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Abstract
Many machine learning (ML) algorithms have been developed over the past two decades for prognostics and health man-
agement (PHM) of complex engineering systems. However, most of the existing algorithms tend to produce point esti-
mates of a variable of interest, for example the equipment’s remaining useful life (RUL). The point estimation of the RUL
often neglects the uncertainty inherent in model parameters and/or the uncertainty associated with data inputs. Bayesian
Neural Networks (BNNs) have shown a lot of promise in obtaining credible intervals for model parameters, thus
accounting for the uncertainties inherent in both the model and data. This paper proposes a deep BNN model with the
Monte Carlo (MC) dropout method to predict the RUL of engineering systems equipped with sensors and monitoring
instruments. The model is tested on NASA’s Turbofan Engine Degradation Simulation Dataset and the results are
discussed and analyzed. It is revealed that the method can produce highly accurate predictions for RUL distribution para-
meters in safety critical components.
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Introduction

Prognostics and health management (PHM) is a field
of research and application which aims to maintain the
reliable, efficient, economic, and safe operation of engi-
neering equipment, systems, and structures. It involves
the process of data acquisition, diagnostics, health state
estimation, prognostics, and maintenance decision-
making.1 The penultimate activity in this process, that
is, prognostics, primarily involves predicting the
remaining useful life (RUL) of systems or components.
RUL is defined as the time left before the degradation
of an equipment exceeds a failure threshold.2 In other
words, RUL is the time from the detection of an
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incipient failure to the time when the system perfor-
mance crosses a failure threshold. An important point
to note is that the RUL could be measured based on
various criteria, such as calendar time (e.g. days, weeks,
and months), number of charge and discharge cycles
(e.g. for a battery), number of fatigue cycles (e.g. for a
steel bridge structure), or even in terms of usage, exam-
ples of which include flight hours for aircraft engines,
runtime for machines, or mileage for automobiles.

Over the past two decades, many researchers have
had to contend with different challenges encountered in
the process of predicting RUL. Some of these key chal-
lenges have been discussed in Engel et al.3 The paper
explored the necessary conditions to achieve the desired
convergence between the accuracy of prediction and
the uncertainty in RUL, as the system continues to
degrade. RUL predictions derived in the paper were
presented by probability distributions to capture the
uncertainty in features (i.e. data) as well as in predic-
tion model. Despite many follow-up studies in PHM
research field and even with a myriad of many new
approaches being adopted in the era of Big Data, some
core challenges with uncertainty quantification of RUL
prediction remain yet to be solved.

The RUL prediction methods in literature can be
broadly classified into two types: physics-based and
data-driven. Physics-based methods apply theoretical
mathematical models to interpret degradation pro-
cesses over time or cycles. These models are usually
expressed in terms of differential equations which can
be solved using either analytic or numerical methods,
depending on the level of complexity of the problem.
Deriving a mathematical equation for the evaluation of
degradation process for complex systems and in rapidly
changing environments is sometimes impossible or
infeasible. As such, data-driven approaches have
become more prominent in the PHM field as they rely
on system test data to identify the characteristics of
damage state and predict the RUL without relying on
any physical model.

Given the present proliferation of advanced sensor
technologies, data storage capabilities, and increased
computing resources, the use of artificial intelligence
(AI) techniques as a data-driven technology in
understating the underlying failure signatures for the
purpose of predicting RUL has attracted widespread
attention. AI-driven RUL models prove to be accurate
and remarkably efficient. However, most of the algo-
rithms proposed up to now produce point estimates of
RUL,4–6 with accuracies measured in terms of the error
between the point estimate and the true RUL value
which, in reality, is unknown. In addition, the sensor
data may be inherently noisy, resulting in another layer
of uncertainty known as ‘‘aleatoric’’ uncertainty.
Moreover, the use of AI algorithms involves the tuning
of different hyperparameters such as the number of

layers of a neural network, the regularization para-
meter, the number of neurons in each layer or even the
type of AI algorithm used; all these are variabilities
that introduce uncertainty in the prognostic process
itself and this class of uncertainty is termed as ‘‘episte-
mic’’ uncertainty.

In an attempt to overcome some of the aforemen-
tioned limitations associated with uncertainty quantifi-
cation in RUL prediction, researchers have developed
many new techniques, among which the most common
are ‘‘Bayesian’’ approaches. Particle filter-based algo-
rithms7–9 and Kalman filter-based algorithms,10–12

which are both based on Bayesian techniques, have
been adopted for RUL prediction. However, in strict
technical terms, these methods are essentially
approaches for health state estimation as they make
use of past data to predict the present health state of a
system and then based on the present health state and
additional data, predict future health states.13 The
RUL is thereby obtained by deduction, inferring RUL
from the time it will take for a system to get into a
failed state. Other researchers have used Dynamic
Bayesian Networks (DBNs) and Hidden Markov
Models (HMMs) to address uncertainty in prognos-
tics.14–16 Gaussian Process Regression (GPR) is also a
Bayesian technique that has been used extensively by
researchers to quantify the uncertainty in terms of var-
iance for RUL predictions, in particular for cases
where the data is sparse.17–19 Deutsch and He20

employed a resampling technique to address the fact
that RUL is not deterministic. They used deep learning
algorithms to make several repeated RUL predictions
by removing one instance of the training data during
each prediction and updating the RUL values progres-
sively, thereby obtaining the RUL distribution para-
meters. Liu et al.21 also used an adaptive recurrent
neural network (ARNN) to predict the RUL values by
making 50 prediction runs and obtained the RUL dis-
tribution parameters. The drawback of the model was
that the uncertainties in the model and data were not
implicitly addressed. As regards AI algorithms, a key
step in the process involves preprocessing of data,
which includes smoothing the data to remove noise,
discarding outliers, and even generating entirely new
features via feature crosses that involves some mathe-
matical transformation of the original sensor data.
Feature crosses produce additional features that are
meant to be more informative for prognostics pur-
poses. While these approaches are aimed at handling
some aspects of aleatoric uncertainty (i.e. uncertainty
in sensor data), data preprocessing itself is somewhat
subjective and injects its own layer of uncertainty.

Among many Bayesian techniques within the sphere
of AI algorithms used for prognostics, the Bayesian
Neural Networks (BNNs) are one of the most popular
approaches to uncertainty quantification. As expounded
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in the work of Gal22 and following foundational studies
in BNN,23–27 additional efforts in solving the problem
of approximating the posterior distribution of model
weights (as a fundamental problem in BNN) can be
found in the works of Barber and Bishop,28 Minka,29

and Graves30 However, most of those early approaches
suffered from the drawbacks of scalability to larger
data, adaptability to complex models, and ease of use
by non-core practitioners.22 Recent advances as pre-
sented in other studies31–34 have helped to address some
of these challenges. As such, computer scientists and AI
practitioners within the PHM domain have recently
started adopting BNNs in uncertainty quantification.
Peng et al.35 proposed a Bayesian deep learning method
to address the issue of model (or epistemic) uncertainty.
Kim and Liu36 and Li et al.37 implemented Bayesian
deep learning algorithms for RUL prediction by incor-
porating both epistemic and aleatoric uncertainties.
However, all attempts in the literature using BNNs are
analytically cumbersome and overly theoretical, which
may be a turn-off for the core engineers for which these
methodologies should be useful in a practical way.
Apart from the theoretically rigorous presentation, the
existing approaches assume that the prior distribution
of the predicted RUL is a normal distribution.
However, in reality, the true distribution of the RUL is
unknown and may not be necessarily normal.

In view of the above-mentioned gaps in the litera-
ture, the current study aims to propose a deep BNN
algorithm with the Monte Carlo (MC) dropout
approach to derive the mean RUL prediction as well as
a credible interval without making any explicit assump-
tions about the true RUL distributions. Thus, an
approximation of the RUL distribution is made which
is as close to the true RUL distribution as possible.
Another specific contribution of this study is that our
proposed algorithm takes both aleatoric and epistemic
uncertainties into account. This fills the gap in earlier
heuristic approaches that only attempt to achieve
uncertainty quantification by making several, repeated
point estimations of the RUL, thereby only indirectly
accounting for epistemic uncertainty and not account-
ing for aleatoric uncertainty. In addition, another spe-
cific contribution of this research is the achievement of
results that are very amenable to use in real-life systems
since the uncertainties are quantified in numerical
terms rather than qualitatively, thus providing interpre-
table information for use in maintenance planning and
end-of-life management.

The remaining part of this paper is organized as fol-
lows. Section 2 provides a detailed perspective of uncer-
tainty quantification approaches in PHM. Section 3
proposes the Monte Carlo dropout BNN algorithm
used for RUL prediction in this study. Section 4 pre-
sents and discusses the results of testing the proposed
algorithm on NASA’s Turbofan engine degradation

dataset (CMAPSS). Section 5 presents the conclusion
and highlights areas of future work.

Uncertainty quantification in PHM

Methods of incorporating uncertainty in RUL predic-
tion are either testing-based (which rely on offline data
collected from accelerated life testing) or condition-
based (which rely on online data provided from condi-
tion monitoring devices).13,38 Testing-based methods
are often applied to inexpensive components, several of
which can be run until failure to obtain lifetime data
and failure probability distributions while condition-
based methods are applied to complex systems. In what
follows, different types of uncertainties in the PHM
domain are reviewed.

Types of uncertainties

Conventionally, uncertainties have been categorized as
aleatoric (in relation to data) and epistemic (in relation
to model parameters). However, Sankararaman13

argues that a more bespoke categorization is necessary
for prognostics and RUL prediction. Thereafter,
Sankararaman and Goebel38 suggested four categories
of uncertainty, namely:

� Present uncertainty: This is the uncertainty inher-
ent in the estimation of the present health state,
which, in PHM, is a necessary step before pre-
dicting RUL. The sources of this uncertainty
include sensor noise, gain and bias, data pre-
processing tools and techniques, and filtering
and estimation techniques. This uncertainty is
analogous to aleatoric uncertainty in conven-
tional categorizations.

� Future uncertainty: This corresponds to the
inherent uncertainty in predicting future health
conditions. Sources of this uncertainty include
future loading, environmental conditions, and
operating scenarios.

� Modeling uncertainty: This uncertainty is due to
the fundamental difference between the true sys-
tem output and the output represented by the
chosen or derived model. This uncertainty mani-
fests itself (whether by a linear, polynomial, or a
more complicated relationship captured via a
neural network) in the model or the model
parameters.

� Prediction method uncertainty: This refers to the
way that present, future, and modeling uncer-
tainties are combined to influence the RUL esti-
mates, with its associated uncertainty. With the
same dataset and under the same conditions, dif-
ferent prognostics models may yield different
RUL values. In fact, even the same method may
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yield different RUL values for repeated runs of
the algorithm due to variation in initial sampling
(leading to sampling errors) and different
approaches used in approximating the model
parameters. This therefore will underscore the
fact that although the true RUL value may be
deterministic, the results from a data-driven pre-
diction algorithm are random variables. Both
the modeling and prediction method uncertain-
ties are analogous to epistemic uncertainty.

Approaches to uncertainty quantification

Several approaches have been proposed by PHM
researchers for uncertainty quantification in RUL
prediction. A brief overview of the most popular
approaches is given below:

� ‘‘Classical’’ methods: Traditionally, failure prob-
ability data for a component are obtained by
running the component until failure. This pro-
duces a sample from which failure probability
distribution parameters can be estimated. The
population failure probability distribution para-
meters are then inferred from the sample para-
meters using statistical techniques. The main
limitation of this approach is its impracticality
for complex systems.

� Data preprocessing: Sensor data comes with
noise, signal gain and bias. This causes a major
source of uncertainty. To address this issue,
some data preprocessing techniques such as
smoothing, filtering and outlier removal or
replacement can be employed.39,40 Although
these approaches generally tend to make the
resulting data or features more informative, their
impact, in quantitative terms, on reducing the
inherent uncertainty is not yet well understood.

� Several runs of point estimates: One way some
researchers have attempted to quantify uncer-
tainty is by making several repeated point esti-
mates of RUL using a model or an algorithm,
thereby generating a sample of RUL values with
enough statistical significance and then estimat-
ing the population parameters based on the sam-
ple observations. Deutsch and He20 used a
resampling technique by eliminating one training
data for each run of their deep learning-based
algorithm and iterated this until the entire train-
ing data was covered, obtaining several point
estimates of RUL as well as its distribution para-
meters. Liu et al.21 used a similar approach to
predict the RUL distribution parameters.
However, their heuristic approach failed to
directly account for the uncertainty in the data
or in the model.

� Bayesian techniques: The methods employing
Bayesian techniques for health state estimation
and RUL prediction include particle filtering,7–9

Kalman filtering and its variants,10–12 HMMs,41–43

and DBNs.15,16 These methods predict the sys-
tem’s health state based on available data and then
employ recursive or sequential techniques to
update the health state as additional data become
available, using the time steps up till the time when
the system health state reaches a failure threshold.
The time steps or slices are then used as basis for
calculating the RUL. Even though these are fun-
damental approaches being used to estimate the
system’s health state,13 they provide probability
distributions for the RUL, thus accounting for
uncertainty. Some of these techniques have also
been combined with classical reliability methods to
achieve more accuracy in RUL prediction. Bressel
et al.44 used an extended Kalman filter to estimate
the state of health and the dynamics of degrada-
tion in a Proton Exchange Membrane Fuel Cell
(PEMFC) under variable loading. An inverse First
Order Reliability Method (iFORM) using limit
state functions was formulated to predict the RUL
by extrapolating the state of health until a failure
threshold is reached, giving the RUL along with a
90% confidence interval.

Another common approach involves the use of a model
to predict RUL and the subsequent use of Bayesian
inference to update the RUL values and its distribution
parameters as more data becomes available. Zhao
et al.45 integrated condition monitoring data to update
the parameters of their model-based RUL prediction
methodology using Bayesian inference, thereby updat-
ing the RUL and the associated uncertainty as more
data became available. An et al.46 also used Bayesian
inference as a statistical method to address uncertainty
in terms of noise in data (i.e. aleatory uncertainty) and
model weights (i.e. epistemic uncertainty). The authors
compared their method with the method of using
repeated predictions of RUL to obtain its distribution.
The method was found to outperform the repetition
method in cases where there is large noise in data, or
the degradation mechanisms are complex. Gao et al.47

proposed a joint prognostic model that uses a
Maximum Likelihood Estimate (MLE) at an offline
stage to determine the prior distribution for each input
signal, after which the distribution parameters obtained
using MLE method are fed, as inputs, into a three-layer
neural network to predict the degradation. During a
subsequent online stage, Bayesian updating is used,
along with real-life sensor data collected from the unit
whose RUL is to be predicted, to obtain the posterior
distribution of the parameters in the degradation
model, thus obtaining an updated RUL distribution.
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Liu et al.48 proposed an RUL prediction method based
on an exponential stochastic degradation model that
considered multiple uncertainty sources simultaneously,
while using a Bayesian-Extreme Learning Machine to
further quantify the uncertainties and predict the RUL
of crystal oscillators.

The advantage of BNN models over other
approaches is that uncertainty quantification is impli-
citly modeled in the design of the network such that
BNN models directly generate RUL values as probabil-
ity distributions rather than generating repeated point
estimates of the RUL. Peng et al.35 incorporated uncer-
tainties into prognostics by using Bayesian deep-learn-
ing-based models. A Bayesian multi-scale convolutional
neural network was proposed to predict the RUL with
confidence interval bounds for bearings while a
Bayesian bidirectional long short-term memory
(LSTM) algorithm was used to predict the RUL for
turbofan engines. For both models, variational infer-
ence (VI) was used to approximate the posterior distri-
bution of the model parameters, given the training data
and the training RUL values. A limitation of the study
was that the authors only considered the uncertainty in
model parameters. In an attempt to close this gap, Li
et al.37 developed a Bayesian deep learning framework
for RUL prediction by incorporating the epistemic and
aleatoric uncertainties. The framework, which was
tested on a dataset from high voltage circuit breakers,
was implemented using a gated recurrent unit (GRU),
which is a form of the LSTM algorithm. While addres-
sing the uncertainty in data as well as in model para-
meters, a sequential Bayesian boosting framework was
incorporated within the algorithm to help sequentially
shrink the predicted credible interval. This final step,
fundamentally, is similar to the study by Deutsch and
He20 where several RUL predictions were made and
then fitted onto a distribution to account for uncertain-
ties. The approach of using BNN and breaking down
the prognostics process into two or more steps has also
been studied by other researchers. Kim and Liu36 pro-
posed a Bayesian deep neural network for the predic-
tion of RUL and quantification of uncertainties. The
authors considered two groups of uncertainty, includ-
ing weight uncertainty (which accounts for the uncer-
tainty in model weights) and degradation uncertainty
(which accounts for the combined effects of signal/sen-
sor measurement errors and variability from one system
to another. The model was formulated in two parts:
one part was a Bayesian LSTM which was used to pre-
dict the RUL while accounting for uncertainty in model
weights, and the second part was a feed forward neural
network (FFNN) which takes RUL estimates as input
and establishes a monotonic relationship between the
RUL and degradation uncertainty in terms of the
variance of the data. The weights of the FFNN were
implicitly modeled within the Bayesian LSTM

framework. Kraus and Feuerriegel49 proposed a
structured-effect neural network (SENN) model to
address the issue of interpretability of machine learning
(ML) approaches in RUL prediction. The SENN algo-
rithm included three components; the first component
was a non-parametric part with probabilistic lifetime
models fitted with Weibull or lognormal distributions;
the second component was a linear regression model
using current condition data, while the third component
uses an LSTM to model non-linearities in the data
using variational Bayesian inference to estimate the
model parameters.

Aside the goal of quantifying uncertainties, other
researchers have also used BNN as an important algo-
rithm in the scenario of small and noisy data as BNNs
tend to be more robust to overfitting. Vega and Todd50

used BNNs to estimate the RUL for structures equipped
with structural health monitoring (SHM) systems, where
minimal data was obtained from a finite element analy-
sis (FEA) model which mimicked real-life inspection
data obtained from miter gates. The cost implication of
using prognostics as compared to conventional inspec-
tion methods was also evaluated using the probability
confidence bounds estimated by BNNs. Guo et al.51 esti-
mated RUL for an external gear pump using a Radial
Basis Function with Bayesian regularization, which is a
Bayesian approach toward minimizing overfitting during
the training process. Xiao et al.52 used a self-attention-
based adaptive mechanism to construct health indicators
in electronics application for insulated gate bipolar
transistor (IGBT) and then used MC dropout as a BNN
approach for RUL prediction for the IGBT. Li and
He53 also proposed a deep convolutional neural network
(DCNN) combined with Bayesian optimization and
adaptive batch normalization (AdaBN) for RUL predic-
tion. The method yielded a self-optimized network struc-
ture and hyperparameters selection (such as number of
neural network layers, learning rate, batch size, etc.) as
against random search and grid search. However, the
algorithms in both the studies of Guo et al.51 and Li and
He53 generated point estimates for the RUL, rather than
probability distributions. Gaussian Process Regression
(GPR) is also a Bayesian technique that provides
uncertainty quantification in terms of variance for RUL
predictions and has been used extensively by researchers
because it is also particularly well suited to scenarios
with sparse data.17–19 Other Bayesian techniques that
have been used for uncertainty quantification in RUL
prediction include Dempster-Shafer theory and Bayesian
Monte-Carlo methods54 and the Relevance Vector
Machine.55,56

For systems that experience multiple failure modes,
the study by Gandur and Ekwaro-Osir57 used BNNs to
predict the RUL for bearing data as well as for a bat-
tery degradation problem and showed that the uncer-
tainty increases with increase in the number of failure
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modes. The findings are important for applications in
complex systems, and it would be useful to investigate
further to find which failure modes contribute more to
increase in uncertainty. Another recent area of machine
learning-based RUL prediction research is in attention-
based networks. Attention networks utilize attention
mechanisms to emphasize task-relevant information in
deep learning networks through enhanced adaptive fea-
ture representation. To incorporate uncertainty quanti-
fication, Wang et al.58 used a Bayesian Kernel attention
network for RUL prediction in bearings. The method
produced more interpretable and trustworthy results in
terms of the credible intervals for the RUL, along with
the mean RUL prediction, thus providing a lot more
information for decision-making when compared to
existing methods of implementing attention networks
that ignore uncertainty information and thus lead to
overconfident RUL predictions. The multifarious col-
lection of Bayesian methods used for uncertainty quan-
tification in prognostics demonstrates the fact that it is
a challenge of huge significance in the context of using
RUL predictions as a basis for maintenance decision-
making.

BNN algorithm for RUL prediction

In this section, a concise background of BNNs is pre-
sented, along with our proposed BNN algorithm for
RUL prediction under uncertainty.

BNN background

To get a full picture of the RUL prediction algorithm
proposed in this work, a brief background of BNNs is
provide below:

(i) Bayes’ theorem: Let p Dð Þ denote the marginal or
unconditional probability of observing a dataset,
D, irrespective of all other occurrences. Also, let
p vð Þ denote the marginal or unconditional
probability of observing a set of neural network
weights, v, irrespective of the data or other
parameters. The joint probability of these two
observations is denoted by p v,Dð Þ while the
conditional probability of one observation, given
another observation, is denoted by p vjDð Þ,
which, in this case, stands for the probability of
observing the network weights, v, given the
dataset, D. Bayes’ theorem connects all these
probabilities as given in equation (1):

p vjDð Þ= p v,Dð Þ
p Dð Þ , ð1Þ

where p v,Dð Þ represents the joint probability between
the model weights and the observed data, given in
equation (2) as:

p v,Dð Þ= p Djvð Þp vð Þ: ð2Þ

The application of Bayes’ theorem to neural networks
involves having a prior belief about the model weights,
which corresponds to weight initialization in traditional
deep learning. This prior belief is denoted by p vð Þ. The
marginal probability of observing the data, p Dð Þ, is
referred to as the evidence. The probability of observing
the model weights given that the data (or evidence) has
been observed (typically obtainable after training the
model) represents the posterior probability denoted by
p vjDð Þ. The inverse of the posterior, p Djvð Þ, repre-
sents the likelihood that the data or evidence, D, will be
observed, given a set of weights, v. Therefore, Bayes’
theorem can be expressed as given in equation (3):

Posterior=
Likelihood 3 Prior

Evidence
: ð3Þ

(ii) Probabilistic models: The prediction of RUL is
inherently a regression problem. The core task
of a neural network developed for a regression
task is to make predictions given a training
dataset, D, which contains n input-output pairs
of the form D= x1, y1; x2, y2; . . . ; xn, ynf g. A
neural network can be formulated as a prob-
abilistic model as p yjx,vð Þ. The joint distribu-
tion between the model weights and the data,
p v,Dð Þ, even before training, can be defined
using the prior belief, p vð Þ, and the choice of
the model (or likelihood), p Djvð Þ, using equa-
tion (2). The likelihood is determined by the
model architecture and the choice of the loss
function used to achieve the optimization objec-
tive. For a conventional regression problem
with a known variance and the loss measured
as the mean squared error (MSE), the mean of
a Gaussian likelihood can be specified by the
network output as given in equation (4)59:

p Djvð Þ= p yjx,vð Þ: ð4Þ

Typically, all the samples in the dataset, D, are assumed
to be independent and identically distributed, and the
likelihood can be written as a product of the contribu-
tion from all the n individual samples in the dataset,
given in equation (5) as:

p Djvð Þ=
Yn

i= 1

p yijxi,vð Þ: ð5Þ

6 Advances in Mechanical Engineering



It can be shown that maximizing the likelihood given in
equation (5) yields the Maximum Likelihood Estimate
(MLE) of the model weights, v, with the negative log
likelihood as the optimization objective during training.
However, the MLE produces point estimates and is
prone to overfitting as the regularization terms are all
discarded.60 Further, the full form of equation (1) can
be written as given in equation (6):

p vjDð Þ= p Djvð Þp vð Þ
p Dð Þ : ð6Þ

In practice, during the training process, the training
data or evidence is constant, so the term p Dð Þ in
equation (6) normalizes the likelihood, making it a
proper probability distribution. Therefore, equation (6)
is reducible to:

p vjDð Þ } p Djvð Þp vð Þ, ð7Þ

or in another words, Posterior } Likelihood 3 Prior.
From equation (7), it is clear that maximizing
p Djvð Þp vð Þ corresponds to the Maximum A Posteriori
(MAP) estimate, with the same optimization objective
as with the MLE, that is, the negative log likelihood.
The MAP, however, includes a regularization term but
still yields a point estimate similar to the MLE.60 So,
the MLE and the MAP, though being probabilistic
models for the neural network outputs, only yield point
estimates and do not account for uncertainty.

(iii) Variational inference: Suppose that we have
full probability distributions over the para-
meters of the neural network, then uncertain-
ties can be considered. To model this, the
output, y, will be a continuous variable and
not a fixed value or point estimate, with its
distribution conditional upon an input, x, for
which prediction is to be made, and the train-
ing data, D. The output or posterior predictive
distribution, p yjx,Dð Þ, is usually calculated by
combining (i.e. integrating) the individual pre-
dictive contributions from a given, finite set of
distributions of model weights (i.e. p yjx,vð Þ),
and weighing each prediction with its posterior
probability, p vjDð Þ. As presented in Gal and
Ghahramani61 and Duerr et al.62 this integral
is given as in equation (8) below:

p yjx,Dð Þ=
ð

p yjx,vð Þp vjDð Þdv: ð8Þ

It is a known problem that the analytical solution to
the posterior predictive distribution, p vjDð Þ, in equa-
tion (8) is intractable. Common approaches used to
overcome this problem in BNNs is via variational

inference (VI) and MC dropout. With VI, the analyti-
cally intractable posterior, p vjDð Þ, is approximated
using a posterior, qu vð Þ, whose analytical form is
known, with a set of parameters, u. The usual assump-
tion for qu vð Þ, which is called the variational distribu-
tion, is a standard normal distribution. As shown by
Barber and Bishop,28 the variational distribution,
qu vð Þ, can be used to approximate the true posterior
distribution, p vjDð Þ, by minimizing the Kullback-
Leibler (KL) divergence between qu vð Þ and p vjDð Þ.
The KL divergence between both distributions is
defined by equation (9) as:

KL qu vð Þ k p vjDð Þð Þ=
ð

qu vð Þlog
qu vð Þ

p vjDð Þ dv: ð9Þ

The KL divergence, as in Barber and Bishop,28 Gandur
and Ekwaro-Osir,57 Duerr et al.62 can be reduced to
equation (10) as given below:

KL qu vð Þ k p vjDð Þð Þ=Eq log
qu vð Þ
p vð Þ � log p Djvð Þ

� �

+ log p Dð Þ:
ð10Þ

Equation (10) can be further reduced to equation (11)
as given below:

KL qu vð Þ k p vjDð Þð Þ= � F quð Þ+ log p Dð Þ, ð11Þ

where F quð Þ is the eventual optimization objective and
given in equation (12) as in Goan and Fookes59:

F quð Þ=Eq log p Djvð Þ½ � � KL qu vð Þ k p vð Þð Þ: ð12Þ

The first term in equation (12) represents the expected
value of the log likelihood with respect to the varia-
tional distribution parameters and the second term rep-
resents the KL divergence between the variational and
the prior distribution. The relationship described in
equation (11) can be visualized as shown in Figure 1.

It can be seen from Figure 1 that by minimizing the
KL divergence, F quð Þ is maximized and approaches the
logarithm of the marginal likelihood (i.e. logarithm of
the evidence). Hence, F quð Þ is commonly referred to as
the Evidence Lower Bound (ELBO). So, minimizing
KL divergence is equivalent to maximizing the ELBO.
During optimization using backpropagation, only the
terms containing the variational parameters remain, as
all other terms reduce to zero. Equation (12) can be
expanded, as shown in Blundell et al.,33 to obtain equa-
tion (13) as given by:

F quð Þ=Eq log p Djvð Þ½ � � Eq log qu vð Þ½ �+Eq log p vð Þ½ �:
ð13Þ
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Blundell et al.33 showed that F quð Þ can be
approximated by drawing N Monte Carlo samples of
the weights, vj, from the variational distribution,
qu vð Þ, as:

F quð Þ ’
1

N

XN

j=N

log p Djvj
� �

� log q vjju
� �

+ log p vj
� �� �

,

ð14Þ

where vj represents the jth Monte Carlo sample of the
model weights drawn from the variational posterior
qu vj
� �

. This implementation of VI is commonly known
as the Bayes by backprop algorithm proposed by
Blundell et al.33

As regards uncertainty quantification, epistemic
uncertainty is captured in the variational posterior
distribution by a set of parameters u (with the mean m

and variance s2, in the case of a normal distribution).
The epistemic uncertainty can be reduced when more
data becomes available, as the model better approxi-
mates the posterior distribution. However, the aleatoric
uncertainty, which is captured in the probability
distribution used to model the likelihood function, is
not reduced with the use of additional data as it only
attempts to quantify the inherent noise in the data. The
VI approach discussed so far, models the neural net-
work weights as a probability distribution with means
and variances. Thus, there are twice as many trainable
parameters for the neural network, as illustrated in
Figure 2(a).

(iv) MC dropout: This technique works by randomly
dropping nodes during the training process of a
deep neural network, thus setting the weights of
the neurons connected to the output of the
dropped nodes to zero. The final model weights
are then obtained as an average of the neuron
weights during each epoch. This is one of the

most popular techniques to use for preventing
overfitting.63 However, Gal and Ghahramani32

showed that the MC dropout can also be used
as a computationally fast algorithm to achieve
the VI approximation in BNNs. Unlike the VI
approach, the MC dropout algorithm achieves
a similar approximation by quantifying uncer-
tainty in BNNs without doubling the number of
trainable parameters on the neural network. A
deep BNN implementing MC dropout is illu-
strated in Figure 2(b).

The MC dropout algorithm is simply rendered as
follows: given a new input x�, the output of the neural
network, y� can be computed by performing T stochas-
tic forward passes through the network, obtaining an
output ŷ�t during each of the forward passes, with a
dropout probability, p, which determines the fraction
of units to be dropped during each forward pass.
Therefore, for the T stochastic forward passes, the out-
puts obtained are ŷ�1, ŷ�2, ŷ�3, . . . , ŷ�Tg

�
and the mean

output, y�, corresponding to the input, x�, is obtained
by taking the average using equation (15) as:

y�=
1

T

XT

t = 1

ŷ�t : ð15Þ

The uncertainty is computed from the sample
ŷ�1, ŷ�2, ŷ�3, . . . , ŷ�Tg
�

by choosing T to be large enough
to attain statistical significance. It is obvious that this is
a very simplistic and computationally faster approxi-
mation of the posterior distribution as compared to the
VI method. This method also lends itself to a better
possibility of quantifying the parameters of the true
posterior distributions, without making too many
explicit assumptions about the prior and as such, will
be used for our uncertainty quantification in RUL
prediction.

BNN model for RUL prediction

We implement the MC dropout algorithm using
TensorFlow (version 2.6.0) with Keras (www.tensor-
flow.org) and TensorFlow Probability (version 0.13.0).
Some other libraries and dependencies were also
imported and used as required. The implementation
procedure is described in a step-by-step fashion in the
following paragraphs:

- The training and test data is preprocessed on
MATLAB and features are selected based on
trendability, prognosability and monotonicity
values, as used in one of our earlier work.64

- Preprocessed training and test data containing all
selected features are then imported to
TensorFlow, and the training data is further split

Figure 1. The KL divergence between true and approximate
posteriors is equal to evidence lower bound (ELBO) (adapted
from Barber and Bishop28 and Gandur and Ekwaro-Osir57).
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into training data (85%) and validation data
(15%) using scikit-learn’s GroupShuffleSplit
function.

- The distribution of the training labels (i.e. train-
ing RULs) in the split version of the training and
validation data are then plotted to ensure that
both sets contain RULs of similar distribution
and are indeed comparable.

- The RUL, instead of being modeled as a variable
that linearly decreases from commencement of
operation until the failure of each unit, is mod-
eled to reflect the true degradation trend of a unit
under degradation, known as the potential-failure
(or P-F) curve (see Figure 3(a)). The P-F curve is
a plot of the equipment condition for a degrad-
able equipment from when it is put into service to
when it develops a fault, all the way to when it
experiences full functional or catastrophic failure.
For this study, and for the purpose of training
the algorithm, to achieve the degradation trend,
the RUL from commencement of operations is
capped at a specified value, RULcapped, until the
time when the unit’s RUL decreases below the
capped RUL value, which corresponds to when a
fault must have been detected. This is in line with
the study by Heimes.65 The degradation curve for
the capped RUL is shown in Figure 3(b).

- The model is then built, with an input layer, six
inner layers, dropout between each layer, the rec-
tified linear unit (ReLU) as the activation func-
tion, and an output layer with two nodes. The
two nodes on the output layer produce the mean
RUL as well as the variance information, captur-
ing both aleatoric and epistemic uncertainties.

The loss function is also built as the negative log
likelihood, using the log_prob function available
on TensorFlow Probability.

- The network hyperparameters are tuned using
the Hyperband class in Keras tuner.66 The hyper-
parameters tuned include: the dropout rate, p, in
the range of [0.1, 0.5] with steps of 0.1; the num-
ber of units or nodes in the input layer and in
each inner layer, in the range of [64, 1024] with
steps of 16; and the learning rate for the Adam
optimizer, for the choice of values from the set
{0.1, 0.01, 0.001, 0.0001}. The tuning process
yields a set of ‘‘best hyperparameters.’’

- Using the ‘‘best hyperparameters,’’ the optimal
number of epochs for which the model should be
trained is then tuned to obtain the ‘‘best epoch.’’
For tuning the hyperparameters and determining
the best epoch, the tuning objective was to
achieve minimum validation loss.

- With the MC dropout BNN now fully built, the
model is then fitted using the training data while
the optimization during training is achieved using
the validation data.

- Predictions are made using the MC dropout algo-
rithm to obtain the mean RUL and the credible
interval (CI) for the test data. This is done by
obtaining the conditional probability distribution
(CPD) for each of the engine units in the dataset
using the test data, xtest. The CPD, denoted by
p ytjxtest,vtð Þ, is obtained by running T stochastic
forward passes, thus sampling T times from the
true RUL distribution, obtaining T values of the
predicted RUL for each unit. The mean RUL is
then obtained in a manner similar to that given

Figure 2. BNNs implementing: (a) VI approach with network weights modeled as distributions and (b) MC dropout (adapted from
Jospin et al.60).
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in equation (15), but this time using the test data
and the formula in equation (16) as:

mRUL =
1

T

XT

t = 1

p ytjxtest,vtð Þ: ð16Þ

A flowchart depicting the RUL prediction process
using the model is shown in Figure 4.

The mean RUL, mRUL, is equivalent to the Bayesian
predictive distribution, p yjxtest,Dð Þ. Regarding the
uncertainty, since T was chosen to obtain statistical sig-
nificance, the credible interval, CI, is obtained to be
equivalent to 95% of the confidence interval if the dis-
tribution were normal (i.e. 6 1.96s). However, in the
case of the MC dropout algorithm, the CI corresponds
to the quantiles at 0.025 and 0.975, which can also be
obtained by calculating the percentiles, with the upper
bound being the value in the predicted distribution
which is greater than 97.5% of all outcomes while the
lower bound is the value less than 2.5% of all
outcomes.

Case study

In this Section, the proposed BNN model with the MC
dropout method is applied to quantify the uncertainty
of RUL predictions for NASA’s turbofan engine
degradation simulation dataset (CMAPSS).67 This
dataset was chosen as it is publicly available and well-
researched, and it builds on our previous research
paper.64 It also lends itself to ease of comparison to
other similar prediction methods. The implementation
details are provided in the following sections, and the
results are reported and discussed:

Data description

NASA’s Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) is a tool for the simula-
tion of large commercial turbofan engine data. The tool
contains four run-to-failure datasets under different
fault modes and varying operational conditions. The
training sets commence at a point where all units are in
a healthy state and end at the point of failure for each
unit. For the test sets, the data for all units commence
when each unit is in a healthy state and are terminated

Figure 3. (a) Typical degradation of a component represented by P-F curve and (b) modeling of RUL for the training data.

Figure 4. Flowchart showing the RUL prediction process.
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at an unknown point during each unit’s lifetime. For
more details about the dataset, the readers can refer to
Saxena et al.68 For this study, the dataset FD001 is
used. This dataset contains run-to-failure data for 100
identical turbofan engines subjected to similar failure
modes and same operating conditions. There is a sepa-
rate training data which is used for model training and
validation, while there is also a separate test data which
is to be used to predict the RUL for the 100 engine
units by means of the trained model. For both the
training and the test data, each of the 100 engine units
has a distinct lifetime, with three columns representing
operational condition settings and another 21 columns
representing sensor data. These parameters, that are
taken as condition monitoring variables indicating the
engines’ degradation, are presented in Table 1.

Data processing

This section briefly describes the preprocessing of the
data, which formed the basis for features selection.
First, the statistics (mean, median, variance, standard
deviation) for each of the sensor readings are calculated
to gain quick but useful insights about the data. Then,
the sensor readings with zero variance are eliminated as
they do not provide any useful information. As such,
seven sensors, s_1, s_5, s_6, s_10, s_16, s_18, and s_19,

all of which have zero variances, are eliminated. After
that, the data from remaining 14 sensors are scaled
using Min-Max normalization technique and the scaled
data is smoothed using a robust locally weighted scat-
terplot smoothing algorithm as proposed in the study
of Cleveland.69 Finally, the sensor readings are further
reviewed to find out which one has been most informa-
tive for prognostics purposes. To achieve this, the prog-
nosability, trendability, and monotonicity metrics are
computed on MATLAB, and in accordance with the
work of Coble and Hines,70,71 a fitness value is defined
as in equation (17) by combining the values of all three
metrics:

fitness= prognosability+ trendability+monotonicity

ð17Þ

Table 2 presents the fitness values calculated for 14
sensors.

Given that prognosability, trendability, and monoto-
nicity metrics have values in the range of [0,1], the range
of the fitness value will be between 0 and 3. A selection
criterion is then set to choose sensors with the best pre-
dictive information. By applying the selection criterion:
fitness ø 2.0, 12 sensors of s_2, s_3, s_4, s_7, s_8, s_11,
s_12, s_13, s_15, s_17, s_20, and s_21 are exported for
use in training the BNN model. A plot of the smoothed

Table 1. Parameters in the C-MAPSS dataset.

S/N Measured parameter Unit of measurement Variable assigned

1 Unit number – unit_num
2 Time cycles time_cycles
3 Operational setting 1 – ops_set1
4 Operational setting 2 – ops_set2
5 Operational setting 3 – ops_set3
6 Total temperature at fan inlet �R s_1
7 Total temperature at LPC outlet �R s_2
8 Total temperature at HPC outlet �R s_3
9 Total temperature at LPToutlet �R s_4
10 Pressure at fan inlet Psia s_5
11 Total pressure in bypass-duct Psia s_6
12 Total pressure at HPC outlet Psia s_7
13 Physical fan speed rpm s_8
14 Physical core speed rpm s_9
15 Engine pressure ratio (P50/P2) – s_10
16 Static pressure at HPC outlet Psia s_11
17 Ratio of fuel flow to Ps30 pps/psi s_12
18 Corrected fan speed rpm s_13
19 Corrected core speed rpm s_14
20 Bypass Ratio – s_15
21 Burner fuel-air ratio – s_16
22 Bleed Enthalpy – s_17
23 Demanded fan speed rpm s_18
24 Demanded corrected fan speed rpm s_19
25 HPT coolant bleed lbm/s s_20
26 LPT coolant bleed lbm/s s_21

Ochella et al. 11



data for the 12 selected sensors for sample engine units
(units 5 and 12) is depicted in Figure 5, revealing that
most sensor trends are either predominantly monotoni-
cally increasing or monotonically decreasing.

Hyperparameter tuning and BNN training

With the preprocessed data imported on TensorFlow,
the negative log likelihood is defined as the loss func-
tion using the log_prob function available on
TensorFlow Probability while the softplus function is
used to constrain the trainable scale (or variance para-
meter) to a positive value. To model the RUL, the val-
ues are capped at 125 cycles which proves to yield the
most optimal results after several iterations. Afterward,
the deep BNN is tuned using the Hyperband class in
Keras tuner, with the first and penultimate layers of
the network fixed at 256units. This is done to control
the width of the network while optimizing the net-
work’s depth. This leads to the selection of the ‘‘best
hyperparameter’’ values of 992units in each of the 5
tunable hidden layers, a dropout rate of 0.1, and a
learning rate of 0.001 for the Adam optimizer. With
the network fully configured using these values, the
Keras tuner is then used, along with the training data,
which has been split into 85% training data and 15%
validation data, to iterate and obtain the optimal num-
ber of epochs (or ‘‘best epoch’’) as 83, which may vary

slightly depending on training, especially with the sto-
chasticity introduced by the MC dropout method. The
fully defined deep BNN is then used to train the
network.

Regarding the evaluation of the effect of different
hyperparameters on the model performance, ablation
studies can provide useful insights. However, this may
require tweaking the base algorithm used for the model
and may detract from the ‘‘best hyperparameters’’ that
have been tuned by the algorithm using the training
and validation data. A possible area of additional inves-
tigation would be to see how different tuners affect the
overall model’s parameters or the performance derived
from tweaking parameters on the basis of ablation stud-
ies versus the performance achieved using the hyper-
band tuner.

(i) Prediction results: The model is run using
Colab Pro, which provides access to GPUs
and Virtual Machines on Google Compute
Engine’s backend. Runtime for the algorithm
including the hyperparameter optimization
process was 829 s. When the model is built with
the selected hyperparameters, the runtime is
reduced to 490 s. With a Bayesian deep learn-
ing model, complexity increases since the learn-
ing process leads to the prediction of both the
mean RUL and the credible intervals. Huge
computing resources are therefore required,
hence the use of GPUs. Runtime more than
quadruples when run on a regular high-end
CPU with 16GB RAM. The obtained runtime
results are comparable with those obtained in
other studies using Bayesian methods on the
same dataset; 1300 s,36 and 121 s.53

In accordance with the MC dropout algorithm,
RUL predictions with uncertainty quantification are
made by making T=1000 passes of the test data
through the trained BNN. The mean RUL, mRUL, is
obtained using equation (16) while the upper and lower
bounds of the credible intervals, CI, are obtained as the
quantiles at 0.975 and 0.05 respectively (corresponding
to percentiles at 97.5% and 5% respectively). The RUL
prediction results obtained for the 100 units are given
in Table 3. The fundamental goal in prognostics is to
ensure that faults in critical equipment are identified

Table 2. Fitness values for selected 14 sensor data.

Sensor s_2 s_3 s_4 s_7 s_8 s_9 s_11

Fitness value 2.81 2.78 2.83 2.84 2.04 0.97 2.87
Sensor s_12 s_13 s_14 s_15 s_17 s_20 s_21
Fitness value 2.89 2.09 0.96 2.82 2.80 2.87 2.79

Figure 5. Scaled and smoothed sensor data for units 5 and 12.
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and their future failure times are estimated so that an
appropriate maintenance strategy can be planned and
implemented in advance before any failure occurs. As
such, the focus here will be on the units with ground
truth RUL of 60 cycles or less (the range of the ground
truth RUL is between 7 and 142 cycles).

In Table 3, all the units with RULt ł 60 cycles are in
bold text. Out of the 39 engine units with RULt ł 60,
the ground truth RUL for 24 units falls completely
within the range of the RUL prediction along with the
uncertainty bounds, the true RUL for 2 units falls just a
few cycles outside the prediction boundary while the
remaining 13 units have predictions outside the

uncertainty bounds. This is a good result at 95% confi-
dence level. Most importantly, predictions do not make
assumptions of certainty as it is with point estimates.
To provide further insight into the prediction results,
Table 4 shows a comparison of RMSE (root mean
squared error) values for the proposed method, against
other methods, most of which, however, provide only
point estimates of predictions on the FD001 dataset.

As can be seen, BNNs are designed to minimize the
negative log likelihood, with the algorithm accounting
for both epistemic and aleatoric uncertainties; hence, rel-
atively high RMSE is obtained when using the mean
RUL as the only basis for performance measure.Making
such comparisons, however, does not account for the
advantage that uncertainties have been incorporated into
the BNN prediction model and that the results obtained
would be more beneficial to engineers in terms of plan-
ning for maintenance actions. As an additional part of
the discussion regarding the prediction results, a crucial
note is again made here that conventional algorithms
that make point estimates use metrics like RMSE, MAE
(mean absolute error), or a scoring function developed
for use with the CMAPSS dataset. Most studies pub-
lished in the literature also use the RMSE metric for
measuring the performance of BNN algorithms in pre-
dicting RUL. However, since the optimization objective
for BNNs is the minimization of negative log likelihood,
the use of RMSE as a performance measure is somewhat
inappropriate. Therefore, there is a need to develop
bespoke metrics for use in measuring BNN performance.
Given that BNNs can quantify uncertainty, some
attempts have been made to use the average variance or
average standard deviation (i.e. the average confidence
interval or average uncertainty) as a performance
measure. This is comparable to the Overall Average
Variability (OAV) metric presented in the work by
Zemouri and Gouriveau.75 The average CI obtained for
the prediction results from this study is 38.78 cycles.
Such a measure will be useful for benchmarking or com-
parison with other methods when the dataset is same or
the number of passes through the algorithm during pre-
diction is same or at least normalized, so that aleatoric
uncertainty is constant, and the performance of epistemic
uncertainty quantification can then be assessed and com-
pared. Another metric that may be suitable for measur-
ing the predictive performance of BNNs used for RUL
prediction is the Confidence Interval Coverage (CIC), as
presented in the work by Sharp.76 The CIC measures the
number of predictions for which the RUL falls com-
pletely within the confidence bounds, as a percentage of
the total number of predictions. Achieving a CIC of
100% would mean that all the predictions fall completely
within the confidence bounds. The CIC value will
increase when the confidence level drops from 95% to
90% and would increase further as the confidence level
decreases further. Using this metric, which is rather

Table 3. Predictions for 100 units in FD001 dataset (RUL and
CI units are in number of cycles).

Unit # RULt sRULp (sRULp + CI) (sRULp 2 CI)

1 112 113 131 90
2 98 46 59 33
3 69 20 43 6
4 82 54 73 40
5 91 55 69 39
6 93 125 131 117
7 91 122 136 101
8 95 81 107 63
9 111 24 35 14
10 96 104 138 60
11 97 19 36 6
12 124 136 148 121
13 95 122 131 112
14 107 67 86 51
15 83 109 131 86
16 84 127 135 119
17 50 53 65 41
18 28 38 50 27
19 87 125 132 118
20 16 41 54 29
. . . . .
. . . . .
. . . . .
81 8 11 21 1
82 9 5 13 0
83 137 55 76 41
84 58 85 109 65
85 118 107 124 91
86 89 99 116 81
87 116 133 143 122
88 115 100 122 63
89 136 53 69 41
90 28 30 46 17
91 38 38 50 27
92 20 3 11 0
93 85 24 35 15
94 55 69 87 55
95 128 106 125 83
96 137 123 129 116
97 82 70 90 55
98 59 60 83 40
99 117 125 133 118
100 20 54 65 42
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simplistic, an average CIC value of around 60% will be
achieved, over several runs of the algorithm at 95% con-
fidence level. Again, this is an evolving area, and a clear
gap exists for additional research toward measuring per-
formance of BNNs, to achieve a robust benchmarking of
prediction results against results from other studies.
Consequently, the focus of this study is on the practical-
ity of using prediction results by engineers and the inter-
pretability that the results offer, when compared to point
estimates.

(ii) Engine degradation trajectories: The RUL pre-
diction trajectories are obtained, and the results
show that our modeling is correct. Figure 6
represents the RUL prediction trajectory plots
for nine random engine units, with the main
selection criterion being that each unit has rea-
sonably degraded, and it is approaching the
end of life. As can be seen from all nine plots,
the RUL remains fairly steady at the com-
mencement of each unit’s operation. However,
a clearly noticeable point is reached along the
trajectory where the rate of decline increases;
this point corresponds to the point during
operation of the engine when a fault is detected
by sensors. In fact, even when the RUL is
modeled linearly and the network is trained
using the linear RUL, the RUL trajectory for
some engines shows this characteristic. This
shows that the deep BNN is able to decipher,
from the sensor data, when a fault has occurred
in any of the engines.

Regarding uncertainty quantification, by sampling
the mean RUL for T times, where T=1000 in our
study, 1000 possible combinations of the network
model weights are accounted for. T, which represents
the number of prediction iterations of the algorithm for
each set of input, is chosen to achieve statistical signifi-
cance and obtain a distribution spread that captures

most prediction outcomes. In other ML algorithms that
adopt the MC dropout method, typical values for T lie
in the range of 200–500, which equally produce several
runs of the algorithm that achieve statistical signifi-
cance. For this study, T was chosen as 1000 to ensure
diversity in the results obtained, thus ensuring that the
true RUL distribution is better captured. As such, the
Monte Carlo sampling implemented by the BNN inher-
ently accounts for the epistemic uncertainty as the
variability of the predictions already accounts for the
different model weights. Regarding the aleatoric uncer-
tainty, the negative log likelihood, which is minimized
as the optimization objective, involves the variance
information in the data. Otherwise, the MSE, which is
used for conventional regression analysis would have
been used. Thus, the negative log likelihood accounts
for heteroscedasticity in the RUL prediction, and the
combined effect of both uncertainties can be observed
in the RUL trajectories in Figure 6, with varying pre-
diction uncertainty as the degradation trajectory pro-
gresses. Another important observation from Figure 6
is that the uncertainty bounds taper inwards and nar-
row as each unit’s end of life approaches. The reason
for this is that, since the model makes RUL predictions
via Bayesian inference, the confidence of predictions
increases as more data becomes available, hence the
typically narrower confidence bounds much later in the
unit’s operational life at which time enough operational
data is available to make more confident predictions.

Conclusion

The approach proposed in this study helps to bridge
the gap in the literature that focuses on point estimates
of the RUL instead of attempting to predict the true
RUL, which are probabilistic distributions rather than
deterministic point estimates. The main issue with point
estimates is that they are overly confident estimates that
do not account for uncertainties and can therefore be
misleading, thus making the planning of maintenance

Table 4. Comparison of prediction performance for different methods on the FD001 dataset.

Method Reference RMSE (# of cycles)

Proposed (BNN via MC dropout) – 38.94
Convolutional Neural Network (CNN) Coble and Hines70 18.45
Long Short-Term Memory (LSTM) Coble and Hines71 16.14
Multi-Objective Deep Belief Networks
Ensemble (MODBNE)

Babu et al.72 15.14

Bi-directional LSTM Zheng et al.73 14.26
Bayesian LSTM Kim and Liu36 12.19
Deep CNN with Bayesian Optimization and
Adaptive Batch Normalization

Li and He53 11.94

Bayesian Neural Networks using variational inference
(VI) and Hamiltonian Monte Carlo (HMC)

Zhang et al.74 HMC: 20.84; VI: 21.80
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tasks difficult for engineers. However, in this study, we
have provided a BNN approach to RUL prediction
that fully accounts for both aleatoric and epistemic
uncertainties and the results obtained are more inter-
pretable for engineers and thus a lot more useful in
practical terms for decision making. The Bayesian
approach used fundamentally indicates where and
when the prediction model is not very confident, based
on the data available and the model used for prediction.
Uncertainty is quantified in numerical terms rather
than qualitatively, thus providing interpretable infor-
mation in terms of the mean and credible intervals of
the RUL, which in turn help to determine the lead time

to making maintenance decisions. Thus, the results
obtained from this study are very useful inputs for
spares management, maintenance logistics planning
and end-of-life management of high-value assets.

It must however be emphasized that uncertainty
quantification in prognostics and health management
(PHM) of industrial assets remains an on-going chal-
lenge. The practice of PHM has continuously evolved
with time and in the era of big data, the use of condi-
tion monitoring technologies to optimize future asset
maintenance decisions has been extensively explored,
leading to several methodologies that have proved their
usability for predicting RUL of engineering equipment.

Figure 6. Predicted degradation trajectory for nine random engine units.
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For BNNs, one of the assumptions made about the
true posterior distribution in uncertainty quantification
is that the true RUL follows a Gaussian distribution.
Even though the MC dropout approach used in this
study seems not to explicitly make the same analytical
assumption of the posterior distribution, the negative
log likelihood, which is the optimization objective,
implicitly assumes that the posterior is a Gaussian. As
such, a possible improvement area as regards uncer-
tainty quantification in RUL prediction is an algorithm
that is completely agnostic to the true posterior distri-
bution, since the true RUL posterior distribution
indeed may not always be Gaussian. Also, performance
measurement for BNNs is an ongoing research area,
given that the algorithm yields uncertainty bounds
which characteristically have different spreads and their
accuracies are not easy to measure using conventional
metrics as applied in regression problems, like the
RMSE. Metrics such as the Confidence Interval
Coverage (CIC) and the Overall Average Variability
(OAV) have been suggested in the literature to address
performance measurement for algorithms that incorpo-
rate uncertainty quantification. Developing applicable
metrics will aid an easy comparison between different
prognostics results for similar datasets or even across
disparate datasets. The ideal goal will be to develop
models that provide very narrow uncertainty bounds at
high confidence levels and then measure their perfor-
mance using bespoke metrics.
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