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Abstract

Deep learning techniques have shown promise in audio steganalysis, which involves detect-
ing the presence of hidden information (steganography) in audio files. However, deep
learning models are prone to overfitting, particularly when there is limited data or when
the model architecture is too complex relative to the available data for VoIP steganography.
To address these issues, new deep-learning approaches need to be explored. In this study,
a new convolutional neural network for audio steganalysis, incorporating a multi-scale fea-
ture fusion method and an attention mechanism, was devised to enhance the detection of
steganographic content in audio signals encoded with G729a. To improve the network’s
adaptability, a multi-scale parallel multi-branch architecture was employed, allowing char-
acteristic signals to be sampled with varying granularities and adjusting the receptive field
effectively. The attention mechanism enables weight learning on the feature information
after multi-scale processing, capturing the most relevant information for steganalysis. By
combining multiple feature representations using a weighted combination, the deep learn-
ing model’s performance was significantly enhanced. Through rigorous experimentation,
an impressive accuracy rate of 94.55% was achieved in detecting malicious steganography.
This outcome demonstrates the efficacy of the proposed neural network, leveraging both
the multi-scale feature fusion method and the attention mechanism.

1 INTRODUCTION

Steganography and cryptography are different types of infor-
mation security technologies. Cryptography, the use of special
codes to keep information safe in computer networks, is a well-
known technology that has been widely used in various fields
to protect information [1]. On the other hand, steganogra-
phy is the practice of concealing hidden messages in ordinary
text, pictures, audio, video, and other mediums [2, 3]. It allows
secret data to be disguised by embedding it into a carrier.
Unlike cryptography, which makes the existence of encrypted
information obvious, hidden information using steganography
‘disappears’ in the carrier without subjective consciousness,
making its detection challenging. Therefore, the importance of
the carrier in steganography is self-evident. Carriers can take
the form of images, voice, text, or videos, and they serve as
essential means of transmitting information over the Internet.
Hidden information conveyed through steganography is not
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noticeable at first glance. Throughout the process of informa-
tion transmission, steganography generally does not alter the
original attributes of the carrier, enabling the secret data to be
sent out secretly, making it difficult to discover its existence.
However, if steganography were to be applied to illegal activities,
it would pose certain security risks.

To confront the issue of malicious use of steganography in
transmitting information, steganalysis technology has come into
play. Steganalysis technology is used to detect the presence of
secret information in these carriers, which involves a reverse
process of steganography. Generally speaking, pattern recog-
nition, machine learning, and other tools can be employed for
steganalysis. There are two basic types of steganalysis methods:
specific steganalysis and universal steganalysis.

Specific steganalysis involves extracting corresponding pro-
prietary features based on known data embedding methods and
analysing and judging based on these proprietary features, which
results in strong pertinence. This method has a high degree of
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2 PENG ET AL.

accuracy but an obvious shortcoming, as it can only target a
certain type of steganography, limiting its universality.

On the other hand, universal steganalysis, also known as blind
steganalysis, does not aim at a specific algorithm or class of algo-
rithms but instead judges by looking for features independent
of any particular algorithm. Due to the ever-changing stegano-
graphic algorithms, a general analysis of steganography is more
suitable and becomes the mainstream research method in order
to cope with the seemingly endless variations of steganography.

The method of steganalysis varies depending on the carrier
used in steganography. A carrier typically serves as a medium
for communication among people. For instance, images and
texts are common forms of information transmission. How-
ever, information can also be conveyed through sound or
video. When information is stored on a computer in formats
such as images, text, audio, or video, it can be utilized as the
carrier for steganography. As a result, different methods are
required to effectively deal with the proprietary characteris-
tics of the information and achieve better results. In the realm
of machine learning, convolutional neural networks (CNNs)
are frequently employed to process image information, while
recurrent neural networks (RNNs) or long short-term memory
networks (LSTMs) are generally used to handle audio and text
information.

Deep learning is a type of artificial intelligence that uses algo-
rithms (sets of mathematical instructions or rules) based on the
way the human brain operates. As a sub-branch of machine
learning, it is deeply rooted in the hearts of people because of
its excellent performance. A neural network is a computer sys-
tem or a type of computer program that is designed to mimic
the way in which the human brain operates, forming the basis
of deep learning. It is inspired by the biological nervous system
and serves as a mathematical model that imitates the structure
and function of a biological neural network. In the final analy-
sis, deep learning is a mathematical expression, and mathematics
provides the theoretical support for deep learning. The process
of deep learning is regarded as a journey to find the optimal
solution to a mathematical function.

The CNN stands out as a highly effective algorithm in Deep
Learning for both regression and classification tasks. Operating
as a feed-forward neural network, CNN incorporates convo-
lution calculations and possesses a specific depth structure.
Typically, its structure comprises an input layer, convolutional
layer, activation layer, pooling layer, and fully connected layer.
The convolution operation resembles the use of filters, enabling
the activation of pertinent data features while reducing the
model’s parameter count, thereby decreasing computational
complexity. Through the activation function in the activation
layer, a non-linear factor is introduced to normalize data and
tailor it to the desired function. The pooling layer effectively
reduces the feature matrix’s size, aiding in processing efficiency.
Lastly, the fully connected layer maps the learned distributed
representation features to the corresponding sample label space.
When utilized judiciously, this function can solve various prob-
lems, including the discovery of hidden information. Overall,
the deployment of a well-designed CNN can significantly
enhance the performance of numerous machine-learning tasks.

The performance of deep learning models in audio steganal-
ysis depends on several factors:

Data availability: Deep learning models require large and
diverse datasets for effective training. The availability of sizable
and diverse audio steganography datasets directly impacts the
performance of these models.

Feature extraction: Designing effective features or represen-
tations of audio signals is crucial for the success of deep learning
models. Some approaches use spectrograms, mel-frequency
cepstral coefficients (MFCCs), or other time-frequency repre-
sentations as input to deep learning models.

Model architecture: The choice of deep learning architecture
plays a crucial role. Various architectures like CNNs, RNNs,
long short-term memory (LSTM) networks, or hybrid models
have been explored for audio steganalysis.

Steganography techniques: The effectiveness of audio ste-
ganalysis models can be influenced by the complexity and
sophistication of the steganography techniques used to hide
data in audio signals.

The field of deep learning and steganalysis has been evolv-
ing rapidly, so new techniques and approaches need to be
investigated.

2 RELATE WORK

In recent years, the field of deep learning has experienced
rapid advancements and extensive applications across various
industries. A comprehensive literature review reveals that deep
learning has emerged as the dominant approach for steganaly-
sis, providing the most reliable methods in recent times. Some
deep learning models have been utilised in research within the
cybersecurity field [4–13].

The evolution of convolutional neural networks for classifi-
cation tasks began with the introduction of AlexNet in 2012.
Since then, there have been remarkable strides in network archi-
tecture, resulting in the proposal of more sophisticated and
deeper neural networks like VGG, GoogleNet, and the ground-
breaking ResNet. The ResNet architecture effectively addressed
challenges related to excessive network depth and gradient dis-
appearance [14], further enhancing the capabilities of deep
learning models.

In 2018, Mehdi Boroumand et al. [15] harnessed the power
of deep residual networks to construct a steganalysis model,
specifically designed for detecting JPEG images. While the
experimental results showed only a marginal improvement in
detection, this marked a significant step towards leveraging deep
learning techniques for steganalysis.

Building upon this foundation, researchers have made contin-
uous efforts to explore various improved and optimized neural
network models for steganalysis, yielding promising results.
These endeavours have demonstrated the potential of deep
learning in detecting and analysing hidden information within
digital media.

In the realm of steganalysis for speech signals, notable
advancements have been made by various researchers. Initially,
Chen et al. [16] introduced an audio steganalysis model called
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PENG ET AL. 3

ChenNet, which relied on a convolutional neural network to
identify LSB (least significant bit)-based steganography within
the time domain.

Following their work, Lin [17] and others further enhanced
the convolutional neural network model by incorporating
truncated linear units and residual modules for optimization
purposes. The outcomes of their experiments substantiated the
effectiveness of these model optimization techniques.

Wang et al. [18] took a different approach and proposed
a CNN-based MP3 audio steganalysis method. This method
employed MP3 quantization to enhance the discrete cosine
transform coefficients, which were then used as input for the
neural network. This novel approach demonstrated promising
results in detecting steganography in MP3 audio.

In a related endeavour, Ren et al. [19] introduced a stegano-
graphic analysis method tailored for MP3 and AAC (Advanced
Audio Coding) audio. They utilized a deep residual network
(ResNet) and employed audio spectrogram data as the input for
the network. This approach proved to be effective in detecting
steganography in these audio formats.

Within the domain of VoIP steganography analysis, Yang
et al. [20] employed a bi-directional long-term and short-term
memory circulation neural network (Bi-LSTM) to effectively
capture long-term contextual information within the carrier.
Subsequently, they utilized CNN to capture both local and
global features, as well as the temporal carrier features.

Furthermore, Yang [21] and his colleagues introduced a
lightweight neural network called the fast correlation extrac-
tion model (FCEM). This innovative model represents a variant
of multi-head attention and exhibits distinct advantages over
relatively complex cyclic neural networks like RNN (recurrent
neural Network) and CNN in terms of both accuracy and time
efficiency.

Steganalysis research has seen significant advancements
through the adoption of a multi-scale model structure, inspired
by the inception module proposed by Li [22] and others [23].
In this approach, the CNN architecture incorporates convo-
lution kernels of varying widths, interconnected with diverse
activations. This novel design, known as the DAM module, has
yielded exceptional experimental results, outperforming existing
models.

The multi-scale network structures can be categorized into
three main types: multi-scale input, multi-scale feature fusion,
and multi-scale output. By employing convolution kernels of
different sizes, the study generated diverse outputs that were
then combined through depth superposition, resulting in new
output features. In CNN, the high-level network and the low-
level network exhibit distinct perceptual fields, extracting target
features through layered abstraction. It is important to note that
the characteristics of different scales significantly influence the
results of classification tasks, and this model can be optimized
through multi-scale convolution kernels.

The inception module, first introduced in [23], lays the foun-
dation for the multi-scale model. Notably, the inception module
played a pivotal role in implementing state-of-the-art classi-
fication and detection techniques during the ILSVRC 2014
(ImageNet Large-scale Visual Recognition Challenge). One key

feature of this architecture is its ability to effectively utilize
computing resources within the network.

In a neural network, the attention mechanism plays a cru-
cial role in determining the significance of various sub-projects
within a larger project. Its primary task is to prioritize important
objectives and enhance the influence of essential sub-tasks, lead-
ing to improved results. Commonly used attention mechanisms
in convolutional neural networks encompass spatial attention,
channel attention, visual attention, among others. For instance,
Yang et al. [24] introduced a lightweight neural network named
the fast correlation extraction model (FCEM), which relies
solely on a variant of attention called multi-head attention to
extract features from VoIP frames.

In this study, the network structure incorporates the chan-
nel attention mechanism based on SeNet. By assigning weight
ratios to different feature channels, the researchers obtained
new features that helped optimize the CNN model.

This study introduces a novel convolutional neural network
model for audio steganalysis, addressing the lack of research
on the effectiveness of a multi-scale feature fusion method
and the attention mechanism in this domain. The proposed
model incorporates a multi-scale convolution module and inte-
grates the channel attention mechanism. By learning features
from audio signals, it aims to distinguish steganographic fea-
tures from non-steganographic ones. The model’s efficacy in
audio steganalysis was assessed through various experiments,
demonstrating its strong performance.

3 PROPOSED DEEP LEARNING
MODEL FOR AUDIO STEGANALYSIS

A new model for audio steganalysis is illustrated in Figure 1.
First, it normalizes the characteristic data of an input network
through a normalization layer. Convolution, activation, and
normalization operations are then carried out. Next, it enters
the multi-scale module to perform sub-multi-scale convolution
operations four times. After that, the weight is added from the
channel attention module to obtain the new characteristics of
the average pooling operation. The features are then flattened
on the completely connected layer, and the linear layer is added,
followed by activation with ReLu. Dropout is then applied to
prevent overfitting. Finally, the classification results are activated
with the softmax function.

As shown in Figure 1, BN is the data normalization oper-
ation, Conv represents the convolution operation, and the
convolution kernel used consists of 16 3 × 3 convolution ker-
nels. The activation functions used in the model are the ReLU
and softmax classification functions. MultiScale_Block is the
multi-scale convolution module, and Ch_Block is the chan-
nel attention module, both of which are described in detail in
the next section. Avg_pooling represents the average pooling
operation. Dense is a fully connected neural network, and the
number of output neural units is 128. The final output result
distinguishes steganographic and non-steganographic data.

In the first layer, a feature is normalized with the help of batch
normalization (BN), which resets the distribution of the input
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4 PENG ET AL.

FIGURE 1 Multiple-scale and channel attention-based neural network
model.

values for each neuron in every layer of the neural network to
a normal distribution with a mean value of 0 and a variance of
1. This one-step operation prevents the gradient of the neural
network from exploding and vanishing.

Immediately after entering the convolutional layer, there are
16 3 × 3 convolution kernels. The step size is set to 1, and
zero padding is used. The output features have a depth of 16.
The convolution operation can be regarded as the perception
of local features. Through the perception of local features again
and again, an enhanced global feature is then obtained, which
improves the expressive ability of features. The BN operation
is performed to normalize the features, and the ReLU activa-
tion function is used to add non-linear factors and increase the
expressive ability of the model. The formula is as follows:

f (x ) = max (0, x ) (1)

The ReLU function is a piecewise linear function. It sup-
presses negative data by setting them to 0 while leaving positive

FIGURE 2 Multiple-scale convolution module.

values unchanged. The ELU function, on the other hand, is a
modification of the ReLU function. When the input is nega-
tive, it produces a certain output with a specific anti-interference
ability. However, there are issues with gradient saturation and
exponential calculations.

3.1 Multi-scale module

In the multi-scale module, a multi-scale convolution operation is
shown in Figure 2. In Figure 2, Conv represents the convolution
operation, 16@1 × 1 denotes the use of 16 1 × 1 convolution
kernels, Maxpooling denotes the maximum pooling operation,
Concat represents the splicing operation, and axis = 3 indicates
the feature depth direction. In the multi-scale module, the input
features go through three different paths to achieve the same
depth output result.

The first path uses 16 1 × 1 convolution kernels to obtain the
output result. The second path goes through 16 3 × 3 convo-
lution kernels, and after the convolution operation, the output
result is obtained through a 1 × 1 convolution operation. The
third path involves the maximum pooling operation, and the
output result is then obtained through a 1 × 1 convolution oper-
ation. Finally, the three outputs are stitched by depth to achieve
the total output result.

The 1 × 1 convolution kernel in the model can effectively
compress data and reduce the amount of computation. It signif-
icantly reduces the size of the input layer without compromising
the network performance, thus greatly improving the learning
efficiency. The width of the network can be increased by using
convolution operations of different scales. Although raising
the width of the network layer increases the amount of com-
putation and memory overhead to a certain extent, increasing
the width of each convolution layer can be more beneficial for
expressing local information. For steganalysis, it also provides a
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PENG ET AL. 5

FIGURE 3 Channel attention module.

good solution, extracting as much scale information as possible
through the different receptive fields of various branches.

3.2 Channel attention module

The attention module uses the channel attention mechanism.
Given a feature channel number of c 1, the output chan-

nel number is c 2 after a series of operations of convolution,
pooling, and full connection. By learning to obtain the weight
of each feature channel, the importance of useful channels is
strengthened, and the importance of less effective channels is
reduced.

In Figure 3, avg_pooling represents average pooling, FC is
a fully connected operation, ReLU and Sigmoid are activation
functions. W, H, and C represent the width, height, and depth
(that is, the number of channels). ‘r’ represents a certain ratio,
and the model uses 16.

The channel attention mechanism can be divided into two
steps: Squeeze and Excitation.

Squeeze uses global average pooling to perform feature com-
pression in the spatial dimension and encodes all features in the
channel into a global feature that has a global receptive field to
some extent. The formula for this operation for a given input
feature H × W × C is as follows:

z = Fsq (uc ) =
H∑

i=1

w∑

j=1

uc (i, j ) (2)

Formula (1): The formula represents the Squeeze operation,
where c represents the depth of the feature channel, H repre-
sents the height of the image, and W represents the width of the
image.

Excitation employs a fully connected neural network to per-
form a non-linear transformation on the results of Squeeze. It
comprises two fully connected layers: the first layer serves as

dimensionality reduction using ReLU activation, while the sec-
ond layer restores the original dimensionality. Subsequently, it
utilizes sigmoid activation to obtain the weight of each feature
channel. The formula is as follows:

s = Fe(z, w) = 𝜎(g, (z, w)) = sigmoid (w2ReLu(w1z )) (3)

Formula (2): W represents the convolution operation, z

is the output of Squeeze, ReLu and sigmoid are the activa-
tion functions, and the weight value of the output is between
0 and 1.

The excitation result is used as the weight and multiplied by
the input features to obtain the final result.

After the two preceding blocks, the neural network enters
the pooling layer to reduce feature dimensionality, mitigating
overfitting and enhancing the model’s fault tolerance. The pool-
ing operations employed are the average pool, which captures
global context crucial for effective classification, and the max-
imum pool, which discards certain feature map information,
potentially detrimental to steganalysis.

Subsequently, the learned distributed feature representation
undergoes mapping into the sample label space through a
fully connected layer. The first layer of this fully connected
network consists of 128 neurons, derived from the transfor-
mation of collected feature data. To combat overfitting, a
Dropout function with a coefficient of 0.5 is employed, pre-
venting excessive reliance on specific connections within the
network.

Lastly, the softmax activation function is utilized to pro-
duce two classification results, providing the final output of the
model.

4 RESULTS AND DISCUSSION

4.1 Experimental setup

The model designed in this research was implemented using
the Python language based on the Tensor Flow 2.4 deep learn-
ing framework and run on a Windows 10 system with an Intel
Core i7-12700KF processor. The GPU utilised is the NVIDIA
GeForce RTX 4090. The experiment utilised speech samples,
comprising 94,599 segments of both steganography and non-
steganography audio encoded by the PCM codec. Out of these,
50,000 samples were allocated for training the deep learn-
ing model for audio steganalysis, while the remaining 44,599
samples served as the test set.

The audio samples, whether steganographic or non-
steganographic, were obtained using the same WAV audio
encoding. For creating the steganographic samples, data embed-
ding methods were randomly selected from CNV-QIM [21, 25]
and the pitch steganographic method. The data embedding rates
varied between 10%, 20%, 30%, and 40%, with each rate being
randomly chosen.

To facilitate analysis, each sample was divided into 100 time
frames. From each frame, 7 data points of the LPC feature and
PD feature in the speech signal were extracted. Consequently,
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6 PENG ET AL.

the input data shape for the model was 7 × 100, wherein the
feature data was augmented with a depth value.

By following this process, the deep learning model was
trained and evaluated for audio steganalysis.

The QIM steganographic algorithm conceals confidential
information by establishing a quantitative mapping relation-
ship between features and information bits. In the context
of steganography on linear prediction coding (LPC), it has
been observed that the correlation of split vector quantiza-
tion codewords of the linear prediction coding filter coeffi-
cients undergoes changes after QIM steganography. Leveraging
this insight, a quantization code word correlation network
model was constructed. This model utilizes deep learning
to construct steganalysis algorithms, surpassing traditional
approaches not only in terms of accuracy but also in real-time
performance.

In general, mainstream speech recognition systems com-
monly rely on two primary feature extraction techniques: mel
frequency cepstral coefficients (MFCC) and linear predictive
coding (LPC). LPC, specifically, is designed based on the char-
acteristics of the human vocal mechanism and plays a crucial
role in speech acoustics. It helps distinguish between different
human voices and vowels, mainly by analysing the distribution
of resonant peaks in the frequency spectrum. Consequently, the
LPC parameters effectively characterize the formant frequency
and bandwidth.

In this experiment, a steganographic method was utilized,
and it involved modifying the LPC parameters that had under-
gone steganography. The extracted LPC features were then
used as learning parameters for the model. During the pitch
steganography process, a small modification determines the
value of the pitch period, which allows the model to effec-
tively learn and classify the information encoded in the extracted
features.

Overall, the integration of LPC-based steganography and fea-
ture extraction proves to be a valuable approach for enhancing
speech recognition systems and facilitating efficient information
encoding and decoding.

The deep learning framework used in this study was Tensor-
Flow 2.0, and the Adam optimizer was employed during the
experiment. Optimal convergence results were achieved when
the batch size was set to 64, and the number of epochs was
set to 6. The training was conducted on core graphics devices
with an i5-1135G7 processor. Throughout the learning process,
the model’s training set loss consistently decreased, leading to a
gradual improvement in accuracy. The evaluation metric used in
the experiments was detection accuracy.

In the test set, the loss initially decreased at a slower pace
but eventually stabilized. As a result, the accuracy reached an
impressive 94.55%.

Figure 4 displays the outcomes of a specific experiment. The
left figure illustrates the accuracy of training, with the blue line
representing training accuracy and the orange line indicating
test accuracy. On the other hand, the right figure showcases
the training set’s loss (blue line) and the test set’s loss (orange
line). The figure unequivocally demonstrates the exceptional
performance of the model.

FIGURE 4 Model learning test.

Remarkably, these impressive results were attained with a
lightweight network model, highlighting the reliability and pre-
cision of the proposed deep learning approach in detecting
malicious steganography.

4.2 Comparisons of different neural network
structures

To evaluate the effectiveness of the proposed model for audio
steganalysis, a series of experiments were conducted, constantly
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PENG ET AL. 7

TABLE 1 Accuracy of different network structures.

Index Network description Accuracy

#1 Full proposed CNN 94.55%

#2 Remove the multi-scale module 70.57%

#3 Remove the channel attention module 93.06%

#4 Use the ELU function 93.11%

#5 Use the Tanh function 93.70%

tuning and testing the model. Several key observations were
made during the evaluation:

Impact of multi-scale convolution module: Removing the
multi-scale convolution module from the model resulted in
a noticeable decrease in accuracy. Hence, it was evident that
this module played a crucial role in improving the model’s
performance, Table 1.

Attention mechanism module: When the attention mecha-
nism module was removed, the model’s stability was negatively
affected, leading to a reduction of approximately 1% in
prediction precision. Hence, the attention mechanism was
deemed important for enhancing model stability and prediction
accuracy.

Convolution kernel size selection: After testing different con-
volution kernel sizes and numbers, it was found that 3 × 3
convolution kernels performed better in the ordinary convolu-
tion layer. Consequently, all convolution kernels of this size were
utilized in the model’s convolution layer.

Multi-scale module with larger convolution kernels: Although
using larger convolution kernels in the multi-scale module
slightly improved stability and accuracy, it came at the cost of
significantly increased computation and reduced training effi-
ciency. As a result, it was determined that the benefits did
not outweigh the drawbacks, and the larger kernels were not
adopted.

Multi-channel attention mechanism module: The experiment
involving the use of the multi-channel attention mechanism
module did not yield a significant positive effect. Therefore, this
approach was not favoured in the final model.

Activation functions and pooling layers: Different activation
functions and pool layers were tested during the evaluation, but
no significant advantage was observed in adopting alternative
choices.

Based on considerations of training efficiency and accuracy
from the experimental results, the proposed model for audio
steganalysis was finalized with the following key components:
the multi-scale convolution module, the attention mechanism
module, and the use of 3 × 3 convolution kernels in the ordinary
convolution layer. These choices were found to provide the best
balance between performance and efficiency, making the model
well-suited for the task at hand.

4.3 Comparison with other related methods

In this part, several audio steganalysis methods are compared,
and they have similar experimental preconditions.

Experiments were carried out with the CNV-QIM stegano-
graphic algorithm [21], setting the embedding rate at 50%. The
accuracy of the final model was 92.67% for Chinese audio
samples and 92.95% for English audio samples, resulting in
significant improvements in the steganalysis rates.

Samples of LSB steganography were tested using the method
in [6], achieving a steganalysis accuracy of 88.30%, which
improved by 25% and 34%, respectively, compared with typi-
cal steganalysis methods using traditional artificial features and
classification techniques.

The model proposed by Wang et al. [26] was tested on the
EECS steganography algorithm at a bit rate of 128k bps and a
relative load of 2 samples, achieving a prediction accuracy of
90.39%. The model of Lin [17] detected steganography with
90.50% accuracy under the condition that the embedding rate of
LSB steganography was 1 bps. Lee et al.’s model [27] achieved an
impressive accuracy of 89.14% when the embedding rate was set
to 0.5 bps in LSB samples. Under the condition that the relative
load of the same sample was w = 4, the accuracy rate achieved
was 80.44% [26].

Additionally, Lin [28] and others made a detailed compari-
son between English and Chinese audio samples. They found a
minor effect of the embedding rate and the sample length on
the accuracy rate, and the average accuracy rate of the model
reached more than 90%.

Table 2 provides a comprehensive comparison of the accu-
racy between the proposed model in this study and existing
related models. In the table, “-” denotes unknown values, while
“Mixed” indicates that the experimental data consist of sam-
ples with different embedding rates (0.1, 0.2, 0.3, and 0.5), which
were randomly used during the experiment.

According to Table 2, the proposed deep learning model for
audio steganalysis achieves an outstanding accuracy of 94.55%,
surpassing all other related models [29–31]. This indicates that
the neural network, when combined with a multi-scale feature
fusion method and attention mechanism, can effectively detect
malicious steganography with remarkable precision.

Collectively, these studies have contributed significantly to
the advancement of steganalysis in speech signals, showcas-
ing various successful techniques and approaches for detecting
hidden information in audio data.

5 CONCLUSION

This paper has described a lightweight convolutional neural net-
work model that combines multi-scale feature analysis and the
channel attention mechanism. This study has shown that using
a multi-scale convolution method can enhance feature infor-
mation for different receptive fields and improve the learning
ability of the model for audio steganalysis. Additionally, adding
the attention mechanism can help obtain the importance of
feature information from different channels and facilitate key
learning. Both of these enhancements effectively improve the
model’s performance.

The findings of this study suggest that to achieve better
model performance, the sampling data needs to be increased or
a larger convolution kernel needs to be added in the multi-scale
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TABLE 2 Accuracy comparisons with related methods.

Method Sample steganography method Embedding rate Sample length Accuracy

Proposed CNV-QIM and the pitch steganography Mixed 1 s 94.55%

Yang [21] CNV-QIM 50% 1 s 92.95%

Chen [16] LSB 0.5 bps – 88.30%

Wang [26] EECS (The bit rate is 128 kbps and the relative load w is 2) 0.5 bps 10 s 90.39%

Lin [17] LSB matching – 1 s 90.50%

Lee [27] LSB 0.5 bps 1 s 89.14%

Wang [18] EECS (The bit rate is 128 kbps and the relative load w is 4) – 10 s 80.44%

Lin [28] CNV-QIM Mixed – Over 90%

module, such as a 5 × 5 convolution. Considering the efficiency
of model learning, the initial module can also be split into 51 ×
5 convolution kernels or 23 × 3 convolution kernels.

In terms of the attention mechanism of audio steganalysis,
further studies are necessary to determine the effects of dif-
ferent attention mechanisms on the model’s performance. For
example, a spatial attention mechanism would extract effec-
tive information from space to optimize the model. Adding
the attention mechanism to the process of extracting feature
information from the spectrum would improve the model’s
performance.

The Transformer’s entire network structure is composed
solely of an attention mechanism, primarily consisting of
self-attention and a feedforward neural network. This archi-
tecture has demonstrated significant advantages in the NLP
field. However, abandoning the traditional CNN and RNN
led to the loss of its ability to capture local features, and
simultaneously, it also lost the location information, which is
crucial in NLP. Therefore, further research should concen-
trate on combining CNN or RNN with the characteristics of
steganalysis.
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