
UNIVERSITY OF WEST LONDON

DOCTORAL THESIS

On The Performance of Markup
Language Compression

Antonio D. Kheirkhahzadeh

Supervisors:

Dr. John P. T. MOORE

Prof. Peter KOMISARCZUK

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Sustainable Computing Research Group

School of Computing and Technology

Scrutiny Panel:

Dr. Nasser Matoorian, Dr. Ali Bahadori-Jahromi, Dr. Stephen Roberts

April 2015

http://www.uwl.ac.uk

Declaration of Authorship

I, Antonio D. Kheirkhahzadeh, declare that this thesis titled, ’On The Perfor-

mance of Markup Language Compression’ and the work presented in it are my

own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have con-

tributed myself.

Signed:

Date:

i

“If you have to do something, do it well.”

My father

UNIVERSITY OF WEST LONDON

Abstract
Sustainable Computing Research Group

School of Computing and Technology

Doctor of Philosophy

On The Performance of Markup Language Compression

by Antonio D. Kheirkhahzadeh

Data compression is used in our everyday life to improve computer interaction or

simply for storage purposes. Lossless data compression refers to those tech-

niques that are able to compress a file in such ways that the decompressed

format is the replica of the original. These techniques, which differ from the

lossy data compression, are necessary and heavily used in order to reduce re-

source usage and improve storage and transmission speeds. Prior research led

to huge improvements in compression performance and efficiency for general-

purpose tools which are mainly based on statistical and dictionary encoding

techniques.

Extensible Markup Language (XML) is based on redundant data which is parsed

as normal text by general-purpose compressors. Several tools for compressing

XML data have been developed, resulting in improvements for compression

size and speed using different compression techniques. These tools are mostly

based on algorithms that rely on variable length encoding. XML Schema is a

language used to define the structure and data types of an XML document. As

a result of this, it provides XML compression tools additional information that

can be used to improve compression efficiency. In addition, XML Schema is

also used for validating XML data. For document compression there is a need

to generate the schema dynamically for each XML file. This solution can be

applied to improve the efficiency of XML compressors.

This research investigates a dynamic approach to compress XML data using

a hybrid compression tool. This model allows the compression of XML data

using variable and fixed length encoding techniques when their best use cases

http://www.uwl.ac.uk

are triggered. The aim of this research is to investigate the use of fixed length

encoding techniques to support general-purpose XML compressors. The re-

sults demonstrate the possibility of improving on compression size when a fixed

length encoder is used to compressed most XML data types.

Acknowledgements

Firstly, I would like to thank my supervisor Dr. John Moore for making this

research possible. His guidance and support, as well as his encouragement and

enthusiasm, laid the foundations to this work. I would like to offer my gratitude

for the academic and personal advice he provided me throughout the course

of my PhD. He has been a role model who inspire me to start my career in

academia and develop it further. Thank you John.

I would like to thank the School of Computing and Technology of the University

of West London. Each member of this department encouraged and inspired

me to undertake my PhD studies. My sincere thanks also goes to Dr. Thomas

Roth-Berghofer for his trust on my potential and the encouragement he provided

me to complete my studies. A special thanks goes to my colleague and friend

Jiva Bagale with whom I shared the PhD life style and experience. I would also

like to thank my PhD colleagues and friends Dean Kramer, Malte Ressin and

Christian Sauer for the stimulating discussions and all the fun we had in the last

years.

I would like to acknowledge the academic, technical and financial support of the

University of West London who provided me the means to complete my studies.

Most importantly, I would like to thank my family for their encouragement and

support during these years. My father for his words of wisdom and my mother

for her patience and support. I would like to thank my brother and my two sisters

for their unconditional love and caring. Thank you all.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements v

Contents vi

List of Figures xi

List of Tables xiii

List of Listings xiv

Abbreviations xvi

1 Introduction 1
1.1 Markup Languages . 2
1.2 XML Compression . 2

1.2.1 Fixed Length Encoding 4
1.2.2 Motivation . 5

1.3 Research Approach . 6
1.3.1 Research Questions . 7
1.3.2 Aims and Objectives . 8
1.3.3 Approach . 9

1.4 Contributions . 10
1.5 Published Material . 11
1.6 Organisation of the Thesis . 11

2 Technical Background 14
2.1 Markup Languages . 15

2.1.1 XML . 16

vi

Contents vii

2.1.1.1 Structure of XML 17
2.1.1.2 Application Programming Interface 20
2.1.1.3 XML Query and Transformation 23

2.1.2 XML Validation . 25
2.1.2.1 DTD . 26
2.1.2.2 XML Schema . 27
2.1.2.3 XML Information Set 30

2.1.3 Metrics and Classifications 31
2.2 Data Compression . 32

2.2.1 Fixed and Variable Length Codes 34
2.2.2 XML Compression . 38

2.2.2.1 General-purpose 39
2.2.2.2 XML-conscious 41
2.2.2.3 Queriable . 42

2.2.3 Features and Classification 42
2.2.3.1 Homogeneity and Homomorphism 43
2.2.3.2 Online and Offline Compression 45

2.3 Summary . 46

3 XML Compressors and Analysis of XML Data 48
3.1 XML Compressors . 49

3.1.1 XMLPPM . 49
3.1.2 DTDPPM . 51

3.1.2.1 XMLPPM Extension 52
3.1.3 XMILL . 53
3.1.4 WBXML . 55
3.1.5 zlib . 56
3.1.6 EXI . 57

3.1.6.1 Design principles 57
3.1.6.2 Architecture . 58
3.1.6.3 Limitations . 61

3.1.7 Abstract Syntax Notation One 62
3.1.7.1 Encoding Rules 62
3.1.7.2 Compression Comparison 64

3.1.8 Packedobjects . 65
3.1.8.1 Design principles 65
3.1.8.2 Architecture . 66
3.1.8.3 Integer Encoding Rules 68
3.1.8.4 Applications and Limitations 70

3.1.9 Other Compressors . 72
3.1.10 Summary of Related Works 75

3.1.10.1 Tools Categorisation 76
3.1.10.2 Limitations . 78
3.1.10.3 Revisiting Research Goals 79

Contents viii

3.2 Analysis of XML Data . 81
3.2.1 Analysis and Current Results 82

3.2.1.1 XML Corpora . 82
3.2.1.2 Schema languages 85

3.3 Conclusions . 85

4 XML compression techniques for efficient network management 87
4.1 Introduction . 87
4.2 Background . 89

4.2.1 SNMP . 89
4.2.2 Related work . 89
4.2.3 Motivation . 90
4.2.4 Network Challenges . 91

4.3 Methodology . 92
4.3.1 XML Corpus . 92
4.3.2 Compressor Execution 95

4.4 Results . 95
4.4.1 Compression Size . 95
4.4.2 Compression Time . 98
4.4.3 Speed/Size Ratio . 99
4.4.4 EXI format . 99

4.5 Observation . 101
4.6 Conclusion . 103

5 Hybrid XML Document Compression 105
5.1 Motivation . 106
5.2 System Requirements . 107
5.3 Hybrid Compression Model . 109

5.3.1 Document Transformation 111
5.3.1.1 XML Components Transformation 112
5.3.1.2 XML Structure Transformation 115

5.3.2 Knowledge Extraction . 116
5.3.3 Schema Generation . 117
5.3.4 Character String and Basic Types Separation 119

5.3.4.1 String Data Types compression 119
5.3.4.2 Basic Data Types Compression 120

5.3.5 Compressed Format . 121
5.3.6 Decompression process 122

5.4 System Execution . 123
5.5 Code Optimisation . 124

5.5.1 Front-end . 125
5.5.2 Back-end . 126

5.6 System Requirements Support 126
5.7 A Motivating Example . 127

Contents ix

5.8 Compression Models Comparison 129
5.8.1 EXI vs. HPO . 130

5.9 Applicability and Limitations . 131
5.9.1 Document Support . 131
5.9.2 Dynamic Application . 131
5.9.3 Hybrid and Pure Mode . 132
5.9.4 Near-lossless Compression 133

5.10 Conclusion . 133

6 Schema-uninformed compression comparison 135
6.1 Experimental Methodology . 136

6.1.1 Compression tools . 136
6.1.2 System Resources . 137
6.1.3 XML Corpus . 137

6.2 Experimental Evaluation . 139
6.2.1 Synthetic XML Data . 139

6.2.1.1 Fixed Data Types 140
6.2.1.2 Random Data Types 143

6.2.2 Real XML Data . 145
6.2.2.1 Compression Ratio 146

6.3 Analysis . 148
6.3.1 Compression Comparison 150

6.3.1.1 Synthetic Data Types 151
6.3.2 Real XML Data Types . 153

6.3.2.1 Data Types Patterns 156
6.3.3 Performance Evaluation 158

6.3.3.1 Front-end and Back-end Processes 159
6.3.3.2 Efficiency versus Performance 160

6.4 Conclusion . 162

7 Conclusions 163
7.1 Discussion . 163

7.1.1 Findings . 164
7.1.1.1 Main Research Question 164
7.1.1.2 Sub Research Questions 166

7.2 Summary of the Thesis . 167
7.3 Technical Contributions . 168
7.4 Limitations . 170
7.5 Future Work . 171

A Data and Protocol Listing 173

B Compressors Execution and Ratio Results 181

Contents x

C XML Document Transformation Process 185

D Hybrid Model Compression Comparison Results 191

E Published Material 199

Bibliography 200

List of Figures

2.1 XML DOM . 22
2.2 XML Information Set (Gudgin, 2004) 31
2.3 Data compression techniques (Wade, 1994) 33
2.4 Fixed length binary representation 35
2.5 Fixed Length Coding . 36
2.6 Variable length binary representation 36
2.7 Variable Length Prefix Coding . 37
2.8 Huffman binary representation 38
2.9 Huffman Coding . 38
2.10 Features and classification of XML Compression 43
2.11 Local Homogeneity of XMill compression (Sakr, 2011) 44

3.1 XMLPPM Architecture (Cheney, 2005) 50
3.2 XMILL Architecture (Liefke and Suciu, 2000) 54
3.3 EXI binary representation analysis 60
3.4 ASN.1 aligned PER binary representation 63
3.5 ASN.1 unaligned PER binary representation 63
3.6 Packedobjects Architecture . 68
3.7 PO binary representation . 70

4.1 Compression Size Results . 96
4.2 Compression Time Results . 97
4.3 Decompression Time Results . 98
4.4 Compression Ratios . 100
4.5 PO vs EXI Format . 101

5.1 Hybrid Compression Model . 110
5.2 Hybrid Model System Execution 123

6.1 Fixed Synthetic Data Types - 5KB-50KB 140
6.2 Fixed Synthetic Data Types - 200KB-2.5MB 141
6.3 Random Synthetic Data Types - 5KB-50KB 143
6.4 Random Synthetic Data Types - 200KB-2.5MB 144
6.5 Real XML Data Set . 146
6.6 Real XML Data Set Compression Ratio 147
6.7 Real XML Compression analysis - Original XML 149
6.8 Real XML Compression analysis - Compressed XML 149

xi

List of Figures xii

6.9 Data Types analysis for Real XML Data Sets 154
6.10 Synthetic Data Types in Real XML Data Set 155
6.11 Data Types Regular Expression Patterns Relationship 156
6.12 Regular Expression Patterns . 157
6.13 Synthetic Data Types in Real XML Data Set 158
6.14 HPO Compression Rate . 161

7.1 Compressors Performance . 168

List of Tables

1.1 Variable and Fixed length bit mapping 4

2.1 Types of Markup Languages . 16
2.2 Variable and Fixed length bit mapping 35
2.3 Frequency Table . 37

3.1 Features and Classification of XML Compressors 76
3.2 List of XML Compressors . 77

4.1 XML Data Sets . 93
4.2 XML Compressors List . 95

5.1 Requirements on XML Compressors 109
5.2 String Buffer Data Serialisation 120
5.3 Hybrid Mode Binary Format . 121
5.4 Pure Mode Binary Format . 122

6.1 Command-line Tool Options . 137

B.1 Compressors Usage . 181
B.2 System Specification . 182
B.3 PO Compression ratio results . 182
B.4 DTDPPM Compression ratio results 182
B.5 XMLPPM Compression ratio results 183
B.6 WBXML Compression ratio results 183
B.7 XMILL Compression ratio results 183
B.8 ZLIB Compression ratio results 184

D.1 Real XML Data Set Compression Results (Bytes) 191
D.2 HPO Compression Ratio . 192
D.3 EXI Compression Ratio . 193
D.4 GZIP Compression Ratio . 194
D.5 7ZIP Compression Ratio . 195
D.6 Real XML Data Set Compression Analysis Results (%) 196
D.7 Real XML Data Set Compression Time Results (Seconds) 197
D.8 Real XML Data Set Compression Rate Results (b/s) 198

xiii

List of Listings

2.1 Example of XML . 16
2.2 Simple XML BNF . 18
2.3 Namespaces usage . 20
2.4 Example of DTD . 27
2.5 Example of XML Schema . 29
2.6 Example of XML Schema using global types 30
2.7 Example of XML document . 45
2.8 Example of Homomorphic compression 45

3.1 XML document . 55
3.2 XMill Compression . 55
3.3 XML data . 59
3.4 PO Normal form . 69

4.1 Sensor Data Structure . 94

5.1 Canonical PO XML EBNF definition 111
5.2 XML Document containing attributes 113
5.3 XML Document after transformation process 113
5.4 XML Document containing comments 113
5.5 XML Document after transformation process 113
5.6 XML Document containing unordered complex type 115
5.7 XML Document after transformation process 115
5.8 Example of XML data . 117
5.9 Automatically generated PO Schema language 118
5.10 XML Document . 119
5.11 Basic Data Types XML Document 119
5.12 String Buffer . 119
5.13 Snippets of lineitem.xml document 127
5.14 Automatically generated schema 128

6.1 Snippet of supplier.xml document 152

A.1 ASN.1 protocol . 173
A.2 SCM protocol . 173
A.3 XSD protocol . 174
A.4 ASN.1 data . 175

xiv

List of Listings xv

A.5 SCM data . 175
A.6 XML data . 176
A.7 XML data . 177
A.8 XSD protocol . 177
A.9 Example of ASN.1 notation protocol 177
A.10 Example of ASN.1 notation message 178
A.11 PO Normal form . 178
A.12 String type PO Integer form . 179
A.13 String type PO Lower form . 179
A.14 Integer type PO Integer form . 179
A.15 Integer type PO Lower form . 179
A.16 Enumeration type PO Integer form 179
A.17 Enumeration type PO Lower form 179
A.18 Hexadecimal type PO Integer form 180
A.19 Hexadecimal type PO Lower form 180

C.1 XML Document containing attributes 185
C.2 XML Document after transformation process 185
C.3 XML Document containing attributes 186
C.4 XML Document after transformation process 186
C.5 XML Document containing comments 187
C.6 XML Document after transformation process 187
C.7 XML Document containing comments 187
C.8 XML Document after transformation process 187
C.9 XML Document containing attributes and comments 188
C.10 XML Document after transformation process 188
C.11 XML Document containing unordered sequence 188
C.12 XML Document after transformation process 188
C.13 XML Document containing attribute, comments and unordered

sequence . 189
C.14 XML Document after transformation process 189

Abbreviations

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

BNF Backus-Naur Form

CER Canonical Encoding Rules

CSS Cascading Style Sheet

DER Distinguished Encoding Rules

DOM Document Object Model

DSL Domain-Specific Language

DTD Document Type Definition

HTML HyperText Markup Language

IDL Interface Description Language

IP Internet Protocol

ISO International Organization for Standard

MAC Media Access Control

PDU Protocol Data Unit

PER Packed Encoding Rules

SAX Simple API for XML

SGML Standard Generalized Markup Language

SNMP Simple Network Management Protocol

UTF-8 UCS Transformation Format 8-bit

URL Universal Resource Locator

W3C World Wide Web Consortium

WAP Wireless Application Protocol

xvi

Abbreviations xvii

XHTML EXtensible HyperText Markup Language

XML EXtensible Markup Language

XER XML Encoding Rules

XSD XML Schema Definition

XSL EXtensible Stylesheet Language

XSLT EXtensible Stylesheet Language Transformation

To my parents, for their love and support.

xviii

Chapter 1

Introduction

Data compression is a major field and research topic in computer science and

information theory. The use of this technology has heavily influenced our ev-

eryday activities and interactions with computers. Although its implementation

is transparent to the user, most of the technology available today depends on

these compression techniques to improve software quality and overcome the

hardware limits. As a major branch of computer science, data compression is

applied to various fields that utilise some degree of compression.

A highly efficient compressor can significantly reduce the size of the original

data depending on the technique used and the nature of the source. A trade-

off usually exists between compression size and compression speed as higher

levels of compression require more processing time. However, these resources

may not be available on a constrained device. Therefore, a correct balance

between these two variables is needed when operating in resource-limited en-

vironments.

Depending on the scenario, data compression can be either lossy or lossless.

Lossy compression techniques are able to reduce the size of the file by remov-

ing bits of information without having a noticeable impact on the quality of the

original file. For this reason, these techniques are commonly related and ap-

plied to multimedia, where the difference between the original and compressed

format is less noticeable to the human perception. Conversely, lossless com-

pression techniques are able to compress a file in such ways that the decom-

pressed format is a replica of the original. Contrary to lossy compression, these

techniques are heavily used in areas such as data storage, networking and

1

Chapter 1. Introduction 2

the compression of data formats. For each field, a specific set of compression

algorithms have been developed and optimised for specific tasks.

1.1 Markup Languages

A markup language is a data format capable of annotating a document with

syntax distinguishable from the main text. Commonly referred as the language

of the web, this system allows to set further instructions on a document in order

to specify its purpose. Examples of markup languages are Extensible Markup

Language (XML), HyperText Markup Language (HTML) and TeX. HTML has

been defined as the markup language for documents of the World Wide Web

whereas, XML has been widely used to define data structure (Bray et al., 2008)

due to its ability to extend itself and being able to define unique tags.

XML is a standard for data storage and data exchange over the Internet. It has

the ability to represent structured data in a human and computer readable for-

mat and provides support for Unicode (Bray et al., 1998). However, XML has

several disadvantages mostly related to its verbose syntax. Lengthy tags and

redundant data can have a significant impact on system performance, espe-

cially within constrained networking environments. XML Schema is one of a

number of validation methods which can be applied to XML. In addition to vali-

dation, an XML Schema, through the use of data type information, can provide

sufficient knowledge to allow compression of XML data (Sperberg-McQueen

and Thompson, 2000). As a result of its support for custom data types, XML

Schema is seen as a replacement for the Document Type Definition (DTD). In

addition, unlike DTD, XML Schema is written in XML which provides the ability

to use standard XML parsing libraries to process the information.

1.2 XML Compression

Over the last decade, the demand of processing and storing of XML has in-

crease exponentially. A number of optimisation techniques have been devised

in order to overcome the limitations of this verbose language. Research has

mainly focused on minimising the memory consumption required to process

Chapter 1. Introduction 3

XML and reduce the compressed size required to store or exchange data. XML

compression techniques have been developed to take advantage of the ver-

bose and redundant structure to improve compression efficiency. Several tools

for compressing XML documents have been developed resulting in improve-

ments in both size and speed using different compression techniques. These

techniques have been used in various research leading to improvements in net-

working and storage compression. As a standard for interchanging data be-

tween heterogeneous applications, XML compression techniques have been

widely adopted in networking. In addition, for its ability to represent data struc-

ture, the need of compressing XML has extended to storage and database.

General-purpose compressors are not able to achieve the highest level of ef-

ficiency due to the lack of local redundancy found in XML files (Augeri et al.,

2007; Cheney, 2006b; Ferragina et al., 2006; Ng et al., 2006a; Sakr, 2008,

2009). These techniques are based on algorithms which exploit the predictable

nature of XML data to remove unnecessary bits of information. With the intro-

duction of more complex algorithms, general-purpose compressors have been

offering a fast and reliable compression with higher encoding rates. Reasonable

compression efficiency is achieved when compressing XML data using these

techniques.

XML-conscious techniques have been developed to achieve higher compres-

sion rates by manipulating the XML structure. This manipulation generally in-

volves similar techniques implemented in general-purpose compression applied

to XML data to increase the local redundancy. Therefore, most of the XML-

conscious techniques can be classified as front-end applications. This part of

the system is aimed at restructuring XML data in a format which is subsequently

passed to one or many back-end general-purpose compressors.

There are different compression techniques aimed at reducing the size of XML

data. The term compression is usually referred to those techniques which im-

plements a general-purpose compression algorithm after manipulating the XML

data. These techniques are able to increase the local redundancy and ex-

ploit knowledge of the back-end compression algorithm to achieve better com-

pressed formats. Most effective techniques include semantic awareness to cat-

egorise data into substructures, which are then compressed using most effec-

tive back-end compression algorithms.

Chapter 1. Introduction 4

The term encoding is referred to those XML-conscious techniques which imple-

ment their own encoding mechanisms. Encoding rules are used to reduce the

redundancy of the structure and data of XML by mapping source symbols and

blocks of data to an efficient binary representation. This technique allows the

binary format to be decoded using the rules provided by the encoder.

1.2.1 Fixed Length Encoding

Compression algorithms try to find the most economical method of writing blocks

of data to binary representations. Different techniques exist to achieve efficient

representations that allow the least amount of information to be stored in the

compressed format. The process of transforming data into a different, more

compact format is defined encoding. Fixed and variable length encoding are

the two main techniques to compress data in efficient binary formats. Variable

length encoding techniques map source symbols into variable number of bits

depending on their frequency. Whereas, fixed length encoding techniques re-

sult in a fixed number of bits per source symbols. Table 1.1 compares variable

to fixed length binary representation for a simple alphabet.

A B C D E F

Frequency 32 23 18 13 11 6

Fixed Length 000 001 010 011 100 101

Variable Length 1 01 0010 0011 0001 000010

TABLE 1.1: Variable and Fixed length bit mapping

As shown in table 1.1, fixed length encoders require more bits to store the

source information when the likelihood of symbols to appear varies. For this

reason, the use of variable length encoding has been preferred over fixed length

techniques. Based on this observation, extensive research has led to the devel-

opment of advanced techniques to support variable length encoding to achieve

more compact binary representations.

With the information provided in an XML Schema, it is possible to achieve an

efficient encoding mechanism by mapping blocks of data to their lowest binary

representation. Using this information, fixed length encoders are able to achieve

Chapter 1. Introduction 5

more efficient compressed formats compared to variable length encoding tech-

niques. Data types can be considered the building blocks for fixed length en-

coders since they provide the rules to validate and encode data. However, this

schema-informed compression also allows variable length encoders to achieve

higher encoding rates. XML-conscious compressors exploit the XML schema

information to compress data semantically and separate data from structure

which allows variable length encoders to be more efficient.

1.2.2 Motivation

This research is motivated by the need to develop an XML compressor that can

be used for a wider range of applications associated with document storage. In

addition, the aim is to provide an efficient format which can be used to improve

networking and storage. Achieving a higher compressed size is essential for

the scalability of applications running on a low-bandwidth network or in need to

reduce disk space usage.

Initial studies (Moore, 2010a) have demonstrated the possibility of achieving

additional levels of compression using fixed length encoders. These techniques

have demonstrated a better management and scalability for low-bandwidth net-

work applications by transmitting smaller payloads (Moore et al., 2010). The

advantage of managing a more efficient compressed format has also demon-

strated to be beneficial for constrained devices that require to communicate

across heterogeneous networks (Moore et al., 2012). However, the XML data

sets found in this scenario are optimised for compression and representation

purposes. XML allows different structures to be defined depending on the re-

quirement of the application. Some of the data types are not optimised for com-

pression and encoded using variable length encoding techniques. This work

extends prior studies in this field by providing support for data types that are

usually compressed using a variable length encoder. In conclusion, this re-

search is motivated by the need of achieving better compressed formats for a

wider range of XML data sets in order to improve network transmission or data

storage applications.

Chapter 1. Introduction 6

1.3 Research Approach

Compression is an important process for all the applications that require to

store, process or exchange XML data. The pervasiveness of this language

has led to an extensive amount of research and software outputs. A number of

tools have laid the basis for XML-conscious techniques by manipulating source

data and presenting more compression-ready formats to back-end algorithms.

More advanced techniques have been able to utilise the information provided

in XML schema files to compress data more efficiently. These are defined as

Schema-informed techniques and rely on an additional file to be used for both

encoding and decoding routines. Although these techniques have found great

success for exchanging XML data amongst homogeneous networks, the need

of an external entity does not allow the same benefits for storage purposes. In

this scenario the XML Schema has to be compressed with the XML file, de-

creasing the benefits of applying a Schema-informed compression.

The use of a schema language limits the compression to XML files and other

markup languages. This information is mostly needed to validate and provide

rules to encode data. However, some XML files are limited by the structure and

nature of the document. The use of inconsistent structures and data types leads

to poor compression efficiency. For example, HTML documents can be poorly

structured and can contain large amount of text per element. In this case, a

variable length encoder is able to provide a better compression compared to

fixed length encoder. Therefore, analysing the XML file prior to compression is

essential to decide what type of compression is best to apply.

Standards such as the Efficient XML Interchange (EXI) format have been devel-

oped by the W3C to overcome the limitations of compressing XML (Schneider

and Kamiya, 2011). The use of a schema to improve compression has led to

encoding techniques similar to those implemented in telecommunication and

computer networking. Fixed length encoders are at the basis of these compres-

sion techniques derived from Abstract Syntax Notation One (ASN.1) (ITU-T,

2008b). Although current compressors are in favour of compression algorithms

based on variable length encoding, schema-informed techniques based on fixed

length encoders have demonstrated a compression efficiency beyond the level

of any compressor.

Chapter 1. Introduction 7

1.3.1 Research Questions

The main research question is focused on the use of fixed length encoders

to compress XML data. This technique can be subsequently applied to other

markup languages which can benefit from a descriptive schema language. Data

type constraints play a major role in enabling a fixed length encoding technique.

This data provides the additional encoding information to compress and decom-

press the markup language. The research question is described in the following

statement.

Main Question

Can a fixed length encoder improve general-purpose compression

techniques for markup languages?

This question focuses on the major role of fixed length encoding tech-

niques applied to markup language compression. XML is used as the

main markup language and is one of the most popular and widely used

language today. The scope of this research question is to evaluate the ef-

ficiency of these techniques applied to a wider range and different nature

of XML documents.

A number of questions can be derived based on current knowledge of XML

compressors. As these techniques are already applied on a small scale, it is

important to extend the use of fixed length encoders to specific data types.

Questions

How can a fixed length encoder be extended to support more domain-

specific data types to aid compression?

Currently most fixed length encoders support a limited range of data types.

These data types are based on simple encoding mechanisms using the

information provided in the XML Schema. The use of fixed length encod-

ing is explored for supporting a wider range of data types. This depends

on the ability to recognise XML data formats from the document content.

Chapter 1. Introduction 8

Is it possible to increase compression by adding support for non-

domain specific data types?

Mapping XML data types to specific values is an important process re-

quired to apply a fixed length encoding technique. A set of built-in data

types are usually defined within the compression tool. Although the aim

is to increase the amount of data types compressed using a fixed length

encoding technique, it is not possible to define all the possible variation

of data types used in real XML data sets. For this reason, mapping data

values to their closest data types is essential to achieve the best perfor-

mance. This research question focuses on compressing data values that

would not be otherwise assigned to a fixed length encoder.

1.3.2 Aims and Objectives

A number of compression techniques have been developed to address the is-

sues related to the use of XML. These techniques are based on fixed and vari-

able length encoders using schema informed or uninformed compression. How-

ever, very little has been done to investigate the use of structured XML data

types to aid compression. More efficient formats can be achieved by analysing

these data types and applying a fixed length encoding capable of mapping high-

level data types to the least number of bits. The aim of this research is to iden-

tify the limits of a hybrid approach by extending schema-informed compression

tools to general XML documents.

The objectives of this thesis are as follows:

• Develop a model to compress XML data using a hybrid system which

implements both fixed and variable length encoding when their best use

cases are triggered.

• Devise a system to encode high-level data types using fixed length encod-

ing techniques.

• Identify the best use cases for compressing XML data using the hybrid

model.

Chapter 1. Introduction 9

• Explore the use of fixed length compression techniques to improve the

efficiency of XML compression.

1.3.3 Approach

Current XML compressors lack semantic knowledge. This information is only

provided by a descriptive schema language which defines the structure and

data types of XML. Schema-uninformed compression is therefore not able to

achieve highly compact binary representation. However, advanced techniques

such as EXI are able to achieve high level of compression using both fixed

and variable length encoding techniques. This level of compression is achieved

using low-level built-in data types and string tables for compact representation

of repeated string values. High level data types are therefore compressed using

variable length encoding techniques.

A more efficient compression can be achieved using a fixed length encoder to

compress most of the data types found in XML. This approach involves the de-

velopment of a hybrid system capable of separating data from structure using

a transparent schema-informed technique. XML data is categorised into set

of data types. Basic types are represented as non-empty values which can

be encoded and transmitted using a specific encoding rule. Character Strings

are defined as a subset of basic types which present a less efficient encoding

mechanism (Dubuisson, 2001; Larmouth, 2000). This data type is usually com-

pressed using a variable length encoder while other basic types are processed

by a fixed length encoder. Basic data types consist of low-level to high-level

formats such as Integer, Enumeration, Bit String, and Date. Character Strings

data types instead, consist of formats which cannot be efficiently mapped to

encoding rules such as IA5String and UTF8String (ITU-T, 2008a). Compress-

ing high-level basic data types using a fixed length encoder, together with the

transparent schema-informed compression, allows the hybrid model to achieve

a level of compression beyond current XML compressors. The idea of this thesis

is to apply encoding rules extended from ASN.1 to outperform XML-conscious

and general-purpose compressors.

Chapter 1. Introduction 10

1.4 Contributions

This research investigates the performance of compression techniques applied

to XML data. A hybrid system is developed based on the requirements con-

sidered during the study of XML compression techniques. Furthermore, this

research can be extended to the compression of other markup languages that

can be described by a data definition language. The major contributions of this

thesis are as follows:

1. A survey on current compression techniques used to compress XML data.

These tools are thoroughly analysed to demonstrate the potential of their

compression model compared to others. This survey contributes to ex-

isting studies presenting state of the art tools and techniques for XML

compression.

2. A study of EXI and Packedobjects compression models and tools, which

have only been previously described in their format specification. For each

of these tools, the compression model, applicability and limitation are de-

scribed. In addition, simple examples are provided to illustrate how an

optimal compression is achieved.

3. A comparison the compression efficiency and performance of a number

of tools analysed in previous survey in the field of network management.

The application of XML compression techniques in this domain was se-

lected based on the performance of these tools for small highly-structured

XML files. These files have a stronger emphasis on the structure of the

document with XML tags used to separate and highlight each data types.

4. A system for compressing high-level data types using a fixed length en-

coder. Existing solutions focus on using fixed length encoding techniques

only when a strict schema-informed technique is applied. This work presents

a transparent schema-informed compression which allows data types to

be defined in a domain-specific data definition language. This language

is used as a protocol to allow low-level and high-level data types to be

compressed using a fixed length encoder.

5. A new model for compressing XML data using encoding rules derived from

Packedobjects. The model is based on a number of processes followed

Chapter 1. Introduction 11

by the fixed and variable length encoding mechanisms. The experimental

results demonstrate a good performance relative to the compression size

achieved by the new model for XML files with a specific size range.

6. A hybrid model, referred to as Hybrid Packedobjects (HPO), that imple-

ments a fixed and variable length encoding techniques when their best

use cases are triggered. An experimental evaluation of HPO against the

most efficient XML and general-purpose compressors is provided. These

tools are compared against a corpus composed of several data sets which

differ by size, data types and XML structure. HPO demonstrates the ability

to achieve a better compression by encoding most data types using the

fixed length encoder.

7. The results of the experiments demonstrate the additional amount of com-

pression that can be achieved by encoding high-level data types using

fixed length encoders. Furthermore, this research provides an analysis

of the XML corpus used to perform the experiments, demonstrating the

amount of high-level data types which exists in real XML data sets. These

data types are classified using regular expressions providing encoding

mechanisms to define these data types in a data definition language.

These results demonstrate a significant improvement in compression for XML

documents based on structured data.

1.5 Published Material

This research has led to a number of joint publications. Each publication is

based on parts of the thesis and presents some of the contributions listed in the

previous section. A complete list of publications with the related contribution is

provided in Appendix E.

1.6 Organisation of the Thesis

The remaining chapters of the thesis are structured as follows. Chapter 2

provides the technical background necessary for a detailed understanding of

Chapter 1. Introduction 12

markup languages and data compression. The first part of the chapter dis-

cusses and provides examples of markup languages focusing on XML, describ-

ing its structure and main components. This part provides a background on the

application programming interfaces (API) used to parse, query and transform

XML documents. XML validation is discussed based on schema languages and

the validity of XML structure based on XML standards. This background infor-

mation will be used in subsequent chapters for the development of the hybrid

model. The second part of Chapter 2 provides the basis of data compression.

The difference between fixed length and variable length encoders is discussed

thoroughly with examples using different encoding techniques. The chapter

continues to describe various techniques to compress XML data and classifying

XML-conscious techniques. The chapter concludes with features and classifi-

cation of XML-conscious techniques.

Chapter 3 provides a description of the most relevant and effective tools to

compress XML data. A more detailed analysis is given for tools that play a

major role in the development of the hybrid model. The first part describes

these tools based on variable and fixed length encoding, explaining back-end

tools and technologies such as zlib and ASN.1. The second part of Chapter

3 provides an analysis of XML data sets from the literature review and online

publicly available repositories.

Chapter 4 presents the preliminary experiments performed using the tools de-

scribed in Chapter 3. This part focuses on XML compression techniques in

order to improve network management using a set of small highly-structured

XML files collected from network devices such as routers, switches and sen-

sors. Results illustrate the performance of XML compression techniques for

this specific data set highlighting the performance of schema-informed tech-

niques over standard XML-conscious approaches. The aim of this chapter is

to evaluate the performance of XML compressors for a specific data set which

have not been evaluated in other work.

Chapter 5 describes the architecture of the hybrid model. The first sections pro-

vide the motivations and requirements for the development of the hybrid model.

These considerations are based on the studies of XML compression tools of

Chapter 3 and the results on the performance of schema-informed techniques

of Chapter 4. The chapter continues on describing the various processes of the

hybrid model during encoding and decoding of XML data. A motivating example

Chapter 1. Introduction 13

to compare the results of the best XML compressors against the hybrid model is

provided to demonstrate the additional compression that can be achieved by the

hybrid model. The chapter concludes describing the applicability and limitation

of this approach.

Chapter 6 is divided into several sections. The first section describes the

methodology and the environment where the experiments were performed, to

allow replicable experiments. This section describes the compression tools to

which the hybrid model is compared and the data sets used. The second sec-

tion provides the results of the experiments divided into synthetic and real XML

data sets. A third section provides an analysis to justify the difference in effi-

ciency between the different data sets and discusses the performance evalua-

tion.

Finally Chapter 7 discusses the main findings and addresses the research

questions raised. The hybrid model is classified within the set of compression

tools based on the results achieved. This chapter also discusses the limitation

of this approach and provides directions for future development and research. A

number of appendices support the experiments and the hybrid model processes

description.

Chapter 2

Technical Background

This chapter provides the basic knowledge of Markup Languages with partic-

ular attention to Extensible Markup Language (XML). The structure of XML is

discussed together with the basic components required to construct XML doc-

uments. In addition, simple examples are provided in order to clarify the dif-

ference and the use of these components in particular scenarios. The use of

application programming interfaces to obtain information from the XML data

are discussed together with the different methods to process information us-

ing tree and event based approaches. This chapter introduces standard lan-

guages to validate XML data, highlighting the difference between several val-

idation languages and the validity of XML data based on the well-formedness

of the structure. Metrics and classification are provided to categorise XML doc-

uments based on their content and structure. The second part of this chapter

introduces document compression as the domain area where XML is studied.

This part focuses on lossless compression applied to XML data and discusses

different techniques used in this area. This section provides the background

knowledge on compression tools, defined as XML-conscious which are specifi-

cally designed to compress XML data. The main features and classifications of

the most influential tools which will be evaluated in later chapters are described.

14

Chapter 2. Background 15

2.1 Markup Languages

Markup language is a specific way of annotating a document with syntax distin-

guishable from the main text. This language contains a syntactically different set

of text usually annotated with special characters which are needed to provide

specific instructions regarding the nature and scope of the document. Annota-

tions have the dual role of being used to inform users and instruct computers.

For this reason, these annotations are represented in a computer and human-

readable format.

Markup languages can vary depending on the purpose and area of use. There

are three main categories that can be distinguished when defining these lan-

guages (Coombs et al., 1987). Presentational is a type of language in which

the markup is used to inform authors and readers about the structure of the

text. As a result, it is possible to set a structure and then define characters that

are often hidden from the author to express paragraphs, chapters and other

typographic divisions in order to make the text visually readable. Procedural

can be defined as an explicit version of presentational markup. In a document

formatting scenario, the markup will provide a set of instructions defining the

typographic divisions that will be visible once the document will be processed

by a computer. Descriptive markup labels parts of text informing both readers

and machines on the use of the concerned text. Unlike procedural, the descrip-

tive markup focuses on encapsulating parts of text to specify its purpose or,

more technically, to relate sets of text to a particular class. This can be easily

recognised by the use of presentation semantics to represent the markup lan-

guage in a human-readable and understandable manner. The use of tags to

contain text is usually the form in which descriptive markup languages are rep-

resented. Examples of Descriptive Markup Languages are HyperText Markup

Language (HTML) and Extensible Markup Language (XML). These languages

are therefore commonly referred to as “languages of the Web”.

Table 2.1 provides an example of the three languages used to construct a para-

graph using LATEXand HTML as Procedural and Descriptive languages respec-

tively. A common feature of markup languages is the use of a specific set of

annotations to define how the data is to be presented. These predefined se-

mantics are used to provide a purpose to the text defined within the tags. In the

Descriptive example of table 2.1, <p> and
 are used in order to describe

Chapter 2. Background 16

TABLE 2.1: Types of Markup Languages

Presentational Procedural Descriptive
Lorem ipsum dolor sit

amet, consectetur adipisic-
ing elit, sed do eiusmod tem-
por incididunt ut labore et
dolore magna aliqua.

Ut enim ad minim veniam,
quis nostrud exercitation ul-
lamco laboris nisi ut aliquip
ex ea commodo consequat.

\hspace{1em}Lorem
ipsum dolor sit amet, con-
sectetur adipisicing elit,
sed do eiusmod tem-
por incididunt ut labore
et dolore magna aliqua.
\vspace{3mm} Ut enim
ad minim veniam, quis
nostrud exercitation ullamco
laboris nisi ut aliquip ex ea
commodo consequat.

<p> Lorem ipsum dolor
sit amet, consectetur adip-
isicing elit, sed do eius-
mod tempor incididunt ut la-
bore et dolore magna aliqua.

Ut enim ad minim ve-
niam, quis nostrud exercita-
tion ullamco laboris nisi ut
aliquip ex ea commodo con-
sequat.<p>

a “paragraph” and “break”. However, other markup languages such as XML

do not allow the use of predefined semantics. The lack of this feature allows

markup languages, with particular attention to XML, to be extended into other

areas including document representation, database storage, web services, and

user interfaces.

2.1.1 XML

XML is a standard for data storage and data exchange over the internet. It

has the ability to represent structured data in a human and computer readable

format and provide support for Unicode (Bray et al., 1998). Most of the features

of this markup language derive from Standard Generalized Markup Language

(SGML), an ISO standard used as the basis on which XML was built (Jelliffe,

2006). XML was designed to carry data that needs to be stored or transported

over networks. The use of predefined presentational semantics is one of the first

features in which HTML can be initially defined differently from XML. However,

these languages also differ by having distinctive goals, even though they can be

applied within the same domain. XML focuses on the data and is designed to

transport and store information while HTML, in conjunction with CSS, focuses

on the presentation of the data, how it is displayed and how it looks.

LISTING 2.1: Example of XML
<?xml version="1.0" encoding="UTF-8"?>
<email>
<from>Alyssa P. Hacker</from>
<to>Eva Lu Ator</to>
<subject>Subject of the email</subject>
<body>Content of the email</body>

</email>

Chapter 2. Background 17

Code listing 2.1 provides an example of an XML document containing tags such

as <mail>, <to> and <from>. These tags are not defined in the W3C stan-

dards, instead they are constructed by the author in order to structure the data

contained in the email. Code listing 2.1 represents an email document structure

with a self-descriptive design. One of the main feature of XML is the ability to

allow users to design their own structure in order to wrap information within the

markup language. The simplicity of XML is one of the key features that have led

to an expansion of this language in different areas of computing. Data stored

in an XML file is hardware and software-independent. This allows developers

to easily exchange data over the Internet using XML as default format between

heterogeneous applications. In addition, due to the extensibility and adaptiv-

ity of XML, this language has been successfully adopted in a number of other

fields as syntax to develop document formats and as a Domain-Specific lan-

guage (DSL). The ability to represent data structures has enabled the use of

XML in fields such as web services, database storage and network protocols

in order to develop applications which rely on a widely used and common lan-

guage. Extensible HyperText Markup Language (XHTML) is an example of how

XML has been successfully used to extend HTML and enable a well-formed

HTML-like document to be parsed as a XML document.

2.1.1.1 Structure of XML

Developed as a profile of SGML, XML can be defined as a subset of the original

language. The primary intention for which XML was developed, was to create

a lighter version of SGML for a more robust implementation to be used in the

World Wide Web (Jelliffe, 2006). Therefore, most of the main elements of this

language are still preserved in XML, except for some restrictions which are

allowed in SGML (Bray et al., 1998). The structure and well-formedness of

XML are defined by the W3C XML Working Group specifications (Bray et al.,

2008).

XML components can be categorised into two different subsets. Some compo-

nents enclose pure data that will be used to inform on the scope of the docu-

ment, whereas others are specific to the application that will process the XML.

Definitions and examples of main components are listed below.

Chapter 2. Background 18

LISTING 2.2: Simple XML BNF
1 document ::= prolog element misc*
2 element ::= empty_element | start_tag content end_tag
3 empty_element ::= ’<’ element_name (attribute)* ’/>’
4 start_tag ::= ’<’ element_name (attribute)*’>’
5 end_tag ::= ’</’ element_name ’>’

Element

Element is the technical name of a component formed by pairing of a

start tag and an end tag. Each XML document must contain at least one

element, i.e. the root, which can contain sub elements or a mix of XML-

valid components. Code listing 2.2 is a simplified version of how XML is

constructed using Backus–Naur Form (BNF) language, starting from the

document to the defined element structure. Element within the root must

be strictly nested with opening and closing tags. Element names are case

sensitive and can contain a variety of characters with exception of spaces.

Some restrictions are applied on the first characters of the element name

i.e. it cannot contain the XML letters, numbers or punctuation characters.

Empty elements can be used to define a document structure with null data

for a less verbose and more robust document.
<student> ... </student>

Attribute

These components are used in order to provide additional information that

is not usually related to the data contained within the XML. This informa-

tion can also be expressed using a child nested element. There are no

restrictions on using an attribute over a child element, however, because

of the limitations of these components, complex data that require multiple

values or a tree structure are best enclosed using element components.

Therefore, attributes are used in situations where information is static and

usually needed to provide additional information to the software in order

to support the element parsing. Attributes are defined inside the starting

element and mainly consists of an attribute name and value expressed

using an equal sign and double quotes for data value.
<student dob=‘‘...’’> ... </student>

Chapter 2. Background 19

Processing Instruction

Processing Instruction (PI) is an XML component aimed at informing the

application on the processing of XML. Data contained in PIs will provide

information regarding the processing, transformation, or query of XML. As

an option available for the misc* object defined in code listing 2.2 line 1, PI

can appear in any location and nesting level of XML document. Similar to

the prolog, aimed to inform the application about the version of XML and

encoding scheme, PIs are constructed by a single element starting with

“<?” and ending with “?>”. A language target and content are then pro-

vided within the tags in order to inform the application about the language

and the instructions respectively. This technique has been widely used in

order to embed information within XHTML and provide additional support

to the development of web pages.
<?php echo variable; ... ?>

Namespaces

Namespace is an advanced XML component defined in the W3C recom-

mendation. Namespaces are used to solve the ambiguity between ele-

ments with identical names in order to differentiate multiple categories.

For example, in an XML document containing an employee in multiple de-

partments, the developer utilises the tag <dept> to describe a specific

department within the system. However, ambiguities can arise when mul-

tiple <dept> tags can appear in the same nested level. Using element

tags with a prefix, it is possible to avoid conflict with elements containing

similar name but different data and meaning.

Namespaces must be defined in the parent node or inside the root node

if they are intended to be used globally across the entire XML document.

The namespace definition is constructed similarly to attributes, with the

attribute name defined as xmlns:prefix and the value of the attribute to

be URL for the namespace to be used as identifier. The prefix is then

used as prefix:dept to define its category and provide more information

regarding the data contained within the XML. Default namespace is a spe-

cific type of component where the namespace definition does not define a

prefix. In this specific case all elements which do not have a namespace

are linked to the URL defined in the default namespace definition. An ex-

ample of namespaces usage is given in code listing 2.3.

Chapter 2. Background 20

LISTING 2.3: Namespaces usage
...
<volumes xmlns=‘‘http://volumes/ns/1.0’’

xmlns:eng=‘‘http://volume/eng/1.1’’>
<volume id=‘‘ ... ’’>

<title> ... </title>
</volume>
<eng:volume id=‘‘ ... ’’>

<title> ... </title>
</eng:volume>

</volumes>
...

CDATA

Software processing XML data are able to traverse and validate docu-

ments by tracking starting and ending tags. However, some situations

require data containing illegal XML characters to be included into the doc-

ument. Character Data (CDATA) is the term used to identify an XML

component enclosing data to be ignored by the parser. For this rea-

son CDATA is able to contain illegal XML characters such as “<” “>” or

“&”. Opposite to Parsed Character Data (PCDATA) which is processed

by the parser, CDATA differ from comments as being a fundamental part

of the document to be ignored by the parser. For example, within the el-

ement ‘‘<student>...</student>’’ only the content of this element

will be processed as text. However, by using CDATA component to en-

close the student element, all the characters, including the markup, will be

processed as text.
<![CDATA[<student> ... </student>]]>

2.1.1.2 Application Programming Interface

Understanding how an XML document is parsed and the difference between

the following parsing techniques is essential to the development of a tool that

requires to process XML data. Knowledge of Application Programming Inter-

faces (APIs) can provide useful insight on the behaviour and performance of a

tool. Some of the limitations of this research derive from the use of a specific

API. These limitations are considered and discussed in future work.

Chapter 2. Background 21

As mentioned in the previous sections, XML is just a document containing

markup language. In order to obtain knowledge of the information contained

in the document, the XML file needs to be processed using software that is

able to recognise the markup and provide an application interface to handle el-

ements and other declarations. Event- and tree-based interfaces are two main

categories to provide APIs for XML processing.

Event-based

The Event-based approach is a stream-oriented API that allows the user

to access part of the XML tree sequentially. Simple API for XML (SAX)

(Megginson et al., 2001) is the standard developed in different languages

and used in various projects. This approach provides an API to operate on

part of an XML document without constructing an in-memory representa-

tion. Therefore, this implementation has very little impact on the memory

that is needed to process the XML. Using a SAX API, the user defines a

set of callback methods which will be called when a specific event occurs

during the XML parsing. Elements that construct XML files are therefore

managed as events based on opening and closing tags. A disadvantage

of SAX is the lack of a bidirectional parsing technique. Because there is

no memory representation of the data, it is not possible to access parsed

elements without processing the entire document again. However, cre-

ating a memory representation using an event-based parser or parse an

in-memory tree are the two techniques that are available in most SAX API.

This event-based approach is most suited when the user requires bits of

information that can be always retrieved in the same manner. For this

reason, SAX can be considered the best approach when parsing an XML

document for strings contained in elements or attributes with very little

impact on system resources.

Tree-based

The Document Object Model (DOM) is a type of tree-based API that al-

lows users to generate a memory representation of an XML document

(Nicol et al., 2001). Using this internal tree structure, users are able to

navigate the tree and retrieve information contained within the elements

and other components. An important aspect of a DOM parser is the pres-

ence of nodes which are the memory equivalent of elements. Users are

able to create and modify nodes from a tree structure with a bidirectional

Chapter 2. Background 22

parsing technique. Since the XML needs to be loaded in memory, this im-

plementation tends to have an impact on system resources starting from

files in the kilobytes range. However, this API is mostly needed in specific

situations, where a pragmatic representation of the XML file is needed to

access different parts of the tree at different times. A mature DOM API is

able to provide a memory representation for all the components available

in an XML file presented in a valid or non-valid format. Diagram 2.1 shows

an example of an XML tree and the relationship between nested nodes.

Using a tree-based API, users are able to navigate from any node and

retrieve information for as long as the tree is stored in memory.

FIGURE 2.1: XML DOM

The difference between a SAX and DOM parser mainly depends on the sce-

nario where these techniques are used. DOM is mostly needed for more com-

plex situations when the document needs to be loaded completely into memory

and accessed multiple times. Whereas, a SAX parser is mainly used to retrieve

simple information rapidly. The amount of memory needed to use SAX or DOM

also depends on the shape of the document. A SAX parser needs to store in-

formation regarding opening and closing tags in order to keep track of the depth

of the XML and report non-valid document. Hence, the memory needed to use

a SAX parser is proportional to the depth of the XML document. Instead, for a

Chapter 2. Background 23

DOM parser the amount of memory needed is proportional to the depth and the

length of the XML document.

Another significant difference between a SAX and DOM parser is the pre-processing

needed to operate the tree. A DOM parser will load the document entirely and

return an in-memory representation while a SAX parser operates sequentially

without being able to keep track of parsed data. For this reason, a SAX parser

tends to outperform a DOM parser in processing efficiency. In most scenar-

ios the full memory representation of an XML document is needed in order to

validate the document. For example, programming interfaces for declarative

transformation and query languages need to be able to access various parts of

the XML tree at different times.

2.1.1.3 XML Query and Transformation

Programming interfaces are also used to render, transform and query XML doc-

uments. Extensible Stylesheet Language (XSL) is a family of languages de-

signed to describe how to display a document. The concept of XSL is analogous

to Cascading Style Sheets (CSS) applied to HTML web pages. This language

provides the basic specifications for XSL transformation and query languages,

in most cases, using XML as the declarative language. XSL consists of three

main languages, XSL Transformation (XSLT), XML Path Language (XPath) and

XSL Formatting Objects (XSL-FO). There are a number of additional XSL family

related languages that have been developed for different purposes. XSLT is the

main language used to transform XML into other formats such as HTML, XML,

XSL-FO, Portable Document Format (PDF), PostScript (PS), Scalable Vector

Graphics (SVG) and other formats (Clark, 1999). XPath is used to navigate an

XML tree and return information stored in multiple XML components based on

the query (Robie et al., 2013).

XSLT

XSLT is a Style Sheet Language designed to transform XML document

into various formats. Due to the inheritance of XSL, a Style Sheet lan-

guage aimed to express the presentation of structured XML documents,

Chapter 2. Background 24

XSLT has been mainly design to transform XML into formats with presen-

tational semantics such as HTML. However, this language is able to trans-

form XML data into various formats such as plain text, PDF, PostScript or

a different XML structure. XSLT is able to transform documents by remov-

ing, adding, rearranging or sorting XML components such as elements,

attributes and other declarations. Because of the popularity of XHTML as

result of transformed XML, most web browsers support this language ac-

cording to the W3C recommendation. XML documents can be converted

into different formats by defining an external reference to an XSLT docu-

ment. For example, a structured XML file of a catalog can reference an

XSLT document which collects some of the information and displays them

in an HTML page. Once opened with a browser, the XML will be converted

into the XHTML format and displayed using the HTML presentational se-

mantics.

One of the features available on XSLT is the ability to search for informa-

tion contained in the XML document. However, this feature is not native

to XSLT but is imported from the XPath language. The use of this lan-

guage allows XSLT to search for information within large XML files adopt-

ing XPath as sub-language for information retrieval. One of the issues

that has been solved during the development of XSLT is the support for a

streaming transformation, a technique to parse an XML document without

creating an in-memory representation. As mentioned in the previous sec-

tions, a DOM parser loads an entire XML document into memory enabling

easy information retrieval with a bidirectional parsing technique. However,

due to the implementation of XML in fields such as database storage,

constructing large documents in memory requires a large amount of re-

sources. For this reason XSLT 3.0 implemented a streaming transforma-

tion and various improvements to handle large documents (Kay, 2012).

However, because of the increasing complexity between the three ver-

sions, software capable of parsing these documents are mostly based on

the XSLT 1.0 specifications123.

1Veillard, D. The XSLT C library for GNOME - http://xmlsoft.org/XSLT
2The Apache Xalan Project - http://xalan.apache.org
3Microsoft 2013, XSLT for MSXML - http://msdn.microsoft.com/en-us/library/ms759204.aspx

Chapter 2. Background 25

XPath

XPath is a Query Language designed to perform queries on XML docu-

ments. This language is used for selecting nodes and returning the in-

formation contained within XML components. Because of this important

feature, XPath is at the basis of most of the XML-related programming in-

terfaces for easy information retrieval and computation. The expressions

used in order to traverse documents are similar to those employed in tra-

ditional file systems to navigate between sub-folders. Using these expres-

sions, users are able to navigate between nodes without knowledge of the

XML structure. However, knowledge of the document enables users to

narrow the query using predicates to select the desired nodes from a list

of children. In addition, with a similar DOM implementation, XPath is able

to move between XML components, returning the parent node, siblings,

children and attributes of a current node. Operators and functions to per-

form operations on the element data type are enabled on the 1.0 version

and most of the programming interface libraries. These features allow

XPath to perform queries and additional basic operations on the returned

data types.

2.1.2 XML Validation

This section provides an introduction to validating XML data. Validation is an

important aspect of this research as it allows the compression of XML using the

fixed length encoder. Knowledge of the components and structure of validation

techniques will be necessary in later chapters when discussing the proposed

tool.

This research defines “XML validation” as those techniques that ensure a cor-

rect structure and well-formedness of XML documents (Bray et al., 2004). As

a verbose language with redundant data, the possibility of users entering erro-

neous data or using an undefined structure is high. This scenario can also be

applied when an XML document is constructed using a specific API by gathering

data from users or machines. Additional error checking must be implemented

in order to monitor the range of the data that has been passed by a front-end

application. Using the components rules defined in the previous section, a valid

Chapter 2. Background 26

XML document should not contain data outside tags or markup characters en-

closed without specific components. The document structure must be logically

and physically valid in order to meet the XML specifications. XML components

explicitly declared using valid markup such as element, PI, comment, decla-

ration etc., form the logical structure of the document. The physical structure

instead is constructed by entities such as document entity which defines the

starting point of an XML processing.

An XML processor should, at user level, report non-valid XML documents whether

the error occurs within the logical structure or the physical structure. It is possi-

ble to distinguish between two types of validation processors, validating and

non-validating. A validating process will parse both structures reporting er-

rors contained in all the entities and any violations of the specification. A

non-validating approach will process both structures, report errors contained

in all available entities, however, it will not report a violation of the specification.

These approaches are available in most XML programming interfaces provid-

ing support to easily enable validation of the XML. While the well-formedness

constraints of a document are defined by the XML specifications, validity con-

straints are defined within additional internal or external structures. The two

main approaches to define additional constraints to the data and the structure

are Document Type Definition (DTD) and XML Schema (Thompson et al., 2004).

2.1.2.1 DTD

A DTD entity declares the structure of an XML document by defining a list of

legal elements. This entity was imported into the XML specification as a subset

of the original language SGML where it was used as prologue. A DTD is used

to validate the structure of a users XML document or to agree on a specific

structure between homogeneous applications over the internet. A DTD can be

included in an XML document using an external or internal entity. Using an

internal entity, the structure and hierarchy of the document is defined before the

root node using the DOCTYPE definition. An example of a DTD file to validate

the code listing 2.1 is shown below as an internal entity. The external entity

defines a link to a physical storage using DOCTYPE definition with the path

to the external DTD document. Using a Uniform Resource Identifier (URI) the

Chapter 2. Background 27

declaration can link to a DTD on the web that will be downloaded and parsed

during the validation process.

LISTING 2.4: Example of DTD
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE email
[
<!ELEMENT email (from,to,subject,body)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT body (#PCDATA)>
]>
...

From the DTD point of view, the XML document is constructed using a subset of

what the document can contain. DTD can recognise and apply constraints on el-

ements, attributes, entities, PCDATA and CDATA. A DTD was primarily designed

to provide information to the authors to facilitate the creation and modification of

documents. For this reason a DTD file should not be overly complicated so they

do not become hard to design and maintain. A DTD provides a set of allowed

element type declarations which specifies the possible content of an element

node. Structurally, a DTD can apply restrictions to the shape of the XML by

defining the allowed sub-elements and their logic. Elements can appear in se-

quence or choice using comma “,” and pipe | characters respectively. Using the

+, * and ? characters, it is possible to emulate the logic of BNF document and

define when an element can contain one or more, zero or more and one or zero

occurrences of elements. These quantifiers can be used next to the element or

next to a set of mixed elements. #PCDATA is used in order to restrict an element

to contain parsed character data. Using EMPTY and ANY the authors can describe

when an element is empty or when it can contain any XML components such

as child elements or text.

2.1.2.2 XML Schema

XML Schema is one of the XML schema validation techniques defined as the

W3C recommendation (Sperberg-McQueen and Thompson, 2000). Similar to

DTD, XML Schema defines the structure and shape of XML documents in order

to validate elements and text of the XML. The main difference with DTD is the

Chapter 2. Background 28

language used to define the set of rules to which the XML must conform. While

DTD is written in a subset of SGML BNF-like language, XML Schema is XML-

based allowing the parser software to use XML parsing techniques. This feature

of XML Schema allows users to avoid learning new languages and to use XML

editors to manipulate both documents. XML DOM can be used to create an

internal tree structure of the XML Schema and to transform it using XSLT. In

addition, XML Schema is only available as an external entity, linked to the XML

using a URI to a local or web resource. XML Schema is commonly referred to

as XML Schema Definition (XSD) in order to avoid confusion related to the use

of the same term to define XML schema languages.

The major advantage of XSD is the extensibility that is allowed by the use of this

language to validate XML. It is possible to reuse the same Schema to validate

multiple documents stored in a database or to reference multiple XSD files in

different sections of the XML. Another powerful feature of XML Schema is the

ability to define custom data types based on standard types. Users are able to

apply additional constraints to standard data types by adding restrictions such

as enumeration, total digits number, length of characters, patterns using regular

expressions or white space control. For this reason XML Schema is mainly

used in those situations where the well-formedness of XML and the element

rules defined in DTD are not sufficient. In order to define the structure and data

of XML, XSD is composed using simple and complex types.

Simple Type

Simple types are used to define those elements that can only contain data

in text format. This is the lowest format to which an element can be ex-

pressed in by defining the data which is allowed to contain. Simple types

can be defined as one of the most powerful features of XML schema as

they apply constraints to improve the data format and allow a restricted

set of rules. XML Schema contains a set of built-in data types to apply

minimum restrictions on string, integer, decimal, boolean, date and time.

Using the restriction indicator, users are allowed to apply additional con-

straints on the data such as enumeration, pattern or length. Elements

containing attributes are defined as simple types although the inclusion of

attributes defines a complex type. The restrictions available on the ele-

ment data are also available for attributes and for all the XML declaration

requiring data.

Chapter 2. Background 29

Complex Type

Complex types are used to define elements containing nested elements,

data as text, both nested elements and data, or empty elements. Complex

types define how the elements are structured in a nested sequence. XML

Schema indicators are used to control the document by defining the order,

occurrence and grouping of elements. The indicators sequence, choice

and all, are used to set rules on the allowed nested elements and their

appearance in the document. For example, the sequence indicator allows

elements to be displayed in the exact sequence as they are defined in

the XML Schema. The choice indicator defines a number of elements

where only one is to be chosen in the XML. Lastly, the all indicator, allows

any defined element to be used in any order only once. Occurrence and

grouping indicators are used in conjunction with the element to define how

often a specific element can appear and group sets of element.

One powerful feature of XSD is the ability of defining global simple and complex

types to be later used in one or more instances. However, this feature increases

parsing complexity. Because of the verbosity of this language, XSD documents

used to validate relatively simple XML files can quickly grow in depth and length

due to the redundant markup used to define the various indicators. Using global

types it is possible to avoid increasing the depth of the document, in order to

reduce maintaining complexity. Documents implementing this design method

firstly define simple and complex types and then refer to them using the ref

attribute within elements. Code listing 2.5 and 2.6 provide an example of XML

schema written using local and global types respectively.

Although it is defined as the successor of DTD, XML Schema is still not as

popular as its predecessor. The reason for this lack of success is related to the

complexity introduced by XML Schema.

LISTING 2.5: Example of XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="email">
<xs:complexType>
<xs:sequence>

<xs:element name="from">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:maxLength value="40" />

</xs:restriction>
</xs:simpleType>

Chapter 2. Background 30

</xs:element>
<xs:element name="to" type="xs:string"/>
<xs:element name="subject">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:minLength value="5"/>
<xs:maxLength value="25"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

LISTING 2.6: Example of XML Schema using global types
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- define global simple types -->
<xs:simpleType name="nameType">
<xs:restriction base="xs:string">
<xs:maxLength value="40" />

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="headingType">

<xs:restriction base="xs:string">
<xs:minLength value="5"/>
<xs:maxLength value="25"/>

</xs:restriction>
</xs:simpleType>

<!-- define global complex types -->
<xs:complexType name="content">

<xs:sequence>
<xs:element name="from" type="nameType"/>
<xs:element name="to" type="nameType"/>
<xs:element name="subject" type="headingType"/>
<xs:element name="body" type="headingType"/>

</xs:sequence>
</xs:complexType>

<!-- main element-->
<xs:element name="email" type="content">
</xs:element>

</xs:schema>

2.1.2.3 XML Information Set

The well-formedness and correctness of XML documents is based on a XML In-

formation Set (Infoset). Infoset defines an abstract data model describing a set

of rules detailing the properties of XML trees. A pre-defined data model allows

API developers to follow one specification, enabling users to switch between

different APIs without having to learn new data models. For example, Infoset

Chapter 2. Background 31

FIGURE 2.2: XML Information Set (Gudgin, 2004)

defines what information is considered relevant in an XML document. Empty

elements defined using opening and closing tags or a single self-contained tag,

are considered equivalent from the API point of view. The same would apply for

the use of different characters, such as the escape codes, which are used for a

specific task. Therefore is it possible to visualise an XML processing API and

higher-level language specifications such as XSLT, XPath and XML Schema to

be based on top of the XML Information Set. The latter will be based on top of

XML Namespace specification which is subsequently based on the Extensible

Markup Language. Diagram 2.2 provides a graphical hierarchical representa-

tion of the various specifications.

2.1.3 Metrics and Classifications

The following section classifies XML data into two major categories.

Chapter 2. Background 32

Document-centric

Document-centric focuses on the text of XML. Text data is the major part

of the document and can appear in any instance of the file. In addition

to standard XML components, element tags are mostly used when the

document needs to specify part of text, for example when a new paragraph

is created. Examples of document-centric XML are documents designed

for human reading, i.e. XHTML documents, DocBook, etc.

Data-centric

Data-centric is based on XML with a regular structure and an equal bal-

ance between data and tags. Element tags are used to divide data types

depending on the system requirements. These XML mostly represent

structured data and can be used as database representations. In this

category, there is a particular type of XML called structural documents.

These XML are based uniquely on XML structure (element tags) with no

data values. These documents are used to define a particular structure

and to test the performance of XML-conscious compressors. Textual doc-

uments, instead, are based on a minimal structure with the XML content

ratio consisting mainly of data values.

A further classification can be introduced based on the validity of XML doc-

uments. Both Regular and irregular documents are a challenge for XML-

conscious compressors which rely on a schema language. This issue arises

when a document does not validate against a schema or standard XML infoset.

2.2 Data Compression

The main objective of data compression is to remove unnecessary information

by encoding the original data into fewer bits. Data compression is widely used

in many areas of computing in order to overcome hardware limitations and im-

prove human interaction. These techniques are now used transparently and

are part of our everyday life. Source coding is the original term defined in elec-

trical engineering to describe the process of data compression (Lelewer and

Hirschberg, 1987; Shannon, 1948; Wade, 1994). The objective was to remove

the inefficient redundancy in order to reduce data transmission time or to re-

duce the amount of storage required. Overcoming hardware limitations is one

Chapter 2. Background 33

of the challenges of applying data compression. Processing data represented

in fewer bits reduces resource usage whether the information needs to be sim-

ply processed, stored or transmitted. A distinction between data and informa-

tion is vital to understanding data compression. Information is represented with

data, hence it is possible to convey the same information using different amount

of data. A highly efficient compressor can significantly reduce the size of the

original data depending on the technique used and the nature of the source.

A trade-off usually exists between compression size and compression speed

where higher levels of compression consume more processing time. However,

the resources required to achieve high rates of compression may not be avail-

able on a constrained device. The level of distortion and the resources required

to compress and decompress the data are also subject to the same trade-off.

For example, compressed video-conferencing data requires high computational

resources on both the encoder and decoder sides. If distortion is introduced to

improve speed, the quality of the original data is subject to deterioration.

Different fields in computing adopt a specific data compression category. Data

compression techniques are divided into two main groups: lossless and lossy.

Lossy data compression is mainly used in multimedia applications where the

quality of the source can be decreased without noticeable differences. These

compression techniques are able to achieve the lowest compression size by los-

ing information which can be discarded. Such techniques are usually applied to

FIGURE 2.3: Data compression techniques (Wade, 1994)

Chapter 2. Background 34

those areas of computing which are highly based on human interaction such as

audio, image and video compression. In contrast, lossless data compression

is applied in scenarios where the decoded data must convey exactly the same

meaning as the source. This compression technique is mostly applied to text

based information where the decoded version must be the replica of the origi-

nal. Statistical redundancy is the key to lossless compression techniques. This

inefficient extra bit of information is exploited in order to form a more concise

version of the original data. The statistical nature of the data is also used as a

reference to determine the limits of lossless compression. In the field of infor-

mation theory, this mathematical limit is defined as entropy (Shannon, 1948).

Opposite to lossy, the lossless approach is a reversible process which, due to

the nature of the compression, cannot achieve a compression size similar to

lossy techniques.

Diagram 2.3 illustrates the two branches of data compression named as re-

versible and non-reversible coding, each branch expands into various tech-

niques and further into specific algorithms.

2.2.1 Fixed and Variable Length Codes

Reversible (lossless) coding techniques shown in figure 2.3 can be categorised

into different encoding rules. These rules have been devised to achieve effi-

cient representations using the least amount of information. Fixed and variable

length encoding are the two main techniques to compress data in efficient bi-

nary formats. Other techniques, for example, are based on generalisation of

string coding. Variable length encoding techniques map source symbols into

variable number of bits depending on their frequency. Contrary, fixed length

coding applies a fixed number of bits for each of the source symbols. This fixed

number of bits is directly proportional to the amount of source symbol found in

the source data. The following table compares the length codes for the binary

representation of alphabet source symbols.

Chapter 2. Background 35

TABLE 2.2: Variable and Fixed length bit mapping

A B C M N

Frequency 32 23 18 13 11

Fixed Length 000 001 010 011 100

Variable Length 0 11 100 1010 1011

Below there are several examples of fixed and variable length coding techniques

to compress the alphabet source symbols below.

‘‘ABACMABACN’’

Using the rules defined in table 2.2, it is possible to encode the information

above using 3 bits for each of the source symbols. The amount of bits re-

quired to create this binary representation is calculated using d(log2(n))e func-

tion, where n is the total number of unique characters found. To encode 5 differ-

ent characters a fixed length encoder requires 3 bits of information as shown in

table 2.2. The same number of bits would be required to encode up to 8 different

characters. Therefore, it is possible to encode the string listed above in 4 octets

with 2 additional redundant bits as shown in the following binary representation.

A︷︸︸︷
000

B︷︸︸︷
001

A︷ ︸︸ ︷
00 0

C︷︸︸︷
010

M︷︸︸︷
011

A︷ ︸︸ ︷
0 00

B︷︸︸︷
001

A︷︸︸︷
000

C︷︸︸︷
010

N︷︸︸︷
100

null︷︸︸︷
00

FIGURE 2.4: Fixed length binary representation

Using this approach, very likely and very unlikely characters are represented

using the same bits of information. Therefore, the decoding process is a simple

operation as depicted in diagram 2.5.

Chapter 2. Background 36

A B C M N

0 1

0 1

0

0 1

1 0 1 0 1 0 1

FIGURE 2.5: Fixed Length Coding

Fixed length encoders are suitable to compress data where different source

symbols have an equal likelihood of appearing. However, where one or more

symbols have a different likelihood of appearing, a variable length coding tech-

nique is typically preferred. Using the information of table 2.2, the lowest binary

representation can be attributed to the most frequent source symbol or to those

more likely to occur. The string listed above can be encoded in 3 octets with 2

additional redundant bits as shown in the following binary representation.

A︷︸︸︷
0

B︷︸︸︷
11

A︷︸︸︷
0

C︷︸︸︷
100

M︷ ︸︸ ︷
1 010

A︷︸︸︷
0

B︷︸︸︷
11

A︷︸︸︷
0

C︷ ︸︸ ︷
1 00

N︷︸︸︷
1011

null︷︸︸︷
00

FIGURE 2.6: Variable length binary representation

The main challenge of this encoding mechanism is the reconstruction of the

binary representation. Defining source symbols with variable length codes can

result in decoding errors. For example, assigning code 01 to symbol A and code

0101 to symbol B, would result in multiple interpretation for bit stream 010101. To

solve this issue, basic variable length encoders implement prefix codes (Shan-

non, 1948). With this techniques, no codeword is a prefix of another codeword

thus simplifying the decoding process as shown in figure 2.7.

Chapter 2. Background 37

A

C

M N

B

0 1

0 1

0 1

0 1

FIGURE 2.7: Variable Length Prefix Coding

The idea around prefix codes is to find the optimal coding tree to minimise the

amount of bits required for the most common codewords. Frequent source sym-

bols require shorter codewords in contrast with rare source symbols. Various

optimisation techniques have been devised to construct an optimal coding tree.

The most popular is the Huffman’s coding technique which involves a bottom-up

approach to construct the optimal tree (Huffman et al., 1952). To highlight the

performance of Huffman coding additional source symbols have been added to

the previous string example.

‘‘ABCBABMANBCACDBDEEA’’

A Huffman coding tree is created by joining less frequent source symbols as

leaves thus assigning shorter codewords to more frequent ones. The frequency

table for the above string is provided below.

TABLE 2.3: Frequency Table

Source symbols A B C D E M N

Frequency 0.3 0.25 0.15 0.1 0.1 0.05 0.05

The frequency table 2.3 needs to be stored in the compressed format to recon-

struct the tree. The following figure analyses the generated binary representa-

tion constructed using the Huffman coding.

Chapter 2. Background 38

A︷︸︸︷
00

B︷︸︸︷
01

C︷︸︸︷
100

B︷ ︸︸ ︷
0 1

A︷︸︸︷
00

B︷︸︸︷
01

M︷ ︸︸ ︷
111 0

A︷︸︸︷
00

N︷︸︸︷
1111

B︷ ︸︸ ︷
0 1

C︷︸︸︷
100

A︷︸︸︷
00

C︷ ︸︸ ︷
10 0

D︷︸︸︷
101

B︷︸︸︷
01

D︷ ︸︸ ︷
10 1

E︷︸︸︷
110

E︷︸︸︷
110

A︷ ︸︸ ︷
0 0

FIGURE 2.8: Huffman binary representation

Figure 2.9 presents the coding tree used to decode the bit stream. During de-

coding, the tree is reconstructed using the frequency table information returning

the original format.

1

0.55

0.3:A 0.25:B

0.45

0.25

0.15:C 0.1:D

0.2

0.1:E 0.1

0.05:M 0.05:N

0 1

0 10 1

0 1 0 1

0 1

FIGURE 2.9: Huffman Coding

2.2.2 XML Compression

Section 2.1 discuss the structure of XML and how it can be used in a range of

different fields. As the popularity of this language continues to grow, the demand

for processing and storing has improved leading to a number of interesting re-

sults (Arion et al., 2007; Boncz et al., 2006; Cheney, 2006b; Ferragina et al.,

2006; Liefke and Suciu, 2000; Wang et al., 2007; Zhang et al., 2004). Software

capable of handling XML data efficiently has led to many advantages. The most

known and exploited are listed below.

• To minimise the size of the data to reduce disk space and network band-

width required to exchange XML data.

Chapter 2. Background 39

• To minimise the memory consumption required to process XML using ef-

ficient DOM parsing.

• To efficiently querying both compressed and uncompressed XML data.

XML compression refers to those techniques and algorithms which take advan-

tage of the verbose and redundant structure of XML to improve the compressed

size. Because of the nature of XML as markup language that needs to be pro-

cessed by machines, most of the available XML compression techniques focus

on lossless compression algorithms. However, lossy and near-lossless tech-

niques have also produced interesting results (Cannataro et al., 2001).

Traditional compression techniques described in diagram 2.3 can be success-

fully used to compress XML data. However, an XML specific compression tech-

nique is able to apply more compression beyond a typical lossless technique.

Knowledge of the structure of the XML allows techniques based on prediction

and statistical algorithms to apply a better compression. Similar work has been

conducted in the field of XML parsing. As described in section 2.1 a DOM

API needs to load an entire document into memory before being able to tra-

verse the tree. In the case of a large XML document, this process can use

more memory than the system resources can afford to allocate. Hence, several

researchers have proposed a more efficient parsing technique to reduce the

memory needed to create an in-memory representation of XML (Delpratt et al.,

2008; Wang et al., 2007).

A growing number of XML compression techniques have been proposed to

solve challenges related to compression ratios and computational resources

required (Augeri et al., 2007; Buneman et al., 2005; Cannataro et al., 2001;

Harrusi et al., 2006; Levene and Wood, 2002; Ng et al., 2006a; Sakr, 2008,

2009; Skibinski and Swacha, 2007; Toman et al., 2004). These techniques can

be categorised into three main categories listed in the following sub-sections.

2.2.2.1 General-purpose

As described in section 2.1, XML data is stored as a text file. General-purpose

compression techniques are therefore the first basic approach to compress XML

by treating the data as a normal text file (Cleary and Witten, 1984; Gailly and

Adler, 1999; Seward, 2000). These techniques are able to reduce up to 70% the

Chapter 2. Background 40

size of the original file (Sakr, 2009). The main advantage of these approaches

is the large amount of research conducted in the field of data compression, prior

to the work applied to XML data. Therefore, although the compression size is

not optimised for XML data, tools based on general-purpose compression tech-

niques are able to achieve faster compression times (Sakr, 2009). A number of

algorithms have been devised over the last decade to compress text data effi-

ciently. The most popular and efficient algorithms to which XML compressors

are usually based and tested against are gzip(Deutsch, 1996b), bzip2(Seward,

2000) and PPM (Cleary and Witten, 1984).

Gzip is based on the DEFLATE lossless algorithms which is a combination of the

Abraham Lempel and Jacob Ziv of 1977 (LZ77) and the Huffman coding tech-

niques (Deutsch, 1996a). LZ77 is a dictionary coder which compresses data by

replacing multiple occurrences of the data with references to a unique copy that

was already found in the uncompressed stream (Ziv and Lempel, 1977). Huff-

man coding is based on a variable length code table where the shortest code is

assigned to the most common source symbol (Huffman et al., 1952). A combi-

nation of LZ77 and Huffman coding is used for the DEFLATE algorithm which is

at the basis of many software and hardware encoders. The Lempel–Ziv–Markov

chain algorithm (LZMA) is based on LZ77 and features a higher encoding ratio

compared to other lossless compression algorithms (Pavlov, 2015). LZMA is

at the basis of the 7z format used for 7-ZIP4, a relatively new open source file

archiver.

Bzip2 is based on several layers of compression techniques with the Burrows-

Wheeler algorithm at its core. The Burrows-Wheeler transforms (BWT) char-

acter strings by changing the order of the characters where the result will have

several repetitions of single characters in a row. This algorithm allows an in-

crease compression by repeating the number of characters of a string. Bzip2 is

often compared to gzip and other variants. The compression size is more effi-

cient than compressors based on DEFLATE algorithm, however bzip2 is slower

in compression time (Sakr, 2009).

PPM is an adaptive statistical data compression technique based on context

modelling and prediction and it is at the basis of many XML-conscious com-

pressors. This algorithm is able to predict the next symbol in the stream using

a set of previous symbols found in the uncompressed stream. PPM is a simple
4The 7-zip file archiver - http://www.7-zip.org

Chapter 2. Background 41

and efficient compressor, however due to the nature of the algorithm it is also

the most computationally expensive.

Gzip, bzip2 and PPM are three of the most common compression algorithms

that are used at the basis of XML compressors. To evaluate the performance,

these tools are usually compared against other compression algorithms to test

compression size improvements.

2.2.2.2 XML-conscious

This research defines XML-conscious techniques as those that consider the

structure of XML to achieve a better compression ratio. XML-conscious tech-

niques are optimised to work with XML and take advantages of the redundant

data to achieve higher compression ratios. In addition to the language format,

these techniques are also able to exploit the awareness of XML Schema lan-

guages in order to apply additional compression. Therefore, these methods

can be classified as schema informed and schema uninformed according to

their ability to access a schema language.

Schema uninformed

Schema uninformed refers to those techniques which consider the XML

language when applying traditional compression techniques. Based on

the structure and the simple design of the language it is possible to achieve

a better compression compared to text compression techniques (Cheney,

2001; Liefke and Suciu, 2000). This is possible due to the tree structure

non-local redundancy which, in the case of a structured XML document is

static and highly predictable.

Schema informed

A more advanced technique is able to access a predefined XML schema

language and apply more compression based on the knowledge of struc-

ture and data types of the XML. Several studies (Cheney, 2005; Girar-

dot and Sundaresan, 2000; League and Eng, 2007b; Subramanian and

Shankar, 2006) have developed techniques to apply additional compres-

sion using Schema languages such as DTD and recently XML Schema.

For example, by defining the types of XML elements that can be used in

Chapter 2. Background 42

a specific node, it is possible to predict the structure and avoid encod-

ing data that is defined in the schema language. In the case of an XML

schema, it is also possible to define constraints to the data type and recog-

nise data such as a MAC address which can be then treated as a group

of two hexadecimal digits. Some issues are related to the availability of

the schema language when compression is used across heterogeneous

networks. Both the sender/encoder and the receiver/decoder must have

the same schema language in order to exchange the document.

2.2.2.3 Queriable

Queriable techniques refer to a branch of XML-conscious compression capa-

ble of performing queries over the compressed format (Buneman et al., 2003;

Ferragina et al., 2006; Ng et al., 2006b; Tolani and Haritsa, 2002). This abil-

ity is vital for those resource-restricted applications and constrained devices

which cannot afford to decompress the entire document. Because of their na-

ture, compression ratios are worse compared to XML-conscious and general-

purpose text compression. However, the main purpose of these techniques is

to avoid compressing entire documents in order to perform queries at compres-

sion speed and time costs. These categories are used in accordance to the

environment where they have been applied. As mentioned in the previous para-

graph, some resource-limited systems might not be able to afford to decom-

press an entire document and perform queries because a DOM parser might

require an excessive amount of memory. At the cost of additional processing

time, Schema-informed techniques are able to achieve higher compressed for-

mats which are highly desirable when network bandwidth is the true bottleneck

of the system. Alternatively, general-purpose techniques are used for their fast

memory-efficient encoding mechanisms. However, as it will be discussed fur-

ther towards the end of this chapter, the nature of the document can have a

major impact on the efficiency of XML compression.

2.2.3 Features and Classification

Previous section categorises several compression techniques based on their

ability to support XML queries and schema languages. The main objectives of

Chapter 2. Background 43

FIGURE 2.10: Features and classification of XML Compression

these techniques have been identified together with the areas which are cur-

rently being exploited. Further features and classifications can be introduced

based on software and its ability to process XML, considering data and struc-

ture as two separate components. As discussed in section 2.1, markup is highly

distinguishable from the main text. In addition, due to the simple and efficient

structure of valid XML documents, it is possible to concisely represent XML into

different formats. This led to the idea of separating XML data from the structure.

This idea has produced interesting results particularly with the use of the XML

schema language to support compression.

2.2.3.1 Homogeneity and Homomorphism

Diagram 2.10 illustrates the various classifications of XML compression tech-

niques with the corresponding software implementations. The diagram includes

two further classifications for specific software. These classifications are based

on the software ability to treat XML data and structure as two separate com-

ponents. Practically, each XML-conscious technique can be further classified

based on how XML data is processed. Two main classifications are listed below.

Chapter 2. Background 44

Local homogeneity

Techniques based on local homogeneity properties treat XML data and

structure separately. Based on their path and data type, data values are

stored into semantically related containers which are then compressed

separately. Diagram 2.11 shows an example of using the local homogene-

ity implementation to compress an XML document. A binary codeword is

assigned to the XML structure such as start tags and attributes. This

powerful feature was firstly introduced by XMill (Liefke and Suciu, 2000)

to compress XML documents more efficiently. This idea has been later

expanded to improve compression by introducing a container language to

apply custom policies to separate data values into multiple components.

However, this aspect of the system highly relies on human intervention

and its document’s data type knowledge to increase compression. Stor-

ing data values into semantically related containers is the major advan-

tage of local homogeneous applications. General-purpose compression

is applied to the set of containers based on the nature of the data. Each

container can be compressed using different compression schemes. This

allows compression to be applied to a group of semantically related data

values and increase the overall compression. Furthermore, more spe-

cialised compression can be applied to specific data types such as date,

MAC address, IP or URL formats.

Homomorphic

Homomorphic compression techniques retain the original structure of an

XML document. Differently from homogeneous techniques, the final data

format of this approach preserves the document structure and data values.

The structure preservation allows this technique to perform additional op-

erations that can be executed on the compressed format. This feature was

FIGURE 2.11: Local Homogeneity of XMill compression (Sakr, 2011)

Chapter 2. Background 45

initially introduced by the XGrind compressor (Tolani and Haritsa, 2002),

which also allows queries to be performed on the compressed format. In

addition to queriable application, homomorphic compression techniques

allow indexing and updating on the compressed format. Code listing 2.7

and 2.8 are examples of how a homomorphic application encodes XML.

The XML document in code 2.7 is compressed using code 2.8 format,

where the structure of XML is replaced with binary codewords and the

data values are encoded using the application default compression algo-

rithms. A powerful feature for applications with homomorphic properties is

the ability to use a schema language to validate the XML documents. This

allows applications that are required to perform validation and queries on

XML to compress and extract data more efficiently. Because of the nature

of these techniques, compression ratios for techniques with homomorphic

properties are lower compared to different approaches.

LISTING 2.7: Example of XML

document

<?xml version="1.0" encoding="UTF-8"?>

<email date="08/10/13">

<from>Alyssa P. Hacker</from>

<to>Eva Lu Ator</to>

<subject>Subject of the email</subject>

<body>Content of the email</body>

</email>

LISTING 2.8: Example of Homo-

morphic compression

T0

A0 encode(08/10/13)

T1 encode(Alyssa P. Hacker) /

T2 encode(Eva Lu Ator) /

T3 encode(Subject of the email) /

T4 encode(Content of the email) /

/

2.2.3.2 Online and Offline Compression

A final classification is based on the ability to operate in an online or offline

manner. Online compressors are able to stream the compressed format to the

decoder, which is capable of decoding the stream without the need of receiving

the entire file. On the other hand, Offline compressors do not operate on a

stream basis. The decoder must receive the full compressed format in order to

be able to decompress the document. A number of researchers (Muldner et al.,

2012; Müldner et al., 2005) have suggested the use of online and offline com-

pression for specific areas. In more detail, the use of online compressors was

found effective to decrease the network latency and improve scalability. The use

Chapter 2. Background 46

of offline Schema-informed compressors, instead, has proven to achieve com-

pression ratios beyond Schema-uninformed approaches. Therefore, this tech-

niques have been adopted in scenarios where minimising the size of the data

that needs to be communicated or stored is crucial. Offline compressors are

also used in scenarios where the data needs to be validated against a schema

language. In conclusion, use of one compressor over another highly depends

on the scenario where XML compression is applied.

2.3 Summary

This chapter provides the technical background on markup languages and data

compression for XML. The first part discussed how XML became a standard for

data storage and exchange over the Internet thanks to its extensibility properties

and human-readable format. Various components of XML have been discussed

by providing simple examples to specify the use of one particular component for

a specific task. Basic components such as element and attributes have been

covered together with more advanced ones such as PI and namespaces. This

knowledge provides a good understanding of how XML components work to

form structured documents with hierarchical properties. This chapter discussed

the use of application programming interfaces API to extract knowledge from

the XML document which are simply presented as standard text files.

Event-based and tree-based APIs are the two main approaches for XML pro-

cessing used in different fields depending on the requirements of the appli-

cation. Issues related to processing times and system resources required to

process XML documents have been highlighted for both event and tree-based

APIs. Extensible Stylesheet Language XSL is introduced as a family of lan-

guages designed to describe how XML information is presented. Two major

derivatives of XSL, implemented in later chapters, are discussed as additional

APIs. The first section on the chapter also focused on XML validation tech-

niques. A number of techniques used to ensure a correct structure and well-

formedness of XML documents have been defined. Examples for DTD and

XML Schema are provided to demonstrate the difference between these two

major validation techniques and the features of each language. This section

discussed two types of validation techniques and how XML processors work

Chapter 2. Background 47

on reporting non-valid XML documents with errors on the logical and physical

structure.

The second part of this chapter introduced data compression with particular

emphasis on lossless compression algorithms. Examples of fixed and variable

length coding techniques are provided in order to demonstrate the encoding/de-

coding processes. Different techniques which have been used to compress

XML documents are discussed. General-purpose techniques are the first basic

approach to compress XML by treating data as normal text file. By investing

more processing time, XML-conscious techniques exploit knowledge of XML

structure and data types to increase the compactness of the compressed for-

mat. Finally, this chapter concludes by defining various features and classifica-

tions of XML-conscious compressors which will be evaluated in later chapters.

Chapter 3

XML Compressors and Analysis of
XML Data

This chapter is divided into two main sections. The first section investigates

the architecture and implementations of various XML compression tools. The

advantages and disadvantages of each major compressor are discussed using

features and classifications described in Chapter 2. Special attention is given

to tools with higher complexity and deployed implementations. This section de-

scribes the most influential technologies from which current compressors have

evolved, identifying the additional benefit that each tool has introduced. A num-

ber of additional XML compressors, classified as query-friendly and back-end

encoders, are discussed. Furthermore, a summary of the work analysed in

this section is provided. Each tool is classified according to the specification

described in the previous chapter and thoroughly analysed to highlight the soft-

ware complexity. Finally, this section revisits the research goals and objectives

of the thesis.

The second section of the chapter focuses on the analysis of XML data. A

number of research papers are evaluated to understand the statistics for dif-

ferent types of XML documents. Based on these results, this section presents

an analysis of current structures for XML documents and their validation lan-

guages. The chapter concludes with an analysis of XML compressors based

on knowledge of XML data.

48

Chapter 3. XML Compressors and Analysis of XML Data 49

3.1 XML Compressors

A number of compressors have been developed over the last decade to over-

come the issues related to the verbosity and redundancy of XML. This section

describes a number of prominent XML compressors including work based on

the extension of compression algorithms and serialisation formats. This work

focuses on tools written in native languages with code publicly available. The

scope of this research is related to the ability of running an application over

multiple machines including low-powered devices based on reduced instruction

set computing (RISC) and advanced RISC machines (ARM) to more complex

instruction set architectures. Applications evaluated in this section are general-

purpose, XML-conscious and schema-informed using one or many back-end

algorithms to tackle specific issues related to the use of XML. For each tool this

study describes the domain where the application is introduced and the com-

pression ratio improvements achieved on its data set. Finally, the findings are

summarised by revisiting the properties and results of each tool.

3.1.1 XMLPPM

XMLPPM (Cheney, 2006c) is one of the most influential statistical approaches

to compress XML data. XMLPPM is a streaming compression tool that uses

Prediction by Partial Matching (PPM)(Cleary and Witten, 1984), a data com-

pression technique based on prediction (Cheney, 2006b). This model is based

on an adaptive statistical technique defined as Multiplexed Hierarchical Mod-

elling (MHM). Using a local homogeneous format, XMLPPM is able to achieve

higher compression rates with noticeable improvements in processing time com-

pared to other statistical compression techniques. However, although it has

been shown that PPM back-end compressors are efficient, these tools usu-

ally use more computation resources (Augeri et al., 2007; Sakr, 2008, 2009).

PPM can compress between 10-25% more than dictionary based compression

tools (Sakr, 2009). Using the eXpat1 XML parser, this tool generates a stream

of events which are subsequently encoded using a byte-code representation.

XMLPPM is based on two main concepts: Encoded SAX (ESAX) and the use

of separate PPM models. ESAX is a more succinct representation of a SAX
1The Expat XML Parser - http://expat.sourceforge.net

Chapter 3. XML Compressors and Analysis of XML Data 50

encoding which unlike other representation is able to perform encoding and de-

coding online in order to process data incrementally. Four PPM models are

maintained for elements, attributes, characters and miscellaneous data respec-

tively. Due to model splitting used to aid prediction, accuracy and the local ho-

mogeneous property of XMLPPM are lost. To recover, element context symbols

are injected into the corresponding modules.

FIGURE 3.1: XMLPPM Architecture (Cheney, 2005)

Figure 3.1 illustrates the architecture of XMLPPM divided into the three main

stages. XMLPPM demonstrate that the knowledge of the XML is essential to

achieve higher compression rates over PPM compressors. First of all, element

and attribute names are tokenized, improving speed for the low-level compres-

sor. In addition, the use of models and XML knowledge to differentiate statistical

characteristics is found effective to improve compression. However, this level of

optimisation to apply knowledge of XML comes at a cost. XMLPPM is consid-

erably slower compared to gzip and bzip2 compressors.

In summary, XMLPPM applies ESAX stream and prediction by partial match-

ing using different models. Using a specific encoding scheme, it is possible to

compress XML data efficiently. However other encoders can also be used to

produce similar results(Cheney, 2001). Based on the experiments performed,

this technique is able to improve compression between 5% to 30% more com-

pared to other tools with homomorphic properties.

Chapter 3. XML Compressors and Analysis of XML Data 51

3.1.2 DTDPPM

DTDPPM is an experimental extension of the work conducted on XMLPPM

which offers compression improvements for relatively small and highly-structured

XML files by incorporating extra knowledge from a DTD (Cheney, 2005). This

work focuses on the use of DTD to improve compression based on the struc-

ture knowledge of XML documents. DTD was chosen over other schema lan-

guages because of its simplicity and wider use during the tool development.

As discussed in the previous chapter, DTD is still widely used today due to its

simplicity and the complexity introduced by its successors i.e. XML Schema.

In addition, these tools highly depend on XML parsing libraries which offer full

built-in support for DTD.

DTDPPM introduces four levels of optimisation on top of XMLPPM due to the

use of a schema language and the possibility to validate XML during compres-

sion. These optimisations are listed below.

Ignorable whitespace stripping

Whitespaces are often irrelevant for XML files. A structured XML file will

contain a number of whitespace outside the element tags used for inden-

tation purposes and to understand the document’s hierarchical structure.

DTDPPM defines these as ignorable whitespaces. This feature is allowed

thanks to the use of a DTD language which provides knowledge of XML.

Whitespace removal is essential to the compressor in order to prevent

losing track of the context. Additional stripping is performed in the pres-

ence of an element containing whitespaces which are not mentioned in the

DTD. Using the parser library, whitespaces and newlines are then recre-

ated during decompression. This optimisation is optional, enabling users

to preserve structural and content whitespaces.

Symbol table reuse

This second level of optimisation is specifically aimed for structured doc-

uments. Small XML documents are usually those that suffer poor com-

pression ratios in most general-purpose and XML-conscious techniques.

This is due to the additional information, such as frequency table, general

purpose algorithms include into the compressed format. The symbol table

reference needed in XMLPPM to be dynamically built by the encoder and

Chapter 3. XML Compressors and Analysis of XML Data 52

decoder can be referred from the DTD. Using this feature, it is possible to

avoid transmitting the symbols inline and make full use of the DTD.

Element symbol prediction

This feature is based on the idea of omitting symbols that can be predicted

from the context. In the case of highly-structured data, parent elements

have a specific list of children allowed sequentially. In this case the byte

code of the predicted child element is omitted as the decoder can extract

it from the context. Although this technique may seem a natural way of

exploiting the DTD knowledge, DTDPPM fails to present significant results

for this optimisation feature.

Bitmap-based attribute list encoding

The last optimisation introduced by DTDPPM is aimed at the use of the

DTD file to improve compression for attribute components. Based on the

idea that attribute value pairs are irrelevant to the presentation of XML, at-

tribute lists can be rearranged to improve compression. Using DTD decla-

ration of attributes, DTDPPM demonstrated the possibility to use attribute

type and specifications such as #FIXED, #REQUIRED and #IMPLIED to

encode attribute lists indicating which attributes are present and subse-

quently send the corresponding values.

The performance of DTDPPM is evaluated on five corpora differing by size and

structural content (Cheney, 2005). The results demonstrate compression im-

provement for small, highly-structured XML files. However, for large documents

DTDPPM does not show improvements over XMLPPM. Similar to XMLPPM,

this schema-informed approach is considerably slower compared to general-

purpose compressors.

3.1.2.1 XMLPPM Extension

Variants of XMLPPM and DTDPPM have been developed, however, their effi-

ciency varies according to the scenario where these tools have been applied

(Cheney, 2006b; Skibinski and Swacha, 2007). Most of these tools are aimed

at document compression and do not provide an API for further use. SCMPPM

Chapter 3. XML Compressors and Analysis of XML Data 53

(Adiego et al., 2004) is a variant of XMLPPM based on Structural Context Mod-

elling (SCM). None of the work based on XMLPPM manages to show a signif-

icant level of improvement over XMLPPM which remains the best approach to

compress XML using multiplexed hierarchical modelling.

3.1.3 XMILL

XMill (Liefke and Suciu, 2000) is the first tool to introduce an XML-conscious

compressor with local homogeneity properties discussed in Chapter 2. Similar

to XMLPPM, XMill is based on existing general-purpose compressors in or-

der to encode data efficiently using the best available compression algorithms.

In addition, XMill introduces the ability to compress data types with specific

compressors based on user knowledge of XML. Results demonstrate a sub-

stantial increase in compression with almost half the size of general-purpose

compressors without drastic effect on compression speed. XMill successfully

demonstrate the possibility of including XML-consciousness on top of general-

purpose compressors without a negative impact to overall speed. This level

of abstraction is achieved thanks to the extensive knowledge of the back-end

compressors and their ability to achieve higher compression rates when pre-

sented with homogeneous data. Exploiting the self-describing nature of XML,

XMill decides which compression algorithm to apply using XML tags. Results

demonstrate that by using knowledge of the data types, it is possible to trans-

late raw data into XML structures and improve compression. The unusual idea

of expanding data to a structured markup language has demonstrated effec-

tive compared to general-purpose compressors. For example, instead of being

treated as strings, data such as IP, date and fixed content types can be com-

pressed more efficiently. IP can be stored as four bytes, and fixed content types

can be factored out using enumeration.

XMill compression is based on three principles. The first principle is the sep-

aration of structure from data, structure such as opening, closing tags and

attributes are separated from the data which consists of the elements and at-

tribute values. After separating structure from data, XMill groups related data

items into containers which are compressed individually. For example, all the

data values from the <sender> element are grouped into a single container and

Chapter 3. XML Compressors and Analysis of XML Data 54

compressed. A semantic compression is finally applied to each of the con-

tainer individually. This specialised compression based on the nature of the

data values stored in the container, can be optimised with the aid of a container

expression language. The user is able to group data based on its knowledge of

the XML data type and apply semantic compression.

Compared to other compressors, XMill has a wider range of application. The

tool is targeted for two different areas: data exchange and archiving. It is possi-

ble to improve network bandwidth and reduce the space required to store data

by compressing XML. However, the clear limitation of the XMill approach is the

lack of positive results for small data sets. Results demonstrate lack of improve-

ment for XML files with sizes below 20KB due to the bookkeeping overhead

and the lack of an efficient back-end compressor to encode small containers

efficiently. For this reason, XMill can be categorised as a tool more suitable for

data archiving rather than data exchange.

Figure 3.2 illustrates the architecture of XMill. The XML file is parsed with a SAX

parser which streams tokens to the core of XMill. The path processor is the

main component which determinates where to send each token according to its

nature. Elements and attribute tags are stored in the structure container,while

data values are stored in others according to the nature of the data. Users can

apply knowledge of the data types and specify a compression algorithm using

the container expression. When a container reaches the size of 8MB, the data

values are compressed and stored on disk. Code listing 3.1 and 3.2 show an

FIGURE 3.2: XMILL Architecture (Liefke and Suciu, 2000)

Chapter 3. XML Compressors and Analysis of XML Data 55

example of compressing XML data and how the separation between structure

and content is maintained. The typical XML example used in this chapter has

been modified to demonstrate the use of the same container to compress the

message element.

LISTING 3.1: XML document

<?xml version="1.0" encoding="UTF-8"?>

<email date="08/10/13">

<from>Alyssa P. Hacker</from>

<to>Eva Lu Ator</to>

<message>Subject of the email</message>

<message>Content of the email</message>

</email>

LISTING 3.2: XMill Compression

T1 T2 C2 /

T3 C3 /

T4 C4 /

T5 C5 /

T5 C5 /

/

In summary, XMill is a powerful tool which applies existing compression algo-

rithms to XML. Using the zlib library as the main engine, it combines knowl-

edge of the XML data with semantic compression to achieve higher compres-

sion rates.

3.1.4 WBXML

Wireless binary XML (WBXML) was developed to improve performance over

wireless networks (Alliance, 2001; Martin and Jano, 1999) by reducing band-

width and the resources needed to process XML messages (Augeri et al., 2007;

Pak and Park, 2012; Werner and Buschmann, 2004). WBXML specification de-

fines a compact binary representation of XML data. This allows narrowband

communication channels to transmit data effectively by reducing the size of the

original data. Differently from XMill, WBXML is aimed specifically for data ex-

change with multiple software implementations (Jehanne, 2009) and libraries

(Bell and Jehanne, 2006) developed.

In contrast with compressor tools evaluated so far, WBXML does not depend

on a general-purpose compression library. The Wireless Application Protocol

(WAP) forum designed a specific algorithm to parse XML into a tree structure,

extract elements data and transmit it in accordance to a state machine at both

ends. WBXML is a schema-informed approach to compress XML. It highly de-

pends on the knowledge provided by the DTD file to encode data efficiently. In

Chapter 3. XML Compressors and Analysis of XML Data 56

addition, due to the common token string table in the preamble, it cannot be

streamed or pipelined. In summary, two major drawbacks can be highlighted

with the WBXML encoding technique. First of all, the algorithms only encode

the element tags, attributes and attribute values and it does not compress data

between element tags. The second disadvantage of WBXML is the common

string table in the preamble which interfere with online compression as both the

encoder and the decoder must share the same string table. For this reason

WBXML cannot perform well for highly-structured documents.

3.1.5 zlib

Zlib (Deutsch and Gailly, 1996) is one of the most popular general-purpose

compressors available today. This library is widely used in a variety of software

for commercial application and open-source projects. Zlib is the first approach

to compress XML data using a general-purpose tool. This library allows to build

applications without major dependencies to be used across different platforms.

Zlib is the basis of various high-level XML-conscious and archival compressors

which apply knowledge of the library and the data to enhance compression (i.e.

XMill). gzip (Deutsch, 1996b) is a well-known compressor based on the zlib

library. Because of its pervasiveness, either zlib or gzip are the standard tools

to which proposed compressors are compared and evaluated. Zlib is able to

compress files such as documents but also multimedia files such as video and

images (libpng depends on zlib for data encode and decode routines (Schalnat

et al., 2002)). This pervasive feature of zlib is possible due to the way it com-

presses files. It treats data as a stream of bytes without associating semantics

with the content. Light-weight implementations of this XML-blind compressor

(Adler, 2005) are capable of achieving excellent compression ratios. Compared

to XML-conscious compressors, zlib is able to achieve the highest encode and

decode speeds in most of the experiments described in various works (Sakr,

2009). Depending on the nature and size of the XML, these tools are able to

achieve similar encoding and decoding times.

The major drawback of using zlib to compress XML data is the lack of docu-

ment semantics. Although zlib is able to compress data efficiently, it is not able

to manage non-local duplication, which is highly frequent in XML. This property

is based on the presence of redundant data in different parts of the document

Chapter 3. XML Compressors and Analysis of XML Data 57

such as the opening and closing tags of the root element. In addition, XML data

is not interpreted as a markup language with a range of data types, but is com-

pressed as strings. This is the issue XMill tried to solve by introducing semantic

compression. It demonstrates the efficiency of sorting data into various contain-

ers and compress it separately based on the relational database column-wise

compression idea (Iyer and Wilhite, 1994). In addition, with the introduction of

atomic semantic compressors, it is possible to recognise data types such as

integer and apply binary encoding.

3.1.6 EXI

Efficient XML Interchange (EXI) is the approach recommended by the World

Wide Web Consortium (W3C) (Fablet and Peintner, 2012; Kamiya and Bournez,

2012; Schneider and Kamiya, 2011) to compress XML data. Using data type

information and constraints defined in the Schema file, EXI can significantly

reduce the size of an XML file using an algorithm that can determine what will

occur at any point of an XML file. This schema-informed compression utilises

either XML Schema, RELAX NG schema or DTD to optimize compression.

3.1.6.1 Design principles

EXI is designed on a basic algorithm to encode and compress XML data effi-

ciently. The generalised application of this algorithm is theoretically able to en-

code any language that can be described by grammar. EXI is optimised to work

with XML using its own built-in grammar with the possible aid of a schema lan-

guage. Using the features and classifications of XML compressors described in

the previous chapter, EXI can be described as both Schema-informed and un-

informed compressor, based on the availability of the XML schema. Since this

implementation requires the full compressed format in order to perform decom-

pression, EXI is only capable of performing as an offline compressor. Using

a schema-uninformed compression, XML data is encoded using a homomor-

phic compression technique. Both structure and data are compressed into byte

codes and optimised using string tables.

Chapter 3. XML Compressors and Analysis of XML Data 58

The main objective of EXI is to generalise the number of applications that can

communicate with XML data using an efficient encoding. The idea is to have

a minimal system and an elegant approach to expand the use of EXI to low-

powered embedded devices. Efficiency and flexibility are important design prin-

ciples to allow this level of optimisation. This flexibility allows any XML document

to be compressed without the risk of corrupting data. This feature is designed

to work for fragments of XML and documents containing schema language de-

viations and user-defined data types for efficient encoding. EXI enables XML to

be efficiently used in a variety of environments. The light-weight implementation

of EXI has been used to solve issues related to network bandwidth (Castellani

et al., 2011). EXI Schema-informed approach managed to encode up to 97%

the size of the original data, providing a reasonable performance for the con-

strained payloads available on 6LoWPAN and similar networks (Shelby, 2010).

The basic concept of EXI is based on a hybrid approach using formal language

and information theory to devise a relatively simple algorithm. Here, a grammar-

driven approach is used to determine the likelihood of XML components to ap-

pear at any given point. Subsequently, the EXI stream encoder maps these

components to a stream of events using a set of event-codes (EC). To increase

compression, EXI events can be passed to the compression algorithm. This

algorithm is able to reduce the overhead, creating a compressed stream by

combining smaller channels.

3.1.6.2 Architecture

Data type Representations

EXI defines a set of built-in data types to represent data sets ranging from low to

high-level formats. The use of these data types is triggered only in combination

with a strict schema-informed approach. XML Schema data types provide infor-

mation regarding the value of each element enabling a better encoding mech-

anism. High-level formats are converted into the lowest encoding scheme. For

example, the Boolean data type is represented using an n-bit unsigned integer

where “1” represents true and “0” false. Higher level-data types are also repre-

sented using a mixture of lower types such as unsigned integers and boolean.

The same approach of breaking down high-level formats to multiple lower types

Chapter 3. XML Compressors and Analysis of XML Data 59

is used to represent strings. The string value is converted into an unsigned in-

teger representing the string-length and n-bit of unsigned integers representing

the Unicode for each single character. A string table is implemented to avoid

duplicating encoded strings and improve efficiency. Unique strings are stored

in the string table, duplicated strings are instead assigned a compact identifier.

Simple types can be mapped to a lower form constructed by boolean and un-

signed integers. The length required to encode an unsigned integer m in the

range of 4096 or smaller is represented as an n-bit unsigned integer where n is

equal to d(log2(m))e. For example, the integer 324 can be encoded into an n-bit

unsigned integer where n = d(log2(234))e = 9. A similar encoding rule is applied

to high level simple types which are encoded efficiently into an unsigned integer

form. Enumeration is a powerful simple type which is encoded using the same

equation. Enumerated values are encoded into an n-bit unsigned integer with n

equal to d(log2(m))e where m is the number of enumerated values listed in the

schema. For example, given 4 enumerated values, the length of the unsigned

integer in bits required to represent enumeration is equal to d(log2(4))e = 2. The

unsigned integer will represent the order or the items listed in the schema, 00,

01 and 10 will represent the first, second and third enumerated item respectively.

Encoding Example

Code listing below provides an example of a schema-informed encoding mech-

anisms using the XML and XSD files of Appending A code listing A.7 and A.8.

XML data A.7 is listed below to provide visual clues during the analysis of the

encoded format. XML data types are fully constrained using appropriate simple

types provided in code listing A.8.

LISTING 3.3: XML data

<?xml version="1.0" encoding="UTF-8"?>

<student>

<module>FuncProg</module>

<hours>48</hours>

<courses>CS</courses>

<ref>AABBCCDDEE</ref>

</student>

XML data of code listing 3.3 is compressed using an EXI recommended li-

brary available in (Garrett, 2012). The schema-informed compression provides

Chapter 3. XML Compressors and Analysis of XML Data 60

the following format listed in hexadecimal form. In addition, an additional bit-

analysis of the hexadecimal form is provided to demonstrate the encoding mech-

anism of EXI.

80 01 48 CE AD CC 6A 0E 4D EC E2 40 00 B5 57 79 9B BD C0

Header︷ ︸︸ ︷
10000000 00000001 01 0 01000 110︸ ︷︷ ︸

F

01110 101︸ ︷︷ ︸
u

01101 110︸ ︷︷ ︸
n

01100 011︸ ︷︷ ︸
c

01010 000︸ ︷︷ ︸
P

01110 010︸ ︷︷ ︸
r

01101 111︸ ︷︷ ︸
o

01100 111︸ ︷︷ ︸
g

0 0︸︷︷︸
+

010 010︸ ︷︷ ︸
18

0 0000 0000000︸ ︷︷ ︸
Enumeration

0 101︸︷︷︸
5

10101 010︸ ︷︷ ︸
AA

10111 011︸ ︷︷ ︸
BB

11001 100︸ ︷︷ ︸
CC

11011 101︸ ︷︷ ︸
DD

11101 110︸ ︷︷ ︸
EE

00000︸ ︷︷ ︸
Null

FIGURE 3.3: EXI binary representation analysis

From the analysis of the unaligned format presented in figure 3.3 it is possible

to highlight some of the features described in the previous sections. Two octets

are used to provide header information and to describe a sequence complex

type. Each data type is separated by a single bit represented using 0. String

characters are encoded using their 8-bit binary form. Encoding mechanisms for

enumeration are not consistent with the rules described in previous sections.

This inconsistent encoding can be related with issues to the EXIficient EXI li-

brary. Hexadecimal strings are encoded using one nibble, a 4-bit unit of digital

information, for each character instead of using an octet needed to represent

standard strings.

Compression

EXI is able to achieve high compression rates by encoding event streams us-

ing a compression algorithm. As result of a sequential encoding technique,

the event stream is a mixture of heterogeneous data. By leveraging knowl-

edge of both the XML and the compression algorithm, EXI multiplexes the het-

erogeneous stream into channels which can then be compressed more effi-

ciently. Similarly to the XMill idea of grouping homogeneous data into con-

tainers to be compressed individually, EXI groups the structure information as

event-code and values of the XML into different channels. In addition, to achieve

higher compression, XML values are grouped according to the element names.

Chapter 3. XML Compressors and Analysis of XML Data 61

Smaller channels are then combined with larger channels to keep a low over-

head. For example channels with few different element names are combined

into a single larger channel. This local homogeneous property of EXI is based

on knowledge of the DEFLATE compression algorithm. By creating a byte-

aligned representation of the event stream, the algorithm is more likely to iden-

tify redundancies in the octets compared to an unaligned format.

3.1.6.3 Limitations

Based on the specifications provided in the EXI format 1.0 documentation, it

is possible to highlight some of the limitations of EXI. Contrarily to research

that considers EXI to be a light-weight approach to achieve higher compres-

sion (Castellani et al., 2011), full implementation lacks simplicity. Most of the

XML aware compressors can be categorised as standard binary encoder such

as ASN.1 and WBXML or encoder based on general-purpose algorithms with

support for XML. To achieve compression sizes higher than existing tools, EXI

can implement both binary encoding and general-purpose compression. This

is achieved using a fixed and variable length encoder at different stages. This

level of complexity is therefore not suitable for constrained devices with lim-

ited resource capabilities. A second misconception is the idea of using the

binary format to avoid parsing time and resource consumption. This feature is

only available for a schema-uninformed compression, which does not leverage

knowledge of XML data types. If a schema-informed approach is used, the XSD

data types and user-defined custom types have to be recognised. To achieving

higher compression, the strict mode of EXI depends on the validity of these

data types. This requires the XML to be validated against the XSD. This pro-

cess intensive operation impacts the performance of the tool and its ability to

perform in a constrained environment based on current specifications.

When an XML value is mapped to a specific type, the value is transformed into

a lower format which is then converted into a sequence of octets. However, this

feature is only available for schema-informed techniques and it is not supported

for the uninformed approach. As an encoder, EXI is not able to detect XML data

types without the knowledge provided by the XSD. Therefore, in absence of a

schema language which specifically defines data types, all XML values are by

Chapter 3. XML Compressors and Analysis of XML Data 62

default mapped to their best matching data type, which, in most cases, does not

provide the highest level of compression.

3.1.7 Abstract Syntax Notation One

Abstract Syntax Notation One (ASN.1) is a standard to describe a set of rules

and structure for encoding/decoding, transmission and data representation (Steed-

man, 1993). Primarily used for telecommunication, ASN.1 has expanded in the

field of computer networking as the basis of most current technologies. In net-

work environments, data generated by one machine needs to be communicated

to a single or a number of different machines. Depending on machine architec-

ture, the data encoding mechanism of a particular machine might be different

from the decoder. ASN.1 has the fundamental role of providing abstract syntax

to consistently encode, transmit and decode data. Depending on the machine

architecture, messages carried across the network are specified as binary val-

ues formed by a sequence of octets. Independently from their binary represen-

tation, the sequence of octets needs to be mapped to a number of data types.

ASN.1 is the notation used to specify these data types using a set of algorithms

named encoding rules that allow to determine the value of the octets. These

encoding rules enable the use of data types between machines with different

encoding techniques by automating the data type’s validation process.

3.1.7.1 Encoding Rules

Basic Encoding Rules (BER), Packed Encoding Rules (PER), and XML Encod-

ing Rules (XER), are the three main families that determine the value of an

octet (ITU-T, 2008a). Although ASN.1 provides the structure, it does not restrict

the encoding mechanism used to generate the transfer syntax. BER, PER and

XER, together to variations of these rules, provide the basis to encode data in-

dependently from machine architecture or language. Encoding rules of ASN.1

are designed to provide benefits to users based on different circumstances. For

example, a subset of BER, Distinguished Encoding Rules (DER), provides a

unique mechanism to encode values enabling the use of this encoding rule to

digital certificates. PER is aimed at achieving more compact transfer syntax in

order to tackle issues related to low-bandwidth networks. The main objective

Chapter 3. XML Compressors and Analysis of XML Data 63

of XER, instead, it to enable ASN.1 data to be displayed in a human-readable

format and to process it using common XML tools such as parsers or browsers.

PER

The term Packed Encoding Rules, PER, is used to highlight the idea of achiev-

ing the minimum representation size for ASN.1 data. Compared to DER, this

format is able to achieve a lower size by omitting type tags encoding. However,

in order to decode the message, the decoder must be aware of the protocol

used to encode the data. Basic and Canonical PER are the two encoding rules

with bit aligned and unaligned variant (ITU-T, 2008c). Aligned PER encodes

the length and the data of the value consistently as shown in figure 3.4.

02 22 04 4A 6F 68 6E

Length: 2︷ ︸︸ ︷
00000010 00100010︸ ︷︷ ︸

Value: 34

Length: 4︷ ︸︸ ︷
00000100 01001010︸ ︷︷ ︸

Char: J

01101111︸ ︷︷ ︸
Char: o

01101000︸ ︷︷ ︸
Char: h

01101110︸ ︷︷ ︸
Char: n

FIGURE 3.4: ASN.1 aligned PER binary representation

The process of encoding data from code listing A.10 of Appendix A using aligned

PER is based on the direct byte addressing process similar to DER with the

omission of the type tag value triplet. Unaligned PER manages to achieve a

smaller transfer syntax by encoding data more efficiently as shown below.

02 22 04 95 BF 46 E0

Length: 2︷ ︸︸ ︷
00000010 00100010︸ ︷︷ ︸

Value: 34

Length: 4︷ ︸︸ ︷
00000100 1001010︸ ︷︷ ︸

Char: J

1 101111︸ ︷︷ ︸
Char: o

11 01000︸ ︷︷ ︸
Char: h

110 1110︸ ︷︷ ︸
Char: n

Null︷︸︸︷
0000

FIGURE 3.5: ASN.1 unaligned PER binary representation

The difference between aligned and unaligned PER is mainly shown in the

IA5String type encoding. The encoder is aware that valid IA5String only re-

quires 7 bits instead of 8 bits to be represented. By removing the most signifi-

cant bit, the string octets are formed using the bits of the next encoded values.

Chapter 3. XML Compressors and Analysis of XML Data 64

In this unaligned example, the last octet is padded with 4 redundant bits to form

a new octet E0→ 11100000.

3.1.7.2 Compression Comparison

Although ASN.1 is not a XML-conscious compressor, it is at the basis of many

current technologies. Most of the well-known protocols and mechanisms to de-

fine data have adopted ASN.1 as the fundamental encoding mechanism. XML

Schema also is heavily influenced by the idea of constructing simple and com-

plex types based on the specifications previously described. The ability of XER

to be mapped to XML schema languages has enabled the use of ASN.1 proto-

cols to be adopted as a schema language. Therefore, ASN.1 schemas can be

used to validate XML similar to the W3C schema languages.

The encoding size and performance of ASN.1 has been tested against EXI and

Gzip (Bournez, 2009). EXI is able to achieve higher encoding rates due to the

additional complexity and compression applied to the encoded stream. Since

based on a similar encoding mechanism as PER, EXI shows similar encod-

ing rates to ASN.1. Scenarios with a poor encoding are the result of schema

language deviations and lack of simple data types. As based on similar en-

codings, PER can achieve the same encoding as EXI when compared to the

schema-informed approach. Therefore, it is possible to assume that ASN.1 is

able to achieve similar encoding sizes to EXI without the DEFLATE compression

option enabled. One of the drawbacks of ASN.1 is the inability to recognise ad-

ditional elements within the XML which are not specified in the protocol/schema

language. Although EXI is able to encode a wider range of XML documents,

the performance of EXI against Gzip or ASN.1 was not evaluated. A clear jus-

tification was provided based on the lack of native languages implementations

such as C/C++ (White et al., 2006). The Java implementation of EXI cannot be

compared to a native language due to the overhead associated with the Java

Virtual Machine (JVM). The EXI working group has considered a native imple-

mentation comparison as future work. Therefore, based on the knowledge of

both encoders, it is possible to estimate ASN.1 PER encoders to perform better

than EXI. This is achieved using the ability of ASN.1 to be compiled into native

code, increasing the integration with data structures of native languages.

Chapter 3. XML Compressors and Analysis of XML Data 65

3.1.8 Packedobjects

Packedobjects (PO) efficiently encodes XML data using the information pro-

vided in a corresponding XML Schema (Moore, 2012). The schema-informed

approach used by PO is based on the idea of mapping XML data values to a

corresponding protocol to achieve higher encoding rates. Using a set of built-

in data types, PO is able to compress data efficiently by applying encoding

rules extended from ASN.1. As schema-informed compressor, PO is only ca-

pable of performing as an offline compressor. XML data is encoded using a

homomorphic compression technique. The decompressed data can only be

processed sequentially using the information provided in the schema. The fol-

lowing sections highlight the key feature of PO, its ability to successfully operate

in constrained networks, the architecture and limitations of the tool.

3.1.8.1 Design principles

The main objective of PO is to achieve the highest encoding rates for structured

data across the network. The justification for using XML in contrast to other

formats is given by a wide range of network applications that can support this

language. The use of an XML Schema language instead of a DTD is needed to

provide additional data type in formation.

Efficiency

PO is defined as a data encoding/serialisation tool that provides high-level bit-

packing to support network applications. Hence, the use of PO can be justified

to a specific application of XML compression, low-bandwidth networks. The

efficient encoding size is the first key feature presented by PO. As a format

based on ASN.1 PER, PO is able to support data types that can be easily

mapped to data structures of native languages using the minimum amount of

bits.

Extensibility

The use of an abstract syntax has been subject to various research over the last

decades to overcome issues related to byte ordering between heterogeneous

platforms. The extensibility feature of PO allows protocols based on ASN.1

PER to be extended by integrating more high-level data types such as Date and

Chapter 3. XML Compressors and Analysis of XML Data 66

IPv4. PO offers the ability to map high-level simple data types to lower formats

preserving the original transfer syntax.

Integrability

The application of PO is found in a number projects, ranging from devices run-

ning over Internet of Things (IoT) to more common networks based on publisher-

subscriber models (Moore et al., 2013a, 2012, 2010). Heterogeneous systems

are based on devices with different architectures and processing capabilities.

PO is able to run across different platforms supporting the same binary protocol

for machines based on MIPS and ARM instruction set architectures (ISA) up

to more complex CPUs running on x86. This allows network topologies based

on a centralised unit to exchange transfer syntax between sub tree or mesh

networks running on different hardware.

3.1.8.2 Architecture

Domain knowledge allows users to deal with data in a different perspective. Tra-

ditional general-purpose text compressors are not able to recognise the struc-

ture or the data type values of an XML file. For example, an hexadecimal

string is processed as a sequence of characters and encoded using a specific

compression algorithm. XML-conscious compressors are able to recognise the

structure of XML and, in some cases, compress data values using semantically-

aware techniques. However, knowledge of data types provided by the schema

language, allows the compressor to encode an hexadecimal character as a nib-

ble (sequence of four bits) instead of an octet. Domain knowledge allows PO to

outperform general-purpose and less semantically-aware compressors mainly

in the field of networking. Data types processed by a network management ap-

plication are usually repetitive and can be easily mapped to a schema language

for validation purposes. These applications exchange information such as IP

addresses, CPU temperatures, sensor data and vendor specific information.

The schema language plays an important role in helping PO to identify data

types of XML. Using the knowledge provided by data types, PO is able to recog-

nise each value and apply the most efficient encoding technique. Similar to EXI,

PO transforms high-level data formats into a lower format using signed and un-

signed integers. For example, bit-string is based on the xs:string restriction,

however, each character can be either 0 or 1 and therefore encoded using 1 bit

Chapter 3. XML Compressors and Analysis of XML Data 67

instead of 8 bits. The unix-timestamp data type is used to represent date/time

using the RFC 3339 format such as 2014-09-12T04:38:36Z. This format can be

converted to POSIX time which is represented as the signed integer 1410493116

and encoded by PO in merely 4 octets.

A complex type is the term used to identify a set of data types as they appear

in the XML. As an abstract syntax extended from ASN.1, PO provides a rich

syntax to describe network protocols. Complex types of ASN.1 are at the basis

of current protocols and have inspired new languages such as XML Schema.

However, to enable the use of this language to a wider range of applications,

these complex types have been extended to allow accurate and general sets of

data types. For example, XML Schema allows indicators such as “sequence”,

“choice” and “all” enabling XML data to be presented freely. While this feature

allows the use of valid XML for a wider range of applications, schema-informed

encoders are required to store additional data in order to keep track of the value

in an unordered sequence of data types. Schema-informed compressors such

as EXI and PO avoid encoding the structure of XML based on the knowledge

provided by the schema. However, if a schema does not present an accu-

rate complex type representation, it is not possible to directly map n-bits to a

specific data type. While supporting unconstrained complex types allows the

compressor to be extended to different fields, this feature increases software

complexity and worsen the compactness of the transfer syntax. As a tool aimed

to improve network efficiency, PO does not integrate the use of complex types

derived from ASN.1 that require additional processing. The lack of support for

these complex types allows PO to be implemented easily, to perform faster and

to keep the transfer syntax to its minimum size.

Figure 3.6 summarises the design of PO during the compression and de-

compression stages. An initialisation function is used to validate and transform

XML schema into an internal schema format for efficient compression and de-

compression of XML data. The internal schema can be called upon multiple

times avoiding the parsing overhead. Furthermore, this internal structure can

be cached to speed up program start-up. Libxml22 is the library used to parse

the XML DOM and the schema language. During the encode() function the XML

DOM is validated against the memory representation of the schema. XPath is

used to map XML values to the schema which are subsequently encoded using
2The XML C parser and toolkit of Gnome - http://www.xmlsoft.org

Chapter 3. XML Compressors and Analysis of XML Data 68

FIGURE 3.6: Packedobjects Architecture

the PO Integer Encoding Rules (IER). Depending on the application, the out-

put of the encoder can be stored on disk or allocated to a memory buffer. The

decode() function requires the schema used in compression to call the correct

decoding routines. After traversing the schema, IER maps bits to their values

creating a memory representation of XML which is subsequently validated to

check for possible errors. The XML DOM can then be stored locally or passed

to a front-end application.

3.1.8.3 Integer Encoding Rules

PO can be divided into two main components, front-end and back-end. The

front-end part of the application is designed to convert syntax notation into a

low-level format which is then subsequently passed to the back-end of the sys-

tem. This last part is based on Integer Encoding Rules IER, a variant of ASN.1

PER to encode and decode data. The back-end provides a compact transfer

syntax while operating efficiently thanks to its native C implementation. Similar

to the unaligned PER transfer syntax, the result of the encoding is a sequence

Chapter 3. XML Compressors and Analysis of XML Data 69

of octets representing the length and value of each data type (Moore, 2009,

2010a, 2011, 2010b). As analysed in the previous chapter, the use of PER

is specifically designed to create a compact transfer syntax by relying on the

knowledge of the ASN.1 protocol. For this reason PER is preferred over BER

and DER and other encoding rules variants.

The design philosophy of PER is to encode a value using the minimum amount

of bits required to represent the specified range. Provided lower and upper

bounds, the bits required to encode an integer can be calculated using b(log2(n))+
1c, where n is defined as the difference between the upper and lower bound.

Given a and b to be lower and upper bound respectively, where n is equal to

b - a, the amount of bits required to encode a value in the range of a and b

inclusive, is equal to b(log2(n)) + 1c . For example, for a=100 and b=500 (upper

and lower bound), n = 400, b(log2(400))+1c = 9. Using this equation, IER maps

data type’s values to a sequence of signed and unsigned integers. The range

provided by the protocol is essential to provide additional information to the en-

coder. Upper and lower bounds provides enough information to encode the

constrained integer without providing the length information. Semi-constrained

and unconstrained integers, instead, require the length of the value to be en-

coded, decreasing the compactness of the transfer syntax.

The front-end of PO is designed to transform high-level syntax into a lower form,

where data types are presented using a more suitable form to be passed to the

encoder. The transformation sequence can be broken down into various stages

using XML and XSD examples provided in code listing A.7 and A.8 of Appendix

A. Using s-expressions it is possible to represent data and protocol in a concise

format which can then be easily mapped to the IER. The first stage is to create

a combined form by merging information from both data and protocol.

LISTING 3.4: PO Normal form

1 ;; Normal form

2 ((student sequence)

3 (module string (size 0 10) "FuncProg")

4 (hours integer (range 30 60) 48)

5 (courses enumerated 0 2)

6 (ref hex-string (size 1 64) "AABBCCDDEE"))

XML data is assisted by the constrains provided by the XSD protocol. This ex-

ample provides four simple types: string, integer, enumerated, hex-string

Chapter 3. XML Compressors and Analysis of XML Data 70

and one complex type sequence. This complex type does not affect how infor-

mation is encoded, therefore, it does not increase the size of the compressed

format. The second and third stage of the encoding process are described in

code listing A.11 of Appendix A.

The output of the core form is an unaligned sequence of octets analysed below.

136 221 119 99 161 203 126 121 4 213 93 230 110 247 0

The first sequence is the decimal representation of the transfer syntax using

decimal values which maps to a 8-bit binary. The value of each group of bits is

shown in the bit analysis listed in figure 3.7. The over brace and under brace

are used to specify the length and value of data types.

8︷︸︸︷
1000 1000 110︸ ︷︷ ︸

F

11101 01︸ ︷︷ ︸
u

110111 0︸ ︷︷ ︸
n

1100011︸ ︷︷ ︸
c

1010000︸ ︷︷ ︸
P

1 110010︸ ︷︷ ︸
r

11 01111︸ ︷︷ ︸
o

110 0111︸ ︷︷ ︸
g

1001 0︸ ︷︷ ︸
18

00︸︷︷︸
0

00100 1︸ ︷︷ ︸
9

1010101 0︸ ︷︷ ︸
AA

1011101 1︸ ︷︷ ︸
BB

1100110 0︸ ︷︷ ︸
CC

1101110 1︸ ︷︷ ︸
DD

1110111 0︸ ︷︷ ︸
EE

null︷ ︸︸ ︷
0000000

FIGURE 3.7: PO binary representation

3.1.8.4 Applications and Limitations

The following section describes the application and limitations of PO for its use

as low-level encoder. This information will be used to construct an alternative

model capable of addressing the limitations highlighted in this research area.

Applications

Packedobjects is a library which can be used to efficiently compress an XML

DOM by using the information provided by a corresponding XML Schema. The

level of compression achieved is very similar to EXI but unlike EXI, Packedob-

jects is designed to be light-weight and simple to implement. Therefore it is

suited for embedded systems and mobile devices. The software has been de-

signed for writing network protocols which strive to minimise the amount of data

communicated. In addition to compression, all data is validated by the schema

Chapter 3. XML Compressors and Analysis of XML Data 71

during the encode and decode process. Packedobjects is not a general pur-

pose document compression tool. It is intended to be used in an application

that communicates over a network. As such it provides a simple DOM-based

API for encoding and decoding structured data. Similar to EXI, the compression

technique used is based on applying knowledge of the data types specified in a

schema to provide better performance over statistical compression techniques.

Binary Logarithms

The schema-informed compression of PO and EXI can be described as fixed

length encoding. Here, the probability of each bit of information is equally likely

to appear. Both EXI and PO are implemented on similar mechanisms based

on binary logarithms log2(n). This function is used in order to calculate the

number of bits required to store different data types. For example the result of

the binary logarithm for the unsigned integer 4, means that it can be stored in 2

bits, 8 into 3 bits, and 32 into 5 bits. Binary logarithm is commonly used in the

field of data compression due to its connection to the binary system. EXI and

PO highly rely on this system to encode data types efficiently and calculate the

required number of bits needed to store a value. Sections 3.1.6 and 3.1.8 have

described the used of b(log2(n))+1c and d(log2(n))e for PO and EXI respectively.

The standard approach to obtain the number of bits required to encode a value

is calculated by adding 1 to the integral part of the binary logarithm. The integral

part is obtained using the function floor bxc to return the largest previous integer

not greater than x. This binary logarithm function is able to specify an encoding

mechanism for values of length equal to 1. On the other size, EXI calculate the

length of the value using mathematical function ceiling dxe to return the smallest

following integer not less than x. Using function d(log2(n))e, where n is 1 would

return 0 instead of 1 and 32 would return 5 instead of 6. Therefore, additional

complexity needs to be included in the EXI implementation in order to handle

situations where the binary logarithm does not return the correct length.

String Support

Based on encoding rules optimised for network transmission, the performance

of PO for string value compression is poor compared to string-optimised tools.

Compressing strings requires multiple encoder and decoder calls resulting in

lack of performance and representation of the compressed format. Using the

unaligned variant, PO is able to reduce 1 bit for every 8-bit characters repre-

sented in the first 127 ASCII printable characters. The 7-bit encoded string

Chapter 3. XML Compressors and Analysis of XML Data 72

representation does not provide a sufficient compression compared to other

semantic-aware and statistical tools. This lack of support for string compres-

sion is justified by the use of PO in the field of network transmissions.

Additional Processing

The second version of PO is based on XML and XML Schema to define data

and protocols. One of the advantages of PO over most of the XML-aware com-

pressors is the use of XML Schema to behave as a protocol. However, the

advantages of this language are minimal compared to the drawback and the

additional complexity introduced by XSD documents. Due to the lack of names-

paces and other XML components compression, it would be possible to design

a PO protocol using a DTD. Similarly to XSD, the DTD can validate multiple

XML documents as an external entity. The cost of using XML Schema is jus-

tified by the ability of mapping ASN.1 protocols to XML, essential for the IER

encoder of PO. The major drawbacks of XSD protocols are the computational

resources required and the additional time lost for handling an additional file. A

speed-up mechanism is provided by the PO API which allows the schema file to

be parsed on software start-up and cached in memory. This feature avoids the

need of parsing the XSD on each encode/decode call, reducing the processing

resources and time needed to compress data.

3.1.9 Other Compressors

A number of additional XML compressors have been developed over the last

few years. This section summarises the results and the major contribution for

each of the following compressors discussed in the literature reviews.

Fast Infoset

Other binary XML formats exist such as Fast Infoset (FI) which specifies how to

encode XML into binary using Abstract Syntax Notation One (ASN.1) (Sandoz

et al., 2004; Steedman, 1993). Differently from general text compression tools,

FI aims to improve processing time and performance. FI provides an alterna-

tive syntax to represent instances of the XML information set discussed in the

previous chapter. Using a binary encoding mechanism, this implementation is

usually faster and provides a smaller syntax compared to XML. In order to in-

crease the encoding size, FI utilises vocabulary tables (similar to EXI) to map

Chapter 3. XML Compressors and Analysis of XML Data 73

elements, attribute names and other character strings to small integer values.

The tool is also supported by the use of additional algorithms to efficiently en-

code integers, floating points and arrays of these numbers. For example, an

integer in the range –32768 to 32767 is recognised by the tool and encoded us-

ing two octets representing a signed integer instead of five octets representing

the string. FI is based on Encoding Control Notation (ECN) of ASN.1. However,

this rule is not necessary when the encoding mechanism is provided (ITU-T,

2005). As a binary format based on ASN.1 encoding rules, FI can be compared

to EXI which provides similar encoding mechanisms. However, due to the addi-

tional compression and complexity introduced by EXI, FI is not able to achieve

similar encoding sizes (Jaiswal and Mishra, 2013).

XGrind

XGrind is another approach of compressing XML using properties designed by

XMill (Tolani and Haritsa, 2002). This tools aims at increasing the compres-

sion size by using information provided by a DTD file, for example enumerated

attributes are encoded more efficiently. The XGrind format supports queries to

the compressed format which is represented in a semi-structured query-friendly

format. Results demonstrate how XGrind is able to achieve similar compression

sizes to XMill, although the main advantage of XGrind is the ability to perform

queries on the semi-compressed format.

XPress

XPress is an efficient XML compression tool optimised to perform direct and

efficient queries to the compressed format (Min et al., 2003). Similar to XGrind,

the homomorphic properties of XPress preserve the structure of XML docu-

ments. The novelty of XPress is the introduction of a specific algorithms, Re-

verse Arithmetic Encoding (REA) to encode label path as distinct intervals. One

of the advantages of XPress is the ability to apply different encoding algorithms

to diverse data types. Results demonstrate a better compression ration over

XMill and XGrind with negative results in compression speed when compared

to XMill and gzip.

XComp

XComp is a compression tool based on the local homogeneity properties of

XMill: separating content from structure and grouping data values into semantic

Chapter 3. XML Compressors and Analysis of XML Data 74

containers (Li, 2003). The novelty introduced by XComp is the ability to confine

the maximum memory usage for each of the containers. In addition, data is

not only grouped based on elements and attribute names but also based on

the document levels. The back-end compressor used to compress each con-

tainer is uniquely based on zlib. In conclusion, XComp can be categorised as

an extension of the work based on XMill that provides similar performance and

a better encoding size.

XAust

XML Compression with Automata and Stack (XAust) is a Schema-informed

compression tool based on arithmetic coding (Subramanian and Shankar, 2006).

Information provided by the DTD is transformed into a Deterministic Finite Au-

tomata (DFA) and used to track the structure of the XML with accurate predic-

tion on the expected symbol. Data values for each simple type are encoded into

specific containers which are incrementally compressed using arithmetic cod-

ing. XAust results demonstrate small benefits in compression ratio over tools

such as XMLPPM and bzip2. The Java implementation of XAust is compared

to other tools developed using native languages such as C++ of XMLPPM with

some benefits in virtual memory used and time required to compress XML.

RNgzip

Rngzip is a schema-informed XML compression tool based on gzip (League

and Eng, 2007a). Using a more clean and light-weight XML Schema lan-

guage, called Relax NG, this tool is one of the first to implement a more ad-

vance schema. In comparison to other compression tools such as bzip2, XMill,

XMLPPM, DTDPPM and XAust, rngzip does not always provide the best com-

pression size depending on the nature and size of the XML. In addition, because

of the implementation written in Java, rngzip does not provide run-time perfor-

mance metrics in comparison to other tools.

Millau

Millau is another Schema-informed XML compression tool to efficiently repre-

sent and exchange XML data over the Web (Girardot and Sundaresan, 2000).

The encoding process of Millau does not strictly depend on the schema. A DTD

can be provided to optimise a token dictionary providing better performance

and compression size. This tool can be described as an extension on WBXML,

Chapter 3. XML Compressors and Analysis of XML Data 75

which by applying additional knowledge from a schema is able to achieve higher

compression sizes. Millau is one of the few tools designed for the specific pur-

pose of managing XML data over the web. However, although this tool focuses

on a specific domain, it does not restrict the data set to a specific domain.

Results demonstrate the performance of Millau when presented with XML of

different sizes. Millau manages to achieve smaller compression sizes for files

below 5KB. Over this range, gzip takes advantage of the redundancy of the data

to achieve a better compression.

Protocol Buffers

Protocol Buffers (PB) is an high-level language syntax used to represent struc-

tured data concisely (Varda, 2011). Using a light-weight syntax with a concise

structure, data is mapped to a protocol which provides information about data

types and structure of the document. The advantage of PB is the use of the

Interface Description Language (IDL) used to describe both data and protocols.

Compared to XML, PB syntax is simpler to write and provides a more clear for-

mat similar to ASN.1. This binary tool is able to encode data 20 to 100 times

faster compared to XML for serialising structured data. PB is included between

the tools studied because of its similarity with PO and its resemblance with

ASN.1. With knowledge of PO it is possible to describe PB as a binary data

serialisation tool with similar encoding rules but different syntax.

3.1.10 Summary of Related Works

Section 3.1 reviewed a number of XML compressors and binary tools to ef-

ficiently represent structured data. This study focused on compressors which

have been considered in a number of research papers and have achieved signif-

icant results in comparison to other novel approaches. Most of the tools studied

are developed using native language implementations. This measurement was

considered based on the ability to benchmark multiple tools without consider-

ing the language implications. Although it is believed that an application written

in Java can achieve similar results to a native implementation, due to the im-

provements of virtual machines, the residual systematic effect of a JVM cannot

be neglected. This includes byte code interpretation and the overhead tasks

required to manage memory. Memory management and garbage collection are

Chapter 3. XML Compressors and Analysis of XML Data 76

important features for native applications which allow tools to have more control

over the exact amount of memory that can be allocated and freed at different

times.

3.1.10.1 Tools Categorisation

An important component that needs to be considered when comparing the pro-

cessing efficiency of different tools is the library needed to transform XML into

a lower form which can be then evaluated by the tool. First of all, the choice

between tree-based and event-based API depends on the ability of each tool to

operate on a stream basis or using an internal memory representation. Based

on its domain a tools can justify the need for a DOM over a SAX API which

can be fundamental for the functionality of the system. This API is provided by

an XML parser library which is used by most schema-informed compressors to

map data type constraints to element values. Multiple XML parsers exist and

have been implemented in different languages. The efficiency of a tool also de-

pends on the ability of an XML parser to manage XML data efficiently. Binary

tools such as EXI and FI do not require a XML parser and therefore should

theoretically achieve faster encoding speeds. Processing efficiency and mem-

ory consumption should not be evaluated for non-isomorphic applications which

have been designed to operated in different domains. Based on these proper-

ties, it is possible to compare different tools on their software complexity and

the ability to operate in constrained devices.

Symbol Description
P General-purpose Compressor
C XML-conscious Compressor
I Online XML Compressor
O Offline XML Compressor
N Schema-informed Compressor
U Schema-uninformed Compressor
Q Queriable XML Compressor
A Archival XML Compressor
H Homomorphic XML Compressor
L Homogeneous XML Compressor

TABLE 3.1: Features and Classification of XML Compressors

Chapter 3. XML Compressors and Analysis of XML Data 77

Table 3.1 provides a number of symbols for different properties which can be

found in XML compressors and serialisation tools. These features are cate-

gorised based on the following properties:

• General-purpose or XML-aware compressors

• Tools that provides a streaming or tree-based API

• Ability to take advantage of a schema language

• Tools designed for archival or queriable formats

• Local homogeneity and homomorphic compressors

Table 3.2 lists the compressors that have been evaluated in section 3.1 using the

feature and classifications described in table 3.1. A link to the online repository

is provided for each of the compressors that have been evaluated and tested

for the scope of this research. This study evaluated compressors which are

developed using mainly a native language such as C and C++. PO is available

in two different versions, an abstract syntax in XML or s-expressions using Guile

(an implementation of the Scheme programming language). The back-end low-

level encoder for both version is written in C. Although developed in a different

language, EXI was included in the evaluation as the standard recommended by

the W3C.

Compressor Features and
Classification

Code
Availability

Language
Implementation

Software
Complexity

XMLPPM CIUAH (Cheney, 2006c) C Medium
DTDPPM CINAH (Cheney, 2006a) C++ High
WBXML CONAH (Jehanne, 2009) C Medium
XMILL COUAL (Colver, 2004) C++ High
ZLIB POUAH (Adler, 2005) C Low
Packedobjects CONAH (Moore, 2012) C / C - Guile Low
EXI CONAL (Garrett, 2012) Java High

TABLE 3.2: List of XML Compressors

The software complexity column is based on an analysis of each compressor

on various factors. This information was grouped based on the ability to pro-

vide developer-friendly API which enables the use of the tool to be imported in

other platforms. The control flow was examined together with the use of op-

eration such as IF, DO, and SELECT statements. Software maintainability is

also considered based on how feasible it is to extend the front-end part of the

Chapter 3. XML Compressors and Analysis of XML Data 78

system. Finally, the code structure, design and function refactoring was consid-

ered. From the table it is possible to identify a number of compressors with a

high level of complexity. For example, DTDPPM is a beta version based on top

of XMLPPM, mainly experimental and designed for academic purposes only.

EXI complexity is both accidental and essential. Although the selected library

provides a good API, the Java implementation cannot be easily ported to low-

powered devices. In addition, the essential complexity of EXI design yields a

larger amount of complexity compared to other tools.

3.1.10.2 Limitations

XML compressors described in section 3.1 have been tested in a number of

research papers presenting similar results. These compressors have been

developed to solve issues related to at least one of the areas where XML is

heavily used: XML Document storage and transmission, binary format for XML

messages processing and transmission, and XML database storage and query

processing. EXI is the only implementation that has been designed with the

intent to formalise a general-purpose XML-conscious compression. However,

the results provided in the experiments are scattered and inconsistent (Augeri

et al., 2007; Sakr, 2009). For example, tools designed for a specific purpose are

tested and evaluated using XML documents that do not belong to that specific

domain. This issue is also related to the lack of a formal XML corpus which has

been so far ignored. A number of few well-known XML documents have been

used to test new tools. In addition, XML compressors listed in section 3.1 are

evaluated with large data sets with exception for specific tools such as PO and

DTDPPM.

EXI defines an XML compression tool using a schema-informed approach ap-

plying additional compression to the aligned stream. Few such implementations

capable of running in different domains exist. A good compression ratio can be

achieved only when all the options of EXI such as schema-informed, bit align-

ment and compression, are enabled. In practice, EXI is able to achieve a higher

compression ratio by using multiple compression schemes. From the following

observation it is possible to conclude that a general XML compressor is directly

proportional to the complexity of the software which has a negative impact on

the system resources. For example, the highest compression achievable by EXI

Chapter 3. XML Compressors and Analysis of XML Data 79

requires the use of an XML parser to analyse the XML Schema patterns and

facets and return the restricted character set, a pre-compression event group-

ing, and a DEFLATE compression applied to the aligned stream.

A good compression scheme needs to be implemented based on the XML data

presented and the fields where the compression is applied. It is important to

understand why certain tools fail to achieve a reasonable compression ratio

when presented with different XML data. A statistical analysis of XML is nec-

essary to understand the requirements of a compression tool depending on the

domain. For example, a network management domain would share XML mes-

sages based on sensor data and timestamps and vendor specific information.

An XML document used in database compression, instead, is less structured

and contains higher amounts of string data types. Some XML compression re-

search outputs have presented studies on the nature of XML. However, these

studies only concern the structure of XML such as the amount of element tags,

nesting length and amount of data values. It is important to consider also sim-

ple and complex types for XML data, in order to understand which compression

algorithms can be applied over another. XMill introduced the first approach

using semantic knowledge to increase compression. Raw data converted into

XML increases the size by doubling the length of a file but demonstrates a bet-

ter compression using user’s knowledge of XML data types. Schema-informed

compression manages to achieve similar results using the knowledge provided

by the Schema language. EXI and PO are able to exploit this principle and

convert XML into a binary formats using ASN.1-like approaches.

3.1.10.3 Revisiting Research Goals

Section 3.1 analysed and discussed a number of compressors and back-end

algorithms to efficiently manage XML data. This section categorised each com-

pressor based on its features and software complexity. Many XML compressors

are able to achieve higher levels of compression compared to other tools by in-

creasing the level of complexity. The additional level of compression achieved

using a schema language allows schema-informed compressors to be more ef-

ficient compared to standard XML-conscious techniques. The information pro-

vided in the schema, allows compressors based on variable and fixed length

Chapter 3. XML Compressors and Analysis of XML Data 80

encoders to achieve higher levels of compression via different techniques. How-

ever, the use of this data definition language is shown to be effective only when

both encoder and decoder share the schema file, for example when exchanging

data between homogeneous networks.

Each tool analysed in this chapter evaluates the performance of their com-

pression techniques against specific XML data sets. Tools based on general-

purpose compressors have shown to be highly effective for large XML data

sets. However, little work has been done to evaluate their performance when

presented with small highly-structured XML files, typically found in network envi-

ronments. More experiments need to be conducted to evaluate the performance

of these tools against a wider range of XML files.

From the analysis of XML compressors discussed in this chapter, this study

concludes that only a few tools apply fixed length encoders, both presenting

significant results compared to variable length encoders. However, these tools

are mainly restricted to the use of this technique only to map basic data types.

This is achieved using a data definition language, in case of Packedobjects tool,

or using a list built-in data types for EXI.

The Packedobjects tool is a fixed length encoder designed to exchange highly-

structured XML messages based on low-level data types such as Integers, Enu-

meration and IP data. This tool is not able to efficiently manage data such as

strings due to the poor performance of its IER encoder for this specific data

type. Contrary, EXI presents a more advanced approach to manage string data

types using a variable length encoder and a fixed length encoder for basic data

types. This binary representation together with a standard DEFLATE algorithm

compression applied over the aligned bit stream, allows EXI to challenge most

XML-conscious and general-purpose compressors.

The aim of this research is to investigate the use of fixed length encoders to

compress XML data. The work presented by these tools can be considered as

an initial direction to address the research question raised in Chapter 1. The

amount of data types managed by the fixed length encoder is essential to un-

derstand the performance of this technique to compress markup languages.

Additional levels of compression can be achieve by encoding data types which

are usually passed to a variable length encoder. Here, the validity of a specific

data type can be ignored as long as it can be mapped to a built-in data type.

Compressing these data types using a fixed length encoder can increase the

efficiency of the compressor to a wider set of XML data.

Chapter 3. XML Compressors and Analysis of XML Data 81

3.2 Analysis of XML Data

For decades researchers have explored and improved the field of lossless data

compression. Sophisticated tools are able to reduce the redundancy of files by

applying compression algorithms based on dictionary and probabilistic models.

These results have been achieved thanks to algorithms capable of exploiting

the knowledge of textual files. For example, dictionary coders match text with a

set of data strings contained in their dictionary table. Variable length coders are

able to increase compression by mapping most recurring source symbols with

the least numbers of bits. These encoders are able to achieve optimal compres-

sion rates using some of the knowledge obtained by the textual file. Additional

compression can be achieved with a better knowledge of the source. However,

it would require almost infinite information to achieve the lowest compression

size.

XML compression is subject to the same debate. Due to the simplicity of the

XML structure, it is possible create a finite dictionary table to store XML com-

ponents and then treat XML elements as pure text. Most XML compression

tools have tried to improve compression by focusing uniquely on the structure

of XML without considering XML data values. Recently, with the introduction

of validation languages, which are able of describe the structure and data val-

ues of XML, there is the possibility to consider the data types and exploit the

information provided within. XMill was the first tool to demonstrate how com-

pressing textual data can benefit from an XML structure by applying knowledge

of data types. General-purpose compressors are not able to perform well when

confronted with random machine generated data such as IP, MAC address and

integers. This issue can be solved using knowledge of these data types and

treating data in a different perspective. The issue of handling XML structure

concisely has been solved using XML Schema languages together with encod-

ing rules similar those derived from ASN.1. Structure of the XML is not included

in the encoded format and length of the value can be omitted when fully con-

strained values are provided.

In conclusion, knowledge of the structure and data of XML is essential to in-

crease compression and improve current tools. This section provides a sum-

mary of the related work that has been conducted in this field. Furthermore,

this section discusses the issue related to the experiments of various XML com-

pressors and presents an analysis of XML data sets.

Chapter 3. XML Compressors and Analysis of XML Data 82

3.2.1 Analysis and Current Results

Compression tools analysed in section 3.1 do not present an accurate analy-

sis of the XML data sets used to test compression ratios. The performance of

these tools depends highly on the XML document and should not be restricted

to the size and the number of tags. More information needs to be provided on

the data types which are contained in the XML elements. Structure and data

types of XML are both important components that need to be considered to im-

prove compression. Encoders based on extensions of ASN.1 PER, are known

to be efficient in representing basic types such as bit-string, boolean and

integer but less efficient with string types such as IA5String or UTF8String.

Conversely, dictionary compressors are known to perform well with string types

and lack efficient support for integers. Therefore, there are compression size is-

sues when XML data contains string types. Knowledge of the XML allows users

to predict the efficiency of a specific compressor and operate accordingly. It is

important to understand the nature of XML data not just using the structure and

size but also considering element data types.

The following sections describes the results of XML studies in the field of XML

Compression, Data Management and Data Quality research areas. Two themes

can be identified from the literature. Studies of XML files and studies on XML

schema languages. The first is extended to include studies of XHTML and

other markup languages of the Web. Various XML schema languages are also

discussed.

3.2.1.1 XML Corpora

A number of research has analysed XML data sets used for compression com-

parisons results (Augeri et al., 2007; Delpratt, 2009; Liefke and Suciu, 2000;

Sakr, 2009). Most data sets include synthetic XML data created using XML

generators. XML corpora have been analysed based on size, number of nodes,

depth and data ratio, using popular XML documents such as lineitem.xml,

swissprot.xml, nasa.xml. These files are available from public repositories

(Grijzenhout, 2010; Miklau, 2014). These repositories provide a simple anal-

ysis on the number of components and structure of XML documents and are

included in a number of studies for XML compression.

Chapter 3. XML Compressors and Analysis of XML Data 83

Composition

Researchers performed a statistical analysis of real XML data collected using

automatic crawling and manually from government sites, document reposito-

ries and XML exports (Mlynkova et al., 2006). Results from the analysis of the

16’000 XML files collected demonstrate that the average size of a file is rela-

tively low, only 1.3MB, for files ranging from 60 bytes to 1’971 megabytes. Small

XML files were found for most categories of XML data. Document and report

files are the only categories to show larger sizes for XML files. A number of sta-

tistical analysis are performed on both XML files and XML Schemas. Relevant

to this research are the number of XML components found on the entire data

set. For all XML categories, the most common components are elements and

attributes. Empty elements are mainly dominant for XML categories such as

Semantic Web and Reports. Furthermore, the percentage of text found in the

XML data set demonstrates that tagging dominates the size of documents with

exception of document file category, where the portion of text is around 80%.

Overall, contrary to previous analysis in this research field, this study demon-

strates that real XML data shows different pattern usages and these are not

always complex as expected.

A second study used a total 200’000 XML files collected using an advanced

crawler named Xyleme (Barbosa et al., 2005). This tool was able to discard

replicas of documents previously collected using fingerprinting techniques. Var-

ious types of XML files were collected from the Web and categorised based on

files extensions. This work distinguished between documents from the semantic

web, with .rdf and .rss extensions, wireless application protocols .wml, form-

accessible documents, and indistinguishable XML files .xml. The distribution

highlights the high percentage of .xml,.wml and form-accessible files. In line

with previous research, the distribution on the average document size for the

entire data set is relatively low, 4,641 bytes in size. XML documents with size

greater than 10KB only compose 17% of the data set. An analysis was per-

formed on the content of this data set to identify structural and textual content.

It was found that structural information is in fact dominant over textual content.

Documents with highest percentage of textual information are part of the 17%

of the data set with size greater than 10KB.

Validity

XML data has been studied in the field of data quality to assess its ability to be

used by XML technologies (Grijzenhout and Marx, 2013). The results of these

Chapter 3. XML Compressors and Analysis of XML Data 84

research provide useful information on the well-formedness and validity of XML

data collected from the Web. Experiments conducted in this fields allow re-

search in XML compressors to be aware of the validity of XML documents and

increase support for common problems and errors. A recent study (Grijzenhout

and Marx, 2013) collected a total of 180’000 unique XML documents, including

files with references to schema languages such as DTD, XML Schema and Re-

lax NG. Well-formed documents compose 85% of the entire data set. A total of

24% reference to a downloadable DTD or XSD file, however, only 16% of these

are well-formed documents. For XML Schema validation, it was found that a

higher portion of well-formed XML documents could not validate with a syn-

tactically correct XSD. Well-formed documents that validate with their schema

composed only 10% of the total data set.

An additional analysis was performed to highlights issues related to character

encoding, well-formedness and validity. While character encoding was correct

for over 99% of the data set, it was found that a considerable portion of the

collection had at least one error related to the well-formedness of the XML.

These errors were found using a modified version of the libxml2 XML parser.

Around 15% of the collection had one to multiple fatal errors such as opening

and ending tag mismatch, premature end of data in tag, and attributes con-

struct error. Further analysis was performed to identify between recoverable

errors and warnings. In regards to the validity of XML documents, it was found

that files referencing an XSD are more reliable that those referencing a DTD.

For those files which fails to validate, the most common errors are related to

unexpected elements. In conclusion, this study demonstrates a positive change

in the validity of XML documents with a growing number of files referencing an

XSD.

From the results of these analyses it is possible to provide the following addi-

tional observations: many XML documents contain a large amount of text nodes

which have a relatively low average length; element names are very repetitive

and most of them contain large attribute nodes.

Data types

Research in the field of XML compression, data management and data quality

presents interesting results regarding the composition of a variety of XML files.

These studies provide a detailed analysis of the components and structure of

XML documents, with a clear difference between structural and textual content

Chapter 3. XML Compressors and Analysis of XML Data 85

(Barbosa et al., 2005; Mlynkova et al., 2006). However, these works do not

analyse XML data types. So far, XML data has only been analysed based

on the amount of structural and textual information. A further analysis on the

composition of the latter can provide useful information on the types of data

found in real XML. This can be used to improve tools such as XML compressors

to focus on the particular data types found in their respective domain.

3.2.1.2 Schema languages

Other research have focused uniquely on the statistics of XML and XML Schema

languages and the differences in document nodes, attributes and other compo-

nents (Bex et al., 2004; McDowell et al., 2004; Mlynkova et al., 2006). Studies of

the schema languages inform us on the amount of restriction which are applied

on simple types (73% of the schema evaluated) and the data types used to rep-

resent data values. Information on the data types can be extracted either from

the schema language or from the XML file. However, these studies do not pro-

vide an analysis on the composition of simple and complex data types. Further

analysis on the data set shows that only 7.4% of XML do not have a schema

language, DTD is found in 74.6% of the data set while XSD in the remaining

38.2%. However, it was found that based on previous research, the number of

XML files with reference to XSD is gradually increasing (Grijzenhout and Marx,

2013).

3.3 Conclusions

This chapter discussed and evaluated various XML compressors and back-end

technologies. Most of the compressors do not benefit from the schema lan-

guage which is provided for many document-centric and data-centric XML doc-

uments. However, higher software complexity is generally required for com-

pressors based on DTD or XSD schema languages. All the compressors anal-

ysed are based on one to multiple layers of general-purpose compression al-

gorithms with the exception of binary XML representation. The key feature of

each compressor is based on the management of XML data prior to applying

Chapter 3. XML Compressors and Analysis of XML Data 86

general-purpose compression or specific encoding rules. Compression size re-

sults of each compressor vary depending on XML documents. XML-conscious

techniques can be applied to most documents which belong to the regular and

irregular XML category.

The second section of this chapter focused on the statistics of XML data. This

section analysed XML and XML Schema languages evaluated in XML Com-

pression and XML Data Management research areas. Based on the knowledge

of data it is possible to deduce the optimal compressor for different types of

XML. Using a schema-informed approach compression can be improved mainly

for structured data using special data types which can be mapped to a lower

form. This approach is also important to reduce the redundancy of non-unique

XML tags which occur in both data-centric and document-centric XML files. Re-

sults on XML data sets inform us that the number of schema languages linked

to XML files is dominant in most cases. This information can be exploited to

achieve better compression ratios. However, the analysis of XML compressors

demonstrates an exponential increase in complexity when using a schema in-

formed approach. Binary representations, known for their fast encoding mech-

anisms, are increasing in complexity due to the additional parsing required to

analyse the XML schema restrictions. A trade-off between compression size

and time exists when considering XML-conscious and schema-informed com-

pressors respectively.

In conclusion, an optimal compression size can only be achieved in presence

of external knowledge provided by a schema language or by the user. Doc-

uments and compressors, which do not benefit from a Schema-informed ap-

proach, are not able to achieve significant difference in compression compared

to traditional general-purpose compressors. The ability to achieve compression

ratios beyond general-purpose compressors is given by the use of the XML

structure information provided by the schema. This ability can be categorised

as the key feature to achieve a higher ratio when compressing highly structured

data-centric documents.

Chapter 4

XML compression techniques for
efficient network management

This chapter investigates the use of compression tools and their application in

the field of network management. This study focuses on native languages im-

plementations of different XML-conscious and schema-informed compressors

to improve the overall performance of the system. The scenario of network

management is introduced together with the application of XML compression

techniques for a set of relatively small, highly-structured XML data. The method-

ology provides details on the XML corpus and the compressors execution per-

formed to obtain the results. This study discusses the results of the experiments

and provides an explanation for the performance of different tools in compres-

sion size and speed. Finally, the chapter concludes by highlighting the research

gaps in XML compression and provides future directions to improve the design

of XML-conscious tools.

4.1 Introduction

The ability to monitor environmental behaviour and obtain sensor information

from embedded devices has extended the field of network management. There

has been a shift towards processing data using low-powered devices where

computational power, memory and storage capacity are restricted. These de-

vices are capable of collecting data from their immediate environment such as

87

Chapter 4. Efficient network management of XML data 88

temperature, motion, sound and even levels of radiation and seismic activity

(Estrin et al., 1999). Data is gathered and then processed from a variety of de-

vices which range from network switches to single-board computers equipped

with sensors for industrial, civil, or military purposes (Lifton et al., 2007; Winkler

et al., 2008).

Several issues arise when these devices are connected autonomously. Pro-

cessing power, battery life and the design of the network protocol are the key

limitations to overcome in order to increase the capacity of these devices and

overcome their operational limitations. Battery-friendly processors exist which

can accommodate the software demands and at the same time avoid having

a negative impact on battery life. However, in this environment, the communi-

cations network still poses a challenge. Even if the battery life barrier can be

overcome by using other sources of energy e.g. solar panels or kinetic charg-

ers, these devices cannot afford to connect to high-bandwidth networks.

The amount of data shared on these networks varies depending on the field

where the technology is applied, however, having highly structured data is key

to supporting applications such as network management. As the amount of

data transmitted over the network may be limited, an efficient representation of

structured data is essential.

Messages represented in XML are widely used to interchange data over the

Internet. Depending on the scenario in which the technology is applied, mes-

sages might be sent in a semi-continuous stream, or triggered in response to an

event or threshold being reached. For example, medical applications will have

different needs compared to environmental recording systems. Sending XML

via a constrained network is a challenge. The verboseness and redundancy

present within a message can result in issues of scalability. Several studies

(Augeri et al., 2007; Cheney, 2001, 2005; Sakr, 2008, 2009) have developed

methods to compress XML. Although these techniques have mainly focused on

document compression for database storage, they could also be applied in the

field of emerging wireless networks. General text compression techniques can

reduce up to 70% the size of the original file (Sakr, 2009). However, there are

drawbacks with these approaches as the back-end compressors are usually

not XML-aware. In addition they do not employ any high-level validation which

is easily applied to XML using a schema. Validation of real-time data is a signif-

icant advantage when managing a network of embedded devices.

Chapter 4. Efficient network management of XML data 89

4.2 Background

4.2.1 SNMP

For decades, this field has been mainly dominated by a popular protocol for

managing networks systems and devices on IP networks. The Simple Network

Management Protocol (SNMP) has been widely used to manage medium scale

network systems equipped with devices such as routers, switches, modem and

sensors (Case et al., 1990). This internet-standard protocol is controlled by

the Internet Engineering Task Force (IETF) working group which has continued

working on this protocol for several years providing improvements and more

functionalities (Frye et al., 2003). The simple design of this protocol has been

one of the main advantages which allowed users to define variables to monitor

and further expand their system. This led to an extensive use enabling interop-

erability and the implementation across the major hardware vendors. However,

because of its simplicity, SNMP is not capable of supporting a growing net-

work due to its constraints in scalability (Corrente and Tura, 2004). Several

implementations have demonstrated how the major drawbacks of SNMP can

be overcome by using XML-based network management replacing SNMP com-

ponents with XML to both manage the data and define the structure (Shin and

Shim, 2005).

4.2.2 Related work

Extensive research has been conducted to improve network management in

constrained networks (Marrón et al., 2005; Yoon et al., 2003). Wireless Sen-

sor Networks (WSNs) is one area where XML compression has been used to

improve data management. Sensor node hardware restrictions have been ad-

dressed using an XPath engine on updateable compressed XML data, reducing

memory and energy consumption (Hoeller et al., 2009). Furthermore, this work

has been extended to support larger sets of data within the sensor network

using stream-oriented XML compression in order to have a dynamic queriable

system (Hoeller et al., 2010).

This chapter investigates the use of XML compression techniques to improve

network management over a wireless embedded internet, however, results can

Chapter 4. Efficient network management of XML data 90

be extended to general networks. The results of this chapter provide further

contributions to the research carried out so far in this area by presenting tools

that achieve higher compression ratio across data sets typically found in net-

work management applications.

4.2.3 Motivation

Software complexity is not usually considered an issue when discussing XML

compression techniques. However, complex compression software results in

slower compression speeds. Both run-time parsing and data encoding influ-

ence the speed of the entire compression tool. When these procedures are

executed at run-time they can have a considerable impact on an embedded

system. Therefore, traditional document compression tools must be revised

and adapted to satisfy these requirements. Connected to this issue is the type

of programming language used. Several studies have focused their attention

on the use of virtual machines (VMs) for embedded devices using ahead-of-

time compiler (AOTC) or just-in-time compiler (JITC) resulting in performance

and memory consumption improvements (Álvarez Gutiérrez and Soler, 2008;

Badea et al., 2007). However, these approaches are constrained to particu-

lar platforms where these VMs have been ported. This study focuses on lan-

guages such as C/C++ which generate native code and are not dependant on a

virtual machine. In addition, even if light weight VM-based languages can per-

form close to low-level languages such as C/C++ (Pizlo et al., 2010), C/C++ is

dominant in the embedded computing domain. Apart from performance, other

factors must be considered. For example, most compression techniques do not

focus on the importance of compressing valid XML data. The assumption that

the data is valid during compression is a risk that should be eliminated in a net-

work management application. Therefore, there is an interested in techniques

that employ a schema to provide validation. Other non-compression uses for

a schema include the ability to provide light-weight security by employing the

schema as a key to encrypt and decrypt the XML data.

The areas where this research applies mainly focus on improving network man-

agement across a wireless embedded internet. The acronym FCAPS refers to

the five subcategories of network management, Fault, Configuration, Account-

ing, Performance and Security management, initially introduced in the 1980 by

Chapter 4. Efficient network management of XML data 91

the OSI System Management Overview ISO. The results of this chapter aim at

improving the performance management of networks where main factors of this

subcategory are severely threatened. Network capacity of wireless embedded

internet systems is constrained due to the latency, packet loss and throughput

limitation. Due to the constrained throughput, sending uncompressed data is

not feasible as it could increase the packet loss resulting in retransmission de-

lays. By reducing the size of data that needs to be communicated, it is possible

to increase the robustness of the system and ensure a higher performance for

low-bandwidth networks. In addition to performance management, the ability of

validating data is a real improvement for the configuration management cate-

gory.

4.2.4 Network Challenges

The IEEE 802.15.4 is a standard for low-rate wireless personal area networks

LR-WPANs with low-power transmitters and power consumption. This stan-

dard is at the basis of the wireless communication between small devices which

are usually related to technologies such as ZigBee, WirelessHART, MiWi, and

other non-IP based protocols. ZigBee in particular is usually confused with the

802.15.4 standard, however 802.15.4 defines a physical PHY and Media Ac-

cess Control MAC layer protocols whereas ZigBee is a network layer which is

based on top of the 802.15.4 standard. Wireless sensor network WSN defines a

technology which is mainly based and heavily influenced by the 802.15.4 stan-

dard. WSN consists of small devices capable of communicating environmental

data using built-in sensors typically distributed in a mesh network with sensor

and gateway nodes.

Some of these networks based on the 802.15.4 standard rely on a network

layer, OSI layer 3, which does not provide the TCP/IP protocol. However, as the

technology is moving towards the idea that even the smallest device should be

able to communicate to the internet, IPv6 over Low-power Wireless Personal

Area Network 6LoWPAN has been designed to send and receive IPv6 packets

over the IEEE 802.15.4 standard. The main advantage of this is implementation

is the ability to communicate to the smallest device using an IP, hence “Inter-

net of Things”, however the cost of this implementation is considerable. The

data rate is the first limitation found in this environment. The IEEE 802.15.4

Chapter 4. Efficient network management of XML data 92

standard provides a maximum data rate of 250 kb/s for the 2450 MHz PHY

and a lower data rate of 20-40 kb/s for the 868/915 MHz PHY. Data rates can

be employed based on user preferences and regulations. However, in order to

minimise power consumption, a lower data rate is usually preferred. Another

limitation is found in the maximum transmission unit MTU. The MTU for the

IEEE 802.15.4 standard is 127 bytes of which 25 and 21 bytes are reserved for

the frame overhead and the link-layer security respectively. In addition, from the

remaining 81 bytes, 40 are allocated for the IPv6 and either 8 or 20 for the UDP

and TCP headers, leaving 21 bytes for the actual data. If considering data rates,

packet loss, latency and the low throughput, sending data over such networks

becomes a serious challenge. Some of these issues have been addressed with

the RFC 4944 (Montenegro et al., 2007) by applying an adaptation layer mainly

for header compression in order to provide more space for the payload.

In this environment the network still poses severe challenges which influence

the performance management of these devices. The processing capabilities

are not a major issue when compared to the networks limitations. Investing

more processing power to improve the compression of the data that needs to

be communicated would result in a better performance of the network, reduc-

ing delays and possible packet loss. Discussions have been raised whether is it

necessary for these networks to have a TCP/IP protocol stack, however, the aim

is to improve network management by focusing on the data and software de-

velopment, which can be applied on top of OSI layer 3 with both IP and non-IP

networks.

4.3 Methodology

4.3.1 XML Corpus

There are several XML test corpus that have been used over the years to test

compression tools. The W3C developed a test suite to define the conformance

of XML and XML Schema (Thompson et al., 2011). However, this area is frag-

mented and lacks data sets that fit each specific application domain. In a net-

work of limited bandwidth, sending large amounts of data is not feasible. For this

reason, this experiment excludes large documents which are common in com-

pression experiments and mainly focuses on small highly structured XML data.

Chapter 4. Efficient network management of XML data 93

In addition, sensor data, or data collected from managed devices, is mostly

highly structured without being dominated by string data.

The test corpus used for the experiment is not only based on the system re-

quirements but also collected from IP network devices that used SNMP and the

equivalent XML data. This Internet standard protocol manages devices such

as routers, switches, IP telephones and sensors in a structured and restrained

format which is highly relevant to this scenario. The test corpus used for the

experiments was also assembled based on the recommendations from W3C.

For a fair experiment different data sets that contains both numerical and string

data within a constrained size are used as shown in table 4.1. Using the XML

metrics and classifications described in Chapter 2 is it possible to classify this

data set as a collection of data-centric structural XML files. Each XML file is

highly-structured with a maximum document depth of 6 levels of nesting. The

average size of the data set is around 800 bytes. The data set can be cat-

egorised as single XML messages streamed across a low-bandwidth network

and as a structured sequence of XML data which are grouped and sent at spe-

cific times. The Numeric and String columns of table 4.1 informs us on the

variety of data types which are contained in the data set. The Numeric column

contains sets of basic data types which belong to simple and complex forms that

can be easily represented with an n-bit unsigned integer using bit-string, inte-

gers, IPv4, etc. The String column is used to represent String data types such

as UTF8-Strings. This distinction is important to identify encoding differences

for compressors based on derivates of ASN.1 PER encoders.

Name Bytes Tags Depth Numeric String
iptel-devinfo 702 36 2 5 12
iptel-ethinfo 692 36 2 16 1
personnel 903 53 5 4 16
purchaseorder 704 50 4 9 9
router-addnet 566 32 4 3 8
router-disc 834 42 3 7 9
router-qos 870 50 4 0 18
sensor 591 52 6 14 2
switch-config 731 40 3 6 11
temp-sens 1355 94 5 17 23

TABLE 4.1: XML Data Sets

Listing 4.1 displays a typical structure of an XML message which is exchanged

in network management environments. The following is part of the temp-sens

Chapter 4. Efficient network management of XML data 94

XSD file which defines the structure of a temperature sensors for monitoring of

server rooms and infrastructures. The XSD example shows the use of enumer-

ated and boolean simple type restrictions to apply additional constraints on the

information that can be shared across the network.

LISTING 4.1: Sensor Data Structure

1

2 <xs:complexType name="Rtype">

3 <xs:sequence>

4 <xs:element name="Name">

5 <xs:simpleType>

6 <xs:restriction base="enumerated">

7 <xs:enumeration value="Binary1"/>

8 <xs:enumeration value="Binary2"/>

9 <xs:enumeration value="Binary3"/>

10 </xs:restriction>

11 </xs:simpleType>

12 </xs:element>

13 <xs:element name="Number">

14 <xs:simpleType>

15 <xs:restriction base="enumerated">

16 <xs:enumeration value="Input1"/>

17 <xs:enumeration value="Input2"/>

18 <xs:enumeration value="Input3"/>

19 </xs:restriction>

20 </xs:simpleType>

21 </xs:element>

22 <xs:element name="Value"type="boolean"/>

23 <xs:element name="Alarm">

24 <xs:simpleType>

25 <xs:restriction base="enumerated">

26 <xs:enumeration value="Yes"/>

27 <xs:enumeration value="No"/>

28 </xs:restriction>

29 </xs:simpleType>

30 </xs:element>

31 <xs:element name="State"type="boolean"/>

32 </xs:sequence>

33 </xs:complexType>

Chapter 4. Efficient network management of XML data 95

4.3.2 Compressor Execution

Table 4.2 lists the compressors used for the experiments along with code repos-

itories. The table shows how the focus of this work is on XML-aware compres-

sors with particular attention to DTD or schema-informed implementations. A

zlib implementation (Adler, 2005) is used in the experiments in order to un-

derstand the extent to which it is advisable to use a general text compressor.

As mentioned in the previous section, the focus of this study is on languages

with a minimal level of abstraction from the machine. This means that only

XML compressors that are developed in C or C++ and are portable to variety

of embedded platforms are considered. This study excludes direct comparison

against other languages as the programming language choice can influence

the performance results. Application commands used to compress the data set

and calculate compression speeds are listed in Appendix C. Hardware used to

perform the experiments is specified in table B.2 of Appendix C. The software

was compiled using specific flags to specify the machine architecture and the

highest level of optimisation provided by the GCC compiler (Jones, 2005) in or-

der to achieve the best performance for each of the XML compressors listed in

table 4.2.

Compressor Type Schema-aware Language Parser
XMLPPM(Cheney, 2006c) XML-aware - C SAX
DTDPPM(Cheney, 2006a) XML-aware DTD C++ SAX
WBXML(Jehanne, 2009) XML-aware DTD C SAX
XMILL(Colver, 2004) XML-aware - C++ SAX
ZLIB(Adler, 2005) General - C -
PO(Moore, 2012) XML-aware Schema C DOM

TABLE 4.2: XML Compressors List

4.4 Results

4.4.1 Compression Size

To compare the performance of XML compression tools a number of tests were

executed to calculate the compression size, speed and a size/speed ratio. A test

was performed using a script to loop the compress and decompress function

Chapter 4. Efficient network management of XML data 96

FIGURE 4.1: Compression Size Results

100 times. In addition, each test was performed 15 times to calculate the mean

of the compression/decompression times. Results have been plotted using line

graphs with the x-axis sorted by size of the XML file in relation to the numeric

and string data types.

Figure 4.1 shows the compression size as a percentage of the original data.

Most of the compression tools achieve a level of compression between 20%

to 60% of their original size, whereas, a schema-informed compression tool

such as PO is able to reduce the size of the XML to between 2% to 20%. The

compression tools which are based on statistical and dictionary techniques are

influenced by the size and the structure of the XML data where the highest

level of compression is achieved for larger data sets. PO, however, is not ad-

versely affected by the size of the XML. The level of compression is influenced

by how highly structured the data is, as defined by the data types available in the

schema language. For example, the highest level of compression is achieved for

data sets such as sensor and iptel-ethinfo which contain numeric data types.

Contrarily, router-qos and router-addnet cannot achieve similar results as the

data types are mostly string based.

The performance of PO can be predicted based on data types presented in the

Chapter 4. Efficient network management of XML data 97

schema. String types do not benefit from the higher encoding mechanism avail-

able for basic data types. The IER back-end of PO is not able to apply a statis-

tical compression, therefore, each string is fully encoded in a 7-bit compressed

format. The compression size difference is the result of the schema-informed

approach of PO, which allows the tool to encode only data types sequentially

without XML structure information. DTDPPM is not able to achieve a significant

difference from XMLPPM using information provided in the DTD, it can be as-

sumed that the XML structure information is included in the compressed format

and that the advantages of DTDPPM are only triggered in few specific cases.

An interesting result is provided by compression patterns between XMill and

zlib. The advantage of using the XML-conscious approach of XMill is highly

based on the knowledge that needs to be provided by the user. This additional

information is essential in order to achieve additional compression results.

FIGURE 4.2: Compression Time Results

Chapter 4. Efficient network management of XML data 98

FIGURE 4.3: Decompression Time Results

4.4.2 Compression Time

The second experiment is based on the time required to compress and decom-

press XML data. Figures 4.2 and 4.3 show the results for compression and

decompression for each compressor on a logarithmic time scale. The speed of

the tool is affected by several factors. The back-end compressor together with

the parser implementation is usually considered the main factor that determines

performance. The experiments focus on small highly-structured XML messages

with a particular emphasis on the ability to provide validation. Instead of parsing

only the XML data, compression tools that perform validation have to parse and

extract information from a DTD or Schema. However the system architecture

plays an important role when dealing with this additional burden. The experi-

ment was performed calling the compress/decompress function on a loop of 100

for 15 times. Each result is the average of 1500 single compress/decompress

calls. Using this metrics it is possible to calculate the average time required by

the tool to compress and decompress the XML data set.

Chapter 4. Efficient network management of XML data 99

4.4.3 Speed/Size Ratio

The ratio was calculated using equation 4.1 to contrast different tools where

size1st and time1st refer a particular tool and size2nd and time2nd to the other

the ratio is comparing against. This ratio is used to examine the significance

of both encoding speed and encoding size when contrasting tools. Thus, any

score above 1 would indicate a tool that outperforms the analysed one.

Speed/Size ratio =

(
size1st

size2nd

)
×
(
time1st

time2nd

)
(4.1)

As shown in figure 4.4, all compressors underperform against PO, particu-

larly data sets with numeric data types such as sensor and iptel-ethinfo. PO

performs better compared to ZLIB, XMILL and WBXML for all the data sets.

XMLPPM and DTDPPM are more efficient compared to PO only for few data

sets which mostly contain string-based data. PO is more efficient for numeric

data sets such as sensor and iptel-ethinfo. Although it achieves consistent re-

sults when compared to other tools, WBXML presents the worst ratio due to

the poor speed of the tool. Overall best results are achieved by the schema-

informed compressor PO and the general-purpose compression library zlib.

Tables B.3 to B.8 of Appendix C provide the details of compression ratios to

highlight the performance of different tools against the data set.

4.4.4 EXI format

Another experiment was performed to highlight the differences between the

level of compression and speed achieved by PO and an EXI implementation.

This experiment was separated from the previous one as the programming lan-

guage differs. There are currently only Java implementations of EXI compres-

sors that are open source and in a functional state. The level of compression

achieved using EXI is similar to that achieved by PO. The experiment was con-

ducted using EXIficient library with EXIprocessor (Garrett, 2012) tool. Figure

4.5 shows the similarities between the two compressors as both tools use a

schema-informed compression with similar encoding. Both encoders are based

on ASN.1 PER encoding. Using similar encoding mechanisms to map com-

plex simple types to bit level, EXI and PO compression sizes differ only by few

Chapter 4. Efficient network management of XML data 100

FIGURE 4.4: Compression Ratios

bytes (EXI can use up to two bytes for the header). The significant difference

between these tools is the speed at which they operate. Although EXIficient is

Java based this should not account for the vast difference in performance.

Chapter 4. Efficient network management of XML data 101

FIGURE 4.5: PO vs EXI Format

4.5 Observation

The results of the experiments described in section 4.4 demonstrate the per-

formance of compression tools for an XML data set of relatively small, highly-

structured XML files. The use of a schema for defining data types provides

information which can be used to improve the compression. A key disadvan-

tage of using a schema is related to the added complexity of parsing an extra

XML structure, however this can be managed by a one-time fixed cost within

implementations such as PO. In a wireless embedded internet the true bottle-

neck is network capacity where the size of the data to be communicated has a

significant impact on overall performance and the ability to scale usage of the

network. In addition to performance, validation is an important feature for XML

compression tools. The results demonstrate how schema-informed compres-

sion can reduce the size of XML data yet still outperform other general purpose

XML compressors.

Apart from zlib, all the tools used to compare against PO used a SAX parser.

This technique usually performs better than DOM parsing in terms of speed

depending on the application. With SAX there is no requirement to create a

Chapter 4. Efficient network management of XML data 102

memory representation of the data and therefore it can be more efficient for

large data sets. A DOM parser, however, creates an internal tree structure in

memory enabling more high-level and developer friendly functionality you would

expect when creating a network management tool.

These experiments were performed in order to provide useful information to de-

velopers and researchers on how to select a compression tool for this particular

domain. The results show that PO is the most effective solution for efficiently

handling XML-based network management data across restricted communica-

tion networks. It was demonstrated how size is the most important factor to

be considered when compression is applied to a low bandwidth network if the

difference in processing time between tools is minimal. The results can provide

the following observation:

• PO can perform better than other XML compression tools studied.

• Statistical and dictionary-based compressors are more suited to large doc-

ument compression.

• Schema-aware compressors provide the best compression size.

• Schema-aware compressors can provide validation which is an important

addition to applications collecting data across a wireless embedded inter-

net.

• As there is no use case to support large XML data sets, developers can

benefit from the advantages of using DOM over a SAX parser.

The results of the experiments demonstrate a substantial reduction of the size

of the data that needs to be communicated over the network. In addition to this

reduction, another advantage is the compression time required to compress and

decompress the XML data. Using a schema-aware compression it is possible

to reduce the size of the data beyond the limits achieved by conventional com-

pression tools. In addition, the software parser is developed to provide an appli-

cation programming interface to further improve network management. These

features are the key components for the network performance improvements

over a low-bandwidth network. The extra validation and parser functionalities

provided by the software also enhance the configuration management of these

networks. Devices based on the IEEE 802.15.4 standard are still undergoing

Chapter 4. Efficient network management of XML data 103

an exponential growth in processing capabilities yet the network performance is

constrained mainly by the physical layer. For this reason this study mainly fo-

cused on the compression of XML data in order to apply these results not only

to a wireless embedded internet but also to general networks.

4.6 Conclusion

This chapter compared XML compression tools for their potential to support

network management applications over a wireless embedded network. The ef-

ficiency of several compressors are examined in a specific network environment

where the physical layer is the main bottleneck of the system. Results are based

on the ability of each compressor to handle highly structured data with a range

of string and basic data types. The main difference highlighted in the results

is the compression size achieved by schema-informed techniques compared to

standard XML-conscious. It was noticed how to performance speed is highly

related to the complexity of the application even when schema-informed tools

are burdened with the additional schema file.

A number of XML compressors have been evaluated particularly in the field of

network management in order to obtain knowledge on the performance of tools

listed in Chapter 3. With few exceptions, experiments conducted in most previ-

ous research do not focus on a wider range of data sets but on few well-known

XML files. Therefore, the performance of most tools when presented with rela-

tively small highly-structured data sets was unknown. The results of this chapter

fill this research gap presenting the performance in compression size and speed

for this data set which is usually found in the field of network management.

The results of this chapter show the state-of-the-art of XML-conscious com-

pressors by focusing on a number of academic and industry applications. This

study compared several tools with general-purpose back-end algorithms and

various XML binary representations based on ASN.1 encoding rules. Based on

these results it is possible to conclude that schema-informed approaches are

the most efficient techniques to compress XML documents. The ability of these

techniques to compress XML data without including XML element information

is the key feature to minimise the redundancy of XML. This is possible due to

the robust structure of XML which can be thoroughly described in a DTD/XSD

file. In addition, data type information provided in the schema language such

Chapter 4. Efficient network management of XML data 104

as element data types, restrictions and enumeration play an important role by

providing the back-end compressor enough information to compress data using

the lowest number of bits.

Disadvantages of XML compression techniques are related to the complexity

required to parse XML and the schema. While binary representation based on

SAX can be considerably faster compared to a DOM API, lowest compression

sizes can only be achieved using a schema-informed approach. This technique

requires additional complexity due to the XML Schema patterns and restrictions

mapping process. In addition, Schema-informed approaches are always limited

by the information provided to describe XML data. These techniques in partic-

ular are forced to comply with the information of DTD/XSD files. This limitation

can be triggered by using different data types which are not recognised by the

compressor. Without information of a schema, compression techniques can

only rely on the front-end part of the system to manage XML elements using

algorithms such as those described in XMILL and XMLPPM.

Chapter 5

Hybrid XML Document
Compression

This chapter investigates how to best compress XML data using a hybrid com-

pression system developed to improve the efficiency of current technologies.

Based on XML compressors evaluated in Chapter 3 and the comparison results

of Chapter 4 this research proposes a method that incorporates two compres-

sion systems which are executed when their best use cases are triggered. The

first section provides the motivation based on knowledge of XML data sets and

the experiments performed in previous chapters. This part discusses the re-

quirements of a compression tool capable of improving XML compression with

possible extension to other markup languages. Part of this chapter is dedicated

to the system architecture of the hybrid compression system to describe vari-

ous components required to achieve higher compressed formats. A motivating

example based on a typical XML document is provided to demonstrate how

each component performs and the possible variations that can improve the final

compression size. The chapter concludes by describing the applicability of the

hybrid model and the limitations of this approach.

105

Chapter 5. Hybrid XML Document Compression 106

5.1 Motivation

The design of the hybrid model is based on knowledge of current compres-

sors and information provided by XML data sets analysis. The aim is to im-

prove the design of XML compressors in order to achieve the best compression

size with a wider range of data sets. In addition, this work aims at achiev-

ing substantial results with different data types which may not be suitable for

XML compression techniques. Chapter 3 discussed a number of XML compres-

sors later evaluated in Chapter 4. The compression size and performance for

small data sets was tested in the field of network management to fill research

gaps in compressing small highly-structured data sets. Results demonstrate

the efficiency of schema-informed compression techniques compared to stan-

dard XML-conscious. The disadvantages of implementing these techniques

have been identified and related to software complexity and availability of the

schema language. Simple XML-conscious techniques lack knowledge of both

structure and data types of XML. Therefore, without the knowledge provided by

a schema language, the XML structure has to be encoded in the compressed

format. For example, a schema-uninformed technique will have to store data

such opening, closing and empty tags. Furthermore, a schema language also

provides information related to XML data types. Without incurring additional

processing required to recognise data types, the compressor is able to handle

data more efficiently using knowledge provided in the schema language.

The design of the hybrid compressor is based on statistical analysis performed

in XML and Schemas compression and data management research areas. The

analysis of XML data has shown how schema languages are common only

for a specific type of XML documents where simple type restrictions are not

designed to aid compression. This intention of this research is to improve com-

pression for documents of various sizes which do not benefit from a descriptive

schema language. For example, a schema language can be generated and

used to compress documents with identical structure but different data. Differ-

ent types of XML documents such as structural and textual can achieve better

compression when informed with a schema language. As analysed by the XMill

compressor, textual XML documents can take advantage of a structured XML

form to separate various data types and increase compression with semantic

containers. Using a schema language it is possible to minimise compression

even for expanded XML documents. This work aims at improving compression

Chapter 5. Hybrid XML Document Compression 107

for data sets of irregular XML documents that cannot be validated. This can be

achieved by transforming documents into more suitable forms.

The design of the hybrid compressor aims at improving compression for a wider

range of XML data without restricting application to a particular area. Most XML

compressors do not achieve efficient results for different types of XML when

considering structure, size, data types and schema availability. The design of

this tool is aimed at improving compression for XML, however, it can be ex-

tended to all markup languages with minimal changes to the front-end of the

system that transforms high-level syntax into a lower format.

5.2 System Requirements

A set of requirements are defined for the hybrid compression model to efficiently

compress XML data. These requirements are based on studies of XML com-

pressors in order to improve the compression size.

R1: Support wider range of XML data sets

The first requirement is to efficiently support a wide range of data sets

constructed from document-centric and data-centric XML files. Each tool

described in Chapter 3 is best suited for a particular type of XML, based on

the area where these compressors are applied. For example, XMLPPM

and DTDPPM are designed to solve problems relevant to web data man-

agement focusing mainly on minimum-length coding for efficient XML stor-

age and transmission. Queriable XML compressors, instead, focus on

storage techniques for efficient XML database query and processing. Few

tools have been designed with the intent to support a wider range of ap-

plications. This is due to the difficulties in designing a tool capable of sup-

porting various XML data sets and scenarios. The aim of this requirement

is to provide the best performance for a wider range of XML documents

while matching the performance of general-purpose compressors for un-

supported documents.

R2: Manage Schema-uninformed compression efficiently

A severe disadvantage of XML compression is related to the performance

of schema-uninformed techniques. The results of Chapter 4 illustrate

Chapter 5. Hybrid XML Document Compression 108

a clear difference in compression between schema-informed and unin-

formed techniques with around 20% additional compression achieved by

the first. Although tools such as XMill have introduced additional levels

of compression using atomic types applied to XML values with required

patterns, the lack of a schema to define the structure of the document is

the major drawback. This requirement focuses on the development of an

efficient schema-uninformed compression technique to provide the ability

of defining the structure of XML. This feature will reduce the information

stored in the compressed format, essential for compressing large data

sets with repetitive XML tags. An important advantage gained from the

development of this requirement is the ability to apply the best data types

to specific values. Mapping basic data types to an efficient representa-

tion is essential to achieve a higher compressed format. For example, bit

strings can be converted into a sequence of octets using only 1 bit per

character data, saving 7 bits for each symbol.

R3: Separate Structure from Data

Separating structure from data is an essential requirement for XML schema-

informed compression techniques. Few compressors are based on the

local homogeneity property to enhance compression. Implementing this

feature together with a schema-informed approach can increase the com-

pression size. It is possible to highlight some similarities between the ho-

mogeneous compression of XMill and the schema-informed approach of

PO. XMill streams data into semantic containers based on XML element

and user-defined options. A number of containers are created based on

the amount of different data types of the XML. Here, the structure con-

tainer is used to compress XML structure into a more concise format ex-

ploiting the data redundancy and similarities. The schema-informed ap-

proach can be visualised as a similar local homogeneous version, where

the XML structure information is stored in the Schema language there-

fore reducing the compressed format from the structure container. This

requirement aims at incorporating features of schema-informed and local

homogeneous approaches.

Table 5.1 illustrates where the requirements listed above are implemented in

current compressors. Most of the tools satisfy the requirement R1 with excep-

tion for schema-informed DTDPPM and PO which are focused on a particular

Chapter 5. Hybrid XML Document Compression 109

Requirements XMLPPM DTDPPM WBXML XMILL PO EXI
R1 X × × X × X
R2 × × × X* × ×
R3 × × × X × X

TABLE 5.1: Requirements on XML Compressors

domain. Due to the additional complexity, EXI is able to satisfy R1 using both

schema-informed and uninformed approaches. An efficient schema-uninformed

compression can be found in XMill compressor which is able to achieve higher

compression sizes compared to general-purpose compressors. However, re-

quirement R2 can only be achieved with the user’s intervention exploiting data

type knowledge. Requirement R3 is found in XMill, the first local homogeneous

compressor, and to some extent in EXI. The latter implements R3 by aligning

event into a semantic bit-aligned stream more prone to compression.

The hybrid compression system described in this chapter aims at implementing

all requirements based on the knowledge and performance of current compres-

sors. From a high-level point of view, the requirements can be achieved using

aspects and properties of the best compressors. The following model describes

the architecture of a system capable of handling various XML files and different

scenarios.

5.3 Hybrid Compression Model

This section describes a compression model based on the techniques eval-

uated in Chapter 4 and the requirements described in section 5.2. Diagram

5.1 illustrates the stages required to compress an XML document using differ-

ent techniques to enable a schema-informed approach with local homogeneity

properties. The diagram introduces canonical (canon) XML and XSD which are

generated from the stages of the model in order to convert XML into a PO sub-

set and allow a schema-informed compression. Both forms will be described in

more detail in the next sections.

The main concept of the model is the separation between basic and character

string types, which are compressed using their best encoding technique. The

first stage, Document Transformation, is required to transform an XML docu-

ment into a subset of XML which can be accepted by the PO encoder. The

Chapter 5. Hybrid XML Document Compression 110

FIGURE 5.1: Hybrid Compression Model

second stage, Knowledge Extraction process, is linked to the Schema Gen-

eration. To benefit from local homogeneity properties, the model extracts large

string types from the XML data and replaces them with a place holder integer for

decompression purposes. A buffer containing string types is created together

with a Schema language to validate the XML data. The result of the first three

stages is an XML document with integer values pointing to string types stored in

a memory buffer. A schema language is also automatically generated based on

the information collected from the Knowledge Extraction parsing process. The

latter is used to provide a schema-informed compression using a fixed length

encoder. Depending on the scenario, the XSD can be stored locally or com-

pressed with the string buffer using a variable length encoder. The result of

the compression model is a binary format containing basic types compressed

efficiently using a fixed length encoder and the string buffer compressed using

a variable length encoder. The approach described in this model is based on

the best compression techniques applied to character string types using zlib

and basic types using PO. The differences between the proposed model and

PO are based on the additional stages required before the XML document is

passed to the low-level encoders. While PO requires users to provide the XML

Chapter 5. Hybrid XML Document Compression 111

Schema, the hybrid model automatically generates an optimal schema that can

be subsequently stored with the compressed format. In addition, by separating

character string data types from the basic data types, it is possible to incorpo-

rate local homogeneous compression properties. The next sections describes

the encoding and decoding process for each of the stages described in the

model diagram.

5.3.1 Document Transformation

The first part of the model focuses on transforming XML documents to a subset

of XML standard. This transformation process is needed to allow various XML

components to be recognised by the low-level encoder. As discussed in section

3.1.8, PO XML is restricted by an additional schema which does not allow the

use of attributes, comments and other non-structural components. Therefore,

since PO can only accept a subset of XML, a transformation process is re-

quired to enable non-structural components to be recognised and validated by

the schema-informed compressor. The term canonical (canon) is used to de-

fine this specific subset of XML which should not be confused with the standard

definition of Canonical XML.

Since data is only available in element components and nested hierarchically,

this form can be described as a highly-structured document. Code listing 5.1

presents an example of EBNF to describe the canonical XML accepted by PO.

XML documents are based on a prolog and a single root element. Compared to

the specification of XML described in (Bray et al., 2008), only two components

are allowed while the use of miscellaneous is restricted. Elements can only con-

tain character data or nested elements. This subset allows standard definition

for element name, thus the use of namespaces, which are treated as standard

element names by the encoder. In summary, compared to the standard EBNF

of XML 1.0, this subset is based on minimal components mainly restricted to

the use of elements.

LISTING 5.1: Canonical PO XML EBNF definition
1 document ::= prolog element
2

3 prolog ::= XMLDecl
4 XMLDecl ::= ’<?xml’ VersionInfo EncodingDecl ’?>’
5 VersionInfo ::= ’version’ Eq (’ VersionNum ’ | " VersionNum ")
6 VersionNum ::= ([a-zA-Z0-9_.:] | ’-’)+

Chapter 5. Hybrid XML Document Compression 112

7 EncodingDecl ::= ’encoding’ Eq (’"’ EncName ’"’ | "’" EncName "’")
8 EncName ::= [A-Za-z] ([A-Za-z0-9._] | ’-’)*
9 Eq ::= ’=’

10

11 element ::= EmptyElemTag | STag content ETag
12 EmptyElemTag ::= ’<’ Name ’/>’
13

14 STag ::= ’<’ Name ’>’
15 ETag ::= ’</’ Name ’>’
16 content ::= (element)* | CharData
17

18 CharData ::= [^<&]* - ([^<&]* ’]]>’ [^<&]*)
19 Name ::= NameChar
20 NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-
21 #x036F] | [#x203F-#x2040]
22 NameStartChar ::= ":" |[A-Z]|"_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6]
23 | [#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] |
24 [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] |
25 [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] |
26 [#x10000-#xEFFFF]

This part of the system allows XML documents containing unstructured data to

be recognised by the low-level encoder. To enable this process, non-structural

components are transformed into standard XML elements. For example, at-

tributes are transformed into nested elements in a fixed structure to be later

recognised and processed back to their original form. In addition to simple

types, the transformation process also requires to transform complex type se-

quences into suitable forms. Chapter 3 discussed how PO only accepts a sub-

set of complex types derived from ASN.1. However, XML and Schema lan-

guages allow documents containing unordered complex types such as <xs:any>.

Therefore, the transformation process has to deal with the restructuring of com-

plex types such as sequence and sequence-of.

In summary, the transformation process converts non-structural components

and unordered sequences into a highly structured form. This form is con-

structed on pre-defined nested elements which can be recognised by the trans-

formation process and reverted to the original form. The following sections de-

scribe this process in two parts, XML components and structure transformation.

5.3.1.1 XML Components Transformation

Unstructured data is transformed into highly-structured element components

nested within the parent node. Attributes, comments, PIs and DTDs are trans-

formed into elements following a general rule: “Every component is transformed

Chapter 5. Hybrid XML Document Compression 113

into a sequence of nested elements”. As highlighted by XMill compressor, con-

verting data into a highly-structured form with the intent of improving compres-

sion, increases the size of the original file. However, combining this feature

with a schema-informed technique, means that the data will benefit from a well-

defined structure without the burden of XML tags redundancy. Although XML

transformation appears to drastically increase the size of the original data, the

compress format will not be affected. The XML structure will be defined in

the schema language. Based on this design, it may appear that the additional

nested elements will increase the size of the schema language. This drawback

is avoided using repetitive nested elements to define the transformed compo-

nents. The following code listings provide a clear example on how XML compo-

nents transformation expands XML documents.

LISTING 5.2: XML Document con-

taining attributes
<?xml version="1.0" encoding="UTF-8"?>
<foo bar="Male" baz="1976">foobar</foo>

LISTING 5.3: XML Document

after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<foo>
<a>
<a>
<a>bar
<v>Male</v>

<a>
<a>baz
<v>1976</v>

<v>foobar</v>

</foo>

In code listing 5.2 and 5.3, the “foo” element contains two attributes, “bar” and

“baz” and the value of the element “foobar”. In the expanded format, the element

“foo” contains an attribute sequence “a” which contains a sequence-of “a”. The

attribute sequence-of contains “a” and “v” elements which are the name and

value of the attribute respectively. All the attributes of the “foo” element are

contained inside the attributes sequence. The value of “foo” is placed inside a

“v” element after the attribute sequence.

LISTING 5.4: XML Document con-

taining comments
<?xml version="1.0" encoding="UTF-8"?>
<foo>
<!--relevant comment -->
<bar>bar</bar>
<!--another comment -->

</foo>

LISTING 5.5: XML Document

after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<foo>
<c>relevant comment</c>
<bar>bar</bar>
<c>another comment</c>

</foo>

Chapter 5. Hybrid XML Document Compression 114

In code listing 5.4 and 5.5, comments inside the root node are transformed into

standard elements of the node. PIs, DTDs and other components follow the

same rule applied for comments transformation. The following design is based

on the ability to transform XML documents and enable a structured and valid

representation of XML. The additional level of nesting for attribute transforma-

tion is created to easily generate a valid XML schema based on a sequence con-

taining sequence-of attributes elements. In addition, the repetitive element tags

generated by the transformation process have the dual role of being recognised

when performing the reverse process, and achieve better compression size for

the generated schema. This is because the automatically generated schema is

encoded using a dictionary compression technique.

Algorithm 1 XML Components Transformation
1: function EXPAND COMPONENTS(Root Node)
2: for Current node = Root Node; Current Node; Current Node→Next do
3: if Current node = XML ELEMENT then
4: for Attr = Node→Properties; NULL != Attr ; Attr→Next do
5: Create Sequence-of Attribute Elements
6: if ∃ Node Value then
7: Create Element Value Node
8: end if
9: end for

10: if Child Element Count > 0 then
11: EXPAND COMPONENTS(Current Node)
12: end if
13: else if Current node = XML COMMENT then
14: Create Comment Element
15: else if Current node = XML PI then
16: Create PI Element
17: else if Current node = XML DTD then
18: Create DTD Element
19: end if
20: end for
21: return Root Node
22: end function

Algorithm 1 presents the pseudo code for the XML component transformation.

The main function expand components analyses each node of the document

with different conditional statements depending on the nature of the node. For

each element node the algorithms search for attributes and namespaces dec-

larations (which are treated as attributes). In presence of these, the element

component is restructured to create a sequence-of attribute element with node

Chapter 5. Hybrid XML Document Compression 115

value moved to a nested <v> element. The function works recursively to trans-

form elements with nested children. For nodes equal to comments, PIs, or

DTDs, a single element is created to store this information.

5.3.1.2 XML Structure Transformation

The structure transformation process applies to unordered sequence of ele-

ments. This process can be defined as a structure reordering as each nested

element is grouped in a sequence or sequence-of complex type with its next

sibling. Code listing 5.6 and 5.7 provide an example of the sequence reorder-

ing applied to an unordered sequence-of elements. The structure for nested

elements is similar to the one implemented for attributes transformation using

<s> tags. Algorithm 2 presents the pseudo code of the sequence transforma-

tion process. While parsing current nodes, the main function expand sequence

triggers analyse node to check for unordered sequence of elements. This func-

tion compares sibling names increasing the count for repetitions. The return

boolean is changed to true when count is greater than 1 and next sibling is not

equal to the current node. The return of this function triggers the restructure

sequence operation.

More information and examples for the XML components and structure trans-

formation process are provided in Appendix D.

LISTING 5.6: XML Document con-

taining unordered complex type
<?xml version="1.0" encoding="UTF-8"?>
<foo>
<bar>bar</bar>
<bar>bar</bar>
<foobar>foobar</foobar>
<foobar>foobar</foobar>
<foobar>foobar</foobar>
<bar>bar</bar>
<bar>bar</bar>

</foo>

LISTING 5.7: XML Document

after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<foo>
<s>
<s>
<bar>bar</bar>
<bar>bar</bar>

</s>
<s>
<foobar>foobar</foobar>
<foobar>foobar</foobar>
<foobar>foobar</foobar>

</s>
<s>
<bar>bar</bar>
<bar>bar</bar>

</s>
</s>

</foo>

Chapter 5. Hybrid XML Document Compression 116

Algorithm 2 XML Sequence Transformation
1: function ANALYSE NODE(Node, Count)
2: boolean = False
3: if Node→Name = NEXT ELEMENT SIBLING(Node)→Name then
4: Count++
5: ANALYSE NODE(Current Node→ Next, Count)
6: else
7: if Count > 1 then
8: boolean = True
9: end if

10: end if
11: return boolean
12: end function
13:
14: function EXPAND SEQUENCE(Root Node)
15: for Current node = Root Node; Current Node; Current Node→Next do
16: if Current node = XML ELEMENT then
17: boolean← ANALYSE NODE(Current Node, 0)
18: if boolean→ True then
19: RestructureSequence
20: end if
21: end if
22: end for
23: return Root Node
24: end function

5.3.2 Knowledge Extraction

The result of the transformation process is a canon XML compatible with the PO

encoder. The second part of the system presented in figure 5.1 is referred as

“Knowledge Extraction”. During this process, canon XML is analysed in order to

extract knowledge required for the subsequent processes. Information regard-

ing complex and simple types is extracted from the highly-structured XML to

decide the best compression technique to compress data. With this knowledge

the model is capable to automatically generate a schema language to enable

a schema-informed compression. Therefore, this process is required in order

to identify complex and simple types used in the schema. The knowledge ex-

traction process is involved in detecting basic types such as integers, decimal,

bit-strings and others which can be mapped to a lower signed/unsigned in-

teger form. This information is used to construct the schema and improve com-

pression using the PO encoder. For example, detecting IPv4 or hexadecimal

data allows the encoder to compress this information using fewer bits compared

Chapter 5. Hybrid XML Document Compression 117

to a standard string encoding mechanisms. However, because of its derivation

from ASN.1 PER encoder, PO is not able to compress string efficiently, saving

only 1 bit for each character of a xs:string type. For this reason the model

handles string data types using a different encoder based on dictionary com-

pression algorithm such as DEFLATE. Thus, string types are recognised and

sequentially stored into a memory buffer which will be compressed using zlib

library. String types are replaced with an integer identifier which is required to

locate the string from the compressed/decompressed buffer. The knowledge

extraction process will assign a special data type for these integers in order to

restore the string buffer on decompression.

PO EBNF listed in 5.1 only accepts a minimal subset of the original language.

The full EBNF allows to freely create elements and miscellaneous components

ignoring the risk of validation errors. For example, in a standard XML it is possi-

ble to define multiple root elements or embed information outside the root node

such as PI, DTD, or comments. As the model needs to keep track of this in-

formation, an additional root element is created in order to validate against the

XML subset. The root element is removed on decompression and the trans-

formed components are restored to their original format.

5.3.3 Schema Generation

A schema is subsequently generated based on knowledge gathered from the

canon XML. The schema will define complex and simple types, consisting mainly

of data types which can be efficiently handled by PO. Code listing 5.9 provides

an example of a schema generated from XML data listed in 5.8.

LISTING 5.8: Example of XML data
1 <?xml version="1.0" encoding="UTF-8"?>
2 <student>
3 <module>FuncProg</module>
4 <hours>48</hours>
5 <courses>CS</courses>
6 <ref>AABBCCDDEE</ref>
7 <description>
8 Functional programming has
9 its roots in lambda calculus

10 </description>
11 </student>

Chapter 5. Hybrid XML Document Compression 118

LISTING 5.9: Automatically generated PO Schema language
1 <?xml version="1.0" encoding="UTF-8"?>
2 <_r type="sequence">
3 <student type="sequence">
4 <module type="integer" variant="constrained" minInclusive="8"
5 maxInclusive="8" zlib="1"/>
6 <hours type="integer" variant="constrained" minInclusive="48"
7 maxInclusive="48"/>
8 <courses type="integer" variant="constrained" minInclusive="2"
9 maxInclusive="2" zlib="1"/>

10 <ref type="hex-string" variant="fixed-length" length="10"/>
11 <description type="integer" variant="constrained" minInclusive="68"
12 maxInclusive="68" zlib="1"/>
13 </student>
14 </_r>

The schema will be loaded in memory and, depending on the API used, stored

locally or concatenated to the zlib string buffer. An important aspect of this

process is the lack of validation. PO schema will be used uniquely for com-

pression purposes since the data type information and constraints have already

been parsed during the knowledge extraction process. This allows the model

to save additional processing time needed to validate XML against the schema.

Therefore, the automatically generated schema will act uniquely as a protocol

to encode data types into a lower form. In addition, since the schema will not

be visible to the end users, it is possible to use an abstract syntax which is

closer to the IER of PO. The schema syntax listed in 5.9 can be defined as a

concise XML Schema language which can be easily mapped to the XML. In

the following HPO schema, string types module,courses and description have

been replaced by integers referring to the string buffer. To keep track of these

changes, the attribute zlib=‘‘1’’ is added to the schema definition.

An important aspect of the schema generation process is the ability to define

data type constraints to increase the compactness of the compressed format.

PO IER does not enforce the user to encode the length of a basic data types

if lower and upper boundaries are provided in the schema. The upper and

lower bounds are calculated using the data value of elements with identical

names. Therefore, these constrains are adjusted to the lowest and greatest

value found in the element data. This feature increases the possibility to achieve

higher compression as more bits can be saved when both bounds are supplied.

Schema generation is aimed at supporting basic types which can be handled

more efficiently by encoder. For example, the ref element is recognised as a

hexadecimal string and therefore compressed using type="hex-string" with a

fixed length.

Chapter 5. Hybrid XML Document Compression 119

5.3.4 Character String and Basic Types Separation

An important aspect of the hybrid compression model is the separation between

character string and basic types. The canon XML of code listing 5.10 is trans-

formed into an XML containing only basic types and a string buffer as shown

in code listing 5.11 and 5.12 respectively. String data for module, courses and

description elements, is replaced with an integer which refers to the length

of the data. Other elements based on basic types are not transformed. To-

gether with the information provided in the schema, the canon XML formed

with basic types is compressed using the PO schema-informed approach. This

approach provides the best encoding mechanism to create efficient representa-

tions of high-level forms such as hex-string, unix-timestamps or enumeration.

The string buffer will be compressed using a dictionary compression technique

based on the DEFLATE algorithm. Depending on the use of the API, it is possi-

ble to store the schema locally or to compress it together with the string buffer.

The specifications of these two compression mechanisms are described in the

sections below.

LISTING 5.10: XML Document

<?xml version="1.0" encoding="UTF-8"?>
<student>
<module>FuncProg</module>
<hours>48</hours>
<courses>CS</courses>
<ref>AABBCCDDEE</ref>
<description>
Functional programming has
its roots in lambda calculus

</description>
</student>

LISTING 5.11: Basic Data Types

XML Document

<?xml version="1.0" encoding="UTF-8"?>
<_r>
<student>
<module>8</module>
<hours>48</hours>
<courses>2</courses>
<ref>AABBCCDDEE</ref>
<description>68</description>

</student>
</_r>

LISTING 5.12: String Buffer

FuncProgCS
Functional programming has
its roots in lambda calculus

5.3.4.1 String Data Types compression

String data type compression is aimed at improving the encoding size of the

string buffer. This buffer is generated from a stream of elements containing

Chapter 5. Hybrid XML Document Compression 120

string data that cannot be efficiently mapped to a lower integer form. The zlib

library, which implements the DEFLATE algorithm, is used to compress string

data stored in a memory buffer with size equal to the total amount of string data

types of the XML. With this approach, it is possible to compress string data types

of XML, including those that can be represented with enumeration. A dictionary

compression algorithms is be able to efficiently represent multiple occurrences

of string data which would otherwise require more complexity on the Knowledge

Extraction process and additional information stored in the schema. For this

reason, the current version of the hybrid model does not detect enumeration

types.

Elements with string values are grouped into a memory buffer and replaced with

an integer referring to the length of the value. This integer is needed in order

to restore the string value back to its element on decompression. A similar

technique is implemented in data serialisation for programming languages data

structures. After data values are grouped together sequentially, the length is

used to restore data on de-serialisation. During decompression, this technique

is triggered by the zlib schema option of integer elements. The element with the

first occurrence of zlib option is replaced with n-characters of decompressed

buffer. Subsequence occurrences will add previous lengths and restore string

elements to their original values. Table 5.2 provides a visual example of the

string data type compression and decompression for the string buffer of XML

data previously analysed in code listing 5.10.

F u n c P r o g C S
�

F u n c t
• - 8 •- 2 •
i o n a l p r o g r a m m i n g h a

s
�

i t s r o o t s i n

l a m b d a c a l c u l u s
�

- 68

TABLE 5.2: String Buffer Data Serialisation

5.3.4.2 Basic Data Types Compression

Basic data types are compressed using the schema-informed approach of PO.

Schema-informed techniques provide the best compression size for many types

of XML documents. This model applies PO compression for canon XML data

Chapter 5. Hybrid XML Document Compression 121

composed purely of basic types which are compressed efficiently due to the

fixed length encoder and the schema-informed technique. The use PO instead

of EXI was based on the results performed in Chapter 4. The high software

complexity and the absence of a native language implementation do not allow

an easy integration of EXI with this model. In addition, PO is highly portable

and has proven efficient in a number of projects. Libxml2 allows the developer

to parse XML and generate schemas more easily by integrating PO implemen-

tation with the hybrid model. In conclusion, basic data types compression is

based on the IER of PO described in Chapter 3.

5.3.5 Compressed Format

The binary format of the hybrid model is based on a header followed by the com-

pressed payloads. Figure 5.1 of section 5.3 describes the binary format as a

header followed by the basic data types and complex types compressed format

of PO and the string buffers compressed using DEFLATE. This format is created

when the model operates on a hybrid mode. An important aspect of the model

is the ability to compress data dynamically based on the data types presented.

This allows the system to fully apply one encoding technique over another. For

example, if the data types analysed during the knowledge extraction process

consists of basic data types, the hybrid model will encode the document using

the fixed-length encoder of PO. Contrary, when presented with string data, the

entire document will be compressed using the DEFLATE algorithm. This feature

allows the hybrid model to operate dynamically creating different binary formats

depending on the XML data presented.

A header is used to provide the necessary information to decompress the bi-

nary format. In hybrid mode the header is followed by the PO format and the

compressed string buffer and schema.

Header

0 1 0 1

Packedobjects

Data types
DEFLATE

String Buffer
DEFLATE

Schema Data

TABLE 5.3: Hybrid Mode Binary Format

In pure mode the header will simply be followed by text compressed data.

Chapter 5. Hybrid XML Document Compression 122

Header

0 1 0 1

DEFLATE

XML Document

TABLE 5.4: Pure Mode Binary Format

Depending on the XML data types, the model will compress the XML file using

the hybrid or pure mode.

5.3.6 Decompression process

The decompression process is less computational intensive and therefore faster

compared to compression. The knowledge extraction and schema generation

processes are not required. All the information needed to decode XML is stored

in the schema and the string buffer. The header of the compressed format will

inform whether the XML document was compressed using a hybrid approach or

one particular compression over another. Figure 5.1, discussed in section 5.3,

illustrates the output of the hybrid compression model divided into basic and

character string data types compressed using PO and zlib respectively. The

string buffer is decompressed to return the schema, in case it was not saved

locally, and the values of the string buffer. PO makes use of the schema to

decompress its buffer and return the canonical XML. During this process, ele-

ments containing zlib option are restored with their original value found in the

string buffer. The header will inform if the document transformation process

was performed on the XML. Based on this option, the canonical XML will be

processed to transform structured elements back to their original components

which are restored using element patterns to detect attributes, comments and

other transformation processes.

A key feature of the hybrid model is the ability to recognise non-structured data

and compressed it using features described above. After decompression, all

information which was recognised during compression is restored back to its

original format. Compared to other models, this approach does not operate on

the XML documents but creates a memory representation based on what the

system was able to detect. Non-structured components are transformed into

PO format while others such as newlines and white spaces outside elements

are ignored. It is possible to store this information in additional structured el-

ements to return the precise format as the XML document was compressed.

Chapter 5. Hybrid XML Document Compression 123

However, this data does not affect the XML and can be ignored in most cases.

On decompression, standard newline and white space characters are restored

according to the standard specification of XML.

5.4 System Execution

As described in the previous section, the hybrid model is based on two com-

pression techniques. PO and the DEFLATE algorithm of the zlib library are

the two back-end compressors to apply a fixed and variable length encoding

techniques. The hybrid model is based on the separation between basic and

character string data types in order to achieve the highest level of compres-

sion. Figure 5.2 presents the system execution cycle for compressing XML

documents. The initial analysis of the XML document is found during the first

process of the hybrid model. During the document transformation, it is possible

to opt out from the hybrid technique and apply a pure compression mode. This

mode can be triggered in case data types are not suitable for the fixed length

encoder or for non-valid XML structures.

FIGURE 5.2: Hybrid Model System Execution

Chapter 5. Hybrid XML Document Compression 124

From a high level perspective, the hybrid model is based on two length coding

techniques, fixed and variable. As this research focuses on the benefits of fixed

length coding techniques to general-purpose compressors, it is vital for the hy-

brid model to apply both techniques in a hybrid mode. These techniques can

be applied fully or partially, depending on the data types of the XML. The pure

mode is enabled in case of unsuitable data types or XML structures in order to

improve the performance and avoid possible encoding errors.

The idea behind the hybrid model is to encode a number of data types using

the fixed-length encoder. As shown in Chapter 4, fixed length encoders, to-

gether with a schema-informed technique are able to achieve higher level of

compression compared to standard general-purpose compressors. Due to the

transparent schema-informed technique of the hybrid model, it is possible to

apply a high level of compression for data types compressed using the fixed

length encoder.

5.5 Code Optimisation

Code optimisation techniques have been implemented during the design and

development of the hybrid model to improve the overall performance. The hybrid

model can be divided into two parts the front-end and the back-end. The front-

end is the part of the system in charge of transforming the markup language

into a lower form which can be then passed to the fixed and variable length

encoders. These represent the back-end of the system. This separation is

based on the ability of the hybrid model to adapt to other markup languages.

As described in Chapter 1, this work focuses on the compression of XML as

the standard example of markup language. However, the research aim is to

demonstrate the ability of a fixed length encoder to enhance general-purpose

compressors for markup languages. Therefore, this separation is important to

allow the hybrid model to be applied to other markup languages which can be

validated by a data definition language.

The following sections describe some of the optimisation features implemented

to improve the performance of the hybrid model. The performance optimisation

is aimed at improving the execution speed, keeping memory and CPU usage

low. The requirements previously described in section 5.2 focus on improving

Chapter 5. Hybrid XML Document Compression 125

the efficiency of the hybrid model which is the amount compression applicable

to an XML file.

5.5.1 Front-end

Both the front-end and back-end of the hybrid model require a high level of

performance. The back-end encoders have been selected using the informa-

tion collected from other work conducted in this area and the results of Chapter

4. The front-end is divided into several processes as illustrated in the previ-

ous figure 5.1. Document transformation and schema generation are the most

intensive tasks. The first task transforms XML documents into highly struc-

tured formats compatible with the fixed-length encoder of PO. The second task

instead, gathers knowledge from the XML file in order to develop a domain-

specific schema. Both tasks have been developed with the additional purpose

of improving performance.

The first implementation choice for the document transformation process is

XSLT. By defining the transformation rules in an XSLT script, the system re-

quires an additional processor to parse the script and transform the document.

In order to improve the performance of the hybrid model, the system implements

a native implementation written using a dependency library of XSLT. Libxml2 is

used as the API to transform XML components into highly-structured formats

as described in section 5.3.1. This implementation allows the system to avoid

having to parse an additional script during run-time and perform better using

only a subset of the transformation library.

The schema generation process is also considered for performance and effi-

ciency optimisation. During this process the entire XML document is parsed

multiple times, during which an internal representation of the schema is con-

structed using hash tables. This memory representation is then used to con-

struct a domain-specific schema language. Since this validation language is

only used for mapping data types to the IER of PO, the standard XML schema

language was not considered. This schema language allows the hybrid model

to construct a highly efficient format using less space than it would be required

by the standard XML schema. For debugging purposes the current schema pro-

vide full naming of the attributes required as shown in code listing 5.9. However,

Chapter 5. Hybrid XML Document Compression 126

a more optimised version can be constructed using code-words to improve its

compression.

5.5.2 Back-end

The back-end of the hybrid model is based on a variable and fixed-length en-

coder, zlib and PO respectively. These two tools have been selected based on

their results achieved in the experiments of Chapter 4 and the low amount of

dependencies needed. As shown in section 4.4.2, zlib and PO are the fastest

implementations when compressing highly structured XML files. The low num-

ber of dependencies needed by both encoders allows the hybrid model to be

build using only libxml2 which is required for the front-end processes. This prop-

erty allows the hybrid model to be highly portable to various platforms which are

able to satisfy the dependencies requirement.

5.6 System Requirements Support

Based on the documentation of compression stages it is possible to describe

how the proposed model is able to meet the requirements defined in the section

5.2. The model was designed based on the advantages of each tool combined

together in an elegant approach. The first requirement R1 aims at supporting

a wider range of XML data sets. So far most the tools analysed are aimed

at a specific area of XML compression. The compression size efficiency of

these tools depends on the size and nature of XML. This model was designed

to support a wider range of data sets ranging from small to large, document

to data-centric, regular to irregular XML. Thanks to its ability to adjust an XML

document to a subset of PO, the transformation process is the major part of the

model which is able to satisfy the requirement of R1.

An important feature of the hybrid model is the ability to manage schema un-

informed compression efficiently defined in requirement R2. Due to the knowl-

edge extraction and the schema generation processes, the hybrid model is able

to perform a transparent schema-informed compression. This novel schema

uninformed compression implements an informed approach which is not visi-

ble to the end user. This technique enables the model to benefit from a defined

Chapter 5. Hybrid XML Document Compression 127

structure and data types, which are vital components for the IER back-end com-

pressor.

The third requirement R3 is based on the concept of separating structure from

data. Chapter 4 analysed how compressors based on this principle are able

to outperform other tools with homomorphic properties. In order to meet the

requirements of R3, PO and zlib have been integrated as back-end compres-

sors. Using these compressors it was possible to benefit from the properties

of the schema informed compression of PO and the dictionary compression of

zlib. PO provides the ability to separate structure from data using a schema

as reference. In addition, the compression model will separate data between

basic and character string types. Basic and complex types will be compressed

using PO while character string types using zlib. With this approach the best

compression techniques can be used for these two categories of data types in

order to achieve better results.

5.7 A Motivating Example

This section provides a motivating example to test the efficiency of the hybrid

model. A more detailed evaluation of the hybrid model will be provided in the

next chapter. XML file lineitem.xml is used from corpus (Miklau, 2014), a

popular document generally used for testing XML compressors. A snippet of

XML is provided in code listing 5.13 in order to understand the document. An

analysis of the XML informs us on the data-centric highly-structured properties

of lineitem.xml. The XML format is compatible with PO subset of XML and

therefore does not require the document transformation process. From a more

advanced analysis the document can be identified as a sequence-of element

<T> containing a sequence of mixed ordered elements. These are based on a

range of character string and basic types such as integers, decimal, date, and

string. In addition, element values can be categorised as random data with a

specific pattern which can be described in a schema language.

LISTING 5.13: Snippets of lineitem.xml document
<T>
<L_ORDERKEY>22496</L_ORDERKEY>
<L_PARTKEY>1913</L_PARTKEY>
<L_SUPPKEY>2</L_SUPPKEY>
<L_LINENUMBER>1</L_LINENUMBER>
<L_QUANTITY>17</L_QUANTITY>

Chapter 5. Hybrid XML Document Compression 128

<L_EXTENDEDPRICE>30853.47</L_EXTENDEDPRICE>
<L_DISCOUNT>0.03</L_DISCOUNT>
<L_TAX>0.01</L_TAX>
<L_RETURNFLAG>A</L_RETURNFLAG>
<L_LINESTATUS>F</L_LINESTATUS>
<L_SHIPDATE>1994-08-24</L_SHIPDATE>
<L_COMMITDATE>1994-11-19</L_COMMITDATE>
<L_RECEIPTDATE>1994-09-10</L_RECEIPTDATE>
<L_SHIPINSTRUCT>DELIVER IN PERSON</L_SHIPINSTRUCT>
<L_SHIPMODE>SHIP</L_SHIPMODE>
<L_COMMENT>carefully pending i</L_COMMENT>

</T>

The compression efficiency of this model was tested with documents such as

lineitem.xml. From the compression model it is possible to extract the gen-

erated schema shown in code listing 5.14. The schema file demonstrates the

redundancy of XML structure and the composition of the document. A current

version of the model is able to identify various data types such as integers,

currency and boolean. String types are grouped into the string buffer and com-

pressed using DEFLATE algorithm. The following schema shows how informa-

tion presented in a date format such as 1994-08-24 is sent to the string buffer.

The model is not able to identify this date format and treats it as a string.

LISTING 5.14: Automatically generated schema
<?xml version="1.0" encoding="UTF-8"?>
<_r type="sequence">
<table type="sequence-of" items="1" minOccurs="60175" maxOccurs="60175">
<T type="sequence-optional" items="16">
<L_ORDERKEY type="integer" variant="constrained" minInclusive="1"

maxInclusive="60000"/>
<L_PARTKEY type="integer" variant="constrained" minInclusive="1"

maxInclusive="2000"/>
<L_SUPPKEY type="integer" variant="constrained" minInclusive="1"

maxInclusive="100"/>
<L_LINENUMBER type="integer" variant="constrained" minInclusive="1"

maxInclusive="7"/>
<L_QUANTITY type="integer" variant="constrained" minInclusive="1"

maxInclusive="50"/>
<L_EXTENDEDPRICE type="currency"/>
<L_DISCOUNT type="currency"/>
<L_TAX type="currency"/>
<L_RETURNFLAG type="boolean" zlib="1"/>
<L_LINESTATUS type="boolean" zlib="1"/>
<L_SHIPDATE type="integer" variant="constrained" minInclusive="10"

maxInclusive="10" zlib="1"/>
<L_COMMITDATE type="integer" variant="constrained" minInclusive="10"

maxInclusive="10" zlib="1"/>
<L_RECEIPTDATE type="integer" variant="constrained" minInclusive="10"

maxInclusive="10" zlib="1"/>
<L_SHIPINSTRUCT type="integer" variant="constrained" minInclusive="4"

maxInclusive="17" zlib="1"/>
<L_SHIPMODE type="integer" variant="constrained" minInclusive="3"

maxInclusive="7" zlib="1"/>
<L_COMMENT type="integer" variant="constrained" minInclusive="10"

maxInclusive="43" zlib="1"/>
</T>

Chapter 5. Hybrid XML Document Compression 129

</table>
</_r>

The compression size difference was tested using the most efficient tools anal-

ysed in Chapter 4. The performance of the hybrid model was tested against the

schema-uninformed approach of EXI and GZIP. Various options are available

for the EXI implementation. This example focused on a standard EXI encoding

without the additional DEFLATE compression applied to the aligned bit stream.

The results listed below show the compression size difference of achieved by

each tool. From the results of the hybrid model it is possible to analyse the

amount of data that has been passed to the string buffer. From the 34.3 MB

of lineitem.xml, the amount of raw string data sent to the buffer is only 4.5

MB. Together with the generated schema, the string buffer is compressed to

a 1.0 MB format. The rest of the XML is composed with redundant element

tags, ignorable characters (newlines and white spaces), basic data types and

integers pointing to the string buffer. From this canon XML, the PO encoder

creates a compressed format of merely 0.9 MB. Together with the compressed

string buffer a total size of 1.9 MB was achieved. The compression results for

selected tools are listed below.

XML: 34.3 MB EXI: 4.6 MB GZIP: 2.9 MB HPO: 1.9 MB

5.8 Compression Models Comparison

The hybrid model was designed based on the properties and features found in

a number of XML compression tools. As described in section 5.2, the require-

ments on which HPO is based on, can be found in a number of tools. These

tools can share one to two of the system requirements of HPO. For example,

EXI and XMill are both able to support a wider range of XML data sets and

apply a semantic compression. In addition, both tools apply fixed length encod-

ing through the use of built-in or atomic data types. For example, XMill applies

a fixed length encoding for atomic (basic) data types such as integer values.

The main difference is the use of users defined data types knowledge to in-

crease compression by separating element values into semantic containers.

EXI presents a similar design and level of compression to HPO. The following

section highlights the differences between these two models.

Chapter 5. Hybrid XML Document Compression 130

5.8.1 EXI vs. HPO

As discussed in Chapter 1, EXI implements a fixed length encoding technique.

This is the most popular and a standard format recommended by the W3C con-

sortium. This format allows both a fixed and variable length encoding technique

to achieve a highly efficient format for storage and transmission purposes. The

hybrid model is based on the same technique. Using both fixed and variable

length coding techniques, HPO has shown a substantial level of compression

mainly for synthetic data sets. Although both tools implement these length cod-

ing techniques, a major difference can be highlighted between the two tools.

EXI uses both encoding techniques sequentially. Using its own built-in grammar

and data type representation, EXI transforms XML data into a coded stream.

This stream is generated using a string table for repeating data and a fixed

length encoding technique for some of the data types recognised by EXI. A

variable length compression is applied after the EXI stream is encoded. After

combining smaller channels together and arranging data semantically, EXI ap-

plies a DEFLATE compression to the newly aligned stream body. The result is

a compressed encoded stream. Therefore, the two length encoding techniques

are applied sequentially.

HPO implements both encoding techniques independently. After converting the

XML document into a lower format, HPO extracts knowledge from the XML file

to construct an internal schema. This domain-specific definition language is

used to provide the encoding rules for the fixed length encoding/decoding pro-

cesses. Therefore, these processes require a schema for the low-level encoder

rather than for validation purposes. XML data is subsequently separated into

basic and character string types depending on the data types recognised by

the schema generation process. This process is the main difference between

HPO and EXI. This separation allows HPO to control the amount of data sent to

each encoder and improve compression size when compressing high level data

types.

An important feature introduced by HPO is the introduction of high-level basic

data types encoded using PO. As shown in the results, this feature allows data

sets based on these types to achieve high level of compression. Compared to

EXI, HPO allows encoding high level data types such as IPv4, Enumeration,

Unix-Timestamp and hexadecimal without the need of an external or user de-

fined schema language. In addition, due to the separation between front-end

Chapter 5. Hybrid XML Document Compression 131

and back-end, the hybrid model can easily include support for other markup

languages by extending the front-end of the system.

5.9 Applicability and Limitations

The application of the hybrid model can be found in a number of fields. It is pos-

sible to apply the model to a number of scenarios due to its ability to support a

wide range of XML data sets. Based on the performance evaluation of different

tools analysed in previous chapters, the application of a specific technique over

another highly depends on the XML data presented. The nature of XML used for

network messaging is different from XML documents representing databases.

Categorising XML documents based on size, structure, data types and validity

provides information on which compression technique is best to apply.

5.9.1 Document Support

The hybrid model is able to handle structural and textual documents without

concerns on the validity. Schema-informed techniques are not able to apply

compression when presented with XML documents that violate the schema

specifications. In order to overcome this issue, EXI introduced a strict and

non-strict approach in order to compress data efficiently even during schema

violations. However, most XML parsers are able to recognise data presented in

irregular documents. The model makes use of this ability to convert an irregular

document to highly-structured XML which can be efficiently compressed using

a transparent schema-informed compression. This feature is possible due to

transformation process which is aimed specifically at converting general docu-

ments to the PO subset of XML.

5.9.2 Dynamic Application

Knowledge of XML data is a key feature to achieve better compression ratios.

The previous section analysed an XML document with regular structural prop-

erties. This specific document did not require a transformation process since it

Chapter 5. Hybrid XML Document Compression 132

was already presented in a PO-compatible format. The knowledge extraction

process provided the information to generate a schema and recognise few ba-

sic data types compressed using PO. In a similar scenario it is possible to avoid

triggering the transformation process and focus on the subsequent parts of the

model. This approach can be described as a dynamic application of the hybrid

model. This feature allows the user to process the XML using only the required

stages of the hybrid model. For example, it is not needed to generate a schema

if the XML document is linked to an external validation language. Therefore, a

key feature of the hybrid model is the ability to apply different processes depend-

ing on the data presented. In an XML database scenario it is possible to save

the schema locally and compress several documents with identical structure

but different data. Limitations of this technique are linked to the development of

simple and complex types which over time can violate encoding rules in case of

enumeration or sequence-of types. Similar scenario is found when compress-

ing XHTML documents. A powerful feature of the hybrid compression model is

its ability to be extended to other markup languages which can be defined by a

schema language. The front-end part of the system can be expanded enabling

the ability to compress other markup languages.

5.9.3 Hybrid and Pure Mode

Based on the analysis of XML data sets gathered from XML compression and

data management research areas, this study is aware of the structure and com-

ponents used to construct XML documents. Research conducted in these fields

is aimed specifically at providing developers with information on the nature of

XML documents. This knowledge is crucial for understanding which are the

most recurring and popular components of XML documents. Current research

has shown how the majority of XML documents heavily rely on attributes, fol-

lowed by comments, DTDs and PIs. This information can be used to design the

transformation model to support the most common components of XML. For

example, the current implementation is aimed at supporting attributes, com-

ments and sequence transformation, however, additional components can be

supported. The effort spent on supporting every possible feature of XML can

increase software complexity and limit the performance of the model. Similar is-

sues arise in the presence of XML documents mainly composed with structural

Chapter 5. Hybrid XML Document Compression 133

or textual data. For example, in presence of small structural XML documents

with very minimal textual data, one particular compression techniques can suf-

fice. A hybrid model can add overhead due to the poor efficiency of dictionary

compressors for small string data types. However, large textual XML documents

with very minimal structure and basic types can achieve a better compression

if a dictionary compression is applied. The use of a hybrid model would require

additional complexity and processing time to transform the textual document

and generate the schema.

5.9.4 Near-lossless Compression

The concept of near-lossless XML compression can be found in a number of

research as discussed in Chapter 2. DTDPPM is the first tool that has in-

troduced ignorable white space stripping for schema-informed compression.

White spaces and newlines characters are common in many XML documents

and standards to improve the readability of XML. While these characters can

be defined ignorable for structural documents, some application may heavily

rely on the layout of the XML with particular attention to textual documents.

This category of XML may hold data outside element tags, increasing the diffi-

culty in distinguish between ignorable and meaningful white spaces. Therefore,

near-lossless techniques can be applied in order to recreate these characters.

Practically, some of the ignorable white spaces or newlines may be lost during

compression cycles, even if this data does not hold any information and it is not

relevant to the presentation of XML.

5.10 Conclusion

This chapter presented a hybrid compression model capable of improving the

compactness of the compressed format for a wider range of data sets. The hy-

brid model is based on the key features that allow XML compressors analysed

in previous chapters to achieve better compression size. These features are

based on evidence of the performance of compression tools for large textual

data sets available in most performance comparisons and small structure data

sets analysed in Chapter 4.

Chapter 5. Hybrid XML Document Compression 134

The main objective is to improve the compactness of the compressed format us-

ing tools capable of achieving substantial results for specific data sets. Two tools

have been selected as back-end compressors to provide the best performance

and compression size. In Chapter 4, it was noticed how software complexity

is directly proportional to the computation time required to compress XML. For

this reason tools with the lowest complexity and the best performance have

been selected as back-end compressors of the hybrid model. In addition, these

tools have been selected to manage one particular type of XML document. The

transparent schema-informed approach of PO is capable of achieving the op-

timal performance and compression size when compressing highly-structured

XML documents. This compression also includes PO complex types encoding.

The DEFLATE algorithm of zlib, instead, implements dictionary compression

with optimal results for medium to large textual data.

In summary, the hybrid model described in this chapter is able to compress

XML documents using both fixed and variable length encoding techniques. The

ability of this tool to decide the types of data to be compressed using a spe-

cific technique is essential in order to investigate how fixed length encoder can

enhance general-purpose compressors.

Chapter 6

Schema-uninformed compression
comparison

This chapter compares the efficiency and performance of the hybrid model with

a number of XML-conscious and general-purpose compressors. The first sec-

tion describes the methodology and environment used to produce replicable

experiments. This part introduces the compression tools used to compress the

XML corpus, the system resources where the experiments were performed and

the XML corpus used. An introduction to the data sets used to test the effi-

ciency of the hybrid model is provided. These are divided into synthetic and

real XML. The second section provides the results of the experiments. These

results are discussed for synthetic and real XML data sets, providing compar-

ison analysis to illustrate the compression difference between individual data

sets. The third section discusses the compression difference between synthetic

and real XML data sets. Subsequently, this section provides an explanation to

this compression difference and introduces the concept of synthetic data types.

An analysis is conducted for those real XML data sets which have not shown

a significant level of compression with the hybrid model. The data types found

are analysed to provide future directions. The analysis section also discusses

the performance evaluation. Here, the different types of processes of the hybrid

model are explained to illustrate the ideal scenario in which it can perform.

135

Chapter 6. Schema-uninformed Compression comparison 136

6.1 Experimental Methodology

The performance of the proposed model is empirically compared with XML-

conscious and general-purpose compressors to demonstrate the effectiveness

of the hybrid model. The hybrid model can be extended to other markup lan-

guages that benefit from a descriptive schema definition. However, current im-

plementation only supports XML. For this reason, the tests were performed

against the best XML-conscious compressor evaluated in Chapter 4. In ad-

dition, the experiments present comparison results for general-purpose text

compressors. These compressors are used as a standard to determine the

performance and efficiency of proposed tools against well known compression

algorithms. The experiments consist of a series of compression tools presented

with different types of XML data. In order to demonstrate the behaviour of the

hybrid system, the experiments were performed on synthetic and real XML data

sets. For future referencing the hybrid model will be called HPO. The following

sections provide a description of the experimental environment including tools

and data sets used to achieve the results.

6.1.1 Compression tools

The performance and efficiency of the hybrid model have been tested against

EXI, GZIP and 7ZIP. EXI Processor (Garrett, 2012) is a command-line tool used

to encode XML to binary EXI and decode EXI to text XML. EXIProcessor is

written in Java and uses the open source EXI library EXIficient (Peintner, 2012)

developed by Daniel Peintner of Siemens AG. EXIficient is one of the suggested

implementations of EXI version 1.0 listed in the format specifications. The ex-

periments were performed using the highest level of compression achievable

by each tool. EXI options allow a more compact binary representation of XML

data using strict encoding options and additional compression for aligned bi-

nary representations. The experiments were performed using EXI strict and

compression options enabled.

In addition to the XML-conscious compression of EXI, HPO has been tested

against GZIP and 7ZIP. The application of these general-purpose compressor

spans from database to network compression. These tools have been included

to demonstrate the efficiency of HPO compared to standard general-purpose

Chapter 6. Schema-uninformed Compression comparison 137

Tool Command-line Options

EXI
java -jar ExiProcessor.jar -
compression -xml in file.xml -exi out
file.exi

-compression: Increases compactness
using additional computational resources

GZIP gzip -c -9 file.xml > file.xml.gz -c: Write output on standard output
-9: Indicates best compression method

7ZIP 7zr a -mx9 file.xml.7z file.xml a: Create an archive
-mx=9: level of compression=9 (Ultra)

TABLE 6.1: Command-line Tool Options

compression algorithms. Options to enable the highest level of compression

were used for both GZIP and 7ZIP compressors. Table 6.1 presents the list of

command-line tools used to compress the data sets.

6.1.2 System Resources

The experiments were performed on a Ubuntu 12.04 (precise) 32-bit machine

equipped with an i7 CPU @ 2.80GHz x 4, 2 x 2048 MB DDR3 @ 1067 MHz and

SATA 2.6/ATA-8 500GB @ 7200 rpm. Although the hybrid model is designed to

perform on low-powered constrained devices, the system architecture does not

affect the results of the experiments in terms of compression efficiency. The

results of a performance evaluation, instead, would present a similar patterns

in terms of compression speed. The experiments would also require the same

amount of memory. Additional information about the system specifications can

be found in table B.2 of Appendix C. Data sets were stored on local disk and

with local references to DTD/Schema files.

6.1.3 XML Corpus

Constructing an XML corpus capable of demonstrating the application of the

hybrid model is a challenging task. To demonstrate its efficiency, the XML

corpus must contain a set of data relevant to its use case. The model spec-

ifications described in the previous chapter illustrate how the hybrid model is

capable of achieving better compression for a specific set of data types. Al-

though most XML structures adhere to the schema specification, element data

is rarely presented in a consistent data type format. For example, an element

of a sequence-of node with a series of decimal data types would break the

Chapter 6. Schema-uninformed Compression comparison 138

recognition process if data is not presented in the decimal format. In these cir-

cumstances, the hybrid model is not able to apply its own data types resulting

in a less efficient encoding scheme. Another example can be found for the date

data type analysed during the compression of lineitem.xml of Chapter 5. The

hybrid model does not recognise the specific date type format, that is encoded

in the string buffer. Therefore, the corpus was specifically selected based on

data types of XML documents.

The corpus is based on a series of data sets with different structures and data

types. In addition, synthetic XML data sets have been constructed to demon-

strate the full potential of the hybrid model. The corpus can be divided into two

major categories listed below.

Synthetic XML Data

Synthetic XML data sets have been created to demonstrate the full po-

tential of the hybrid model when presented with ideal data types. Current

implementation supports a limited set of basic data types which can be

found in few real XML files. However, using synthetic XML data, it is pos-

sible to create data types consistent with the use case of the hybrid model.

The data sets are based on XML containing single and mixed data types

of randomly generated data. For each type of XML data set, a total num-

ber of 500 files were created with size ranging from 5KB to 5MB. A total

of 8 different types of XML data are evaluated totalling a number of 4000

files.

Real XML Data

The term real defines a set of XML data manually collected from gov-

ernment sites, open-source repositories, database representations, and

website exports. The data set includes well-known XML files such as

lineitem.xml and supplier.xml from corpus (Miklau, 2014) which have

been tested in a number of experimental evaluation. A total number of

16 files ranging from 5KB to 30MB in size have been collected and made

publicly available online1.

Real XML data sets are based on a richer variety of data types which

are not always recognised by the hybrid compression model. However, a

good level of compression can be achieved with a minimal understanding

of these types. The structures and types of the data sets will demonstrate
1https://mobile.uwl.ac.uk/xml/corpus/

Chapter 6. Schema-uninformed Compression comparison 139

the potential of the hybrid compression to apply semantic knowledge and

improve the compression size. This compression can be achieved by bal-

ancing the fixed and variable length encoders of the hybrid model. In

addition, real XML data will be used in order to demonstrate the potential

to generate synthetic data types.

6.2 Experimental Evaluation

The following sections illustrate the experimental results comparing the hybrid

model to EXI, GZIP and 7ZIP. These sections focus on the compression effi-

ciency in order to demonstrate the performance of the hybrid model when com-

pressing XML data. A number of graphs will highlight the compactness of the

compressed format for files ranging from 5KB to 40MB. The corpus consists

of 5GB of XML files divided into synthetic and real XML data. Compression

size graphs demonstrate the efficiency of the hybrid model compared to XML-

conscious and general-purpose compressors. The comparison is divided into

two categories, synthetic and real XML data sets.

6.2.1 Synthetic XML Data

The following figures illustrate the compression efficiency when compressing

synthetic XML data. Figures 6.1 to 6.4 show the compression results of HPO

compared to other tools. Each figure is divided into four different graphs illus-

trating the efficiency for specific XML data types and structures. The x-axis

represents the size of XML files while the y -axis illustrates the size of the com-

pressed format achieved by each tool. Both axes are plotted in a logarithmic

scale. The term “fixed” and “random” is used to define synthetic XML data set

with a single and multiple randomly generated data types respectively.

Graphs where compression size lines cross or present similar results are high-

lighted with a sub-diagram for a better visualisation of the data.

Chapter 6. Schema-uninformed Compression comparison 140

6.2.1.1 Fixed Data Types

Figure 6.1 and 6.2 presents the result for data types such as integer, decimal,

dateTime and string for file ranging from 5KB to 2.5MB in size. The data

sets used for these experiments are based on XML files containing a single,

randomly generated, basic or string data type within a fixed structure. The

compression results of these data sets illustrate the efficiency of HPO when

compressing a unique data type. In this scenario, only a single encoder of

HPO is used to compress XML files. For example, for an XML file containing

only integer data types, HPO will apply the fixed length encoding system for all

elements. Any data types which are not recognised by HPO, or based on string

types, will be compressed using the variable length encoding technique of the

DEFLATE algorithm.

FIGURE 6.1: Fixed Synthetic Data Types - 5KB-50KB

Chapter 6. Schema-uninformed Compression comparison 141

FIGURE 6.2: Fixed Synthetic Data Types - 200KB-2.5MB

Data sets of graphs 1, 2 and 3 of figure 6.1 and 6.2 are recognised as XML files

containing a sequence of basic types only and compressed efficiently by HPO

using the fixed length encoder. Data types of graph 4, instead, are based on

randomly generated strings with lengths ranging from 5 to 30 characters. HPO

recognises this data set as XML containing string types only and compresses it

using the variable length encoder. Graphs of figures 6.1 and 6.2 are divided into

small and medium sized files in order to highlight the compression difference

for small XML files. For example, in figure 6.1, a less efficient compression is

found for files of small size based on fixed integer and string data types. For

fixed integer data types, the compression difference between the EXI and HPO

starts at 10% in favour of EXI. In graph 1 of figure 6.1, HPO compression is more

efficient for files starting from 20KB in size. Although HPO is able to map integer

data types to their lowest encoding scheme, the compressed schema increases

the overall size of the HPO compressed format. In addition, the XML files of

Chapter 6. Schema-uninformed Compression comparison 142

these data sets are based on a sequence of basic data types, encoded using

fixed length encoder. Therefore, the string buffer is empty and the DEFLATE

algorithm is only used to compress the schema file. Variable length encoders

are not efficient at handling small sized files, resulting in a worse compression

size for small XML files in general. Analogous results are found for the string

data type, graph 4, of figure 6.1. Here, the compression difference between EXI

and HPO is less noticeable. The difference in compression efficiency is around

3% in favour of EXI for XML file of 5KB in size, and around 0.5%, 200KB, in

favour of HPO for the XML file of size 40KB of the graph.

EXI demonstrates a better encoding size for small XML files of graphs 1 and

4 of figure 6.1. In graph 3, HPO demonstrates a significant level of compres-

sion beyond those achieved by other compressors. HPO achieves an additional

overall level of compression of around 5%, compared to EXI and 10% compared

to GZIP. An analysis of the XML files of this data set illustrates the use of the

RFC 3339 Timestamps described in section 3.1.8. Data presented in formats

such as 1990-12-31T23:59:60Z is encoded as a string data type by EXI and

encoded within similar compressed formats to 7ZIP. However, semantic knowl-

edge allows HPO to apply a fixed length encoding mechanism, transforming the

high-level Timestamps format to efficient unsigned integer forms. These high-

level PO derived data types discussed in Chapter 3 are encoded into efficient

formats. The ability of mapping similar data types to an efficient format will pro-

vide better results compared to variable length encoders as illustrated in figure

6.1 and 6.2.

Figure 6.2 shows the efficiency of HPO when compressing data sets containing

XML files ranging between 200KB to 2.5MB in size. HPO is able to create a

more efficient encoding format with significant results for data sets of graphs 1

and 3. Compared to the second most efficient tool, 7ZIP, HPO is able to apply

an additional 2-3% of compression for graph 1 and 3. Data sets of graphs 2

and 4, instead, present a compression size similar 7ZIP and EXI respectively.

The compression difference between HPO and EXI for graph 4 is around 0.5%

in favour of HPO. HPO presents a linear compression for graphs of figure 6.2

based on basic data types. This feature is attributed to the fixed length encoder,

which compared to the statistical compression of 7ZIP, presents a linear en-

coding style. However, string data types of graph 4, present similar pattern to

variable length encoders. This is because the string data types of this data set

are sent to the zlib string buffer and compressed using DEFLATE algorithm.

Chapter 6. Schema-uninformed Compression comparison 143

6.2.1.2 Random Data Types

Figures 6.3 and 6.4 present the compression size for XML files based on ran-

dom generated data types. Graphs 1 and 2 of figure 6.3 and 6.4 are based on

XML files with random data types but different element name sizes. Graphs 3

and 4, instead, illustrate the compression efficiency for XML files with mostly

numeric and string data types respectively. Figure 6.3 presents the results for

small XML files of around 5KB to 50KB in size where the presence of the com-

pressed schema file has a negative impact on the final compression. However,

as analysed in the previous data sets, this issue is mainly found for XML files of

size lower than 20KB.

The main difference between this data set and the previous, is the presence of

FIGURE 6.3: Random Synthetic Data Types - 5KB-50KB

Chapter 6. Schema-uninformed Compression comparison 144

FIGURE 6.4: Random Synthetic Data Types - 200KB-2.5MB

random data types. An XML node with variable length and depth is automat-

ically generated and populated with a mixture of basic and string types. The

structure of the node is used to construct sequence-of nodes with identical list

of randomly generated data types. The result of the generation process is an

XML file with a repeating structure and fixed data types with random values.

Maintaining a fixed sequence of data types is important in order to allow the

schema generation process to allocate correct data types to each element of

the XML file.

Having a mixture of basic and string data types allows HPO to implement a

full hybrid approach. The fixed length encoder will be used to compressed ba-

sic data types while the variable length encoder will manage string data types

and other undetected types. A quick analysis demonstrates an efficient com-

pression size in the presence of basic types. Graph 4 of figures 6.3 and 6.4

presents a less efficient compression size compared to other graphs. HPO is

Chapter 6. Schema-uninformed Compression comparison 145

able to achieve an additional 0.5% to 1.5% of compression for XML files greater

than 20KB in size. In this scenario, the transparent schema-informed technique

improves compression by avoiding encoding the structure of XML. However,

encoding the zlib reference integer does not allow HPO to achieve a significant

level of compression compared to other graphs of figure 6.4.

Compared to the basic data types graphs of figures 6.1 and 6.2, a less linear

encoding is found due to the presence of string data throughout the data set

which is compressed using DEFLATE algorithm. Graphs of figure 6.4 show

how the transparent schema-informed compression of HPO does not influence

the overall compression. HPO is able to compress XML files by an additional

3% to 5% for graphs 1 to 3. The top graphs of Figure 6.3 illustrate how a

more compact schema is created for elements with shorter names, resulting in

a better compression for files of 5KB to 10KB in size. However, the same graphs

in figure 6.4 illustrate how the size of XML element can have a negative impact

on the performance of EXI compared to 7ZIP. Despite the additional zlib integer

reference encoding, HPO performs better compared to other tools to compress

random data sets with mainly numeric data. Here, the key advantage is the

efficient high-level data type encoding and the transparent schema-informed

compression.

6.2.2 Real XML Data

Figure 6.5 shows the compression size comparison for real XML data. A total

number of 16 files ranging from 5KB to 30MB have been compressed. The re-

sults of figure 6.5 demonstrate how the efficiency of HPO varies according to

the type of XML compressed. Optimal results are achieved for XML files such as

baseball.xml, orderkey.xml and rand1-1988.xml. An analysis of these XML

files shows that the data types within these XML files are consistent with the

data types of HPO. Although a small percentage of string types are found, the

structured nature of these XML files allows the zlib buffer to compress string

data efficiently. For example, baseball.xml consists of a list of repeating nodes

where 15% are string types and the remaining 85% are integer types.

A good level of compression is found for XML files containing DateTime, Integer,

and Decimal data types. XML files based on these data types are able to

achieve higher compression sizes as demonstrated for synthetic XML data sets.

Chapter 6. Schema-uninformed Compression comparison 146

FIGURE 6.5: Real XML Data Set

Negative results are instead found for XML files which do not benefit of HPO ba-

sic types or structural format.

Data used to populate these XML files is inconsistent and cannot be associ-

ated to any of the HPO data types. XML files such as reed.xml, customer.xml

and part.xml contains data types which are not recognised by HPO and there-

fore compressed using DEFLATE. The importance of recognising XML data

types is found in XML files such as supplier.xml where only 40% of data types

are recognised as integer and decimal. The remaining 60% is divided into

string types and alphanumeric types with a consistent pattern. However, these

types do not belong to any existing data types and therefore are compressed as

strings. Recognising only 40% of the data types for supplier.xml allows HPO

to achieve similar level of compression to other compressors. A detailed lists of

the results is listed in table D.1 of Appendix E.

6.2.2.1 Compression Ratio

The compression ratio is calculated using the size of the various compressed

formats. Figure 6.6 presents the compression ratio for each of the tools exam-

ined using data from figure 6.5. This ratio is used to examine the significance of

Chapter 6. Schema-uninformed Compression comparison 147

FIGURE 6.6: Real XML Data Set Compression Ratio

encoding size when contrasting tools. Thus, any score above 1 would indicate a

tool that outperforms the analysed one. Using the information presented in the

graphs, it is possible to isolate each compressor and evaluate its efficiency. In

addition, it is possible to compare the efficiency of each tool against the others.

The raw data is provided in tables D.2 to D.5 of Appendix E.

The top graph presents the compression ratio of HPO and EXI. A similar en-

coding size is found for both tools using the current data set. A total of 8 XML

files are compressed more efficiently by HPO against EXI and vice versa. The

top graphs include an additional line representing the mean value for XML files

with ratio above 1 uniquely for HPO and EXI. This line was included to illustrate

the overall efficiency of XML-conscious compression of HPO against EXI. The

Chapter 6. Schema-uninformed Compression comparison 148

mean of EXI ratio values above 1 for HPO is 1.25, while the mean of HPO ratio

values above 1 for EXI is 1.20. Therefore, EXI presents a slightly better com-

pression ratio for the real XML data set. As discussed in the previous section,

this data set is based on unstructured data types which are not recognised by

HPO and therefore encoded as strings. This property allows tools based on

semantic compression such as EXI to achieve a higher efficiency. The com-

pression of XML Schema in HPO is also a severe burden for small XML files.

The bottom graphs illustrate the efficiency of the general-purpose compressors.

GZIP presents the worst results in compression size ratio. With the exception

of small XML files, most results present a ratio above 1. XML-conscious com-

pressors usually perform better compared to general-purpose.

6.3 Analysis

The results demonstrate the performance of HPO when compressing different

types of XML data sets. The XML corpus used for these experiments contains

a set of synthetic and real XML data. The aim of the hybrid model is to improve

the compression efficiency for XML data that can be found in a variety of fields.

Results demonstrate how HPO is able to achieve a better compression for XML

documents containing a sequence of basic data types. Synthetic data sets have

been used to demonstrate the results of HPO in its ideal domain. An optimal

level of compression is found for synthetic XML based on high-level data types

such as DateTime which can be efficiently mapped to a lower form by HPO.

However, these high-level data types are not usually found in real XML data.

The results of this data set presents a less efficient encoding scheme due to

the inability of HPO and other compressors to recognise data as specific types

and apply a fixed length encoding technique.

Figures 6.7 and 6.8 present a detailed analysis for real XML data. The first

graph shows an analysis of the XML file before compression. It is possible to

identify the percentage of hybrid compression which was used to compress real

XML files. Each bar represents the size of XML file where two stacked columns

consist of the percentage of data which is compressed using the fixed length or

variable length encoder. As discussed in the previous chapter, the String Buffer

of figure 6.7 is the amount of string data extracted from the XML document. This

Chapter 6. Schema-uninformed Compression comparison 149

FIGURE 6.7: Real XML Compression analysis - Original XML

data consists of all the data types which have not been recognised by HPO or

are based on string types. These results demonstrate that based on the compo-

sition of real XML data, a better compression is achieved when the fixed length

encoding technique of HPO is implemented between 80 to 100% of the size of

the XML file. Therefore, the use of a fixed length encoder, associated with the

ability of the knowledge extraction process to recognise basic data types, is the

key feature to improve compression size for real XML data sets. A 10% com-

position of string data types is allowed to be processed by the variable length

encoder. As demonstrated by the rand1-1988.xml file, this is the ideal amount

of character string data types for HPO to achieve a good compression size.

FIGURE 6.8: Real XML Compression analysis - Compressed XML

Chapter 6. Schema-uninformed Compression comparison 150

Graph of figure 6.8 illustrates an analysis of the real XML files after compres-

sion. Each bar represents the size of the compressed Canon XML, String Buffer

and Schema definition. This graph demonstrates how a better compression is

achieved when most data types are recognised, triggering a fixed length en-

coding technique. For example, in the first graph, only 4% of XML data is

passed to the string buffer for baseball.xml. However, the compressed equiva-

lent represents the 28% of the compressed format. A detailed analysis for both

graphs is provided in table D.6 of Appendix E. These results demonstrate how

the fixed length encoder is capable of achieving a more efficient compression

format compared to variable length techniques. The second graph also high-

lights how the compressed schema format is irrelevant for the compression of

files above 150KB.

6.3.1 Compression Comparison

A compression comparison can be made between synthetic and real XML data.

As shown in previous graphs, there is a noticeable difference in compression

when the HPO is not able to recognise XML data types. In these scenarios,

most of the data is sent to the string buffer to be compressed using the DE-

FLATE algorithm. Synthetic data set results present a good level of compres-

sion for XML files based on string data types as shown in previous figures 6.2

and 6.4. However, the results for real XML data sets do not present similar

levels of compression. Based on the results for synthetic XML data, a good

level of compression should be achieved when the hybrid model is not able to

recognise the XML data types. In the worst scenario, the level of compression

achieved by the hybrid model should equal text compression as shown is figure

6.2. From an analysis of real XML data it is possible to relate the performance

of HPO to the nature of the data. Most data used is based on alphanumeric

characters with repeating strings. The nature of this data allows tools with se-

mantic compression to apply a more efficient encoding technique. For example

EXI encodes string data into semantic tables, using reference codes for future

instances. This technique, associated to the DEFLATE compression of the se-

mantically aligned encoded streams, enables EXI to achieve a better rate of

compression.

Chapter 6. Schema-uninformed Compression comparison 151

Based on these results, it is possible to relate the difference in compression be-

tween synthetic and real XML data to the unstructured nature of the data. While

synthetic data sets are based on well-known data types, most of data found in

real XML is unstructured and specific to the purpose of the XML. For the scope

of this research, these data types are defined as synthetic. These types are

based on a specific pattern with repeating characters which do not allow tools

to apply fixed lenght encoding. Due to the way the data is generated, it is not

possible to generalise the mapping process of these data types. In addition,

data type recognition can be easily broken if a data type does not adhere to

previous pattern. Although these data types cannot be defined in a practical

tool, it is possible to compress this data efficiently using a fixed length encoding

technique.

As discussed in the previous chapter, the hybrid model is based on the com-

pression of complex and basic data types using PO. String and unrecognised

data types are instead compressed using the DEFLATE algorithm. Unrecog-

nised data types can be divided into two categories, patterns that exist but are

not currently recognised by the PO back-end encoder and patterns specific to

the purpose of the XML. The latter are classified as synthetic. The knowledge

extraction process of the hybrid model is aimed at recognising repeating se-

quences of basic data types to be compressed using the fixed length encoder.

Here, it is possible to recognise data types such as IPv4, Hexadecimal, and

DateTime based on RFC 3339 format. For example, to most compressors the

IPv4 format 10.250.56.34 would not match to any standard data type. How-

ever, it is possible to encode this format as a 32-bit integer using 4 bytes. A

similar encoding technique can be applied to synthetic data types increasing

the compression efficiency of HPO.

6.3.1.1 Synthetic Data Types

Synthetic data types have been defined as unique formats with fixed patterns.

As shown in previous results, the use of predefined data types does not always

apply to real XML data. These documents are based on inconsistent formats

mostly constructed using alphanumeric data. Compressing this data using a

dictionary compression technique does not present a good compression ratio,

even when semantic compression is applied. The lack of local redundancy in

Chapter 6. Schema-uninformed Compression comparison 152

these semantic buffers does allow tools such as EXI to achieve a better com-

pression compared to GZIP and 7ZIP. This poor compression ratio can be found

from the results of XML files such as supplier.xml of figure 6.5. When pre-

sented with data following patterns similar to ‘‘([a-z][A-Z])*[# -]([0-9])*’’,

compressors such as EXI would move all data types instances in a semantic

buffer to be encoded using DEFLATE. However, the separation between string

and numeric data would result in a less efficient compression.

A fixed length encoding technique can be applied to compress synthetic data

types from a difference perspective. Using the full potential of the schema lan-

guage, it is possible to define a synthetic data type which would encode the

string pattern using the zlib buffer while encoding the numeric data as integers.

From an analysis of real XML data it is possible to identify these synthetic data

types and construct an efficient encoding scheme. A snippet of supplier.xml

is listed below.

LISTING 6.1: Snippet of supplier.xml document
<T>
<S_SUPPKEY>1</S_SUPPKEY>
<S_NAME>Supplier#000000001</S_NAME>
<S_ADDRESS> N kD4on9OM Ipw3,gf0JBoQDd7tgrzrddZ</S_ADDRESS>
<S_NATIONKEY>17</S_NATIONKEY>
<S_PHONE>27-918-335-1736</S_PHONE>
<S_ACCTBAL>5755.94</S_ACCTBAL>
<S_COMMENT>requests haggle carefully. accounts</S_COMMENT>

</T>
<T>
<S_SUPPKEY>2</S_SUPPKEY>
<S_NAME>Supplier#000000002</S_NAME>
<S_ADDRESS>89eJ5ksX3ImxJQBvxObC,</S_ADDRESS>
<S_NATIONKEY>5</S_NATIONKEY>
<S_PHONE>15-679-861-2259</S_PHONE>
<S_ACCTBAL>4032.68</S_ACCTBAL>
<S_COMMENT>furiously stealthy frays thrash alongside</S_COMMENT>

</T>
<T>
<S_SUPPKEY>3</S_SUPPKEY>
<S_NAME>Supplier#000000003</S_NAME>
<S_ADDRESS>q1,G3Pj6OjIuUYfUoH18BFTKP5aU9bEV3</S_ADDRESS>
<S_NATIONKEY>1</S_NATIONKEY>
<S_PHONE>11-383-516-1199</S_PHONE>
<S_ACCTBAL>4192.40</S_ACCTBAL>
<S_COMMENT>furiously regular instructions </S_COMMENT>

</T>

From this XML file a synthetic data type for <S_NAME> and <S_PHONE> elements is

recognised. Standard basic and character string data types can be applied the

other elements. The first synthetic data type is based on a repeating string

followed by an integer. It is possible to define format Supplier#000000001

to match the pattern ‘‘[Supplier#][0-9]{9}’’. Based on this pattern it is

Chapter 6. Schema-uninformed Compression comparison 153

possible to encode this format using a fixed length encoder. By defining the

Supplier# string in the schema, this string can be referenced using an ap-

proach similar to enumeration. One bit is used to represent Supplier#, while the

9 digit integer is encoded in 30 bits. A more efficient encoding can be applied

based on the maximum integer found in the data type. For example, if the max-

imum value found is Supplier#000000999, it is possible to encode the synthetic

data type using the pattern ‘‘[Supplier#000000][0-9]{3}’’. Therefore, string

Supplier#000000 can be encoded in 1 bit while the remaining integer can be

encoded using only 10 bits. A similar encoding technique can be applied to the

<S_PHONE> element. Pattern ‘‘[0-9]{2}[-][0-9]{3}[-][0-9]{3}[-][0-9]{4}’’
can be use to encode this format in 40 bits.

This feature would require a system, similar to HPO, to efficiently compress

synthetic data types into a lower form. However, these data types are mostly

unique to each XML files and would require additional computational time and

memory to allow an optimal encoding.

6.3.2 Real XML Data Types

Analysing real XML data types dictates the current possible level of compres-

sion achievable by HPO. Figures 6.9 and 6.10 illustrate a detailed analysis of the

data types for the real XML data set. As discussed in Chapter 5, the efficiency

of the hybrid model highly depends on the data types of the XML. Therefore, in

addition to the information provided by other work discussed in Chapter 3, this

study present an in-depth analysis of the data types which are used for this data

set. Using the information provided in the graphs, it is possible to highlight the

correlation between the number of basic data types and the compression effi-

ciency of the hybrid model. Figures 6.9 and 6.10 present the total count of each

data type for the subset of real XML data sets where HPO does not provide a

significant level of compression. The x-axis of the graph lists the data types

found in each XML file listed in the y -axis. The vertical z-axis illustrates the

amount of data types found in each XML file. As illustrated in the results section,

HPO is able to achieve substantial results when a high number of data types

are detected. Data types of the x-axis are listed from a low to high level using

the encoding efficiency of the fixed length encoder as reference. For example, a

constrained integer of 6 digits can encoded efficiency into 17 bits using the IER

Chapter 6. Schema-uninformed Compression comparison 154

FIGURE 6.9: Data Types analysis for Real XML Data Sets

of PO as opposed to a 6 characters hex-string type that requires 24 bits. Both

data types are considered basic types, however, the efficiency depends on the

integer mapping process. Data types such as integer, bit-string, unix-time

are able to achieve a more compact integer representation which adheres to

the IER. The additional space required to store information in the schema, as

required for enumeration, is also considered. In summary, the x-axis data types

are listed in order to understand the current and possible levels of compression

that can be achieved by HPO.

The data type analysis is performed on a subset of the real XML data sets used

in previous results. This subset was selected from the XML files where the com-

pression efficiency of HPO does not present a significant level of compactness

compared to other tools. Graph 6.9 illustrate the current data types recognised

by HPO. This list is based on the knowledge extraction process and data type

recognition of the hybrid model. A good amount of low-level basic data types

are recognised, however, a higher number of string types are found in most XML

Chapter 6. Schema-uninformed Compression comparison 155

FIGURE 6.10: Synthetic Data Types in Real XML Data Set

files. In addition, data types such as hex-string enumeration and unix-time

are not recognised or implemented. In conclusion, data type analysis for current

data types shows a higher level of string data types for most XML files. Based

on the results of EXI, where string types are moved into semantic streams, a

more efficient compression can be achieved using the repetitive patterns found

in these string types. Similar levels of compression can be achieved using enu-

meration. This technique can store repeating element data into the schema.

During compression, a semantic technique will be applied to the enumerated

values stored in the schema, emulating the semantic compression implemented

by EXI and XMill.

Graph 6.10 illustrates an analysis of XML files using synthetic data types. A

Synthetic data type is listed in the x-axis of the graph referring to all those

types that can be mapped to a low-level format. Several patterns have been

used to match against a sequence of XML elements. The graph demonstrates

how most of the string data types of graph 6.9 are now recognised as synthetic

Chapter 6. Schema-uninformed Compression comparison 156

types. Therefore, this implementation would result in less data being sent to the

zlib string buffer. In addition, a higher amount of enumerated values is shown.

This is achieved mostly in conjunction with the synthetic types in order to allow

a more semantic compression. In summary, the second graph illustrates the

possibility to improve compression size for real XML data sets using synthetic

data types.

6.3.2.1 Data Types Patterns

Real XML data set analysis illustrates the possibility of improving compression

size using synthetic data types that can be mapped to a lower form and com-

pressed efficiently using fixed length encoder. These data types are specific to

the domain where XML file belongs to and cannot be generalised for practical

tools. However, the nature of synthetic data types is based on simple patterns

that can be detected using regular expressions. These patterns are mostly

based on the union of several alphanumeric characters separated by punctua-

tion. Figure 6.11 illustrates the relationship between regular expression patterns

within these data types.

The relationship between these patterns illustrates the variety and combina-

tions that are possible within these data types. These patterns are divided in

four types: [:digit:] for integers and decimal, [:alpha:] for alphanumerical

characters and punctuation, [:fixed:] for fixed characters in fixed positions,

[:digit:]

[:alpha:]

[:enum]:

[:fixed:]

FIGURE 6.11: Data Types Regular Expression Patterns Relationship

Chapter 6. Schema-uninformed Compression comparison 157

and [:enum:] for enumerated values. For every regular expression, each pat-

tern can occur multiple times with different combinations.

Regular expressions can be divided into two major categories: numeric charac-

ters separated by punctuation and alphanumeric characters separated by enu-

merated values. The first category allows a simple encoding mechanisms using

a similar technique implemented to data types such as IPv4 and bit-string.

The second type, instead, requires the alphanumeric characters to be encoded

as basic or character string data types, and the enumerated values to be stored

in the schema file. Enumeration applied to synthetic data types can improve the

compactness of the compressed format for large lists of enumerated values as

it also applies a semantic compression of the values.

Figure 6.12 presents an analysis of the patterns found in the data sets of figure

6.10. Each regular expression usually consists of one or many patterns. As

shown in figure 6.12, [:digit:] is the most common pattern found in these

types. This suggests that it is possible to achieve more efficient compres-

sion using the fixed length encoder. The second most common patterns are

[:enum:] and [:fixed:]. Encoding these patterns requires data to be stored

in the schema and to be referenced using the enumeration techniques imple-

mented by PO. Lastly, these results illustrate that the amount of alphanumerical

characters, encoded as strings, is minimal. In summary, since the regular ex-

pressions for synthetic data types are mostly based on low-level patterns, a

higher level of compression can be achieve using the fixed length encoder.

0 2 4 6 8 10 12 14

[:alpha:]

[:fixed:]

[:enum:]

[:digit:]

1

2

4

14

Repetitions

P
a
tt
er
n
s

FIGURE 6.12: Regular Expression Patterns

Chapter 6. Schema-uninformed Compression comparison 158

6.3.3 Performance Evaluation

The additional compression efficiency achieved by the hybrid model comes at

a cost. Previous sections compared the efficiency of HPO against EXI and

other general text compressors. As described in Chapter 5, the hybrid model is

based on several processes which are required to extract knowledge and com-

press the XML file using different encoders depending on the data types found.

As demonstrated in Chapter 4, the complexity of a tool has a direct impact on

the overall performance. Software with a higher complexity and code functions

tend to perform slower compared to minimal implementations. Therefore, the

additional computational time required by HPO is directly related to the amount

of processes needed to achieve an optimal compression.

Figure 6.13 illustrates the performance of the selected tools using the real XML

data set. The compression time difference between HPO and other native code

implementations is relatively low for files up to 5MB in size. For larger data sets,

the time required to compress each file increases drastically. GZIP is the tool

with the fastest implementation and the lowest level of compression compared

FIGURE 6.13: Synthetic Data Types in Real XML Data Set

Chapter 6. Schema-uninformed Compression comparison 159

to HPO, 7ZIP.

HPO requires more time independently from compression size. The time re-

quired to compress an XML file depends on the size of XML and not the final

compressed format. Whether or not an optimal compression is achieved, HPO

requires the same time to compress XML file as shown in graph 6.13. For exam-

ple, XML files rcasegroup.xml and baseball.xml are examples of low and high

compression efficiency respectively. HPO is able to achieve a higher compres-

sion efficiency for baseball.xml due to the presence of basic data types and

very few character string types. This is not the case of rcasegroup.xml which

is based on synthetic data types, which are treated as string data. Although the

compression efficiency achieved for baseball.xml is higher, the time required

to compress this file is not greater compared to rcasegroup.xml.

Figure 6.13 also compares the performance of EXI against HPO, 7ZIP and

GZIP. It is not possible to evaluate the performance of EXI fully without con-

sidering the JVM effect. Several implementations of the EXI standard exists

and all of them are written in Java. Therefore, the processing time required

by EXI can be faster since no byte code interpretation and garbage collection,

through the stages of the algorithm, would be needed. Actual results would

require an isomorphic implementation written native code. However, current re-

sults illustrate an optimal compression size in comparison with 7ZIP and HPO.

Raw data for the performance evaluation of figure 6.13 is provided in table D.7

of Appendix E.

In summary, as predicted from the evaluation of XML compressors for network

management, the higher software complexity leads to additional compression

time. Future work would require an analysis of each process to identify the

bottleneck of the hybrid model and improve its performance.

6.3.3.1 Front-end and Back-end Processes

The performance of HPO can be divided into front-end and back-end processes.

The front-end of HPO can be described as the part of the system that processes

the XML document and converts it into a lower form. This form is subsequently

passed to the back-end of the system, the fixed and variable length encoders,

PO and zlib. This separation allows the hybrid model to adapt to other markup

languages that can be validated by a descriptive schema language.

Chapter 4 evaluated the performance of the back-end compressors used by the

Chapter 6. Schema-uninformed Compression comparison 160

hybrid model. Here, PO and zlib are the tools with the fastest implementation

for small highly-structured XML files. The performance of these tools varies de-

pending on the size of the XML file compressed. However, performance results

of section 6.3.3 demonstrate a good speed for GZIP tool which is based on the

zlib library. Therefore, it is possible to conclude that the additional computational

time is mainly required by the front-end and the fixed length encoder.

The main aim of this research is to investigate the benefit of a fixed length en-

coder applied to markup languages compression. The additional level of com-

pression introduced affects the performance of the hybrid model. As shown in

figure 6.13, the performance of tools such as GZIP and 7ZIP decreases with

the additional level of compression in respect to figure 6.5. Due to the addi-

tional level of compression achieved, HPO is expected to perform as depicted

in figure 6.13 for small and medium size XML files. Future work will focus on the

optimisation of the hybrid model in order to achieve better performance mainly

for large XML documents. This optimisation will focus on both the front-end and

the fixed length encoder.

6.3.3.2 Efficiency versus Performance

As described in section 5.3.5 of Chapter 5, HPO is a dynamic system that can

run in a hybrid or pure mode. These modes are triggered based on the data

types analysed during the initial processes of the hybrid model. During the first

parsing process, if the data presented is not suitable for a fixed length encoder, it

is possible to directly compress the entire file using the variable length encoding

technique of zlib. For example, it was evaluated how the compression efficiency

of HPO is triggered in the presence of recognised basic data types. In scenarios

where the XML data is dominated by string data types, it is possible to compress

the entire document in pure mode. This mode can also be triggered based on

the amount of processing time required to compress the XML file.

The correct balance between efficiency and performance can be controlled by

the hybrid model. This is based on the requirement and the scenario where the

application is used. For a high level of performance, the model can be applied

in a pure mode. The hybrid mode can be applied only for medium sized files or

for XML files containing a subset of basic data types. As shown in figure 6.13,

the tools with the highest level of compression are also the most computational

Chapter 6. Schema-uninformed Compression comparison 161

intensive. Therefore, the level of compression achievable by HPO would require

additional computational time.

Figure 6.14 presents the results of the compression rate for the real XML data

set. The graph illustrates the amount of uncompressed data processed by HPO

per second. This rate was calculated using the equation below.

Speed =
UncompressedData

SecondstoCompress
(6.1)

The x-axis represents the size of the uncompressed XML data on a logarithmic

scale, while the y -axis represents the compression rate. For example, the first

result on the x-axis represent a file of size 0.5 ∗ 104 with a compression rate of

0.4 ∗ 106 bytes per seconds. This represents the compression rate for the XML

file nation.xml. The best compression rate is achieved for XML files between

0.1 ∗ 105 and 0.5 ∗ 106 in size. The compression rate peak is reached by XML

file numeric.xml with a speed of 1.3 ∗ 106 bytes per seconds. More detailed

information are available in table D.8 of Appendix E.

The dashed ellipse symbolise the ideal scenarios in which the hybrid model

can perform. With this information it is possible to conclude that, for the current

implementation of the hybrid model, the best performance is found for XML data

sets of size 0.1∗105 to 0.5∗106 in bytes. Within this range, most of the XML data

sets are able to achieve the best compression rate in comparison to smaller

104 105 106 107
0

0.5

1

·106

Size (b)

C
om

pr
es
si
on

S
pe
ed

(b
) Ideal Scenario

FIGURE 6.14: HPO Compression Rate

Chapter 6. Schema-uninformed Compression comparison 162

and larger XML files. XML files with size greater than 0.5 ∗ 107 are subjects to

lower compression rates. The main issue with these XML files is related to the

size of the data rather than the data types. As highlighted in the performance

evaluation, the current implementation is not able to perform well for large XML

file.

6.4 Conclusion

This chapter evaluated the performance of the hybrid model. The experiments

were performed using an XML corpus based on two major data sets, synthetic

and real. The results of the experiments illustrate additional level of compres-

sion for most synthetic XML data sets compared to other tools. HPO is not able

to achieve an optimal compression for files below 5KB to 10KB in size due to

the XML schema compression. All the results above 20KB in size demonstrate

substantial levels of compression. Experiment results for real XML data sets

present an optimal compression for few XML files. Here, the compressed for-

mat size achieved by HPO is considerable compared to other tools. An analysis

for real XML data sets where HPO was not able outperform other compres-

sion tools was performed. This analysis led to the introduction of synthetic data

types. These domain-specific types are mainly dominant in real XML data sets

and cannot be generalised for a practical tool. A detailed analysis of the patterns

of these data types revealed the possibility of applying a fixed length encoding

technique leading to compression efficiency improvements.

This chapter considered the performance issue of HPO and provided an eval-

uation of the compression speed. The current HPO implementation is affected

by a performance issue mainly for larger XML data sets. The ideal scenario in

which it can perform is discussed using the compression speed rate.

In conclusion, the results of the experiments illustrate the possibility of using

fixed length encoding to improve current general-purpose compressors. Fur-

thermore, with additional level of complexity it is possible to recognise most

data types and allow fixed length encoding to be the dominant compression

technique in a hybrid model.

Chapter 7

Conclusions

This research investigates the use of fixed length encoders to enhance general-

purpose compression techniques. The main objective is to improve compres-

sion for XML data. However, this research can be extended to other markup

languages. The use of high-level data types to enhance compression is studied

using a fixed length encoder. Furthermore, this work describes a system to au-

tomatically allocate more efficient data types to their closest match. The results

presented were achieved using a hybrid model which implements both fixed and

variable length encoding. These techniques are used to compress specific part

of XML data when their best use case is triggered. A hybrid model was devel-

oped based on knowledge of current XML compressors. This implementation is

compared to other XML-conscious and general-purpose compressors and has

demonstrated a significant level of compression for synthetic XML data sets and

promising results for real XML data sets.

7.1 Discussion

Chapter 6 presented the results for the compression efficiency of HPO and an

insight on its performance. The hybrid model demonstrates the possibility of

achieving a better compression format exploiting the XML data type knowledge.

Through an analysis of data types, it is possible to apply a fixed length encoder

to compress blocks of data into their lowest binary form. This technique has

163

Chapter 7. Conclusions 164

proven efficient when applied together with a variable length encoder. How-

ever, results demonstrate how the fixed length encoding technique can be more

efficient to compress XML documents when all the data types found can be

mapped to a specific encoding rule. This mainly applies for low-level basic data

types e.g. integer, decimal, bit-string, and for high-level basic data types

e.g. IPv4, enumeration, unix-time.

The aim of this research is to investigate the use of structured XML data types

to improve compression. The results presented provide useful insight to the

compression of XML data, and other markup languages, using a fixed length

encoder. For this reason, this research mainly focuses on the compression ef-

ficiency by exploring the additional level of compression that can be achieved

using a fixed length encoder. However, as shown in the performance evalua-

tion, the additional compression comes at a cost. The processing time required

to compress XML data is higher compared to general-purpose techniques.

7.1.1 Findings

The following sections discuss the results and analysis of the hybrid compres-

sion in order to address the research questions raised in Chapter 1.

7.1.1.1 Main Research Question

The main research question raised in the introduction chapter investigates the

use of fixed length encoder to enhance general-purpose compression tech-

niques. This research focuses on the compression of markup languages with

particular attention to XML as the most pervasive and widely used language

across a number of areas. The results of the experiments demonstrate how an

additional level of compression can be achieved using a fixed length encoder to

compress XML. The implementation described in Chapter 5 focuses uniquely

on XML. However, this technique can be applied to all other markup languages

that can be thoroughly described by a data definition language. The hybrid

model in particular is able to adapt to other markup languages by changing the

front-end of the application. By default, the fixed length encoder chosen is able

Chapter 7. Conclusions 165

to compress data in s-expression formats for representing both the data struc-

ture and definition language. Therefore, this technique can be extended to all

data structures and serialisation formats such as JSON, YAML and ASN.1 no-

tation.

The first set of experiments demonstrate the efficiency of the hybrid model

when presented with synthetic XML data types. By controlling the data types

constructed in an XML file, it was possible to generate data sets with a range

of basic and character string data types. Experiments demonstrate how HPO

outperforms other tools when compressing low-level and high-level basic data

types. This is possible due to the efficient encoding rules of the fixed length

encoder and the transparent schema-informed technique. However, this tech-

nique requires the schema to be compressed using a variable length encoder or

to be saved locally. By using a domain-specific schema, it is possible to reduce

the size of the definition language and improve compression. In addition, as

shown in the analysis section, the disadvantages of this technique are negated

for large XML data sets. Therefore, the results of the compression efficiency

demonstrate that a fixed length encoding technique can be successfully ap-

plied to general-purpose compressors in order to enhance markup languages

compression. In addition, fixed length encoding can be used as a standalone

technique to compress XML data sets with low-level and high-level basic data

types.

Recent XML compression techniques are mainly based on variable length en-

coders. Tools such as XMill, XMLPPM, and to some extent EXI, fully or partially

rely on a general-purpose variable length encoder. Although these implemen-

tations allow fast and error-free encoding mechanisms, a better compression

efficiency can be achieved in conjunction with a fixed length encoder. As shown

in the synthetic data sets compression results, this technique, together with a

schema-informed approach, can be more efficient compared to variable length

encoders. Therefore, it is possible to conclude that a fixed length encoder can

not only be used to enhance general-purpose techniques, but it can be used as

a standalone back-end compressor. However, this can only be achieved when

the front-end application is able to recognise and map XML data types to an

efficient lower integer form.

Chapter 7. Conclusions 166

7.1.1.2 Sub Research Questions

The sub-questions raised in Chapter 1 focus on the use of structured data types

to aid compression. As discussed in Chapter 3, only few tools investigate the

use of XML data types. Most advanced techniques exploit the DTD or XML

Schema file to avoid encoding the verbose structure of XML. Sections 5.8.1 of

Chapter 5 discussed the difference between the hybrid compression model of

EXI and HPO. The major difference between the two models is the compression

of high-level basic data types. In addition to low-level basic data types, HPO is

able to recognise data types such as unix-time and IPv4 and apply a fixed

length encoding technique. This difference is highlighted during the compres-

sion of synthetic and real XML data sets in files such as dates.xml. For these

data sets, the compression of high-level data types is the key feature that allows

HPO to perform better than other compressors.

Section 6.3.1 of Chapter 6 discussed the compression comparison between

synthetic and real XML data sets and the presence of synthetic data types. It

was demonstrated how most string data types can be recognised as synthetic,

reducing the amount of data passed to the variable length encoder. However,

the different patterns available for synthetic data types do not allow the gen-

eralisation of the mapping process to be used in a practical tool. Due to the

compression of the additional integer reference required to serialise the string

buffer, a better compression can be achieved by forcing synthetic data types

encoding. These types can be mapped to their closest built-in data type, as

long as it allows a correct decoding. This feature is possible thanks to the pres-

ence of suitable pattern for these data types. As shown in previous graph 6.12,

these types are mainly based on digit and enumerated values which are perfect

candidates for the fixed length encoder.

In conclusion, high level data types are the key components that allow HPO to

achieve a substantial level of compression. These types can be investigated

further to develop efficient encoding for domain-specific application.

An important feature of the hybrid model is the ability to recognise data types

and construct a domain-specific schema. While it is relatively simple to identify

low-level basic data types, most of XML files are based on synthetic data types

that cannot be recognised by the hybrid model. XML compressors such as

EXI, are able to achieve a good compression by separating these data types

into semantic models and by applying a variable length encoding. Although this

Chapter 7. Conclusions 167

technique has proven efficient, fixed length encoding is able to achieve more

substantial compression results. In order to achieve this level of compression,

it is possible to map these types to their closest built-in data types that can

ensure a correct decoding. This can be applied to all data types recognised

by the hybrid model. For example, data value <prize>19.50</prize> can be

assigned both decimal and currency data type. This decision is based on the

data type that can ensure the lowest level of compression to be achieved. As

shown in section 6.3.2, data types can be categorised based on the level of the

encoding efficiency, low to high. Therefore, the same concept can be applied to

data types in order to improve compression.

7.2 Summary of the Thesis

This thesis explores the use of fixed length encoder and the possibility of im-

proving compression for markup languages through the use of data type in-

formation. The first chapter provides an introduction to the research area and

introduce the aims and objectives. After providing the background knowledge

on XML and data compression, the thesis continues with an analysis of relevant

XML and general-purpose compressors. In addition, this work studies XML data

sets providing an analysis of current results in this area. Chapter 4 investigates

the use of XML compression techniques for use in network management. The

results of this study, together with the analysis of XML compressors allowed us

to have a broader understanding on these compressors. With this background

knowledge a hybrid compression model was designed to further investigate the

use of fixed length encoders. The motivation and the requirements of the new

model are discussed with the goal of improving the compactness of the com-

pressed format.

The implementation is based on the use of data types to be mapped to the fixed

length encoder. The performance of the hybrid model is compared against a

similar hybrid implementation and best performing general-purpose compres-

sors. Synthetic data and real data are the two major data sets are used for this

compression comparison. The results of the experiments demonstrate the ad-

ditional level of compression that can be achieved using data type information.

These data types allow the hybrid model to map data to a lower form used by

Chapter 7. Conclusions 168

Efficiency

Processing T ime

GZIP

7ZIP

EXI

HPO

General-purpose

XML-conscious

FIGURE 7.1: Compressors Performance

the back-end encoder. Furthermore, this research analysed those XML data

sets where the hybrid model fails to recognise data types. Synthetic data types

are introduced as patterns that are specific to the data set and that cannot be

generalised for a practical tool. A section of the comparison results evaluates

the performance and describes the ideal scenario in which the hybrid model can

perform. Finally, the thesis discusses the findings and addresses the research

questions raised in the introduction.

Figure 7.1 provides an overview of the hybrid model compared to the tools to

which it is compared. As shown in the diagram, HPO is capable of achieving

higher compression formats at the expense of processing time. Future work

intends to explore the performance of HPO to decrease the processing time

required to compress markup languages.

7.3 Technical Contributions

The thesis presents the following contributions.

Efficient XML representations

This research studies a number of XML compressors and present a sur-

vey on current implementations. The compression model of these tools is

Chapter 7. Conclusions 169

thoroughly analysed and tested. The survey includes relevant compres-

sors and serialisation techniques found at the basis of many compression

tools. This includes a study of EXI and Packedobjects as the two main

compressors that are based on fixed length encoding techniques. For

both tools, the compression model and functionality are studied. Encod-

ing examples are provided to demonstrate how these tools are able to

achieve efficient XML representations.

The best performing tools with native implementations are subject to initial

experiments to support network management applications. These results

provide an understanding on the compression efficiency and performance

of the XML compressors studied for relatively small, highly-structured XML

files. Together with the compression comparisons provided by other re-

search, these results allowed us to have a broader understanding on the

performance of XML compression tools for a wider range of XML files.

The results of this contribution can be used as reference for researchers

and developers working in the area of XML compression techniques.

Hybrid Compression Model

This work presents a hybrid model to efficiently compress XML data. This

model can be extended to other markup languages and notations that can

be defined by a data definition language. Based on encoding rules ex-

tended by telecommunication and networking notations, this compression

model includes an efficient fixed length encoder designed to exchange

XML data. The hybrid model is designed based on native libraries in order

to extend its use to different platforms and optimise performance.

The model is based on a number of processes followed by two encoding

techniques, fixed and variable length. The compression model is based on

a transparent schema-informed technique which revolves around the use

of fixed length encoder to compress complex and basic data types and

the variable length encoder to compress string data types. The process of

recognising XML data types is performed during the knowledge extraction

of XML. Here, the hybrid model attempts to map its built-in data types to

XML elements. String and other unrecognised data types are compressed

using the variable length encoder.

The hybrid model is compared against a number of XML-conscious and

general-purpose compressors. Results demonstrate the potential of a

more efficient compression when most data types are recognised and

Chapter 7. Conclusions 170

compressed using the fixed length encoder. An analysis on the real XML

data set is provided to illustrate the existence of synthetic data types.

These types are categorised and thoroughly analysed to provide future

directions to improve compression using the fixed length encoder.

High-Level Data Types

This research presents a system to compress high-level data types with-

out the need of a predefined schema. The design of the hybrid model

allows us to recognise XML data types and apply a fixed length encoding

technique. This technique has shown substantial results for the compres-

sion of basic data types. These types are extended to include high-level

formats which are able to efficiency map to a lower form. While exist-

ing solutions focus on variable length encoders to compress these data

types, this research applies a fixed length encoding through the use of

a transparent schema-informed technique. This technique has demon-

strated substantial results compared to the semantic compression of other

models.

7.4 Limitations

This research focuses on the efficiency of fixed length encoder to support general-

purpose compressors. Performance was considered but not thoroughly anal-

ysed. An overall evaluation was provided to calculate the compression rate

speed of the hybrid model and understand the ideal scenario where it can per-

form. However, more work can be done to address the performance issues of

the hybrid model for files over 0.5 ∗ 107 in size. This applies to the performance

difference between the front-end and the back-end of the model.

This research does not compare the efficiency of the hybrid model with queri-

able XML compressors. Few implementations are discussed in the XML com-

pressors survey, however, due to the known efficiency limitation, these tools

were discarded from the analysis of XML compression technique for network

management and schema-uninformed compression comparison.

One of the main limitations of this approach is associated to the use of whites-

paces and newlines to beautify and improve the readability of XML. Ignorable

whitespaces have been explored by other XML compressors which have been

Chapter 7. Conclusions 171

defined as near-lossless. This limitation does not allow the hybrid model to

consider this data. However, this can be solved with the introduction of a new

element to store whitespaces and newlines data.

7.5 Future Work

Future work will focus on improving the overall performance and efficiency of the

hybrid model. The hybrid model is currently capable of recognising a number

of basic data types. However, more work in the knowledge extraction process

will allow the hybrid model to recognise more data types and compress them

using the fixed length encoder. Since it is not always possible to generalise

this process, synthetic data types will be mapped to their closest built-in data

type that can ensure a correct decoding. Alternatively, it is possible to pro-

vide domain-specific support for more efficient data type detection during the

schema generation. This system would required prior knowledge of XML data

types to develop synthetic data types support for a specific use case. Users can

develop fixed length encoding mechanisms for specific data types to be easily

recognised by the schema generation process. Based on specific patterns, both

the complex and simple data type analysis can be removed from the run-time

load of the hybrid model resulting in improved efficiency and performance. This

future work will mainly focus on the front-end of the hybrid model.

The back-end fixed and variable length encoders will also be subject to future

work. As discussed in section 5.8.1 of Chapter 5, the main difference between

EXI and HPO is based on the encoding technique sequence. While EXI imple-

ments the fixed and variable length encoding sequentially on the same stream,

HPO categorises the data to be sent to a specific compressor. This allows

current implementation to be executed in parallel rather than in sequence. Fu-

ture work intents to explore the use of a hardware encoder to perform the fixed

length encoding compression in parallel. This implementation can result in per-

formance improvements as a dedicated hardware will perform one part of the

compression reducing the total processing time. In addition, this research in-

tends to further investigate the performance of the hybrid model. As shown in

the performance evaluation section, the hybrid model performance decreases

Chapter 7. Conclusions 172

for files over 0.5 ∗ 107 in size. This issue is be investigated in order to improve

the fixed length encoder performance.

Working with large XML files and creating memory representations to assign the

correct data types inevitably leads to the disadvantages of using a DOM parser.

Although current implementation has a high level of optimisation, the size of the

memory representation is still considerable. Future work will investigate the use

of optimised DOM parsers capable of constructing efficient memory trees. This

work will be performed together with a memory and power consumption study

of the hybrid model for embedded devices.

The efficiency of the hybrid model can be applied to other markup languages.

HTML will be the first markup language to which this work will be extended. This

will lead to the use of a new domain-specific schema, which is capable of easily

mapping to the back-end encoder and provide more support for synthetic data

types. Here, the application of near-lossless and fully-lossless compression

for markup language will be investigated, including whitespaces and newlines

support.

Finally, future work plans to improve the efficiency of the hybrid model. This

will be achieved by implementing more semantic compression for string data.

Instead of constructing a string buffer, this approach plans to enumerate each

string type, storing its data into the schema. This feature will be compared to

the current implementation to test the compression difference.

Appendix A

Data and Protocol Listing

LISTING A.1: ASN.1 protocol
personnel DEFINITIONS ::= BEGIN

personnel ::= SEQUENCE {
name nameType,
title IA5String,
number INTEGER,
dateOfHire IA5String (SIZE (8)),
nameOfSpouse nameType,
children childrenType

}
nameType ::= SEQUENCE {

givenName IA5String (SIZE (1..64)),
initial IA5String (SIZE (1)),
familyName IA5String (SIZE (1..64))

}

children ::= SEQUENCE OF {
ChildInformation childType

}

childType ::= SEQUENCE {
name nameType OPTIONAL,
dateOfBirth IA5String (SIZE (8)) OPTIONAL

}

END

LISTING A.2: SCM protocol
(define personnel
’(personnel sequence

(name sequence
(givenName string (size 1 64))
(initial string (size 1))
(familyName string (size 1 64)))

(title string)
(number integer)
(dateOfHire string (size 8))

173

Appendix A. Data and Protocol Listing 174

(nameOfSpouse sequence
(givenName string (size 1 64))
(initial string (size 1))
(familyName string (size 1 64)))

(children sequence-of
(ChildInformation sequence-optional

(name sequence
(givenName string (size 1 64))
(initial string (size 1))
(familyName string (size 1 64)))

(dateOfBirth string (size 8))))))

LISTING A.3: XSD protocol
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="http://zedstar.org/xml

/schema/packedobjectsDataTypes.xsd" />
<!-- User defined types -->
<xs:simpleType name="nameString">

<xs:restriction base="string">
<xs:minLength value="1" />
<xs:maxLength value="64" />

</xs:restriction>
</xs:simpleType>

<xs:complexType name="nameType">
<xs:sequence>
<xs:element name="givenName" type="nameString" />
<xs:element name="initial">

<xs:simpleType>
<xs:restriction base="string">
<xs:length value="1" />

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="familyName" type="nameString" />

</xs:sequence>
</xs:complexType>

<xs:element name="personnel">
<xs:complexType>
<xs:sequence>

<xs:element name="name" type="nameType" />
<xs:element name="title" type="string" />
<xs:element name="number" type="integer" />
<xs:element name="dateOfHire">
<xs:simpleType>
<xs:restriction base="string">

<xs:length value="8" />
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="nameOfSpouse" type="nameType" />
<xs:element name="children">
<xs:complexType>
<xs:sequence>

<xs:element name="ChildInformation" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="nameType" minOccurs="0"/>
<xs:element name="dateOfBirth" minOccurs="0">

Appendix A. Data and Protocol Listing 175

<xs:simpleType>
<xs:restriction base="string">
<xs:length value="8" />

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

LISTING A.4: ASN.1 data
myPersonnel personnel ::= {

name ::=
{

givenName "John",
initial "P",
familyName "Smith"

}
title "Director",
number 51,
dateOfHire "19710917",
nameOfSpouse::=
{

givenName "John",
initial "P",
familyName "Smith"

}
children ::=
{
ChildrenInformation ::=

{
name ::=

{
givenName "Ralph",
initial "T",
familyName "Smith"
}

dateOfBirth "19571111",
name ::=

{
givenName "Susan",
initial "B",
familyName "Jones"
}

dateOfBirth "19590717",
}

}
}

LISTING A.5: SCM data
(define personnel-values ’(personnel

(name

Appendix A. Data and Protocol Listing 176

(givenName "John")
(initial "P")
(familyName "Smith"))
(title "Director")
(number 51)
(dateOfHire "19710917")
(nameOfSpouse
(givenName "Mary")
(initial "T")
(familyName "Smith"))
(children
(ChildInformation
(name
(givenName "Ralph")
(initial "T")
(familyName "Smith"))

(dateOfBirth "19571111"))
(ChildInformation
(name
(givenName "Susan")
(initial "B")
(familyName "Jones"))

(dateOfBirth "19590717")))))

LISTING A.6: XML data
<?xml version="1.0" encoding="UTF-8"?>
<personnel>
<name>
<givenName>John</givenName>
<initial>P</initial>
<familyName>Smith</familyName>

</name>
<title>Director</title>
<number>51</number>
<dateOfHire>19710917</dateOfHire>
<nameOfSpouse>

<givenName>Mary</givenName>
<initial>T</initial>
<familyName>Smith</familyName>

</nameOfSpouse>
<children>

<ChildInformation>
<name>

<givenName>Ralph</givenName>
<initial>T</initial>
<familyName>Smith</familyName>

</name>
<dateOfBirth>19571111</dateOfBirth>

</ChildInformation>
<ChildInformation>
<name>

<givenName>Susan</givenName>
<initial>B</initial>
<familyName>Jones</familyName>

</name>
<dateOfBirth>19590717</dateOfBirth>

</ChildInformation>
</children>

</personnel>

Appendix A. Data and Protocol Listing 177

LISTING A.7: XML data
<?xml version="1.0" encoding="UTF-8"?>
<student>
<module>FuncProg</module>
<hours>48</hours>
<courses>CS</courses>
<ref>AABBCCDDEE</ref>

</student>

LISTING A.8: XSD protocol
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="http://zedstar.org/xml

/schema/packedobjectsDataTypes.xsd" />
<xs:element name="student">

<xs:complexType>
<xs:sequence>

<xs:element name="module">
<xs:simpleType>
<xs:restriction base="string">

<xs:minLength value="0"/>
<xs:maxLength value="10"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="hours">
<xs:simpleType>
<xs:restriction base="integer">

<xs:minInclusive value="30" />
<xs:maxInclusive value="60" />

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="courses">
<xs:simpleType>
<xs:restriction base="string">

<xs:enumeration value="CS"/>
<xs:enumeration value="CIS"/>
<xs:enumeration value="ITMB"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="ref">
<xs:simpleType>
<xs:restriction base="hex-string">
<xs:minLength value="1" />
<xs:maxLength value="64" />

</xs:restriction>
</xs:simpleType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

LISTING A.9: Example of ASN.1 notation protocol

1 EmailProtocol DEFINITIONS ::== BEGIN
2

Appendix A. Data and Protocol Listing 178

3 EmailHeader ::== SEQUENCE {
4 idNo INTEGER,
5 from IA5String
6 }
7

8 EmailBody ::== SEQUENCE {
9 message IA5String,

10 confirmation BOOLEAN
11 }
12

13 END

LISTING A.10: Example of ASN.1 notation message

1 JohnEmail EmailHeader ::== {
2 idNo 34,
3 from "John"
4 }

PO Encoding

The transformation sequence can be broken down into various stages using

XML and XSD examples provided in code listing A.7 and A.8 of Appendix A.

Using s-expressions it is possible to represent data and protocol in a concise

format which can then be easily mapped to the IER. The first stage is to create

a combined form by merging information from both data and protocol.

LISTING A.11: PO Normal form

1 ;; Normal form
2 ((student sequence)
3 (module string (size 0 10) "FuncProg")
4 (hours integer (range 30 60) 48)
5 (courses enumerated 0 2)
6 (ref hex-string (size 1 64) "AABBCCDDEE"))

XML data is assisted by the constrains provided by the XSD protocol. This ex-

ample provides four simple types: string, integer, enumerated, hex-string

and one complex type sequence. This complex type does not affect how infor-

mation is encoded, therefore, it does not increase the size of the compressed

format.

The following code presents the second and third stages of encoding process.

Line 2 of code listing A.11 is transformed into the following integer form which

is then converted into a lower core form.

Appendix A. Data and Protocol Listing 179

LISTING A.12: String type PO In-

teger form

(integer (range 0 10) 8)
(integer (range 0 127) 70)
(integer (range 0 127) 117)
(integer (range 0 127) 110)
(integer (range 0 127) 99)
(integer (range 0 127) 80)
(integer (range 0 127) 114)
(integer (range 0 127) 111)
(integer (range 0 127) 103)

LISTING A.13: String type PO

Lower form

(unsigned (bits 4) 8)
(unsigned (bits 7) 70)
(unsigned (bits 7) 117)
(unsigned (bits 7) 110)
(unsigned (bits 7) 99)
(unsigned (bits 7) 80)
(unsigned (bits 7) 114)
(unsigned (bits 7) 111)
(unsigned (bits 7) 103)

The IER encodes data efficiently using a sequence of unsigned integers. The

first unsigned integer encodes the length of the string, value 8, using 4 bits.

Similar to PER, each character is encoded using 7 bits.

The following integer and core form is the representation of the value in line 3

of code listing A.11.

LISTING A.14: Integer type PO In-

teger form

(integer (range 30 60) 48)

LISTING A.15: Integer type PO

Lower form

(unsigned (bits 5) 18)

Constrained values do not require the length to be encoded. The lower bound

is subtracted from the integer value (ensuring a positive integer) and then en-

coded using 5 bits.

Enumeration encodes complex simple types efficiently using information pro-

vided by the schema. Integer range is produced using the number of enumer-

ated items listed in the protocols.

LISTING A.16: Enumeration type

PO Integer form

(integer (range 0 2) 0)

LISTING A.17: Enumeration type

PO Lower form

(unsigned (bits 2) 0)

An unsigned integer 0 is encoded in two bits representing the first enumeration

choice.

Hex-string is an example of how to encode a high level data type efficiently

using the knowledge provided by the protocol. Hexadecimal characters are

used to represent 4-bits in a human-readable format. Therefore, it is possible to

Appendix A. Data and Protocol Listing 180

encode each character using 4 bits instead of 7 bits required to encode string

types.

LISTING A.18: Hexadecimal type

PO Integer form

(integer (range 1 64) 10)
(integer (range 0 15) 10)
(integer (range 0 15) 10)
(integer (range 0 15) 11)
(integer (range 0 15) 11)
(integer (range 0 15) 12)
(integer (range 0 15) 12)
(integer (range 0 15) 13)
(integer (range 0 15) 13)
(integer (range 0 15) 14)
(integer (range 0 15) 14)

LISTING A.19: Hexadecimal type

PO Lower form

(unsigned (bits 6) 9)
(unsigned (bits 4) 10)
(unsigned (bits 4) 10)
(unsigned (bits 4) 11)
(unsigned (bits 4) 11)
(unsigned (bits 4) 12)
(unsigned (bits 4) 12)
(unsigned (bits 4) 13)
(unsigned (bits 4) 13)
(unsigned (bits 4) 14)
(unsigned (bits 4) 14)

The first unsigned integer encodes the length of the hex-string value using 6

bits. 4 bits are then required to store each of the hexadecimal characters.

Appendix B

Compressors Execution and Ratio
Results

TABLE B.1: Compressors Usage

Compressor Command

XMLPPM xmlppm <doc.xml>doc.xppm

DTDPPM dtdppm dtddoc.xml xmldoc.xml [xmldoc.xml.xppm]

WBXML xml2wbxml -o output.wbxml input.xml

XMILL xcmill -f -P file.xml

ZLIB zpipe <file>encodedxml.zlib

PO packedobjects –schema schema.xsd –in file.xml –out pofile.po

181

Appendix B. Compressors Executions and Ratios 182

TABLE B.2: System Specification

Category Value

Model Dell Latitude E6510

OS Ubuntu 12.04 (precise) 32-bit

kernel Linux 3.2.0-25-generic-pae

CPU Intel R© CoreTM i7 CPU M 640 @ 2.80GHz x 4

RAM 2 x 2048 MB DDR3 @ 1067 MHz

Hard Disk ATA Disk TOSHIBA MK5056GS 500GB

Compiler gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3

Flags -O3 -march=i386

Details of the compression ratio highlighting the compression tools and datasets

where the ratio is above 1

TABLE B.3: PO Compression ratio results

Compressor PO DTDPPM XMLPPM WBXML XMILL ZILB

Temper-sens 1 0.1086037863 0.091159941 0.0108493252 0.0396910401 0.1399782135

personnel 1 0.1284728328 0.1367134203 0.0155510361 0.0545845411 0.1449082537

router-qos 1 0.166353116 0.2299531565 0.0215677261 0.0889202604 0.2564516339

sensor 1 0.0668997148 0.0609221923 0.0068491092 0.0222221222 0.066417959

switch-config 1 0.159775 0.1089493854 0.0154283535 0.0549905352 0.18308334

purchaseorder 1 0.1803207845 0.1396748946 0.0179490988 0.0628317625 0.1940324971

router-disc 1 0.0928991451 0.1045390889 0.0122126708 0.0486458513 0.1624891962

router-addnet 1 0.1865529073 0.1558728882 0.0211609736 0.0643687708 0.1688821094

iptel-ethinf 1 0.0477291674 0.0500611315 0.006491381 0.0206122032 0.0727677449

iptel-devinfo 1 0.1163385203 0.123902112 0.0168777197 0.0461929473 0.1526259125

TABLE B.4: DTDPPM Compression ratio results

Compressor PO DTDPPM XMLPPM WBXML XMILL ZILB

Temper-sens 9.2077821012 1 0.8393808734 0.0998982228 0.3654664484 1.2888888889

personnel 7.7837467921 1 1.0641426466 0.1210453276 0.424872247 1.1279291549

router-qos 6.0113091009 1 1.3823195026 0.1296502683 0.5345271708 1.5416100408

sensor 14.9477468354 1 0.9106495077 0.1023787505 0.3321706569 0.992798836

switch-config 6.2588014395 1 0.6818925701 0.0965630009 0.3441748408 1.1458822721

purchaseorder 5.5456724138 1 0.7745912101 0.0995398222 0.3484443722 1.0760406665

router-disc 10.7643617021 1 1.1252965648 0.131461606 0.5236415387 1.7490924806

router-addnet 5.3604096262 1 0.8355425302 0.1134314864 0.3450429784 0.9052772849

iptel-ethinf 20.9515492402 1 1.0488582614 0.136004489 0.4318575899 1.5245969913

iptel-devinfo 8.5956052876 1 1.0650136488 0.1450742168 0.3970563423 1.3119121009

Appendix B. Compressors Executions and Ratios 183

TABLE B.5: XMLPPM Compression ratio results

Compressor PO DTDPPM XMLPPM WBXML XMILL ZILB

Temper-sens 10.9697306584 1.1913542847 1 0.1190141758 0.4354000193 1.5355233002

personnel 7.3145708583 0.9397236387 1 0.1137491557 0.3992624939 1.0599416896

router-qos 4.3487117774 0.7234217546 1 0.0937918246 0.3866885838 1.1152342406

sensor 16.4143797468 1.0981173235 1 0.1124238795 0.3647623527 1.0902096005

switch-config 9.1785740364 1.4665066667 1 0.1416102846 0.5047346986 1.6804439912

purchaseorder 7.1594827586 1.2910035473 1 0.1285062636 0.4498429206 1.3891723176

router-disc 9.5657998424 0.8886546278 1 0.1168239646 0.4653364767 1.5543391274

router-addnet 6.415483871 1.1968271678 1 0.1357578847 0.4129568106 1.0834604489

iptel-ethinf 19.9755772647 0.9534176702 1 0.1296690831 0.4117406572 1.4535777116

iptel-devinfo 8.0708874459 0.9389551027 1 0.1362181761 0.3728180787 1.2318265615

TABLE B.6: WBXML Compression ratio results

Compressor PO DTDPPM XMLPPM WBXML XMILL ZILB

Temper-sens 92.1716307039 10.0101880878 8.4023604201 1 3.6583878887 12.902020202

personnel 64.3043969204 8.2613680324 8.7912740428 1 3.5100259989 9.3182378627

router-qos 46.3655739369 7.7130576982 10.6619100805 1 4.1228389093 11.8905271925

sensor 146.0043881857 9.7676519273 8.8949074188 1 3.244527357 9.6973134636

switch-config 64.8157304543 10.3559333333 7.0616339964 1 3.5642517065 11.8666804173

purchaseorder 55.7131034483 10.0462305184 7.7817218543 1 3.5005524862 10.8101525831

router-disc 81.8821710008 7.6067836874 8.5598875525 1 3.9832279148 13.3049681488

router-addnet 47.2568049155 8.8158943459 7.366054668 1 3.0418624427 7.9808288973

iptel-ethinf 154.0504243142 7.352698483 7.7119385474 1 3.1753186461 11.2099019854

iptel-devinfo 59.2497101113 6.8930236009 7.3411642163 1 2.7369187383 9.0430410737

TABLE B.7: XMILL Compression ratio results

Compressor PO DTDPPM XMLPPM WBXML XMILL ZILB

Temper-sens 25.1946030623 2.736229288 2.2967385296 0.2733444431 1 3.5266955267

personnel 18.3202053037 2.3536486724 2.5046179275 0.2848981746 1 2.6547489579

router-qos 11.2460309405 1.8708122893 2.5860603131 0.2425513152 1 2.8840630095

sensor 45.0002025316 3.0105007147 2.7415109938 0.3082113017 1 2.9888216053

switch-config 18.1849475825 2.9055 1.9812388624 0.2805637992 1 3.3293609415

purchaseorder 15.9155172414 2.869898554 2.2229981939 0.2856691919 1 3.0881275529

router-disc 20.5567375887 1.9097033487 2.148982618 0.2510526692 1 3.3402477672

router-addnet 15.535483871 2.8981896822 2.4215607401 0.3287459636 1 2.6236652866

iptel-ethinf 48.5149496744 2.3155781522 2.4287132748 0.3149290233 1 3.530323484

iptel-devinfo 21.648326376 2.518534257 2.6822733586 0.3653743847 1 3.3040955682

Appendix B. Compressors Executions and Ratios 184

TABLE B.8: ZLIB Compression ratio results

Compressor PO DTDPPM XMLPPM WBXML XMILL ZILB

Temper-sens 7.1439688716 0.775862069 0.6512437811 0.0775072418 0.2835515548 1

personnel 6.9009181637 0.8865805052 0.9434481253 0.1073164277 0.3766834514 1

router-qos 3.89937075 0.6486724746 0.8966726124 0.0841005604 0.3467330626 1

sensor 15.0561687764 1.0072533969 0.91725481 0.1031213443 0.3345800225 1

switch-config 5.4619934283 0.87269 0.595080827 0.0842695653 0.3003579418 1

purchaseorder 5.1537758621 0.9293329064 0.7198531005 0.0925056323 0.3238208211 1

router-disc 6.1542553191 0.5717250581 0.6433602438 0.0751598943 0.2993789891 1

router-addnet 5.9212903226 1.1046339245 0.9229686243 0.125300268 0.3811461794 1

iptel-ethinf 13.7423524768 0.6559110412 0.6879577143 0.089206846 0.2832601614 1

iptel-devinfo 6.5519673779 0.7622461896 0.8118025957 0.1105822689 0.302654684 1

Appendix C

XML Document Transformation
Process

This research defines denormalisation as the process of expanding the struc-

ture of XML data in order to meet the requirements of the PO compressor. By

increasing the size of the markup language and adding elements, the XML doc-

ument is transformed into structured data with compact and concise elements

which benefits of a unique (highly unlikely to be adopted) pattern. This pattern

is needed for the normalisation process in order to identify the elements while

traversing the tree and construct a new document.

Attributes - Case 1

The “foo” element contains two attributes, “bar” and “baz” and the value of the

element “ONE”. In the denormalised format, the element “foo” will contain an

attributes sequence “a” which will contain a sequence-of attribute “a”. The at-

tribute sequence-of will contain “a” and “v” elements which will be the name

and value of the attribute respectively. All the attributes of the “foo” element are

contained inside the attributes sequence. The value of “foo” is places inside a

“v” element after the attribute sequence.

LISTING C.1: XML Document containing attributes
<?xml version="1.0" encoding="UTF-8"?>
<foo bar="Male" baz="1976">foobar</foo>

LISTING C.2: XML Document after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<foo>
<a>

185

Appendix C. XML Document Transformation Process 186

<a>
<a>bar
<v>Male</v>

<a>
<a>baz
<v>1976</v>

<v>foobar</v>

</foo>

Attributes - Case 2

More advanced scenario, the same rules are applied for nested elements and

attributes. NB: “foobar” element attributes are the last child of the transformed

“foobar” element. A parent element containing nested elements will have its

attributes as the last child.

LISTING C.3: XML Document containing attributes
<?xml version="1.0" encoding="UTF-8"?>
<foobar atr0="NO" atr2="NO" >
<foo atr1="NO" more="more">ONE</foo>
<bar atr6="ATR">
<baz attr="123" attr222="22">TWO</baz>

</bar>
</foobar>

LISTING C.4: XML Document after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<foobar>
<foo>

<a>
<a>

<a>atr1
<v>NO</v>

<a>

<a>more
<v>more</v>

<v>ONE</v>

</foo>
<bar>

<baz>
<a>

<a>
<a>attr
<v>123</v>

<a>
<a>attr222
<v>22</v>

Appendix C. XML Document Transformation Process 187

<v>TWO</v>
</baz>
<a>
<a>

<a>atr6
<v>ATR</v>

</bar>
<a>

<a>
<a>atr0
<v>NO</v>

<a>
<a>atr2
<v>NO</v>

</foobar>

Comments - Case 1

Comments before/after root. A new root will be created to contain both the foo

element and the comment transformed into a new element. Similar transforma-

tion is applied to PI and DTD components.

LISTING C.5: XML Document containing comments
<?xml version="1.0" encoding="UTF-8"?>
<!-- relevant comment-->
<foo>bar</foo>

LISTING C.6: XML Document after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<root>

<c>relevant comment</c>
<foo>bar</foo>

</root>

Comments - Case 2

Comments inside a root node will be transformed into elements of the node.

LISTING C.7: XML Document containing comments
<?xml version="1.0" encoding="UTF-8"?>
<foo>

<!--relevant comment -->
<bar>bar</bar>
<!--another comment -->

</foo>

LISTING C.8: XML Document after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<foo>

Appendix C. XML Document Transformation Process 188

<c>relevant comment</c>
<bar>bar</bar>
<c>another comment</c>

</foo>

Comments - Case 3

Exmple of comments and attributes transformation

LISTING C.9: XML Document containing attributes and comments
<?xml version="1.0" encoding="UTF-8"?>
<!-- this is a comment -->
<foo bar="1234" baz="5678">ONE</foo>
<!--another comment -->

LISTING C.10: XML Document after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<root>
<c> this is a comment </c>
<foo>
<a>
<a>

<a>bar
<v>1234</v>

<a>

<a>baz
<v>5678</v>

<v>ONE</v>

</foo>
<c>another comment </c>

</root>

Sequence - Case 1

The compressor needs to have sequence-of elements inside a parent. Un-

ordered sequence-of elements will be moved inside parents node “s”.

LISTING C.11: XML Document containing unordered sequence
<?xml version="1.0" encoding="UTF-8"?>
<foo>
<bar>bar</bar>
<bar>bar</bar>
<foobar>foobar</foobar>
<foobar>foobar</foobar>
<foobar>foobar</foobar>
<bar>bar</bar>
<bar>bar</bar>

</foo>

LISTING C.12: XML Document after transformation process
<?xml version="1.0" encoding="UTF-8"?>

Appendix C. XML Document Transformation Process 189

<foo>
<s>

<s>
<bar>bar</bar>
<bar>bar</bar>

</s>
<s>
<foobar>foobar</foobar>
<foobar>foobar</foobar>
<foobar>foobar</foobar>

</s>
<s>
<bar>bar</bar>
<bar>bar</bar>

</s>
</s>

</foo>

Example

An example containing attributes, comments and sequence-of transformation.

Comments needs to be reproduced the the exact order.

LISTING C.13: XML Document containing attribute, comments and unordered

sequence
<?xml version="1.0" encoding="UTF-8"?>
<struct name="foolist">
<!-- this is a comment -->
<foo age="12" dob="2012">foo</foo>
<foo age="20" dob="1999">foo</foo>
<bar age="24">bar</foo>

</struct>

LISTING C.14: XML Document after transformation process
<?xml version="1.0" encoding="UTF-8"?>
<struct>
<c>this is a comment</c>
<s>
<s>
<foo>

<a
<a>
<a>age
<v>12</v>

<a>
<a>dob
<v>2012</v>

<v>foo</v>

</foo>
<foo>

<a>
<a>
<a>age
<v>20</v>

Appendix C. XML Document Transformation Process 190

<a>
<a>dob
<v>1999</v>

<v>foo</v>

</foo>
</s>
<s>
<bar>

<a>
<a>
<a>age
<v>20</v>

<v>bar</v>

</bar>
</s>

</s>
<a>

<a>
<a>name
<v>foolist</v>

</struct>

Appendix D

Hybrid Model Compression
Comparison Results

Compressor XML EXI GZIP 7ZIP HPO

nation.xml 5209 1006 1141 1196 1142

rdismissal.xml 32952 1366 1675 1771 1869

supplier.xml 33162 6415 7087 6381 6370

rcasegroup.xml 36846 2024 2262 2109 2663

baseball.xml 74861 4666 6033 4945 3803

dates.xml 91229 11124 14176 10265 7442

numeric.xml 119757 9507 14096 10545 7902

reed.xml 292009 12591 17513 14306 17532

customer.xml 581544 78062 102168 81903 89237

part.xml 716208 45573 69884 57622 60839

rand1-1998.xml 2102492 318654 377993 307880 266678

partsupp.xml 2241854 249958 312277 229225 238868

orders.xml 5378833 356866 539130 404578 403668

orderkey.xml 5406703 696124 950976 717646 575414

largenum.xml 5406703 696124 950982 717658 575414

lineitem.xml 34341531 1422940 2700373 1942771 1766707

TABLE D.1: Real XML Data Set Compression Results (Bytes)

191

Appendix D. Comparisons Results 192

Compressor HPO EXI GZIP 7ZIP

nation.xml 1 1.1351888668 1.0008764242 0.9548494983

rdismissal.xml 1 1.3682284041 1.1158208955 1.0553359684

supplier.xml 1 0.992985191 0.8988288415 0.9982761323

rcasegroup.xml 1 1.3157114625 1.1772767462 1.2626837364

baseball.xml 1 0.8150450064 0.6303663186 0.7690596562

dates.xml 1 0.6690039554 0.5249717833 0.7249878227

numeric.xml 1 0.8311770275 0.560584563 0.7493598862

reed.xml 1 1.3924231594 1.0010849084 1.2254997903

customer.xml 1 1.1431554405 0.8734339519 1.0895449495

part.xml 1 1.3349790446 0.8705712323 1.0558293707

rand1-1998.xml 1 0.836888914 0.7055104195 0.8661751332

partsupp.xml 1 0.9556325463 0.7649234494 1.0420678373

orders.xml 1 1.1311472654 0.7487396361 0.9977507427

orderkey.xml 1 0.8265969856 0.60507731 0.8018075764

largenum.xml 1 0.8265969856 0.6050734925 0.8017941694

lineitem.xml 1 1.2415892448 0.6542455431 0.9093748054

TABLE D.2: HPO Compression Ratio

Appendix D. Comparisons Results 193

Compressor HPO EXI GZIP 7ZIP

nation.xml 0.880910683 1 0.8816827344 0.8411371237

rdismissal.xml 0.7308721241 1 0.8155223881 0.7713156409

supplier.xml 1.0070643642 1 0.9051784958 1.0053283184

rcasegroup.xml 0.760045062 1 0.8947833775 0.9596965386

baseball.xml 1.226926111 1 0.7734128957 0.9435793731

dates.xml 1.4947594733 1 0.7847065463 1.083682416

numeric.xml 1.2031131359 1 0.6744466515 0.9015647226

reed.xml 0.7181724846 1 0.7189516359 0.8801202293

customer.xml 0.8747716754 1 0.7640552815 0.9531030609

part.xml 0.7490754286 1 0.652123519 0.7908958384

rand1-1998.xml 1.1949017167 1 0.8430156114 1.0349941536

partsupp.xml 1.0464273155 1 0.8004367917 1.0904482495

orders.xml 0.8840581864 1 0.6619294048 0.8820697121

orderkey.xml 1.2097793936 1 0.7320100612 0.9700102836

largenum.xml 1.2097793936 1 0.7320054428 0.969994064

lineitem.xml 0.805419348 1 0.5269420188 0.7324280628

TABLE D.3: EXI Compression Ratio

Appendix D. Comparisons Results 194

Compressor HPO EXI GZIP 7ZIP

nation.xml 0.9991243433 1.134194831 1 0.9540133779

rdismissal.xml 0.8962011771 1.2262079063 1 0.9457933371

supplier.xml 1.1125588697 1.1047544817 1 1.1106409654

rcasegroup.xml 0.8494179497 1.1175889328 1 1.0725462304

baseball.xml 1.5863791743 1.2929704243 1 1.2200202224

dates.xml 1.9048642838 1.2743617404 1 1.3810034096

numeric.xml 1.7838521893 1.4826969601 1 1.3367472736

reed.xml 0.9989162674 1.390914145 1 1.2241716762

customer.xml 1.1449062609 1.308805821 1 1.2474268342

part.xml 1.1486710827 1.5334518245 1 1.2128006664

rand1-1998.xml 1.4174135099 1.186217653 1 1.2277283357

partsupp.xml 1.307320361 1.2493178854 1 1.3623165013

orders.xml 1.335577752 1.5107351219 1 1.3325736941

orderkey.xml 1.6526813738 1.3661014417 1 1.3251324469

largenum.xml 1.652691801 1.3661100609 1 1.3251186498

lineitem.xml 1.5284781234 1.897741999 1 1.389959496

TABLE D.4: GZIP Compression Ratio

Appendix D. Comparisons Results 195

Compressor HPO EXI GZIP 7ZIP

nation.xml 1.0472854641 1.1888667992 1.0482033304 1

rdismissal.xml 0.9475655431 1.2964860908 1.0573134328 1

supplier.xml 1.0017268446 0.9946999221 0.9003809793 1

rcasegroup.xml 0.7919639504 1.0419960474 0.9323607427 1

baseball.xml 1.3002892453 1.0597942563 0.8196585447 1

dates.xml 1.3793335125 0.9227795757 0.7241111738 1

numeric.xml 1.3344722855 1.1091827075 0.748084563 1

reed.xml 0.8159936117 1.1362084028 0.81687889 1

customer.xml 0.9178143595 1.0492044785 0.8016502232 1

part.xml 0.9471227338 1.2643890023 0.8245378055 1

rand1-1998.xml 1.1545009337 0.9661890326 0.8145124381 1

partsupp.xml 0.9596304235 0.9170540651 0.7340438137 1

orders.xml 1.0022543278 1.1336972421 0.7504275407 1

orderkey.xml 1.2471820289 1.0309169056 0.7546415472 1

largenum.xml 1.2472028835 1.0309341439 0.7546494045 1

lineitem.xml 1.0996565927 1.3653217985 0.7194454248 1

TABLE D.5: 7ZIP Compression Ratio

Appendix D. Comparisons Results 196

Compressor Canon XML String Buffer PDU ZLIB Schema

nation.xml 65.800 34.100 6.300 70.200 23.400

rdismissla.xml 93.800 6.100 45.700 39.200 14.900

supplier.xml 67.000 32.900 12.700 82.300 4.900

rcasegroup.xml 90.600 9.300 42.300 45.300 12.300

baseball.xml 96.900 3.000 59.800 28.100 11.900

dates.xml 100.000 0.000 92.700 0.400 6.700

numeric.xml 100.000 0.000 94.500 0.400 5.000

reed.xml 87.600 12.300 44.600 53.200 2.100

customer.xml 66.600 33.300 15.100 84.400 0.300

part.xml 75.100 24.800 32.400 66.900 0.500

rand1-1998.xml 92.800 7.100 55.100 44.500 0.300

partsupp.xml 62.200 37.700 28.600 71.200 0.100

orders.xml 81.000 18.900 39.000 60.800 0.000

orderkey.xml 100.000 0.000 99.900 0.000 0.000

largenum.xml 100.000 0.000 99.900 0.000 0.000

lineitem.xml 79.000 21.000 40.000 60.000 0.000

TABLE D.6: Real XML Data Set Compression Analysis Results (%)

Appendix D. Comparisons Results 197

Compressor HPO EXI GZIP 7ZIP

nation.xml 0.014 0.360 0.002 0.007

rdismissal.xml 0.034 0.377 0.002 0.014

supplier.xml 0.028 0.402 0.003 0.020

rcasegroup.xml 0.052 0.446 0.003 0.015

baseball.xml 0.069 0.474 0.004 0.035

dates.xml 0.072 0.471 0.005 0.035

numeric.xml 0.091 0.657 0.010 0.048

reed.xml 0.338 0.628 0.013 0.084

customer.xml 0.541 0.975 0.050 0.216

part.xml 1.183 0.950 0.051 0.321

rand11998.xml 2.684 1.384 0.115 0.780

partsupp.xml 9.417 1.537 0.134 1.110

orders.xml 85.844 2.053 0.428 2.583

orderkey.xml 63.479 2.323 0.231 3.460

largenum.xml 65.703 2.011 0.207 3.298

rand-8998.xml 188.353 4.985 0.849 9.357

DeviceInformation.xml 353.243 6.823 0.797 17.945

lineitem.xml 723.873 5.693 2.684 18.380

TABLE D.7: Real XML Data Set Compression Time Results (Seconds)

Appendix D. Comparisons Results 198

Data Set XML Size Compression Rate

nation.xml 5209 372071.428571429

rdismissla.xml 32952 969176.470588235

supplier.xml 33162 1184357.14285714

rcasegroup.xml 36846 708576.923076923

baseball.xml 74861 1084942.02898551

dates.xml 91229 1267069.44444444

numeric.xml 119757 1316010.98901099

reed.xml 292009 863931.952662722

customer.xml 581544 1074942.6987061

part.xml 716208 605416.737109045

rand1-1998.xml 2102492 783342.771982116

partsupp.xml 2241854 238064.564086227

orders.xml 5378833 62658.2288802945

orderkey.xml 5406703 85173.0966146285

largenum.xml 5406703 82290.0476386162

lineitem.xml 34341531 47696.5708333333

TABLE D.8: Real XML Data Set Compression Rate Results (b/s)

Appendix E

Published Material

Part of this submission has been published in a number of research papers

listed as follows:

1. Moore, J., Kheirkhahzadeh, A., and Bagale, J. (2014). Towards markup-

aware text compression. In Data Compression Conference (DCC), 2014

2. Kheirkhahzadeh, A., Moore, J., and Bagale, J. (2013). XML-compression

techniques for efficient network management. In 5th IEEE International

Workshop on Management of Emerging Networks and Services (IEEE

MENS 2013)

3. Moore, J., Kheirkhahzadeh, A., and Bagale, J. (2013b). Domain-Specific

XML Compression. In Data Compression Conference (DCC), 2013, pages

510–510

Each of these publications is based on parts of the thesis and presents some

of the contributions listed in section 1.4 of Chapter 1. Paper [1] presents the

preliminary results of the hybrid model evaluating its efficiency against a number

of relevant XML compression techniques. In this paper we discuss contribution

5. Paper [2] presents our study on XML compression techniques to improve

network management. In this paper we discuss contributions 1 and 3. Paper

[3] discusses the idea of compressing highly structured XML documents using

a fixed length encoder for high-level basic data types. In this paper we discuss

contribution 3 and part of contribution 2 and 4.

199

Bibliography

Adiego, J., de la Puente, P., and Navarro, G. (2004). Merging prediction by

partial matching with structural contexts model. In Data Compression Con-

ference, 2004. Proceedings. DCC 2004, page 522. IEEE.

Adler, M. (2005). Example of proper use of zlib’s inflate() and deflate(). [Online]

Available at: http://www.zlib.net/zpipe.c [Accessed on 20 January 2013].

Alliance, O. M. (2001). Binary XML Content Format Specification. OMA Wire-

less Access Protocol WAP-192-WBXML-20010725-a.

Álvarez Gutiérrez, D. and Soler, F. O. (2008). Applying lightweight flexible vir-

tual machines to extensible embedded systems. In Proceedings of the 1st

workshop on Isolation and integration in embedded systems, IIES.

Arion, A., Bonifati, A., Manolescu, I., and Pugliese, A. (2007). XQueC: A query-

conscious compressed XML database. ACM Transactions on Internet Tech-

nology (TOIT), 7(2):10.

Augeri, C. J., Bulutoglu, D. A., Mullins, B. E., Baldwin, R. O., and III, L. C. B.

(2007). An analysis of XML compression efficiency. In Experimental Com-

puter Science, page 7. ACM.

Badea, C., Nicolau, A., and Veidenbaum, A. V. (2007). A simplified java byte-

code compilation system for resource-constrained embedded processors. In

Proceedings of the 2007 international conference on Compilers, architecture,

and synthesis for embedded systems, CASES ’07, pages 218–228, New

York, NY, USA. ACM.

Barbosa, D., Mignet, L., and Veltri, P. (2005). Studying the XML Web: gathering

statistics from an XML sample. World Wide Web, 8(4):413–438.

200

Bibliography 201

Bell, M. and Jehanne, A. (2006). WBXML Library. [Online] Available at:

https://libwbxml.opensync.org [Accessed on 01 May 2012].

Bex, G. J., Neven, F., and Van den Bussche, J. (2004). DTDs Versus XML

Schema: A Practical Study. In Proceedings of the 7th International Work-

shop on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004,

WebDB ’04, pages 79–84, New York, NY, USA. ACM.

Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., and Teubner, J.

(2006). MonetDB/XQuery: a fast XQuery processor powered by a relational

engine. In Proceedings of the 2006 ACM SIGMOD international conference

on Management of data, pages 479–490. ACM.

Bournez, C. (2009). Efficient XML Interchange Evaluation - W3C Working Draft.

[Online] Available at: http://www.w3.org/TR/exi-evaluation [Accessed on 20

January 2013].

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (1998).

Extensible markup language (XML). World Wide Web Consortium Rec-

ommendation REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-

19980210.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (2008).

Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommenda-

tion http://www.w3.org/TR/REC-xml/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., and Cowan,

J. (2004). Extensible Markup Language (XML) 1.1 - Well-Formed XML Docu-

ments. http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-well-formed.

Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R., and Viglas, S. (2005).

Vectorizing and querying large XML repositories. In Data Engineering, 2005.

ICDE 2005. Proceedings. 21st International Conference on, pages 261–272.

Buneman, P., Grohe, M., and Koch, C. (2003). Path queries on compressed

XML. In Proceedings of the 29th international conference on Very large data

bases-Volume 29, pages 141–152. VLDB Endowment.

Cannataro, M., Carelli, G., Pugliese, A., and Sacca, D. (2001). Semantic Lossy

Compression of XML Data. In Knowledge Representation Meets Databases

(KRDB).

Bibliography 202

Case, J., Fedor, M., Schoffstall, M., and Davin, J. (1990). RFC 1157: Simple

network management protocol (SNMP). IETF, April.

Castellani, A., Gheda, M., Bui, N., Rossi, M., and Zorzi, M. (2011). Web Ser-

vices for the Internet of Things through CoAP and EXI. In Communications

Workshops (ICC), 2011 IEEE International Conference on, pages 1–6.

Cheney, J. (2001). Compressing XML with Multiplexed Hierarchical Models.

In Storer, J. A. and Cohn, M., editors, Proceedings of the 2001 IEEE Data

Compression Conference (DCC 2001), pages 163–172, Snowbird, UT. IEEE

Press.

Cheney, J. (2005). An empirical evaluation of simple DTD-conscious com-

pression techniques. In Eighth International Workshop on the Web and

Databases. Citeseer.

Cheney, J. (2006a). DTDPPM: DTD-Conscious Compression . [Online] Avail-

able at: http://xmlppm.sourceforge.net/dtdppm Accessed on 20 May 2012].

Cheney, J. (2006b). Tradeoffs in XML compression. In Proceedings of the 2006

IEEE Data Compression Conference (DCC 2006), pages 392–401. IEEE

Press.

Cheney, J. (2006c). XMLPPM: XML-Conscious PPM Compression. [Online]

Available at: http://xmlppm.sourceforge.net [Accessed on 20 May 2012].

Clark, J. (1999). Output - XSL Transformations (XSLT) Version 1.0. [Online]

Available at: http://www.w3.org/TR/xslt#output [Accessed on 10 July 2013].

Cleary, J. G. and Witten, I. H. (1984). Data Compression using Adaptive Cod-

ing and Partial String Matching. IEEE Transactions on Communications,

32(4):396–402.

Colver, B. (2004). XMill: The XML Compressor. [Online] Available at:

http://sourceforge.net/projects/xmill [Accessed on 20 May 2012].

Coombs, J. H., Renear, A. H., and DeRose, S. J. (1987). Markup Systems

and the Future of Scholarly Text Processing. Communications of the ACM,

30(11):933–947.

Bibliography 203

Corrente, A. and Tura, L. (2004). Security performance analysis of SNMPv3 with

respect to SNMPv2c. In Network Operations and Management Symposium,

2004. NOMS 2004. IEEE/IFIP, volume 1, pages 729–742 Vol.1.

Delpratt, O. (2009). Space efficient in-memory representation of XML docu-

ments. PhD thesis, Dept. of Computer Science.

Delpratt, O., Raman, R., and Rahman, N. (2008). Engineering succinct DOM.

In Proceedings of the 11th international conference on Extending database

technology: Advances in database technology, pages 49–60. ACM.

Deutsch, J. G. L. and Gailly, J.-L. (1996). RFC 1950–ZLIB Compressed Data

Format Specification version 3.3. IETF/IESG, May.

Deutsch, L. P. (1996a). RFC 1951 - DEFLATE compressed data format specifi-

cation version 1.3. IETF.

Deutsch, L. P. (1996b). RFC 1952 - GZIP file format specification version 4.3.

Dubuisson, O. (2001). ASN. 1 communication between heterogeneous sys-

tems. Morgan Kaufmann.

Estrin, D., Govindan, R., Heidemann, J., and Kumar, S. (1999). Next Century

Challenges: Scalable Coordination in Sensor Networks. In Proceedings of

the 5th Annual ACM/IEEE International Conference on Mobile Computing and

Networking, MobiCom ’99, pages 263–270, New York, NY, USA. ACM.

Fablet, Y. and Peintner, D. (2012). Efficient XML Interchange (EXI) profile.

[Online] Available at: http://www.w3.org/TR/exi-profile/ [Accessed on 01 July

2012].

Ferragina, P., Luccio, F., Manzini, G., and Muthukrishnan, S. (2006). Com-

pressing and searching XML data via two zips. In Proceedings of the 15th

international conference on World Wide Web, WWW ’06, pages 751–760,

New York, NY, USA. ACM.

Frye, R., Wijnen, B., Routhier, S. A., and Levi, D. B. (2003). RFC3584 - Coex-

istence between Version 1, Version 2, and Version 3 of the Internet-standard

Network Management Framework.

Gailly, J.-L. and Adler, M. (1999). The gzip home page. [Online] Available at:

http://www. gzip. org/ [Accessed on 20 May 2012].

Bibliography 204

Garrett, C. (2012). EXIProcessor. [Online] Available at:

http://sourceforge.net/p/exiprocessor/home/Home/ [Accessed on 10 Septem-

ber 2013].

Girardot, M. and Sundaresan, N. (2000). Millau: an encoding format for efficient

representation and exchange of XML over the Web. Computer Networks,

33(1):747–765.

Grijzenhout, S. (2010). University of Amsterdam XML Web Collection. [Online]

Available at: http://data.politicalmashup.nl/xmlweb/ [Accessed on 10 Septem-

ber 2013].

Grijzenhout, S. and Marx, M. (2013). The quality of the XML web. Web Seman-

tics: Science, Services and Agents on the World Wide Web, 19:59–68.

Gudgin, M. (2004). Understanding Infosets. [Online] Available at: http://

msdn.microsoft.com /en-us/library/ aa468561.aspx [Accessed on 01 Novem-

ber 2013].

Harrusi, S., Averbuch, A., and Yehudai, A. (2006). XML syntax conscious com-

pression. In Data Compression Conference, 2006. DCC 2006. Proceedings,

pages 10 pp.–411.

Hoeller, N., Reinke, C., Neumann, J., Groppe, S., Lipphardt, M., Schuett, B.,

and Linnemann, V. (2010). Stream-Based XML Template Compression for

Wireless Sensor Network Data Management. In MUE, pages 1–9. IEEE.

Hoeller, N., Reinke, C., Neumann, J., Groppe, S., Werner, C., and Linnemann,

V. (2009). XML data management and XPath evaluation in wireless sensor

networks. In Proceedings of the 7th International Conference on Advances

in Mobile Computing and Multimedia, MoMM ’09, pages 218–230, New York,

NY, USA. ACM.

Huffman, D. A. et al. (1952). A method for the construction of minimum redun-

dancy codes. Proceedings of the IRE, 40(9):1098–1101.

ITU-T (2005). X.891 : Information technology - Generic applications of ASN.1:

Fast infoset.

ITU-T (2008a). X.680 : Information technology - Abstract Syntax Notation One

(ASN.1): Specification of basic notation.

Bibliography 205

ITU-T (2008b). X.691 : Information technology - ASN.1 encoding rules: Speci-

fication of Packed Encoding Rules (PER).

ITU-T (2008c). X.695 : Information technology - ASN.1 encoding rules: Regis-

tration and application of PER encoding instructions.

Iyer, B. R. and Wilhite, D. (1994). Data compression support in databases. In

VLDB, volume 94, pages 695–704.

Jaiswal, G. and Mishra, M. (2013). Why use Efficient XML Interchange instead

of Fast Infoset. In Advance Computing Conference (IACC), 2013 IEEE 3rd

International, pages 925–930.

Jehanne, A. (2009). WBXML Library. [Online] Available at:

http://sourceforge.net/projects/wbxmllib/ [Accessed on 20 May 2012].

Jelliffe, R. (2006). Schematron specification (ISO/IEC 19757-3), 2006.

Jones, M. T. (2005). Optimization in GCC. Linux Journal, Issue #131 [Online]

Available at: http://www.linuxjournal.com/article/7269?page=0,0 [Accessed

on 10 January 2012].

Kamiya, T. and Bournez, C. (2012). Efficient XML Interchange Working Group.

[Online] Available at: http://www.w3.org/XML/EXI/ [Accessed on 01 July

2013].

Kay, M. (2012). XSL Transformations (XSLT) Version 3.0 - W3C Working

Draft. [Online] Available at: http://www.w3.org/TR/xslt-21 [Accessed on 15

May 2013].

Kheirkhahzadeh, A., Moore, J., and Bagale, J. (2013). XML-compression tech-

niques for efficient network management. In 5th IEEE International Workshop

on Management of Emerging Networks and Services (IEEE MENS 2013).

Larmouth, J. (2000). ASN. 1 complete. Morgan Kaufmann.

League, C. and Eng, K. (2007a). Schema-based compression of XML data with

relax NG. Journal of Computers, 2(10):9–17.

League, C. and Eng, K. (2007b). Type-based compression of xml data. In Data

Compression Conference, 2007. DCC’07, pages 273–282. IEEE.

Bibliography 206

Lelewer, D. A. and Hirschberg, D. S. (1987). Data Compression. ACM Comput-

ing Surveys (CSUR), 19(3):261–296.

Levene, M. and Wood, P. (2002). XML structure compression. In Proceedings

of the Second International Workshop on Web Dynamics, pages 1–14.

Li, W. (2003). Xcomp: An XML compression tool. PhD thesis, School of Com-

puter Science, University of Waterloo.

Liefke, H. and Suciu, D. (2000). XMill: An Efficient Compressor for XML Data.

In Proceedings of the 2000 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’00, pages 153–164, New York, NY, USA. ACM.

Lifton, J., Feldmeier, M., Ono, Y., Lewis, C., and Paradiso, J. A. (2007). A

platform for ubiquitous sensor deployment in occupational and domestic en-

vironments. In Proceedings of the 6th international conference on Informa-

tion processing in sensor networks, IPSN ’07, pages 119–127, New York, NY,

USA. ACM.

Marrón, P. J., Lachenmann, A., Minder, D., Gauger, M., Saukh, O., and Rother-

mel, K. (2005). Management and configuration issues for sensor networks.

International Journal of Network Management, 15(4):235–253.

Martin, B. and Jano, B. (1999). WAP binary XML content format. W3C note.

World Wide Web Consortium (June). Cambridge, MA.

McDowell, A., Schmidt, C., and Yue, K.-b. (2004). Analysis and Metrics of XML

Schema. In Software Engineering Research and Practice, pages 538–544.

Megginson, D. et al. (2001). Sax 2.0: The simple api for xml. SAX project.

Miklau, G. (2014). XML Data Repository - Datasets, Details, and Download.

[Online] Available at: http://www. cs.washington.edu/ research/xmldatasets

/www/repository.html [Accessed on 10 September 2013].

Min, J.-K., Park, M.-J., and Chung, C.-W. (2003). XPRESS: a queriable com-

pression for XML data. In Proceedings of the 2003 ACM SIGMOD interna-

tional conference on Management of data, pages 122–133. ACM.

Mlynkova, I., Toman, K., and Pokorny, J. (2006). Statistical Analysis of Real

XML Data Collections. In In COMAD’06: Proceedings of the 13th Interna-

tional Conference on Management of Data, pages 20–31. Tata McGraw-Hill

Publishing Company Limited.

Bibliography 207

Montenegro, G., Kushalnager, N., Hui, J., et al. (2007). IETF - RFC 4944 Trans-

mission of IPv6 packets over IEEE 802.15. 4 networks. Internet proposed

standard RFC, 802(15.4).

Moore, J. (2009). Get stuffed: Tightly packed abstract protocols in Scheme.

The 10th Scheme and Functional Programming Workshop.

Moore, J. (2010a). Everything counts in small amounts. International Workshop

on Dynamic languages for Robotic and Sensor systems (DYROS).

Moore, J. (2011). Executable Rules of Encoding. In 5th Workshop on Dynamic

Languages and Applications.

Moore, J. (2012). Packedobjects Reference Manual. [Online] Available at:

http://zedstar.org/packedobjects/ [Accessed on 30 January 2013].

Moore, J., Bagale, J., and Kheirkhahzadeh, A. (2013a). Teaching Network-

ing Fundamentals with Sound. In Advanced Learning Technologies (ICALT),

2013 IEEE 13th International Conference on, pages 369–370.

Moore, J., Bagale, J., Kheirkhahzadeh, A., and Komisarczuk, P. (2012). Finger-

printing Seismic Activity across an Internet of Things. In New Technologies,

Mobility and Security (NTMS), 2012 5th International Conference on, pages

1–6.

Moore, J., Collins, T., and Shrestha, S. (2010). An Open Architecture for De-

tecting Earthquakes Using Mobile Devices. In Communications and Mobile

Computing (CMC), 2010 International Conference on, volume 1, pages 437–

441.

Moore, J., Kheirkhahzadeh, A., and Bagale, J. (2013b). Domain-Specific XML

Compression. In Data Compression Conference (DCC), 2013, pages 510–

510.

Moore, J., Kheirkhahzadeh, A., and Bagale, J. (2014). Towards markup-aware

text compression. In Data Compression Conference (DCC), 2014.

Moore, J. P. (2010b). A dynamic data encoder for embedded systems. White

paper.

Bibliography 208

Muldner, T., Corbin, T., Fry, C., et al. (2012). Design and Implementation of

an Online XML Compressor for Large XML Files. International Journal On

Advances in Internet Technology, 5(3 and 4):141–161.

Müldner, T., Leighton, G., and Diamond, J. (2005). Using XML compression

for WWW communication. In Proceedings of the IADIS WWW/Internet 2005

Conference.

Ng, W., Lam, W.-Y., and Cheng, J. (2006a). Comparative analysis of XML

compression technologies. World Wide Web, 9(1):5–33.

Ng, W., Lam, W.-Y., Wood, P. T., and Levene, M. (2006b). XCQ: A queriable

XML compression system. Knowledge and Information Systems, 10(4):421–

452.

Nicol, G., Wood, L., Champion, M., and Byrne, S. (2001). Document object

model (DOM) level 3 core specification.

Pak, J. and Park, K. (2012). Efficient message encoding method for per-

sonal health device monitoring system. In Proceedings of the 6th Interna-

tional Conference on Ubiquitous Information Management and Communica-

tion, page 19. ACM.

Pavlov, I. (2015). 7z Format. [Online] Available at: http://www.7-

zip.org/7z.html[Accessed on 28 March 2015].

Peintner, D. (2012). EXIficient - XML becomes efficient. [Online] Available

at: http://sourceforge.net/p/exiprocessor/home/Home/ [Accessed on 20 July

2012].

Pizlo, F., Ziarek, L., Blanton, E., Maj, P., and Vitek, J. (2010). High-level pro-

gramming of embedded hard real-time devices. In Proceedings of the 5th Eu-

ropean conference on Computer systems, EuroSys ’10, pages 69–82, New

York, NY, USA. ACM.

Robie, J., Chamberlin, D., Dyck, M., and Snelson, J. (2013). XML Path Lan-

guage (XPath) 3.0. [Online] Available at: www.w3.org/TR/xpath-30/ [Ac-

cessed on 01 March 2014].

Sakr, S. (2008). An Experimental Investigation of XML Compression Tools. The

Computing Research Repository (CoRR), abs/0806.0075.

Bibliography 209

Sakr, S. (2009). XML compression techniques: A survey and comparison. Jour-

nal of Computer and System Sciences, 75(5):303–322.

Sakr, S. (2011). Investigate state-of-the-art XML compression techniques.

Technical report, National ICT Australia, IBM.

Sandoz, P., Triglia, A., and Pericas-Geertsen, S. (2004). Fast Infoset.

http://www.oracle.com /technetwork/articles/java/ fastinfoset-139262.html.

Schalnat, G. E., Randers-Pehrson, G., et al. (2002). libpng-Portable Network

Graphics (PNG) Reference Library, 2002.

Schneider, J. and Kamiya, T. (2011). Efficient XML Interchange (EXI) Format

1.0. [Online] Available at: http://www.w3.org/TR/exi/ [Accessed on 01 October

2012].

Seward, J. (2000). The bzip2 and libbzip2 official home page. [Online] Available

at: http://sources. redhat. com/bzip2 [Accessed on 01 February 2014].

Shannon, C. E. (1948). A mathematical theory of communication. ACM SIG-

MOBILE Mobile Computing and Communications Review, 5(1):3–55.

Shelby, Z. (2010). Embedded web services. Wireless Communications, IEEE,

17(6):52–57.

Shin, D. and Shim, C. (2005). XNMP - an XML based network management pro-

tocol over VoIP. In Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing, 2005 and First ACIS International Work-

shop on Self-Assembling Wireless Networks. SNPD/SAWN 2005. Sixth Inter-

national Conference on, pages 208–213.

Skibinski, P. and Swacha, J. (2007). Combining Efficient XML Compression with

Query Processing. In Ioannidis, Y. E., Novikov, B., and Rachev, B., editors,

ADBIS, volume 4690 of Lecture Notes in Computer Science, pages 330–342.

Springer.

Sperberg-McQueen, C. M. and Thompson, H. (2000). XML Schema. W3C

Recommendation [Online] Available at: http://www.w3.org/XML/Schema [Ac-

cessed on 20 January 2013].

Steedman, D. (1993). Abstract Syntax Notation One (ASN.1): The Tutorial and

Reference. Technology Appraisals, Twickenham, UK.

Bibliography 210

Subramanian, H. and Shankar, P. (2006). Compressing XML documents us-

ing recursive finite state automata. In Implementation and Application of Au-

tomata, pages 282–293. Springer.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2004). XML

Schema Part 1: Structures Second Edition - Constraints and Validation

Rules. [Online] Available at: http://www.w3.org/TR/xmlschema-1/#concepts-

schemaConstraints [Accessed on 20 February 2014].

Thompson, H. S., Tebbutt, J., and Cincotta, T. (2011). W3C XML Schema Test

Collection. [Online] Available at: http://www. w3.org/XML/ 2004/xml-schema-

test-suite/ [Accessed on 01 July 2012].

Tolani, P. and Haritsa, J. (2002). XGrind: a query-friendly XML compressor.

In Data Engineering, 2002. Proceedings. 18th International Conference on,

pages 225–234.

Toman, V. et al. (2004). Syntactical compression of XML data. In Proc. Int’l

Conf. on Advanced Information Systems Engineering CAiSE’04.

Varda, K. (2011). Protocol buffers: Google’s data interchange format. [On-

line] Available at: https://code.google.com/p/protobuf [Accessed on 25 March

2014].

Wade, G. (1994). Signal coding and processing. Cambridge university press.

Wang, F., Li, J., and Homayounfar, H. (2007). A space efficient XML DOM

parser. Data & Knowledge Engineering, 60(1):185–207.

Werner, C. and Buschmann, C. (2004). Compressing SOAP messages by using

differential encoding. In Web Services, 2004. Proceedings. IEEE International

Conference on, pages 540–547.

White, G., Brutzman, D., and Williams, S. (2006). Efficient XML Inter-

change Measurements Note - W3C Working Draft. [Online] Available at:

http://www.w3.org/TR/2006/WD-exi-measurements-20060718 [Accessed on

20 September 2013].

Winkler, M., Tuchs, K., Hughes, K., and Barclay, G. (2008). Theoretical and

practical aspects of military wireless sensor networks. Journal of Telecom-

munications and Information Technology, 2:37–45.

Bibliography 211

Yoon, J.-H., Ju, H.-T., and Hong, J. W. (2003). Development of SNMP-XML

translator and gateway for XML-based integrated network management. In-

ternational Journal of Network Management, 13(4):259–276.

Zhang, N., Kacholia, V., and Ozsu, M. T. (2004). A succinct physical storage

scheme for efficient evaluation of path queries in XML. In Data Engineering,

2004. Proceedings. 20th International Conference on, pages 54–65. IEEE.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data com-

pression. IEEE Transactions on information theory, 23(3):337–343.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	1 Introduction
	1.1 Markup Languages
	1.2 XML Compression
	1.2.1 Fixed Length Encoding
	1.2.2 Motivation

	1.3 Research Approach
	1.3.1 Research Questions
	1.3.2 Aims and Objectives
	1.3.3 Approach

	1.4 Contributions
	1.5 Published Material
	1.6 Organisation of the Thesis

	2 Technical Background
	2.1 Markup Languages
	2.1.1 XML
	2.1.1.1 Structure of XML
	2.1.1.2 Application Programming Interface
	2.1.1.3 XML Query and Transformation

	2.1.2 XML Validation
	2.1.2.1 DTD
	2.1.2.2 XML Schema
	2.1.2.3 XML Information Set

	2.1.3 Metrics and Classifications

	2.2 Data Compression
	2.2.1 Fixed and Variable Length Codes
	2.2.2 XML Compression
	2.2.2.1 General-purpose
	2.2.2.2 XML-conscious
	2.2.2.3 Queriable

	2.2.3 Features and Classification
	2.2.3.1 Homogeneity and Homomorphism
	2.2.3.2 Online and Offline Compression

	2.3 Summary

	3 XML Compressors and Analysis of XML Data
	3.1 XML Compressors
	3.1.1 XMLPPM
	3.1.2 DTDPPM
	3.1.2.1 XMLPPM Extension

	3.1.3 XMILL
	3.1.4 WBXML
	3.1.5 zlib
	3.1.6 EXI
	3.1.6.1 Design principles
	3.1.6.2 Architecture
	3.1.6.3 Limitations

	3.1.7 Abstract Syntax Notation One
	3.1.7.1 Encoding Rules
	3.1.7.2 Compression Comparison

	3.1.8 Packedobjects
	3.1.8.1 Design principles
	3.1.8.2 Architecture
	3.1.8.3 Integer Encoding Rules
	3.1.8.4 Applications and Limitations

	3.1.9 Other Compressors
	3.1.10 Summary of Related Works
	3.1.10.1 Tools Categorisation
	3.1.10.2 Limitations
	3.1.10.3 Revisiting Research Goals

	3.2 Analysis of XML Data
	3.2.1 Analysis and Current Results
	3.2.1.1 XML Corpora
	3.2.1.2 Schema languages

	3.3 Conclusions

	4 XML compression techniques for efficient network management
	4.1 Introduction
	4.2 Background
	4.2.1 SNMP
	4.2.2 Related work
	4.2.3 Motivation
	4.2.4 Network Challenges

	4.3 Methodology
	4.3.1 XML Corpus
	4.3.2 Compressor Execution

	4.4 Results
	4.4.1 Compression Size
	4.4.2 Compression Time
	4.4.3 Speed/Size Ratio
	4.4.4 EXI format

	4.5 Observation
	4.6 Conclusion

	5 Hybrid XML Document Compression
	5.1 Motivation
	5.2 System Requirements
	5.3 Hybrid Compression Model
	5.3.1 Document Transformation
	5.3.1.1 XML Components Transformation
	5.3.1.2 XML Structure Transformation

	5.3.2 Knowledge Extraction
	5.3.3 Schema Generation
	5.3.4 Character String and Basic Types Separation
	5.3.4.1 String Data Types compression
	5.3.4.2 Basic Data Types Compression

	5.3.5 Compressed Format
	5.3.6 Decompression process

	5.4 System Execution
	5.5 Code Optimisation
	5.5.1 Front-end
	5.5.2 Back-end

	5.6 System Requirements Support
	5.7 A Motivating Example
	5.8 Compression Models Comparison
	5.8.1 EXI vs. HPO

	5.9 Applicability and Limitations
	5.9.1 Document Support
	5.9.2 Dynamic Application
	5.9.3 Hybrid and Pure Mode
	5.9.4 Near-lossless Compression

	5.10 Conclusion

	6 Schema-uninformed compression comparison
	6.1 Experimental Methodology
	6.1.1 Compression tools
	6.1.2 System Resources
	6.1.3 XML Corpus

	6.2 Experimental Evaluation
	6.2.1 Synthetic XML Data
	6.2.1.1 Fixed Data Types
	6.2.1.2 Random Data Types

	6.2.2 Real XML Data
	6.2.2.1 Compression Ratio

	6.3 Analysis
	6.3.1 Compression Comparison
	6.3.1.1 Synthetic Data Types

	6.3.2 Real XML Data Types
	6.3.2.1 Data Types Patterns

	6.3.3 Performance Evaluation
	6.3.3.1 Front-end and Back-end Processes
	6.3.3.2 Efficiency versus Performance

	6.4 Conclusion

	7 Conclusions
	7.1 Discussion
	7.1.1 Findings
	7.1.1.1 Main Research Question
	7.1.1.2 Sub Research Questions

	7.2 Summary of the Thesis
	7.3 Technical Contributions
	7.4 Limitations
	7.5 Future Work

	A Data and Protocol Listing
	B Compressors Execution and Ratio Results
	C XML Document Transformation Process
	D Hybrid Model Compression Comparison Results
	E Published Material
	Bibliography

