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Abstract: A research investigation is undertaken to gain a more comprehensive understanding of the
primary and subharmonic resonances exhibited by the swing equation. The occurrence of the primary
resonance is characterised by amplified oscillatory reactions, voltage instability, and the possibility for
system failure. The phenomenon of subharmonic resonance arises when the frequency of disturbance is
a whole-number fraction of the natural frequency. This results in the occurrence of low-frequency oscil-
lations and the potential for detrimental effects on equipment. The objective of this study is to expand
upon the current literature regarding the impacts of primary resonance and enhance comprehension of
subharmonic resonance in relation to the stability of a specific power system model. The analytical and
numerical tools are utilised to investigate the fundamental principles of this resonant-related problem,
aiming to provide an effective control solution. This choice is driven by the model’s complex nonlin-
ear dynamical behaviour, which offers valuable insights for further analysis. This analysis includes the
Floquet Method, the Method of strained parameters, and the concept of tangent instability in order
to provide an extension to existing literature relating to primary and subharmonic resonances, taking
into account the dynamic and bifurcation characteristics of the swing equation. This objective will be
achieved through the utilisation of both analytical and numerical methods, enabling the identification
of specific indicators of chaos that can contribute to the safe operation of real-world scenarios.
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1 Introduction
The swing equation is widely regarded as a funda-
mental model used to analyse the dynamic char-
acteristics of power systems, with a focus on the
oscillatory movement exhibited by synchronous
generators. In order to ensure the stability and
reliability of electricity infrastructures, it is im-
perative to have a comprehensive understanding
of the resonance events that may arise within this
nonlinear system. This equation is subject to two
important types of resonance: primary resonance
and subharmonic resonance. This manuscript
serves as an extension of the preceding research
conducted by the authors cited in, [1], [2] whereby
their findings are further developed to provide a
thorough elucidation of the phenomenon known
as subharmonic resonance.

The stability of a dynamical system is signif-
icantly influenced by primary and subharmonic
resonances. The notion of disturbances, charac-
terised by sudden alterations in the operational
variables of a system, is closely interconnected
with the notion of stability within a power sys-
tem. A slight disturbance can yet have a diverse
influence on the dynamics of a system, [1]. The

dynamic behaviour of the system is examined by
manipulating the variables in the equation while
holding all other elements constant. The signifi-
cance of the primary resonance is deemed crucial
in the analysis of the swing equation. When fun-
damental resonance conditions are met, a minor
perturbation can lead to a significant response
if the frequency of the external force is in close
proximity to the linearised natural frequency, [3].
Furthermore, it is worth noting that the steady-
state forced response of the nonlinear system may
exhibit nonlinear dynamic phenomena, such as
saddle-node bifurcations and period doubling bi-
furcations, [4].

The Floquet approach is a significant tool in
the analysis of power system stability, particu-
larly in the context of tiny disruptions, [5], [6].
The mathematical methodology employed in as-
sessing the stability of periodic solutions, such as
those seen in the swing equation, involves the
examination of the eigenvalues of the linearized
equations governing the system. Tangent insta-
bility, conversely, refers to a phenomena in which
minor disturbances in the operational parameters
of a power system can result in prolonged oscilla-

Addressing the Primary and Subharmonic Resonances of 

the Swing Equation 

 
ANASTASIA SOFRONIOU, BHAIRAVI PREMNATH 

School of Computing and Engineering, University of West London 
St. Mary’s Road, W5 5RF  

UNITED KINGDOM 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.19 Anastasia Sofroniou, Bhairavi Premnath

E-ISSN: 2224-3429 199 Volume 18, 2023



tions or instability, [7]. The strained parameters
method is a strategy in control theory that is em-
ployed to mitigate tangent instability by modi-
fying system characteristics in order to uphold
stability, [8]. Collectively, these notions offer a
comprehensive theoretical structure for examin-
ing and managing the stability of a mathemati-
cal problem, thereby guaranteeing their depend-
able functioning in the presence of dynamic dis-
turbances.

The phenomenon of primary resonance occurs
when the frequency of excitation is in close prox-
imity to the natural frequency of the system. On
the contrary, subharmonic resonance occurs when
the frequency of stimulation is a multiple of the
natural frequency, [9], [10]. A wide range of re-
search have been undertaken to investigate the
resonances present in nonlinear power systems,
with the aim of comprehending the fundamen-
tal principles governing them and developing ef-
fective control strategies. Researchers have em-
ployed mathematical modelling, computer stud-
ies, and experimental validations to examine the
impact of primary and subharmonic resonance on
the stability of power systems, [1], [2] . In or-
der to mitigate the adverse effects of resonance
and enhance the stability of systems, researchers
have made significant contributions through the
advancement of sophisticated control approaches,
including adaptive control, robust control, and
damping controllers.

1.1 Brief Literature Review
Ensuring the reliability and efficiency of the func-
tioning of electric circuits depends upon the sta-
bility of power systems, hence a deeper under-
standing is required to prevent chaos happening
in the system, [11], [12]. When a power sys-
tem exhibits stability, it is capable of maintaining
its operational state within acceptable limits and
preserving its equilibrium despite encountering
disturbances. The comprehension of the dynamic
behaviour of power systems and other stability
concerns is significantly enhanced by the study of
the swing equation, [13], [14]. The presence of
resonance at both fundamental and subharmonic
frequencies is a significant factor that might po-
tentially influence the stability of a system. Tran-
sient stability and steady-state stability are the
primary classifications of this power system’s sta-
bility. Transient stability is the term used to de-
scribe the ability of a system to regain a stable
operational state after experiencing a notable dis-
turbance, such as a fault or an abrupt reduction
in load, [15]. The topic of steady-state stabil-
ity, commonly referred to as small-signal stabil-

ity, pertains to the system’s capacity to maintain
stability even when confronted with little distur-
bances, such as mild fluctuations in power con-
sumption or generation, [16].

The swing equation is a fundamental dynamic
equation employed for the purpose of simulating
the behaviour of synchronous generators within
a power system. This paper elucidates the tran-
sient behaviour of synchronous machines, specif-
ically focusing on the speed dynamics and rotor
angle stability. The swing equation is based on
the premise that the electrical output of a gener-
ator is inversely proportional to the angle formed
between its rotor and the voltage of the system at
its terminal, [17], [18]. Primary resonance occurs
when the natural frequency of a power system
aligns with the frequency of an externally im-
posed disturbance. The phenomenon described
has the potential to induce oscillations that lack
stability leading to instability within the system,
[19], [20]. The phenomenon of primary resonance
often arises in the context of electromechanical
oscillation modes characterised by low frequen-
cies. This phenomenon is commonly observed in
the interaction between generators and their re-
spective control systems, [21]. According to the
cited source, [22], the occurrence of substantial
oscillations in generator rotor angles has the po-
tential to result in cascading failures and subse-
quent blackouts if not promptly addressed. Sub-
harmonic resonance refers to a phenomena ob-
served in power systems, when the system’s re-
sponse exhibits oscillations at frequencies that are
lower than the frequency of the external distur-
bance delivered to it, [23], [24]. This arises when
the natural frequency of a power system decreases
to a level below the frequency of a disturbance.
Power electronic components, such as voltage
source converters or thyristor-controlled reactors,
have the potential to induce subharmonic reso-
nance when interacting with the power system,
[25]. If left unmitigated, this phenomenon has the
potential to lead to persistent oscillations and in-
stability. According to the literature, [26], [27], it
is imperative to consider subharmonic resonance
while designing and operating power electronic
equipment that is connected to the grid.

Understanding the unique attributes and im-
plications for power system stability necessitates
a thorough examination and comparison of pri-
mary and subharmonic resonance. In the study
conducted by the authors cited in, [28], a com-
bination of analytical and experimental method-
ologies was employed to undertake a comprehen-
sive analysis and comparison of the two resonance
events. The study conducted by the researchers
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shed insight on the similarities and differences be-
tween primary and subharmonic resonance, em-
phasising the importance of conducting a compre-
hensive investigation, [29]. The advancement of
categorization methodologies has facilitated en-
hanced discernment and distinction between fun-
damental and subharmonic resonance phenom-
ena. Previous studies have provided evidence to
support the notion that machine learning meth-
ods, including neural networks and support vec-
tor machines, has the capability to effectively
classify different resonance variations. The re-
searchers in the cited studies, [30], [31] introduced
a methodology based on neural networks to clas-
sify resonance phenomena in real-time, enabling
prompt detection and response to significant sta-
bility events. The authors in the cited publication
not only conducted an analysis on the impact of
control strategies on subharmonic resonance, but
also underscored the need of accounting for vari-
ations in system parameters when assessing the
dynamic characteristics of main and subharmonic
resonances.

The investigation of power system stability has
been the focus of substantial scholarly inquiry,
resulting in the development of many method-
ologies aimed at comprehending the complex dy-
namics of synchronous machines. Significant at-
tention has been given to the Floquet method,
method of strained parameters, and examination
of tangent instability within the framework of the
swing equation. The Floquet approach, which is
based on the principles of linear periodic systems,
has demonstrated its efficacy as a valuable tech-
nique for evaluating the stability of systems under
periodic disturbances, [32]. This method provides
valuable information regarding stability bound-
aries and bifurcation occurrences. In the context
of system analysis, the utilisation of strained pa-
rameters enables a detailed investigation into the
dynamics of the system across different opera-
tional scenarios. This approach facilitates a more
profound understanding of the swing equation’s
responsiveness to alterations in its parameters,
[33]. Furthermore, the investigation of tangent
instability has provided a deeper understanding
of the crucial significance of bifurcations in the
dynamics of power systems, hence providing sig-
nificant knowledge regarding the occurrence of
chaotic phenomena, [34]. The utilisation of these
methodologies collectively contributes to the ad-
vancement of comprehensive stability assessment
procedures for power systems, hence augmenting
their dependability and ability to withstand ad-
verse conditions.

Basins of attraction refer to spatial regions in-

side the state space wherein the system’s trajecto-
ries converge towards specific attractors. Numer-
ous investigations have been conducted to anal-
yse the basins of attraction associated with fun-
damental and subharmonic resonance phenom-
ena in power systems. In these investigations,
researchers have applied a range of approaches
such as bifurcation analysis, numerical simula-
tions, and Lyapunov exponent calculations to as-
certain the borders and properties of the basins
of attraction, [35], [36]. These same techniques
will also be implemented in the present study.

2 Methodology
2.1 Analytical Work
The swing equation was developed from the Law
of Rotation, a key principle used to characterise
the motion of revolving bodies. This law is rooted
in Newtonian mechanics, a foundational frame-
work in physics. Synchronous generators demon-
strate rotating characteristics when they are in-
terconnected with the electrical grid within the
framework of power systems. The derivation of
the equation governing the dynamic motion of the
generator rotor can be achieved by applying New-
ton’s second law of motion to the synchronous
generator. This analysis takes into account the
mechanical and electrical torques acting on the
rotor, as well as the inertia of the rotating mass
and the damping effects. This approach has been
discussed in previous studies, [1], [2], [13]. The
swing equation is a second-order nonlinear differ-
ential equation that describes the temporal vari-
ation of the angle deviation of a generator’s rotor
from its synchronous position.

The equation governing the motion of the ro-
tor of the machine under the study is the swing
equation, which includes a damping term is as
follows, [13]:

2H

ωR

d2θ

dt2
+ D

dθ

dt
= Pm− VGVB

XG
sin (θ − θB) (1)

V B = VB0 + V B1 cos (Ωt+ ϕv) (2)

θB = θB0+ θB1 cos(Ωt+ ϕ0) (3)

with
ωR = Constant angular velocity,
H= Inertia,
D= Damping,
Pm= Mechanical Power,
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VG= Voltage of machine,
XG = Transient Reactance,
VB= Voltage of bus,
θB = phase of bus,

VB1 and θB1 magnitudes assumed to be small.

In order to enhance one’s understanding of
the phenomenon of subharmonic resonance, it is
imperative to undertake a comprehensive mathe-
matical examination of the swing equation. Sev-
eral mathematical techniques, such as algebraic
procedures, Taylor expansion, and substitution,
are utilised in order to accomplish this task. The
aim of this study is to derive a comprehensive
equation suitable for perturbation analysis, fo-
cusing specifically on the investigation of sub-
harmonic resonance inside the swing equation.
The utilisation of Taylor expansion facilitates the
reduction of complexity associated with specific
nonlinear variables present in the swing equation,
hence enabling easier manipulation and analysis.

Considering the following transformations,

θ− θB = δ0 + η (4)

δ0 = θ0− θB0 (5)

η = ∆θ− θB1 cos(ωt+ϕ0) (6)

After manipulating equation (1), the following
is obtained which is used for further analysis with
regard to primary and subharmonic resonances,
[2]:

d2η

dt2
+
ωRD

2H

dη

dt
+Kη = α2η

2+α3η
3+G1η cos (Ωt+ ϕv)

+ G2η
2 cos (Ωt+ ϕv) + G3η

3 cos (Ωt+ ϕv) +
Q cos (Ωt+ ϕe).

Perturbation Analysis for Subharmonic
resonance

This method uses multiple scales to determine
second order approximate expression for period-
two solutions for the case Ω ≃ 2ω0, [2].

The proposed solution has the potential to be
utilised for the anticipation of the commencement
of intricate dynamics and the assessment of sta-
bility. Therefore, the accuracy of the solution
diminishes with increasing excitation amplitude

due to its failure to incorporate the frequency
shift caused by the external stimulation. Intro-
ducing a small dimensionless parameter ε, which
is used as a bookkeeping device, [2].

Let

η = O (ε) then
ωRD

2H
= O (ε)

G1 = O(ε) Q = O(ε)

and

VB1 = O(ε) and θB1 = 0(ε)

Then the final equation from swing equation
derivation above has the following coefficients,

G1 = εg1

G2 = εg2

G3 = εg3

Q = εq

After mathematical operations, equation (7) is
formulated as follows,

η̈+2εµη̇+ω2
0η = α2η

2+α3η
3+εg1η cos (Ωt+ ϕv)

+ εg2η
2 cos (Ωt+ ϕv) + εg3η

3 cos (Ωt+ ϕv) +
εq cos (Ωt+ ϕe)

where µ = ωRD
4H .

The solution to this above equation should be
in the form of,

η(t; ε) = εη1(T0, T1, T2) + ε2η2(T0, T1, T2) +
ε3η3(T0, T1, T2) + ....... (8)

First derivative of this equation will be,

d

dt
= D0 + εD1 + ε2D2 + .... (9)

Second derivative of the equation is,

d2

dt2
= D2

O + 2εD0D1 + ε2(2D0D2+D2
1) +....(10)

where

Dn =
∂

∂Tn
.
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Also considering the equation where σ is in-
troduced as a detuning parameter:

ω2
0 =

1

4
Ω
2

+ εσ (11)

and substituting equations (8), (9), (10) and
(11) into (7) gives

η̈ + 2εµη̇ +

(
1

4
Ω2 + εσ

)
[εη1(T0, T1, T2)

+ ε2η2(T0, T1, T2) + ε3η3(T0, T1, T2) +
. . . = α2

(
ε2η21 + ε4η22 + ε6η23 + . . .

)
+

α3
(
ε3η31 + ε6η32 + ε9η33 + . . .

)
+ εg1

(
εη1 + ε2η2 + ε3η3

)
cos (Ωt+ ϕv) +

εg2
(
ε2η21 + ε4η21 + ε6η23

)
cos (Ωt+ ϕv)

+ εg3
(
ε3η31 + ε6η32 + ε9η33 + . . .

)
+

εq cos (Ωt+ ϕe)

Equating coefficients of like powers of ε,

ε/ : η1D
2
0 +

1

4
η
1
Ω2 = qcos(Ωt + ϕe) (12)

ε2/ : η2D
2
0 +

1

4
η
2
Ω2 + 2D0D1η1+ ση1 = α2η

2
1

+ g1η1cos(ΩT0 + ϕv) (13)

ε3 / : D2
0η3+ 2D0D1η2 +(D2

1 + 2D0D2)η1 +µD0η1 +

1

4
Ω
2

η3 + ση2 = 2α2η1η2+ α3η
3
1 + g1η2cos(ΩT0 + ϕv)

+ g2η
2
1cos(ΩT0 + ϕv) (14)

As also seen in, [2] the solution to equation
(12) can be in two forms,

(i) η1 = a(T0, T1,T2) cos [
1

2
ΩT0 + β(T0, T1,T2)]

+ 2Λcos(ΩT0 +ϕe). (15)

(ii) η1 = A(T1, T2)e
1

2
iΩT0 + Ā(T1, T2)e

−1

2
iΩT0

+ ΛeiΩT0 + Λ̄e−iΩT0 . (16)

It is given that

N =
−2q

3Ω2
eiϕe (17a)

Comparing coefficients in equations (15) and
(16) gives:

A =
1

2
aeiβ (17b)

Substituting equation (16) in (13) and rear-
ranging the terms gives the following,

D2
0η2 +

1

4
Ω2η2 = e

1

2
iΩT0 [−σA + 2α2NĀ −

Ωi(D1A + µA) + 1
2g1Āeiϕv ] + eiΩT0 [−σN +

α2A
2−2iµΩN ]+ e

3

2
iΩT0 [12Af1e

iϕv]+e2iΩT0 [α2N2+

12g1Neiϕv] + [α2(AĀ + NN̄) + 12Ng1e
iϕv] +

c̄. (18)

where c̄ is the complex conjugate, as in, [2].

Eliminating the secular terms,

−iΩD1A −iΩµA − σA + ĀΓeiϕee = 0 (19)

where

Γeϕee = 2α2N +
1

2
g1e

iϕv (20)

The solution of equation (18) is of the form,

η2 =
−4

3Ω2
[α2A

2 − (2iµΩ+ σ)N ]eiT0 − A

2Ω2
Γei(

3

2
ΩT0+ϕee)+

4

Ω2
[α2(AĀ+NN̄) + 12g1Neiϕv]− 4

15Ω2
[α2N

2

+ 12g1Neiϕv]ei2ΩT0 + c̄ (21)

Substituting equations (16) and (21) into (14)
gives,

D2
0η3+

1

4
Ω2η3 = −iΩD2A −D2

1A − 2µD1A −

−8α2

3Ω2
[−(2iµΩ+ σ)NĀ+ α2A

2Ā]−α2AΛ̄

Ω2
Γeiϕee+
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8α2

Ω2
[2α2A

2Ā+2α2ANN̄+
1

2
g1A(N̄eiϕv+Ne−iϕv)]+

6α3ANN̄ + 3α3A
2Ā − A1g1Γ

4Ω2 ei(ϕee−ϕv) +

g2A(N̄eiϕv +Ne−iϕv) +NST + c̄ (22)

where NST is the not significant terms and c̄
is the complex conjugate.

D1A = −(µ + iσ
Ω ) Ā + i

ΩĀΓe
iϕee (23)

D2
1A = [µ2 − 2iµσ

Ω + Γ2 − σ2

Ω2 ]A +
2iµ
Ω ĀΓeiϕee (24)

Eliminating the secular terms in equation (22)
and then substituting equations (19) and (24);

-iΩD2A + [µ2 − Γ2 − σ2

Ω2 − α2N̄Γ
Ω2 eiϕee +

(6α3 + 16α2
2

Ω2 )NN̄ + (N̄eiϕv + Ne−iϕv) (4α2f1
Ω2 +

f2) − Γf1
4Ω2 ei(ϕee − ϕv)]A + (3α3 +

40(α2)2

32 )A2Ā +
82

3Ω2 (2iµΩ+ σ)NA = 0 (25)

Using method of reconstitution, the derivative
of A with respect to t is found and substitut-
ing equation (19) and (25) into equation (9) and
equating ε= 1, gives the following,

iΩ(Ȧ + µeA) + σeA − 4αeA
2Ā − Γ̂eiϕ̂e =

0 (26)

where µe = µ − 2α2qΓ
3Ω5 sin (ϕee − ϕe) +

Γg1
4Ω3 sin (ϕee − ϕv). (27)

Also σe = σ − µ2 + Γ2 − σ2

Ω2 − ( 2q
3Ω2 )

2
(6α3 +

16α2
2

Ω2 ) + 4q
3Ω2 (g2 + 4α2g1

Ω2 )cos(ϕv − ϕe) −
2qΓα2

3Ω4 cos(ϕee −ϕe) +
Γg1
4Ω2 cos (ϕee −ϕv) (28)

where αe = 10α2
2

3Ω2 + 3
4 α3 (29)

and

Γ̂eiϕ̂e = Γeiϕee − 16α2q

9Ω4
(2iµΩ + σ) eiϕe . (30)

Separating the real and imaginary parts gives
the equations below,

Ω(ȧ + µea) − aΓ̂sinγ = 0 (31)

-Ωaβ̇ + σea − αea
3 − aΓ̂cosγ = 0 (32)

where γ = ϕ̂e − 2β. (33)

Therefore

η = acos[
1

2
cos(Ωt + ϕ̂e −β)]− 4q

3Ω2
cos(Ωt+ϕe)+

32µq2

9Ω3
sin(Ωt+ ϕe)−

16σq

9Ω4
cos(Ωt+ ϕe)−

2a2α2

3Ω2
cos(Ωt+ ϕ̂e − γ)− 32α2q

135Ω6
cos[2(Ωt+ ϕe)]−

ag1
4Ω2

cos[
3

2
Ωt+ϕv+

1

2
(ϕe−γ)]+

2α2

Ω2
(a2+

16q2

9Ω4
)−

8g1q

3Ω4
cos(ϕv−ϕe)+

2α2aq

3Ω4
cos[

3

2
Ωt+ϕe+

1

2
(ϕ̂e−γ)]+

8g1q

45Ω4
cos(2Ωt+ ϕe + ϕv) + .... (34)

∆θ = θB1 cos(Ωt+ ϕθ) + acos[
1

2
(Ωt+ ϕ̂e − β)]−

4q

3Ω2
cos(Ωt+ ϕe) +

32µq

9Ω3
sin(Ωt+ ϕe)−

16σq

9Ω4
cos(Ωt+ ϕe)−

2a2α2

3Ω2
cos(Ωt+ ϕ̂e − γ)+

2α2aq

3Ω4
cos[

3

2
Ωt+ ϕ̂e +

1

2
(ϕe − γ)]−

ag1
4Ω2

cos[
3

2
Ωt+ϕv+

1

2
(ϕe−γ)]+

2α2

Ω2
(a2+

16q2

9Ω4
)+

8g1q

3Ω4
cos(ϕv − ϕe) +

32α2q
2

135Ω6
cos[2(Ωt+ ϕe)]+

8g1q

45Ω4
cos(2Ωt+ϕe+ϕv)+.... (35)

Letting ȧ = β̇ = 0 in equations (31), (32) and
(33),

Ωµea − Γ̂a sinγ = 0 (36)

σea − αea
3 + Γ̂a cosγ = 0 (37)

When a=0,
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∆θ = θB1 cos(Ωt + ϕθ) − 4q

3Ω2
cos(Ωt + ϕe) +

32µq

9Ω3
sin(Ωt+ ϕe)−

16σq

9Ω4
cos(Ωt+ ϕe) +

32α2q
2

9Ω6 −

8g1q

3Ω4
cos(ϕv − ϕe) +

32α2q
2

135Ω6
cos[2(Ωt + ϕe)]+

8g1q

45Ω4
cos(2Ωt+ ϕe + ϕv) (38)

which is similarly echoed in, [2], [6].

When a ̸= 0 , eliminating γ to obtain the fre-
quency response equation,

a2 = 1
αe
[σe ±

√
(Γ̂2 − Ω2µ2

e)] (39)

The frequency response plot is obtained with
regard to equation (39) which shows the numeri-
cal simulation and perturbation solution.

To facilitate the comparison between analyt-
ical findings and numerical simulations in the
context of subharmonic resonance, Figure 1 is
provided. This figure showcases phase portraits
and time histories at a frequency of Ω = 26.01
rad/sec.

Fig. 1: Perturbed solution employing Runge-
Kutta and Newton Raphson algorithms in com-
parison to numerical simulations for the case of
subahrmonic resonance in the phase plane and
time history for Ω = 26.01 rad/sec.

The perturbation analysis was simulated and
compared to its numerical counterpart using
the Runge-Kutta and Newton Raphson meth-
ods. The computed numerical errors of the New-
ton Raphson technique and the Runge-Kutta

method, when compared to the actual simulation
error, were found to be 0.0995 and 0.0419, re-
spectively. These results indicate that the New-
ton Raphson method exhibits a better fit, as ev-
idenced by its lower error value.

Floquet Method
Let u(t) be a small disturbance (arbitrary),

then,

η̂(t) = η(t) + u(t) (40)

The stability of η(t) depends on the
growth/decay of u(t).

Substituting equation (26) into equation (I)
and eliminating any nonlinear terms with ζ(t) will
give

d2u

dt2
+

ωRD

2H

du

dt
+ u(K − 2α2η − 3α3η

2) = 0 (41)

Behaviour of u(t) is obtained from the Floquet
theory. If u1(t) , u2(t) are solutions to equation

(41) then u1(t + T ), u2(t + T ) are also solutions
to the equation.

Therefore, they are represented as linear com-
binations as shown below,

u1(t+ T ) = a11u1(t) + a12u2(t)
u2(t+ T ) = a21u1(t) + a22u2(t)

Then two linearly independent solutions are
calculated for the initial conditions stated below,

u1 (0) = 1

u2 (0) = 0

u̇1 (0) = 0

u̇2 (0) = 1

Then the monodromy matrix is obtained,

A=

[
u1(T ) u̇1(T )
u2(T ) u̇2(T )

]
The eigenvalues are also called the Floquet

multipliers. Behaviour of u(t) and the stability
of η(t) depends on the eigen values. If both mul-
tipliers lie inside the unit circle, then it is stable.
Analytical solution predicts saddle-node bifurca-
tion accurately.
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Method of Strained Parameters
Considering equation (8) and substituting in

equation (41) leads to,

ü+
ωRD

2H
u̇+ u (K − 2α2[εa cos (Ωt+ β + φe) +

ε2a2α2

6Ω2
[3− cos (2Ωt + 2β + 2φe)]]−

3α3[[εacos (Ωt+β+φe)+
εa2α2

6Ω2 [3− cos(2Ωt+

2β + 2φe)]]
2) = 0

Expanding the brackets,

ü +
ωRD

2H
u̇ + uK − 2uα2εa cos (Ωt + β + φe) +

ε2a2uα2
2

Ω2
− ε2a2uα2

2

3Ω2 cos (2Ωt + 2β + 2φe) −

3α3uε
2a2cos2(Ωt + β + φe) −

3α3ua3ε2α2

Ω2 cos (Ωt + β + φe) +
α3uε2a3α2

Ω2 cos (Ωt + β + φe) cos(2Ωt + 2β +

2φe) − α3uε2a4α2
2

12Ω4 ( (9 + cos(2Ωt + 2β + 2φe) −
6 cos(2Ωt + 2β + 2φe) ) = 0

From the formulated equation (7),

ωRD

2H
= 2ε2µ

Also considering,

Φ = Ωt + β + φe

Then the equation will become,

ü + 2ε2µu̇ + uK − 2uα2εa cosΦ −

α2
2uε

2a2

Ω2

α2uε
2α2a

2

3Ω2
cos2Φ −

3α3uε
2a2cos2Φ − 3α3ua3ε2α2

Ω2 cosΦ +
α3uε2α2a3

Ω2 cosΦ cos2Φ − 3α3uε2a4α2
2

4Ω4 −
cos2 2Φ α3uε2 a4α2

2

12Ω4 + α3uε2a4α2
2

2Ω4 = 0

(Cancelling out ε2 terms)

ü+ 2µu̇+ uK − 2uα2 a cosΦ+
α2
2ua

2

Ω2
+

α2
2ua

2

3Ω2
cos2Φ

- 3α3ua
2( cos 2Φ

2 + 1
2 ) − 3α3ua3α2

Ω2 cos Φ +
α3ua3α2

Ω2 cos Φ cos 2Φ − 3α3ua4α2
2

4Ω4 −
cos2 2Φ α3ua4α2

2

12Ω4 + α3ua4α2
2

2Ω2 cos 2Φ = 0

Simplifying further, the equation below is ob-
tained,

...
u + 2µu̇+ uK∗ = χu cos Φ+ Λu cos 2Φ (42)

Where: K∗ = K +
(
3α3

2 − α2
2

3Ω2

)
a2 − 19α2

2 αea4

24Ω4

χ = 2α2a + 5α2α3a
2Ω2

Λ = (3α3

2 − α2
2

3Ω2 ) a2 − α2
2α3a4

2Ω4

Φ = Ωt + β + φe (43)

Introducing ε which is a small dimensionless
parameter as bookkeeping device. Then order
damping and parametric term at 0(ε), hence the
equation (42) becomes,

...
u + 2µεu̇+ uK∗ = εχu cos Φ+ εΛu cos 2Φ (44)

in accordance to, [2], [13].
Uniform expansion of solutions shown below

are considered,
u(t;ε) = εu1(t) + ε2u2(t) +

.... (45)

K∗ = 1
4Ω

2 + ε δ1 + ε2δ2 +
.... (46)

This determines δ1, δ2 and results in periodic
expansion, whileK∗ defines transition curves sep-
arating stability from instability giving the curve
for period-doubling bifurcation.

Substituting equations (31) and (32) into (30),

ü+ 2εµu̇+ (
1

4
Ω2 + εδ1 + ε2δ2 + ....)u = εχ (εu1(t)

+ ε2u2(t) + ....) + εΛ (εu1(t) +
ε2u2(t) + ......) cos 2Φ

Comparing the coefficients of equal powers of
ε in the above equation,

Consider ε0 / : ü0 + 1
4 Ω2 u0 = 0 (47)

ε1/ : ü1 + 1
4 Ω2 u1 = −2µu̇0 − δ1u0 +

χu0 cosΦ + Λ u0cos 2Φ (48)

ε2/ : ü2 + 1
4 Ω2 u2 = −2µu̇1 − δ1u1 −

δ2u2 + χu1 cosΦ + Λ u1cos 2Φ (49)

Given u0 = a cos 1
2 Φ+ b sin 1

2 Φ (50)

Substituting equation (50) into equation (48)
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ü1 +
1

4
Ω2 u1 = −2µ ˙u0 − δ1 (a cos

1

2
Φ + b cos

1

2
Φ )

+ χcos Φ (a cos 1
2 Φ + b sin 1

2 Φ ) +

Λ cos 2Φ (a cos 1
2 Φ + b sin 1

2Φ)

Replacing with,

u̇0 =
−a

2
sin

1

2
Φ +

b

2
cos

1

2
Φ

gives,

ü1 +
1

4
Ω2 u1 = µaΩ sin

1

2
Φ − µb Ω cos

1

2
Φ

- δ1a cos12 Φ − δ1a sin1
2 Φ + aχ cosΦ cos 1

2 Φ

+ bχ cosΦ sin 1
2 Φ + aΛ cos 2Φ cos 1

2 Φ +

bΛ cos 2Φ sin1
2 Φ

Employing trigonometric identities,

aχcosΦcos12Φ = aχ
2

(
cos32Φ+ cos12Φ

)
bχ cosΦ sin 1

2 Φ = bχ
2

(
sin3

2Φ − sin1
2Φ

)
aΛ cos 2Φ cos 1

2 Φ = aΛ
2

(
cos52Φ+ cos32Φ

)
bΛ cos 2Φ sin 1

2 Φ = bΛ
2

(
sin5

2Φ − sin3
2Φ

)
Substituting the above into the equation and

rearranging,

ü1 +
1

4
Ω2 u1 = cos

1

2
Φ [(

1

2
χ − δ1) a − µbΩ]+

sin
1

2
Φ[µaΩ− (12χ+ δ1)b]+

a

2
(χ+Λ)cos

3

2
Φ +

b

2
(Φ− Λ)sin

3

2
Φ +

aΛ

2
cos

5

2
Φ−

bΛ

2
sin

5

2
Φ (51)

For eliminating secular terms in equation (51),
consider

(
1

2
χ − δ1) a − µbΩ = 0 (52)

µaΩ − (
1

2
χ + δ1)b = 0 (53)

It is also given that for non-trivial solution to
exist, the following should be satisfied,

δ21 = 1
4 χ2 − µ2 Ω2 (54)

Using equations (52) and (53), equation (51)
becomes

u1 = D cos 1
2 Φ + E sin 1

2 Φ −
(X + Λ) a

4Ω2 cos 3
2 Φ − (x − Λ) b

4Ω2 sin 3
2 Φ + .... (55)

D and E constants.

Substituting equations (51) and (55) into
equation (50) the following equations are ob-
tained,

(
1

2
χ− δ1)D − µΩ E = [δ2 +

(X + Λ) Λ

8Ω2
]a (56)

µΩD − 1

2
(χ+ δ1) E = [ δ2 +

(X − Λ) Λ

8Ω2
]b (57)

Given that equations (56) and (57) have non-
trivial solution, the inhomogeneous equations
have solution if and only if consistency (solvabil-
ity) condition is satisfied,

δ2 = − χ2 + 4Λδ1 + Λ2

8Ω2 (58)

Then equation (32) becomes transition curves
determining period doubling as shown below,

K∗ = 1
4 Ω2 ± ε (14 χ2 − µ2 Ω2 )

1/2 −
ε2 ( χ2 + 4Λδ1 + Λ2

8Ω2 )
1/2

+ .... (59)

Tangent Instability

Initially the points corresponding to vertical
tangents are in the frequency-response curves
given by the equation below, [1],

µ2 + (
σ

2Ω
+

αea
2

Ω
)2 =

g2

4Ω2a2

Rearranging the above equation,

4µ2Ω2 + (σ + 2αea
2)

2
= ( ga)

2 (60)

Also assume: s =a2

x= Ω2

σ = ω2
0 − Ω2

Then equation (46) is written as: 4µ2xs +

s(ω2
0 − x− 2αes)

2
= g2 (61)

Taking the first derivative of equation (61):

4µ2x
ds

dx
+ (ω2

0 − x− 2αes)
2 ds

dx
−4αes

(
ω2
0 − x− 2αes

) ds

dx

+4µ2s− 2s
(
ω2
0 − x− 2αes

)
= 0 (62)
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Equating the coefficient term of ds
dx = 0;

4µ2x+(ω2
0 − x− 2αes)

2− 4sαe

(
ω2
0 − x− 2αes

)
= 0

(63)

Substituting equation (61) into (63)
g2 = 4sαe

(
ω2
0 − x− 2αes

)
(64)

Let z=
(
ω2
0 − x− 2αes

)
(65)

This equation then can be formulated:
2
(
z + x− ω2

0

)
= 4αes

Substituting equation (65) into (63)
4µ2x+ z2 + 4sαez = 0
4µ2x+ z2 + z

(
2
(
z + x− ω2

0

))
= 0

Expanding the brackets and rearranging:
3z2 + 2z

(
x− ω2

0

)
+ 4µ2x = 0 (66)

In order to calculate the tangent instability
using MATLAB, the variable z is determined by
solving equation (66) with specific values assigned
to the parameter Ω. Subsequently, by solving
equation (65) for the variable s and substituting
the obtained value into equation (64), the vari-
able g can be determined.

Basins of Attractions
(i) Primary Resonance

The phenomenon of resonance is of utmost im-
portance in understanding the stability charac-
teristics of a nonlinear system. Therefore, it is
imperative to conduct a thorough examination of
the basins of attraction associated with the pri-
mary resonance in order to acquire a thorough un-
derstanding of the system. The concept of basins
of attraction is utilised in order to delineate the
stable and unstable regions within a system, fa-
cilitating the analysis of modifications made to
said system, [37]. The plots illustrate the alter-
ations in the basins of attraction as variables are
modified. When drawing inferences from these
graphs, it is imperative to take into account the
boundary conditions as well, [38].

Studies of the basins of attraction of primary
resonance have revealed significant findings re-
garding the stability characteristics of power sys-
tems. The impact of parameter fluctuations, in-
cluding system damping, excitation levels, and
control gains, on the configuration and ampli-
tude of the basins of attraction linked to primary
resonance has been investigated, [39], [40]. Fur-
thermore, scholarly investigations have mostly fo-
cused on the identification of crucial borders that
demarcate stable and unstable regions within the
state space, [41], [42].

(ii) Subharmonic Resonance
This study examines the subharmonic reso-

nance phenomenon and its implications for identi-
fying stable zones within the system. The basins
of attraction associated with subharmonic reso-
nance illustrate the areas of stability and insta-
bility in a dynamical system when the excitation
frequency is nearly twice the natural frequency,
[43]. This analysis aims to identify the points of
chaos and instability within the system, provid-
ing a foundation for future studies, [2], [44].

Extensive research has been conducted on the
origins of attraction associated with subharmonic
resonance. The authors in, [45] and [46] con-
ducted a study to examine the impact of dif-
ferent parameters, including the amplitude and
frequency of the subharmonic component, on
the basins of attraction. The investigation of
transitions between diverse subharmonic reso-
nant states and the impact of control tactics on
the stability boundaries has been examined in
previous studies, [47], [48]. Therefore, it is im-
perative to do additional research on the basins
of attraction in order to examine the stability in
the event of parameter changes, [49], [50].

2.2 Numerical Analysis
Graphical Representation

The equations (1), (2), and (3) were solved
using the fourth-order Runge-Kutta technique in
Matlab. The main objective was to investigate
the impact of altering the excitation frequency
Ω on the phenomenon of subharmonic resonance,
[2].

Fig. 2: Phase portrait, frequency-domain plot
and Poincaré map when Ω = 26.01 rad/sec, [2].

Fig. 3: Phase portrait, frequency-domain plot
and Poincaré map when Ω = 21.04 rad/sec, [2].
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Fig. 4: Phase portrait, frequency-domain plot
and Poincaré map when Ω = 19.37 rad/sec, [2].

Fig. 5: Phase portrait (loss of synchronism) when
Ω = 19.37251 rad/sec, [2].

The phase portraits, frequency-domain plots,
and Poincaré maps were generated for the swing
equation (1) to yield Figure 2, Figure 3, Figure
4, and Figure 5, which depict the variations in
excitation frequency reflected also in, [2]. As the
system experiences a reduction, its stability di-
minishes and it undergoes a cascading process
towards a state of chaos. Each plot depicts the
many occurrences of period doubling and the sub-
sequent loss of synchrony within the system.

Moreover, as depicted in Figure 3, the period-
one orbit undergoes deformation until the angular
frequency Ω attains a value of 21.04 rad/sec. At
this critical threshold, the period-one attractor
ceases to be stable and is subsequently replaced
by a period-two attractor. The frequency-domain
plot and Poincaré map illustrate the appearance
of the period doubling bifurcation, [2].

As the parameter Ω is systematically reduced,
it becomes evident that the graphs undergo dy-
namic changes, such as the emergence of period-
doubling solutions. Eventually, as Ω approaches
a value of around 19.37 rad/sec, a chaotic attrac-
tor is detected, as depicted in Figure 4. The sys-
tem then experiences a loss of synchronism, as
depicted in Figure 5, when the angular velocity
(Ω) is reduced to 19.37251 rad/sec, [2].

Figure 6 illustrates the bifurcation diagram
and the associated Lyapunov exponents for the
instances of primary and subharmonic resonances
as echoed in, [2], respectively. The construction
process involved calculating the swing equation

for a particular angular frequency value of Ω =
8.27 rad/sec for the primary resonance and Ω
= 19.416 rad/sec for the subharmonic resonance,
followed by numerical time integration using the
well-known fourth order Runge-Kutta method.
The value of the forcing parameter, denoted as
r, is incrementally increased, and the time inte-
gration process is continued. The resulting data
is then used to create a plot that shows the max-
imum amplitude of the oscillatory solution as a
function of r, [1].

r =
VGVB

XG
sin(θ − θB)

Fig. 6: Bifurcation diagrams and Lyapunov
Exponents for Primary and Subharmonic Reso-
nances, [1], [2].

The provided figure, Figure 6, illustrates the
occurrence of the initial period doubling just prior
to reaching a value of r equal to 0.9 in the case
of primary resonance. Additionally, it can be ob-
served that at about r = 2.36, the first instance of
period doubling in a series of subsequent period
doublings is displayed, ultimately resulting in the
emergence of chaotic behaviour. The findings of
this numerical analysis indicate that an increase
in the value of parameter r leads to a progressive
loss of synchronisation in the swing equation, [1].

The phenomenon of subharmonic resonance is
characterised by the emergence of a chaotic zone
when the value of r exceeds around 2.1, [2]. In
this region, the Lyapunov exponent tends to ex-
hibit positive values. The behaviour under con-
sideration is illustrated. In this scenario, two
points in close proximity, initially separated by

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.19 Anastasia Sofroniou, Bhairavi Premnath

E-ISSN: 2224-3429 209 Volume 18, 2023



an infinitesimally small distance, tend to move
apart from each other over a period of time. This
divergence is quantitatively assessed using the
Lyapunov exponents. The behaviour shown in
bifurcation diagram further confirms the afore-
mentioned phenomenon. Specifically, once the
value of r approaches a certain threshold, a series
of period doubling occurs, eventually leading to
chaotic behaviour. Consequently, it can be con-
cluded that the presence of a positive Lyapunov
exponent is indicative of the existence of a chaotic
attractor.

In order to assess the soundness of the analyt-
ical solution, a comparison is made between the
analytical solution and the numerical simulation.
Additionally, a frequency domain plot for equa-
tion (39) is depicted in Figure 7, [2]. The findings
demonstrate a significant correlation between the
two analyses conducted on the swing equation
pertaining to subharmonic resonance. Therefore,
this paper’s analysis is being validated.

Fig. 7: Frequency domain plot for Subharmonic
Resonance, [2].

Figure 8 below compares the numerical re-
sults with the analytical methods such as Floquet
method, Method of strained parameters and Tan-
gent instability. The application of the Floquet
method in MATLAB allows for a comprehensive
examination of the stability and dynamic charac-
teristics of the swing equation, hence providing
significant insights into the transient stability of
power systems. This technique predicts the sad-
dle node bifurcation as shown in the figure but
with 9.21% error compared to the numerical re-
sult. Method of strained parameters and tangent
instability were also solved with computing the
solutions for the equation (59) and equation (64)
respectively. Method of strained parameters pre-
dicts the period-doubling bifurcation with an er-
ror of 10.32% when compared to the numerical
analysis. Finally the tangent instability method
also predicts the saddle node bifurcation with an
error of 12.5% compared to its numerical coun-

terpart.

Fig. 8: Bifurcation diagram showing a compar-
ison of different analytical methods for Primary
Resonance.

Fig. 9: Bifurcation diagram showing a compar-
ison of different analytical methods for Subhar-
monic Resonance.

Similarly, Figure 9 presents the contrast be-
tween the numerical simulation and the analyt-
ical methodologies that have been examined for
the case of subharmonic resonance. The time con-
sidered is twice that of the primary resonance in
this analysis. The Method of Strained Param-
eters and Tangent Instability have been utilised
to forecast saddle node bifurcations, yielding er-
rors of 0.091% and 5.43% respectively, whilst the
Floquet method predicts the period doubling bi-
furcation with 0.102% error compared to the nu-
merical analysis. Some of these predicted meth-
ods provide coherency with specific results from,
[13].

(i) Basins of attractions for Primary
Resonance

The following figures, namely Figure 10, Fig-
ure 11, and Figure 12, depict the basins of attrac-
tion pertaining to the primary resonance. These
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figures illustrate the variations in the variables
VB1 and θB1 while maintaining a constant value
of Ω at 8.27 rad/sec. The stability of the system
is subject to change as the variable is raised. The
stable portion of the system is shown by the pres-
ence of red and green colours, while the remain-
ing colours reflect the unstable regions. As the
independent variable is incremented, the system
undergoes a state of corruption characterised by
the presence of unstable regions. Consequently,
it is imperative to conduct a more comprehen-
sive examination of the impact of other variables
within the system in order to obtain reliable and
robust findings in this particular study.

Fig. 10: Basins of attractions when VB1 is 0.071
rad and 0.151 rad respectively, [2].

Fig. 11: Basins of attractions when θB1 is 0.191
rad and 0.181 rad respectively.

Fig. 12: Basins of attractions when θB1 is 0.141
rad and 0.181 rad respectively.

(ii) Basins of attractions for Subhar-
monic Resonance

Figure 13 and Figure 14 depict the basins of
attraction pertaining to the subharmonic reso-
nance phenomenon in the swing equation of the
dynamical system. The variations in VB1 and
θB1 are considered, while keeping Ω constant at
a value of 19.375 rad/sec. According the authors,
[2], [13], the corruption of the system occurs as
the variable is manipulated. It is vital to study
these changes in order to gain a deep understand-
ing of the stability of the system.

Fig. 13: Basins of attractions when VB1 is 0 rad
and 0.051 rad respectively, [2].

Fig. 14: Basins of attractions when θB1 is 0.191
rad and 0.181 rad respectively, [2].

3 Discussion
The objective of this study is to analyse the dy-
namic characteristics of the swing equation under
different variations of control parameters. This
study compares analytical methods, particularly
perturbation techniques, with numerical simula-
tion in order to verify the accuracy of the per-
turbed solution for subharmonic resonance and
the basins of attraction associated with these phe-
nomena.

The examination of the primary and sub-
harmonic resonances of the swing equation in-
volves the utilisation of many analytical methods,
namely the Floquet method, method of strained
parameters, and analytical techniques. These ap-
proaches give unique perspectives and contribute
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significant knowledge to the understanding of this
paper’s power system stability. The analytical
approach generally depends on the utilisation of
mathematical modelling and manual computa-
tions, resulting in accurate outcomes within the
context of simplified assumptions. However, it
may encounter difficulties in accurately represent-
ing the many interconnections and non-linear dy-
namics that manifest in power systems found in
real-world scenarios. On the other hand, the Flo-
quet method and the method of strained param-
eters utilise numerical and computational tech-
niques to effectively address complex dynamics.
These methodologies provide a methodical inves-
tigation of the system’s reaction to diverse condi-
tions and external disturbances, which can be ef-
fectively depicted through graphical illustrations.
Researchers can enhance their comprehension of
the system’s behaviour in the vicinity of the pri-
mary resonance by graphing the response of the
swing equation across various parameter values or
forcing frequencies. Graphical analyses serve as
a vital supplement to analytical techniques, pro-
viding a more holistic perspective on the stabil-
ity attributes. This aids power system engineers
in making well-informed judgements to guarantee
the dependable functioning of the grid.

The anticipated response of the system is de-
termined by employing the swing equation in di-
verse scenarios, including instances involving load
alterations. The data is utilised by power sys-
tem management in order to guarantee the sta-
bility and reliability of the system. The use of
this approach extends to the design and analysis
of control systems for power systems, namely in
the areas of autonomous generation control and
load frequency management. For instance in the
case to mitigate the occurrence of blackouts and
the consequential catastrophic consequences they
may entail.

4 Conclusion
To summarise, the present study employed var-
ious analytical techniques, including bifurcation
diagrams, Lyapunov exponents, phase portraits,
frequency domain plots, and Poincaré maps, to
investigate the dynamics of the swing equation
in the context of subharmonic resonance. The
occurrence of period doubling in a sequence sug-
gests an impending state of turbulence, which
presents potential threats to power systems and
operational difficulties. According to research,
chaos can be induced by the collapse of quasi-
periodic torus structures and the presence of in-
termittency. Period doubling is a widely recog-
nised illustration.

This study focused on investigating the impact
of parameter modifications on the dynamics of
the system, specifically highlighting the observed
changes before and after the onset of chaotic be-
haviour. It also highlights and incorporates dif-
ferent methods used to study the stability of the
system, such as the Floquet method, Method
of strained parameters and Tangent instability.
The identification of pre-chaotic motion patterns
serves to elucidate the transitory dynamics of a
system prior to its entry into a state of chaos.
Furthermore, an examination of the basins of at-
traction pertaining to primary and subharmonic
resonances has substantiated the inherent insta-
bility of the system, resulting in the manifestation
of chaotic phenomena when subjected to subhar-
monic resonance circumstances.

This study makes a valuable contribution to
the current scholarly understanding of the swing
equation, namely by offering an extension to the
most recent literature authored by the same in-
dividuals as this paper, [1], [2]. This research
enhances the understanding of the fundamental
principles and system stability of the swing equa-
tion through a specific emphasis on primary and
subharmonic resonances. The discoveries assist
power system engineers and researchers in devel-
oping improved control strategies and preventive
measures to address the chaotic effects caused by
subharmonic resonance.

The present study illuminates the dynamic be-
haviour of the swing equation and its reaction to
subharmonic resonance, thereby shedding light
on several elements of system stability. This
study has the potential to contribute to the de-
velopment of more resilient and secure power in-
frastructures, particularly as power systems con-
tinue to expand and encounter increasingly com-
plex challenges.

In further research, the incorporation of quasi
periodic conditions within the swing equation
framework hold the potential to advance the
knowledge of this intricate power system. The
aforementioned approach has the potential to of-
fer significant insights on the enduring stability
and adaptability of the system.
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