MODEL
A. SCHEME
Figure 1 shows the schematic illustration of the OMFC
model. A practical implantable optogenetic neuroprosthetic
systemwould conceptually have a power supply, light source,
lightwave pathway (if using a light guide), control/driving,
and sensing/monitoring capabilities. (figure 1A). The probe
would then generate an optical stimulus at the required
location in the tissue through light outlets or directly from
the LED. Past examples of probes with optical waveguide
structures include: [12], [31], [32].
Similarly, past examples of probes with embedded emit-

ters (e.g. microLED) include: [13], [17]. The probe would
typically have an electrical recording system and potentially
thermal monitoring. The response of neural tissue to the
probe should consider the parameters that could consist of the
distribution of irradiance, temperature profiles, and resultant
firing rate.

The simulation space can be defined as three volumes:
The overall simulation volume V , the space consumed by the
probe, and the stimulation volume Vs. We define this latter
volume as the domain where the optical irradiance exceeds
the response threshold. The OMFC model can then be estab-
lished by interrelating the three primary design constraints.

The optical properties of tissue are usually characterized by
light scattering and absorption, both of which occur from the
complex physical and biochemical structure of tissue. Light
diffuses in the tissue due to scattering and absorption, and
the absorption is the result of a large number of molecules
and proteins [33]. Therefore, the total absorption can be seen
as a combination of ChR2 and intrinsic tissue absorption.
The intrinsic absorption of the cortex at 450-500nm is about
0.1-0.2cm−1, while it rises to above 1 cm−1 for astrocytes of
nerves, according to the previous publications [34], [35].
ChR2 has considerable absorption at its sensitive wave-

length, which was reported to be up to 50000 M−1cm−1

[36], but it only exists as an ultra-thin layer on the cell

membrane, and depends on expression levels. However, while
brain tissue scatters blue light very strongly, the absorption
coefficient is small∼1cm−1. As such, given that the light will
eventually be absorbed by either the ChR2 or other aspects of
the tissue, we cautiously estimate this ratio to be in the range
of 30-70% depending on the ChR2 expression level and the
proportion of cells which are expressing it [37], [38]. The rest
of the light absorption will be from other aspects of the tissue.

Wild-type ChR2 therefore requires a photon flux of
1015-1017 photons/mm2

· s (0.4-40 mW/mm2) to be reliably
activated [39]. As such, for reliable activation of action poten-
tials in dissociated neurons, a 5ms pulse of 1 mW/mm2 is
considered to be the threshold [24], [40].

It should also be noted that the majority of the light will
also disperse beyond the stimulation region. For simplicity,
we assume homogeneous expression at a defined level. The
scattering aspects of the model are presented in Figure 1B.

Absorption of a photon by ChR2 activates its
photo-induced isomerization cycle, while the intrinsic tissue
absorption converts to heat. The ChR2 photocycle also ulti-
mately contributes to heat. Optical heating will, therefore be
in tandem with any direct heating from the probe, and the
active environment in the tissue, as per Figure 1C.

The photon absorption in ChR2 causes it to transit into
an excited state within the period of ∼10−6s. In turn, that
causes the channel to open, resulting in ion flow (IChR2)
into the cell [37]. ChR2 can be modelled to have light and
dark-adapted photocycles with different open-state efficien-
cies [23], [24], [25], [41]. As the ChR2 relaxes to the ground
state, the photonic energy will transfer to thermal energy in
the tissue. The ChR2 activity is integrated as an ion channel
in the Hodgkin-Huxley model of the neuron as per Figure 1D.

B. MODELLING THEORY
Assuming the total power injected into the tissue is P0, the
primary energy equivalence relation of the system can be
written as

P0 −

∫∫
⃝

∂V

φem · ds =

∫∫∫
V

qprobedv+

∫∫∫
V

qabsdv (1)

where ∂V is the closed surface of arbitrary volume V sur-
rounding the implantable probe in the tissue, φem is the
electromagnetic energy-flux density, which can be solved
in the optical analysis. The second term on the left side
(
∫
⃝
∫

∂V
φemds) represents the output flow of the electromagnetic

power through ∂V . Both sides of the equation represent the
power increase within volume V . The first and second terms
on the right side represent loss-induced heat in the probe and
opto-heat caused by opto-tissue absorption, respectively.

Then, we define the response function R to quantify the
performance of the implantable optogenetic neuroprosthetic
system:

R = {9(X ,P0), 1T (9,X ,F,T ),F(9,X ,T )} (2)
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where 9, 1T and F represent the distribution of irradiance,
temperature change, and evoked firing rate in the tissue,
respectively, while X is a series of design variables for probe
structure, and T is the temperature. 1T and F are both
related to 9 and related to each other, and 9 ∝

∣∣φem∣∣.
This allows us to implement inverse design to the optogenetic
neuroprosthetic system by setting objectives and constraints
to find proper design variables.

The optical analyses in the OMFC model follows the
framework in our previous work [13]. The pattern of optical
stimulus was obtained by analyzing the lightwave pathway
and the subsequent emission from the outlet of a given probe,
based on the wave theory of optics [42], [43]. Meanwhile,
light scattering in the tissue was solved by a combined
Mie-Rayleigh scattering and absorption theory [44], [45].
As such, the irradiance distribution 9 of the diffused light
in the stimulation volume Vs could be obtained through a
Monte-Carlo light transportation method [46].

In the thermal analyses, the majority of the heat gener-
ated in the Vs (highlighted by yellow) was considered to
come from three sources: heat from light absorption (qabs),
biomedical metabolism (qbio), and considerable Joule heat
conducted from the probe (qprobe), respectively. Part of the
absorbed optical energy (wRho) was stored in the ChR2 to
trigger the ChR2 photocycle, and was relaxed to contribute
to the thermal fluctuation. It should be noted that the ChR2
comprises only a tiny proportion of the total tissue volume
– the cell membrane. The absorption of ChR2 is transient
(∼10−6 s), and its thermal contribution lasts during the whole
photocycle. Metabolism is usually known as the thermal base
of the tissue. It is reported to be a much slower source
of the order of magnitude of 0.01 mW/mm3 for the brain
cortex [47]. Considering convection through blood vessels as
in Penne’s model [48], we think metabolism is a minor factor
and is normally in equilibrium. By integrating in the full Vs,
the temperature change distribution (1T ) could be obtained.
On-probe heat transfer was solved by a time-resolved heat
equation [49]. Heat transfer in the brain tissue was solved by
modifying Pennes’ model of bio-heat transfer to include the
optical absorption effect [48].

In the opto-neuro analyses, the expected distribution of
firing rates F in the tissue is solved from the distribution
of irradiance. As the real firing rate is also determined
by the morphology and spatial distribution of the neu-
rons, etc., assumptions were made here to consider the
ChR2-intermediated optogenetic neurons are uniformly dis-
tributed, and the crosstalk among the neurons are neglected.
The cell-level response was described by the ChR2-CA3
model, which combined the ChR2 ion channel kinetics to
the Hodgkin-Huxley type CA3-cell neuron model [23], [24].
Each neuron model has synaptic input based on Poisson
spiking events train following specific neural oscillation
waveform. The ChR2 kinetics are based on a four-state tran-
sition rate model (the states are two closed and two open, C1,
C2, O1 and O2 states) [41]. The neuron model incorporates
wild-type ion channels, including the voltage-dependent ion

channels (INa ICa, IKDr, IKa), calcium-dependent ion channels
(IKahp, IKc) and leakage channel (Ileak ) [24]. The analyses
have the capacity to update the parameters to mimic detailed
bio-realistic conditions if required.

The optical analyses in our model were done by a
custom-coded programwithMatlab 2020b (Mathworks inc.).
The thermal analyses in our model were built in COMSOL
Multiphysics (COMSOL inc.). The neural analyses in our
model were done by custom-coded program with Matlab
2020b (Mathworks inc.).

III. SIMULATION AND ANALYSES
A. THERMAL CONSTRAINT AND HOT SPOT ANALYSIS
The long term effects of transient and even sustained temper-
ature rises of a few degrees is actually not known. Prior work
has shown the sensitivity of firing rates to temperature [50],
[51]. Other works have provided a theoretical basis for how
temperature can change the firing rate [28], [52], [53], but
given that the objective of the optogenetic stimulus is to
modulate neuronal behavior, that in itself is not necessarily
problematic.

In previous work, we provided the regulatory constraint
that the temperature of any implant surface should not exceed
2◦C as per [54]. However, it should be noted that a transient
temperature rise from a high heat capacity material imparts
much more thermal impact than the equivalent rise from a
material of low heat capacity. As such, a temperature rise of
a few degrees on a microscale probe will not have the same
impact on the tissue as a few degrees of temperature rise from
e.g. a large heart pacemaker control unit.

In order to properly assess the thermal impact of the probe,
we compare two aspects: (1) the probe surface hot spot
above the LED (1TP) resulting from thermal generation from
the LED resulting in a transient surface temperature (2) the
in-tissue hot spot (1Tt) at the depths of 25, 50µm, resulting
from the induced heat from the probe, optical absorption, and
passive/active thermal extraction from the tissue.

The efficiency of on-probe mini and micro-LEDs vary in
the literature. Generally, micro LEDs such as that previously
reviewed by ourselves [13] have low efficiencies of 1-5%. But
commercially available mini LEDs have efficiencies of the
order of 20- 40%. There are many reasons for this, includ-
ing processing defects, the quality of materials available to
academic labs, and the ratio of surface defects to bulk. This
will improve in time, but we can assume practical probes have
efficiencies in the range of 1-40%.

Table 1 shows the results of the hot spot analysis. Given the
demanded radiance density of the emitter is 100 mW/mm2,
heat power generated on-probe widely ranged from 11.5 to
760 mW for different LED efficiencies (1%, 10%, 40%).
The temperature change of the on-probe hot spot 1TP
were obtained for different pulse duration (10 ms, 50 ms).
Meanwhile, the in-tissue hot spot 1Tt was obtained by cal-
culating the temperature change within a miniature voxel
(∼1000µm3) close to the probe-tissue interface. We set the
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TABLE 1. Hot spot analysis for different heat sources.

intrinsic tissue absorption coefficient to be 1 cm−1, so the
corresponding absorption-induced heat is about 20mW/mm3

within a very small distance (∼10µm) close to the LED
emitter when the stimulation is on.

At 10% efficiency for the LED, the thermal contribution of
light absorption is only 1/5 of the Joule heating at most, and
decays rapidly with depth in the tissue. It reduces to 18 and
14 respectively at 25 and 50µm to the probe. The thermal
contribution of metabolism is even 1-2 orders of magnitude
less. The heat power on-probe rapidly decreases when the
efficiency increases. At 40% efficiency, the two hot spots are
comparable.

A common arrangement for cortical implants is for a fork
shaped design as per Figure 2 or an array thereof. We, there-
fore want to use the OMFC model to draw some conclusions
as to the scalability of this design.

FIGURE 2. Fork-shaped arrayed implantable probes with GaN µLEDs:
(A) illustration of the stimulating elements; (B) Distribution profile of the
temperature change (1T), top view at the surface of the probes;
(C) thermal profile, side-view along one probe; (D) thermal profile,
cross-section view of one probe; (E) top view thermal profile at
25µm-depth from the probes; (F) top view thermal profile at 50µm-depth
from the probes.

We used the structure in Figure 2. probe length is 5.5 mm
long and 2 mm in spacing with each other. As shown in
Figure 2(A), each probe has 8 stimulating elements consisting
of a GaN µLED and a bare, tissue-contacting electrode for

recording. The distance between adjacent stimulating ele-
ments is 422.5µm. We chose these dimensions as potentially
clinically useful given the pre-clinical CANDO project being
developed at Newcastle University [13], [30]. We defined
the LEDs as relatively punctate emitters of dimension 50 ×

50µm. The emitting characteristics of the LEDs could be
both Lambertian, and optical shaped, while the later has a
better-collimated profile in the output beam. Here we take
an exemplar µLED quantum efficiency of 10%, given that
practical LED efficiencies can range from 40% to less than
1%. We also determined the thermal constraint. Tc = 2◦C at
the probe surface as per regulatory requirement [13]. Though
it should be noted that we feel this is very conservative, given
the expected impact on the tissue is significantly lower as per
Table 1. Figure 2 (B) to (F) show the thermal profile with
hot spots, for the fork-shaped probes at different viewpoints.
Under the stimulating protocol of short pulses (<50ms) and
proper duty ratio (<0.4), primary hot spots could be local-
ized near the LED emitting surface, while secondary hot
spots were generated around the recording electrodes. As per
above, light absorption contributes to non-negligible thermal
effects in the tissue. However as per Table 1, the overall effect
is typically that the expected temperature rise in the tissue
is lower than for the probe surface. We can therefore use
the maximum temperature rise to determine the maximum
emitter power.

As such, the 1T of the primary hot spots can reach the
thermal limit of 2◦C (Figure 2 (B)). But it reduces rapidly
with depth into the tissue from the probe, to ∼1.3◦C at a
depth of 25µm (Figure 2(E)), and∼0.7◦C at a depth of 50µm
(Figure 2(F)). It should also be noted that we can expect a
gliosis layer to form around the probe within this range.

B. MAPPING THE RESPONSE OF THE NEURAL TISSUE
In practice, neurons at different locations in the tissue will
be activated at different firing rates because of different local
irradiance, absorption as well as temperature change 1T.
Especially for accurate optogenetics with cellular and subcel-
lular spatial resolution, the cross-section of the stimulating
pattern could be as low as several micrometers. Miniature
light-emitting sources or advanced collimated beam tech-
nologies are usually implemented to reach such required
resolution. This could be quantitatively analyzed in our
OMFC model.

Figure 3(A) shows an example by using an implantable
probe embedded with micro-LED (µLED). Neurons at dif-
ferent depths in the tissue were stimulated, while the gliosis
region and a thermal limit region were also shown. The
degradation region indicates the volume where no spikes
could be evoked after implantation as per above. The thermal
limit region indicates the volume where 1T (of the probe
surface) may exceed the thermal limit of 2◦C. As such,
after implantation, neurons could only be effectively stimu-
lated when they were included neither in the gliosis region
nor in the thermal limit region. From the discussion as per
above, 1T reduces by 40-60% within the gliosis region
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FIGURE 3. Response map of the neural tissue: (A) Diagram of the response map for an implantable probe. (B) Response range of the ChR2
photocurrent and corresponding firing rate with respect to light irradiance. (C) Expected light-induced firing rate with respect to the penetration depth
of light. (D) simulated results of the light-induced spikes for neuron 1, 2 and 3 at different depths to the probe.

(∼50µm). ChR2 photocurrent and light-induced firing spikes
evoked by 10 Hz pulse train at a wide range of local irra-
diance (0.01 to 100mW/mm2) were calculated according to
the model. As shown in Figure 3(B) shows results accord-
ing to model prediction: The ChR2 photocurrent ranges
from 5-105pA, and the corresponding firing rate excited at
the neuron is 10-80Hz with a threshold irradiance about
0.5 mW/mm2. Combined optical and opto-neuro analyses,
Figure 3(C) shows the expected light-induced firing rate (red
line), in relation to the penetration depth of light in the
tissue. The simulated firing rate reduces from about 45Hz
to 10Hz while the depth increases from 100 to 700 µm to
the µLED. Corresponding irradiance (black line) were also
shown in Figure 3(C). Figure 3(D) shows the waveform of
the spikes for three neurons at different depth. The neuron
can fire spike trains at a phase-locked rate of about 10 Hz
(Neuron 3, Figure 3(D) right panel). For fairly high irradiance
of 10 mW/mm2 the neuron can fire spike clusters at the
phase-locked rate (Neuron 2, Figure 3(D) middle panel),
while the spike number in one group increases from 3-4 to
5-7 when the irradiance increase to 100 mW/mm2 (Neuron
1, Figure 3(D) left panel).

As different irradiance results in different firing rates, the
response function R in equation (2) of a given probe could
be obtained and mapped in the tissue. Thus, the optimal
performance of the probe can be quantified. Following that,
the radiance distribution of light emitted from the probes can
be attained.

IV. EXPERIMENTS
The OMFC model incorporating models of multiple physical
fields, and it could be preliminarily validated and cali-
brated by measuring some key output quantities (9,F, 1T ),
according to equation (2). The experimental validations were
performed with test probes based on mini-LEDs emitting
470nm light. Both single-shafted probe and fork-shaped

arrayed probes with multiple shafts were developed for the
experiments.

A. VALIDATION AND CALIBRATION OF THE OPTICAL AND
OPTO-NEURO ANALYSES
1) EXPERIMENTS SETUP
The validation of the optical analyses was through light pen-
etration and scattering experiments in brain slices extracted
from 6-week old C57BL6 mice, on the basis of our previous
work [13]. light penetration and scattering in slices with
different thicknesses (50-500µm) were measured with an
14bits Andor iXonDV887 back-illuminated EMCCD camera
through Olympus microscope lens system (Olympus 2.5X
NA).

The firing rate F could be determined by the dynamics
of transmembrane current in the opto-neuro analyses, so we
performed ChR2 photocurrent recording experiments on
ChR2-transfected neurons, in order to validate the opto-neuro
analyses and calibrate the irradiance in the tissue obtained in
the optical experiments.

Figure 4(A) shows the setup of the ChR2 photocurrent
recording experiments, which can be also used in the light
penetration and scattering experiments without the voltage
clamp system. In the experiments, the neuron cells were
extracted from the tissue and patched on the tissue surface.
In this way, we could use the cells as mobile light sensors.
Photocurrents of cells at different depths of the tissue while
separately illuminating from above using the microscope
LED illuminator and from below through the tissue by the
mini-LED test probe. This was to compare relative responses
with the calibrated microscope illumination, as Figure 4(B)
shows. The test probe based on mini-LED (CREE DA2432)
was fabricated from silicon with evaporated metal strips, and
the LED was bonded using a Fineplacer bonding tool. The
probe was then coated in parylene for encapsulation. The
probe can be seen in Figure 4(C).
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FIGURE 4. (A) Experiments setup; (B) Photograph of the experimetns;
(C) A single-shafted probe based on miniLED; (D) Photograph of an
example dissociated neuron (highlighted by white arrows) with the
co-expression of EYFP marker; (E) DIC image of the example neuron in
the nucleated-patch configuration for whole-cell recording.

The experiments were implemented with transgenic mice
expressing ChR2 under the Emx1 promoter (Jackson Lab-
oratory, Maine, USA), which gives strong labelling in all
forebrain-generated cells, including pyramidal neurons but
excluding interneurons. Mice with widespread, stable and
reliable ChR2 expression were sacrificed by cervical dislo-
cation, and brains were immediately transferred to ice-cold
oxygenated artificial cerebrospinal fluid (ACSF). Brain slices
of different thicknesses (300 and 500µm) were prepared
and then transferred to a submerged incubation chamber
containing ACSF, for a minimum of 1 hour prior to record-
ing. Continuously perfused with oxygenated ACSF (room
temperature), cells in the brain slices were recorded in whole-
cell patch-clamp mode. Patch-pipettes (resistance 5-7 M�)
were made from borosilicate glass capillary tubes (0.86mm
internal diameter; Harvard Apparatus, Cambridge, UK) using

an electrode puller (P-87; Sutter Instrument Co, CA, USA).
Patch-pipettes were filled with artificial intracellular solution
(K-methyl-SO4 125mM, Hepes 10mM, Mg-ATP 2.5mM,
NaCl 6mM). Both the microscope objective and headstage
positioning were controlled by individual micromanipula-
tors (Patch star PS-700C; Scientifica, East Sussex, UK),
enabling precise movements over three orthotropic axes.
To reduce electrical noise, all apparatus was placed in a
Faraday cage, and the electrical items were individually
grounded to earth. Patch-clamp recordings were made using
anAxopatch 700B amplifier/Digidata 1440A interface (Axon
Instruments; Foster City, CA, USA) controlled by Clampex
10.5 software. Signals were sampled at 10 kHz and low-pass
filtered at 2 kHz.

Brain slices were placed on top of the test probe. This con-
figuration enabled illumination of the tissue from underneath
using the probe LED or from above using the microscope
LED illumination (465nm; COOL LED pE system). After
achieving whole-cell recording mode and verifying that the
cell expressed opsin through a test illumination, a ‘‘nucleated
patch’’ was pulled. This technique creates a large, outside-
out patch, containing the nucleus of the cell, which displays
macroscopic currents, and, importantly, also allows one to
move the patch electrode. The nucleated patch could thus be
relocated precisely above the CREE-LED, and separated by
tissue of a specified width.

2) VALIDATION AND CALIBRATION RESULTS
The profile of the diffused light in the tissue is generally
determined by the scattering, which occurs whenever light
encounters a refractive index change. The scattering prop-
erties of the neural tissue are determined by the spatial
variations in refractive index at the operating wavelength.
The exact description of refractive index distribution in
the tissue is not feasible to know, for it is determined
by the exact spatial distribution of the cellular and subcellu-
lar structures [33]. Therefore, statistic descriptions could be
implemented. In this way, the tissue could be seen as amess of
scattering particles with fractionally distributed sizes, as we
reported in our previous work [13]. Refractive indices were
taken from the previous publications, e.g. cortical cytoplasm
(1.353 to 1.368), protein (1.5), lipid (1.48), etc [33].

The probe implantation can typically create a small region
of degradation around the insertion site. This can be caused
due to migration of micro-glia cells in response to the probe
insertion. Such effects can occur over days to weeks post-
implantation, but eventually, we need to assume that the
emitted light needs to traverse a minimum distance beyond
this region to have a therapeutic effect. Therefore, we have
assumed the degraded tissue region to be at a depth of up to
50µm from the probe surface.

Previous research indicated that photocurrent reaches to a
peak value under abundant illumination, andwith the duration
of illumination, it degrades to a lower and steadier plateau
state [23]. This is attributed to the shift from dark-adapted to
light-adapted states in the ChR2 and depletion of ground-state
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FIGURE 5. Opto-neuro analyses validation: ChR2 current amplitude in
relation to the light irradiance, both mean and peak value of the scope
illumination and probe LED illumination from the test probe were
compared to the simulation results.

opsins [41]. Figure 5 shows the dependence of ChR2 current
amplitude on light irradiance for both peak and mean values
with the plateau. Microscope illumination was implemented
to obtain a reference ChR2 current (red and black symbols) in
a broad range of light irradiance for both peak and mean val-
ues with the plateau from 10−4 to 100 mW/mm2 on the tissue
surface. The model predictions of both peak and mean values
(red and black lines) were obtained by applying the OMFC
model to the probe LED and the tissue slice. As the irradiance
distribution in the slice could be obtained in the optical anal-
yses, the ChR2 current and evoked spike rates in anywhere of
the tissue slice could be derived through the opto-neuro anal-
yses from the irradiance distribution. As shown in Figure 5,
the model prediction of the ChR2 current is very similar to
the reference value. Restricted by the LED irradiance (about
0.1-1mW/mm2), the recorded photocurrent by the probe LED
was within the range of 10-50pA (blue and purple symbol
lines), and it is coincident with the reference and model
prediction.

In the experiments, we used the patched cells as mobile
light sensors to obtain the photocurrent at different depths
of the tissue. In the simulation, we calculated the profile of
the light diffusion in advance, then the induced photocurrent
at 0, 300, 500 and 700µm depths were obtained through
the opto-neuro analyses. As so, the optical and opto-neuro
analyses could be validated by comparing the simulation
and experiment results of the depth-dependent ChR2 current
and irradiance in the tissue. Such comparisons are shown in
Figure 6.

The measured irradiance is shown with blue symbols in
Figure 6, to compare with the simulated results (blue line).
We compared the simulated and measured results by normal-
ising the irradiances of transverse patterns through different
thicknesses (200 to 1000µm). It shows that the attenuation
of irradiance along the penetrating depth in the tissue basi-
cally have the same curve for both simulated and measured
results, the simulated irradiance is about 20% higher than
the measured one within the first 1mm, and this difference

FIGURE 6. Opto-neuro analyses validation: (right y-axis) normalized
irradiance attenuation along the penetration depth, and (left y-axis)
normalized ChR2 current in relation to penetration depth in the tissue.

narrows with deeper depth. It looks the simulation is becom-
ing more inaccurate as the tissue gets thinner. Specifically,
the intensity is less than expected. We think this is most
likely due to a surface scattering and/or reflection effect that
we haven’t taken into account in the model. Other factors
like the improvement of detailed refractive index distribution,
e.g. the refractive index variations of layer 1-4 cortical tis-
sue, scattering particles, etc. could also be considered [55].
Despite the above imperfections in fitting, we believe that as
the distance increases, the simulation will converge with the
actual situation.

Figure 6 also shows the validated results of normalized
ChR2 current through ChR2 current recording experiments.
In the experiments, we used the patched cells as mobile light
sensors to obtain the photocurrent at different depths of the
tissue. In the simulation, we calculated the profile of the
light diffusion in advance, and then the induced photocurrent
at 0, 300, 500 and 700µm depths were obtained through
the opto-neuro analyses. Both experimental and simulated
photocurrent have been normalized to the value at a depth of
0µm.Measured currents under different LED driving powers
(red symbols in Figure 6, with the LED irradiance from
1-5mW/mm2) were normalized to shows the depth depen-
dence. Simulation results under the same conditions were
shown in black symbol-line for comparison. The comparison
results show that the experimental and simulated ChR2 cur-
rent keeps the same descent along the light penetration depth
in the tissue. Thus, we trust the ability of opto-neuro analyses
to obtain the expected firing rates of a given optogenetic
neuroprosthetic system. This also helps show the calibration
of the irradiance in the tissue.

B. VALIDATION AND CALIBRATION OF THE THERNAL
ANALYSES
In the OMFC model, heat in the tissue consists of three parts:
heat from light absorption (qabs), biomedical metabolism
(qbio), and considerable Joule heat conducted from the
probe (qprobe), respectively. Direct measurement of local
temperature and thus, thermal heating in fluid/tissue is very
challenging. In previous work we found a way to utilize the
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probe as its own temperature sensor, but even in this case,
careful calibration is required [21]. As such, for this study,
as per previous work, we implemented thermal measurement
experiments by utilizing thermal imaging in air to monitor
the surface temperature profile of test probes. This could
then be used to calibrate our model from which to make
predictions in tissue [13]. In the experiments, Fork-shaped
test probes with multiple shafts were developed by mounting
a GalliumNitride (GaN) mini LED (CREEDA2432) onto the
silicon base. The dimension for each shaft is 5×0.3×0.2mm.
The LED was set near the end of each shaft and connected
to the wire-bonded connectors through Titanium-gold lines.
For experimentation, the LED was powered by an isolated
pulse stimulator (2100, A-M SYSTEMS, Hinckley, UK);
enabling control of the amplitude, frequency and duration of
the current. Thermal measurements of the probe surface tem-
perature in the air were taken with an Optris microbolometer
IR camera, and the captured image is displayed in a digital
imaging system.

Figure 7 shows the validation and calibration of thermal
analyses through thermal measurement experiments, and 1T
was defined as the surface temperature change of the hot
spot on the probe. The thermal image as per Figure 7(A),
is a mixture of black body radiation from the source and
reflected thermal signals from the surrounding area. The ratio
of the two is defined as the emissivity (where 1 is an ideal
black body, and 0 is a perfect mirror). The emissivity of our
silicon probes is low, so we calibrated them according to
the difference in temperature from a reference temperature
point (26◦C). Two hot spots were captured where the LEDs
were turned on. The key heat source results from the LEDs,
though it should be noted for active electronic probes (e.g.
Neuropixels probes [56]), there will also be a fixed head
source in the base of the probes. The LEDs were driven with
a wide power range up to 121mW, with an optical conversion
efficiency of about 30%. The heating process persisted for
about 120s, and our imaging system recorded the temperature
change of every 10ms.

Figure 7(B) shows both measured and simulated 1T at
hot spot 2 in 300 seconds (covering a full heating process),
under the driving power of 45.6, 64.6 and 86.5mW. Although
there are limited differences in the range of 10ms to 1s, and
beyond 120s, this comparison shows a general coincidence
in the specific time-dependent 1T between the simulation
and measurements, for they reached the same maximum
temperature and cooled down in the same time dimensions.
As such, we basically did our calibration for the model in
air, and we then translated it to the model in the tissue/fluid.
An important parameter we could obtain from the calibration
is the driving power of the LEDs under a certain thermal
constraint. Though there could be some parameter errors in
that translation, we believed it to be still valid. Figure 7(C)
shows the 1T with respect to the LED driving power, for
heating time widely ranged from 20ms to 1s. The symbols
are measured values, while the lines are the simulation results
from the calibrated model.

FIGURE 7. Thermal analyses validation: (A) Fork-shaped arrayed test
probes under temperature measurement (top view); (B) Time-dependent
temperature change of the probe for different heat power for
45.6 – 86.5mW LED are compared with simulation (red line); (C)
Calibrated temperature change with respect to the LED driving power, for
different heating time.

In using the thermal analyses, a major limitation is that the
thermal decay for the measurements is substantially faster
than the model in Figure 7(B). This would bring errors in
determining the duty cycle of a pulse train, given many
neuromodulating strategies use them.

V. DISCUSSION
When considering the light emitted by a collimated laser, the
intensity will rapidly decay with distance as an exponential
with the extinction coefficient. Extinction being the combina-
tion of absorption and scattering. However, if we consider the
3D emission profile, the situation is more complex. Scattered
light is not lost, it is simply deflected. Eventually, the light
will be absorbed by the tissue, but its irradiance profile is
largely dependent on its dispersion through the tissue by
scattering. The scattering is also anisotropic, such that around
90% of the light is scattered in a forward arc and 10% is
scattered back.

If the initial light emission is collimated, then the dis-
persion profile will be different than if the emitter was
Lambertian (emitting as a spherical profile from the emitter).
As such, we assumed a Lambertian profile of emittance from
our LEDs, as this is typical in air. However, the refractive
index of tissue is greater than in air. So, the profile could be
different. We unfortunately did not have the tools to measure
the illumination profile of the LED in water. As such, tak-
ing the irradiance profile along a linear perpendicular line
from the emitter center will be slightly different from our
model and what we measured in Figures 3, 5.

There is some discussion in the field about the appropriate
measure for maximum temperature. The regulations state that
the probe surface temperature should not exceed +2 ◦C. Our
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simulations indicate that with that limit, tissue hot spots will
have declined to less than +1◦C within 50µm of the surface.
As we expect this region to be effectively dead, then a probe
surface temperature limit of+2◦C is unlikely to cause further
damage to the neural tissue.

Our enucleated neuron experiments allowed for interesting
studies of the direct effect of light on the inward current into
the neuron. This could be connected with the well-known
channel dynamics of ChR2, and thus explore the effect of
tissue thickness on the scattering profile of light from an
LED-based probe. However, there are two caveats to this
work: (i) We did not directly explore light vs firing rate for
our neuron (ii) there are many neuron types in the body, and
our original model [23], [24] for the opto-neuron was from
hippocampal cells. As such, the model parameters would
need to be updated for the cells of interest – e.g. cortical
pyramidal or interneurons.

Furthermore, we take a punctate approach, providing the
equivalent frequency if a neuron soma was embedded at a
given depth from the probe. This is clearly a simplification
from the 3D structure of individual neurons, and their 3D
structure. Furthermore, neurons talk to each other in a net-
work. So there would be an additional layer of complexity
required to directly connect a probe design with specific
peturbations to particular neural circuits. But the purpose of
this work is to determine an optimal probe design. A 3D map
of expected current injection stimulus can be created from this
and transferred to such neuron network models if required.
Our neuron model is able to predict the firing rate from
ChR2 photocurrent. Considering spontaneous neural activ-
ities. As such, we can generate a map of firing rate, once we
know the spatial distribution of the neuronal compartments
in the tissue.

Direct measurement of local temperature and thus, thermal
heating in fluid/tissue is very challenging. We previously
developed a tool to achieve this with the probes themselves,
but the actual measurement is at the p-n junction of the diode
rather than the surface. So it relies on a model to provide a
result, and we felt this to be circular for this work. Infrared
microscopy can be used to look at temperature distributions
in air, but not through water. As such, we had to do our
calibration for a model in air and then translate that to our
tissue/fluid model. As such, there could be some parameter
errors in that translation, though we believe it to be still very
valid.

Combining our analyses, we were able to create, for the
first time, a map of the response function, including the
distribution of irradiance, temperature change and the evoked
firing rate for an optogenetic implantable neuroprosthetic
probe.We envisage this tool allowing future teams to evaluate
probe design trade-offs prior to expensive rounds of design
and challenging testing.

In general, the OMFC model is still a simplified model.
Our advantages include an integrated analysis relating differ-
ent physical fields involved. Parameters in our model have
been calibrated experimentally, so we think the model does

have some basis in real biophysics. The limitations of the
model include over-simplification of the morphology and
interconnected networks of neurons, and will be improved in
the future work.

By configuring the thermal constraint to a safe value,
we neglected the discussion on opto-thermal sensitivities of
neural activities. We also did not include consideration of
neuronal interconnections as we believe this should be thor-
oughly investigated in a separate paper.

For now, our model focuses on the 470 nm light
and channelrhodopsin-2 (ChR2). However, some potential
clinical applications of the optogenetic implant rely on
other opsins, e.g. 470-490nm for anion-conducting chan-
nelrhodopsin GtACR [57], and 570-595nm for chloride
ion-pumping rhodopsin halorhodopsin [58]. It is not that
difficult to transfer the model from 470nm to other wave-
length. Wavelength itself is a variable input parameter,
so variations could be made by updating the scattering and
absorption properties in the following optical and thermal
analyses. As for the opto-neuro analyses, the 4-state model
is common-used for the ChR2 family and is applicable
for ion-channel rhodopsins by altering time constant and
conductance. The introducing of different opsin types, e.g.
halorhodopsin does bring the new photocycle and corre-
sponding dynamics. However, the transition rate model is
general so the photocycle dynamics in our opto-neuro analy-
ses could be adjusted by replacing the ChR2model with other
opsin model, as far as the model has been developed. As the
photocycle of halorhodopsin was reported recently [59],
we would be glad to investigate its feasibility in develop-
ing optogenetic neural prosthetic system. 570-595nm yellow
light is superior to the 470-490nm blue one, 1/1000 in the
capability of tissue damage, and less scattering, and deeper
penetrating depth

VI. CONCLUSION
In this paper, we proposed an optogenetic multiphysical
fields coupling (OMFC) model for optogenetic implantable
neuroprosthetic probes. The OMFC model summarised the
reported modelling work for optogenetic neuroprosthetics.
It was established by compositing three analyses for opti-
cal, thermal and optogenetic electrophysiological processes,
based on the energy equivalence and exchange among
different physical fields.

To validate the model, optogenetic implantable neuropros-
thetic test probes based on miniature LEDs were developed.
Then, optical, thermal measurement and neural photocur-
rent recording experiments were implemented on the test
probes. By comparing the simulation and experiment results,
we validated and calibrated the OMFC model so that we
believe it would enable us to obtain the optical, thermal and
electrophysiological responses for a given probe. As so, the
model could be helpful as an early-stage design tool to reduce
experiment iteration, even to achieve ‘‘one-time experimental
validation’’ once updated and operated in the realistic envi-
ronments for clinical applications. Owing to the complexities
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of neural system, further experimental investigations could be
taken to improve the modelling parameters further.
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