
UWL REPOSITORY

repository.uwl.ac.uk

Blockchain Technology and Vulnerability Exploits on Smart Contracts

Darvishi, Iman, Yeboah-Ofori, Abel ORCID: https://orcid.org/0000-0001-8055-9274, Bismark, Tei

Asare, Oseni, Waheed, Musa, Ahmad and Ganiyu, Aishat (2024) Blockchain Technology and

Vulnerability Exploits on Smart Contracts. In: IEEE The 11th International Conference on Future

Internet of Things and Cloud (FiCloud 2024), 19-21 Aug 2024, Vienna, Austria. (In Press)

This is a University of West London scholarly output.

Contact open.research@uwl.ac.uk if you have any queries.

Alternative formats: If you require this document in an alternative format, please contact:

open.access@uwl.ac.uk

Copyright: [CC.BY.NC license]

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Blockchain Technology and Vulnerability

Exploits on Smart Contracts

1st Iman Darvishi

School of Computing and Eng

University of West London

London, United Kingdom

iman.darvishi@uwl.ac.uk

1st Abel Yeboah-Ofori

School of Computing and Eng

University of West London

London, United Kingdom

abel.yeboah-ofori@uwl.ac.uk

2nd Bismark Tei Asare

School of Arts, Hum. and Social Sc

University of Roehampton

London, United Kingdom

bismark.Asare@roehampton.ac.uk

3rd Waheed Oseni

School of Computing and Eng

University of West London

London, United Kingdom

waheed.oseni@uwl.ac.uk

4th Ahmad Musa

School of Eng, Tech. and Design

Canterbury Christ Church Uni

United Kingdom

ahmad.musa@canterbury.ac.uk

5th Aishat Ganiyu

School of Eng., Phys.& Math. Sc.

Royal Holloway Uni of London

London, United Kingdom

aishat.ganiyu.2021@live.rhul.ac.uk

Abstract— The immutability of smart-contract characteristics

is a significant key benefit of blockchain. However, after we

deploy a smart contract in a blockchain, we cannot change,

modify, or debug it. Further, wrong or vulnerable coding

implementation in smart contracts could have error output that

may have severe consequences in the future. Thus, the challenge

of finding vulnerabilities in the smart contract is vital to stop

criminals from performing malicious exploits during Defi

transactions. The paper explores Blockchain Technology in

Smart Contracts to detect vulnerability exploits focused on

general purchase agreements and smart contracts. The novelty

contributions of the paper are threefold: First, we explore the

existing blockchain vulnerabilities and how attackers exploit

decentralized financial transactions (Defi), including re-entrancy

attacks, 51% attacks, and double spending issues. Secondly, we

set up a Remix virtual platform using the solidity tool to

demonstrate a purchase agreement between client and seller that

can interact in a smart contract to determine how it can be

exploited. The implementations show how the attacker can call

the withdraw function recursively before the transaction updates

the balance during transaction procedures. Finally, we

recommend control mechanisms to improve blockchain security

in the purchase agreement and re-entrancy attacks. Our results

show that re-entrancy attacks and purchase agreement smart

contracts can be secured by developing modifiers to update the

bank balance before completing transactions.

Keywords— Blockchain, Smart Contract, Purchase Agreement,

Re-entrancy Attacks, Defi Attacks, Solidity

I. INTRODUCTION

Blockchain technology holds vast promise for every

business, society, and individual involving the supply chain.

The complete form of blockchain that could have a smart

contract is Ethereum, a blockchain technology platform. The

blockchain operation runs peer-to-peer based on the trust of

each component or member of the blockchain. Smart contracts

rule the processes and help the transaction to run within a

specific and defined frame [1]. Centralising information flow

on the Internet is one of the biggest user challenges in terms of

interruption; however, communication over the decentralised

Internet benefits individuals by having integrity, availability,

and confidentiality in place. Each time we need to operate such

a transaction, the smart contract can perform a task such as

deleting, returning, or modifying the assets [2]. Blockchain can

also be used in the business process model, where multiple

companies work together to achieve the same objective in the

blockchain environment [3]. Although developing such a

quality smart contract has attracted many developers in the last

few years, the number of attackers stealing people’s money by

misusing the weakness of smart contracts is increasing, making

them so challenging. We explain the re-entrancy attack and

suggest a solution to protect smart contract transactions against

such attacks. Figure 1 demonstrates the essential steps behind

the vulnerable remote purchasing agreement procedures for

smart contracts. Blockchain technology is a distributed,

immutable ledger that records transactions and monitors assets

in a networked corporate environment. Real estate, vehicles,

money, and land are all examples of physical assets

(intellectual property, patents, copyrights, branding) [2].

Fig. 1. Vulnerable Remote Purchase Agreement Procedures

There are challenges in the existing purchase agreements

leading to various exploits, including data breaches, privacy,

and other attacks that have compromised the safety measures

employed by these providers [4]. First, the current purchase

agreement is vulnerable to the seller since a buyer (attacker)

can deny that they received the product or assets they have

purchased through the purchase agreement contract; hence,

they can refund their money after they have already received

their service or product. Secondly, simulate the Ether bank,

three clients, and an attacker that attempts to withdraw Ether

from the bank recursively by calling the withdraw function,

which is a smart bank contract that can let an attacker drain the

bank balance. Then, recommend solidity codes to protect our

bank from re-entrancy attacks. The blockchain functions use

blocks of data created whenever a transaction takes place.

These blocks reveal the circulation of an asset, which may be

physical (a product) or immaterial (a service) (intellectual).

The blocks verify the precise timing and order of transactions,

and their encrypted links prohibit tampering with or

interpolating between blocks [5]. A blockchain is an

immutable chain in which transactions are stored in stored in a

historical manner.

A. Exchange Transaction in DeFi

Exchange companies profit from each transaction by

facilitating the exchange of assets and performing a

transaction. However, in a smart contract, Defi, the seller and

buyer exchange cryptocurrency or coin-based assets using only

a smart contract in the middle. Here are some benefits: Fewer

fractions and less cost.

B. Recent Blockchain Attacks

Attackers are always trying to find a way to get into the

system and perform their malicious activity. Here are some

recent blockchain attacks.

• Defi attack: A 625.5-million-dollar amount that attackers

could gain from Axie Infinity’s ronin network when they

successfully hacked the private key and initiated approval

for their fraudulent transaction, FXEmire reported in April

2022 [6].

• DDOS attack on smart contract: Cloudflare reported 15.3

million HTTPS requests for their crypto platform in May

2022; attackers requested 809 million data packets per

second and were able to hit the maximum bandwidth of

their application. [7].

• Protocol exploits on the qubit finance: Another

devastating attack led to 80 million dollars lost for qubit

finance when attackers successfully exploited their smart

contracts and got away with that [8].

• Blockchain Defi attack on the poly network: The TRM

global investigation team reports one of the biggest Defi

hacks in history, in which attackers could take 600 million

dollars from three different blockchains on a network

called poly network [9].

The novelty contributions of the paper are threefold: First, we

explore the existing blockchain vulnerabilities and how

attackers exploit decentralised financial transactions (Defi,)

including re-enteracy attacks, 51% attacks, and double

spending issues. Secondly, we set up a Remix virtual platform

using the solidity tool to demonstrate a purchase agreement

between client and seller that can interact in a smart contract

to determine how it can be exploited. Our implementations

show that the attacker can call the withdraw function

recursively before the bank updates the balance during

transaction procedures. Finally, we recommend control

mechanisms to improve blockchain security in purchase

agreements and re-entrancy attacks. Our results show that re-

entrancy attacks and purchase agreements in a smart contract

can be secured by developing modifiers that update the bank

balance before completing transactions. Further, we have

developed modifiers to ensure that the payment transaction is

completed for the purchase agreement.

II. RELATED WORKS

This section discusses the related work of blockchain

technology and the state of the art. We consider blockchain

technologies and architectures, blockchain transactions,

purchase agreements and vulnerabilities. Further, we review

some approaches suggested by researchers to cover smart

contract issues and perform different tests on smart contract

applications[10]. Designed an extensible architecture based on

consortium Blockchain by analysing the key technologies and

classifications since the scope of application of public and

private blockchains is relatively narrow. [10]. [11] proposed a

blockchain architecture for industrial applications using

frameworks to compare public and permissioned blockchains

suited explicitly for industrial applications. [11].[12] proposed

architectural design decisions for Blockchain-based

applications by systematically exploring architectural design

decisions and options in terms of patterns and practices. The

paper did not address this [12]. [13] proposed financial data

security sharing solutions based on blockchain technology and

proxy re-encryption technology by considering solutions that

consist of data sharing models using encryption and data

sharing protocols using distributed storage, decentralized

management and Tamper-proof characteristics of blockchain.

However, that could be vulnerable to 51% attack security [13].

Regarding verifications in smart contracts, [14] presented

a verification and validation model with a hierarchical process

through smart contracts using layers of abstraction, value-

added services and authenticity-based AI. The author applied

solutions based on distributed ledger technology for the

decentralized approach [14]. [15] discussed security

challenges and defiance approaches for blockchain-based

services, and used ConCERT to conduct a smart contract

formal verification experiment by property testing and CVE

and CNVD to analyze the vulnerability and enumeration of

Alibaba’s blockchain services [15]. [16] proposed a tool for

mutation testing of Ethereum smart contracts using a

blockchain and testing by transforming the smart contract to its

source version, which must be in the blockchain's test

directory. Finally, this test tool has a friendly user interface that

is graphical and easy to use and allows users to test the smart

contract in solidity [16].

Regarding vulnerabilities in smart contract codes [17], a

test on smart contracts was performed to detect the

vulnerabilities that have led to many financial losses for

business application users. The authors focused on detecting

smart contract vulnerabilities to secure the code or functional

flaws since existing tools that are in use are decreasing the

performance of codes to be analysed and are constantly being

rewritten and proposed by Eth2Vec. This machine-learning-

based static analysis tool detects smart contract vulnerabilities

[17]. Furthermore, [18] compared two different blockchain

technologies, SBlockchain and TBlockchain, in smart contract

management systems by developing a framework for a

blockchain-based smart contract and transaction management

system on a Decentralized Autonomous Organization and

enterprise levels. The smart contracts are maintained in the

SBlockchain, while the data produced by the smart contracts

are kept in the TBlockchain. [18]. Regarding blockchain

application development, [19] examined the methods and

approaches covered in related papers in levels of testing and

analysis for smart contract-based blockchain application

development with the purpose of contracting for electronic

agreements to support the functions [19].

All the existing literature is relevant and contributes to

knowledge and research in blockchain technology and

vulnerability exploits. For instance, [10] implemented a

testbed for functional, security, and performance testing to

analyze the extensible consortium blockchain framework in

changing scenarios and needs. [15] , used the ConCERT

approach to test a smart contract verification experiment on

Alibaba’s blockchain services and CVE and CNVD for

vulnerability analysis and enumeration. Further, [17] proposed

Eth2Vec, a machine-learning-based static analysis tool that

detects smart contract vulnerabilities. The Eth2Vec maintains

its robustness against code rewrites. However, it is susceptible

to attacks. [14] applied verification and validation using layers

of abstraction, value-added services, and authenticity-based AI

solutions models based on distributed ledger technology for

real-data marketplace applications and transactions using the

decentralized model. [11] Implemented a solution based on

Ethereum for proof-of-authority by using a consensus

algorithm to instruct the running procedures in the source code

of the smart contract, which is characterized by a set of

validator nodes running the blockchain to ensure transparency

and immutability. However, the authors did not focus on

cryptocurrency and tokens. Furthermore, [18] developed a

framework that compared SBlockchain and TBlockchain

technologies in smart contract management systems. [13]

Proposed encryption methods and data-sharing protocols using

distributed storage, decentralized management, non-tampering

characteristics, and proxy re-encryption for the proof-of-stake

algorithm that realizes data sharing among users for

blockchain security.

However, no one has set up a Remix virtual platform

using the solidity tool to demonstrate a purchase agreement

between client and seller that can interact in a smart contract

to determine how it can be exploited. The paper explores

Blockchain Technology in Smart Contracts to detect

vulnerability exploits, focusing on general purchase

agreements and smart contract transactions.

III. APPROACH

 This section discusses the approach used for the

implementation process for blockchain technology and

vulnerability assessment in smart contracts. We applied a

qualitative [19] approach and secondary data to understand the

functionality of the smart contract and consider its

vulnerability. Further, we deployed an attack on a single

solidity smart contract to detect any weakness during

transactions. The purpose is threefold: first, to describe the

cascading cyberattack deployed on the blockchain; second, to

highlight the vulnerabilities of both purchase agreements and

the bank's smart contracts; and third, to offer a solution to cover

the current loopholes in the coding of both purchase agreements

and the smart contracts used by Ethereum banks. The

implementation attempts to address the following challenges.

First, the seller is at risk under the terms of the existing purchase

agreement since the customer (the attacker) might claim they

never got the service or goods for which they paid under the

terms of the purchase agreement contract and demand a refund.

Second, we will simulate an Ether bank with users and an

attacker who will try to take Ether from the bank in a recursive

manner by repeatedly using the withdraw function to see if we

can deplete the bank's funds. Then, solidity codes should be

suggested to prevent re-entrancy attacks.

IV. IMPLEMENTATION

This section considers implementing a smart contract to

facilitate safe remote purchases from re-entrancy attacks where

the buyer and seller are protected without needing a centralised

trusted authority. Such a contract might assist clients in

purchasing products from the EOTORO platform.

• Step 1: Safe purchase agreement. The seller publishes the

contract and sets the value for the item for sale

• Step 2: safe purchase agreement. The buyer sends funds

to the contract, which puts the transaction into a secure

lock state, freezing the funds for the time being.

• Step 3: Safe purchase agreement. The seller ships the

item for sale to the buyer.

• Step 4: Safe purchase agreement. When buyers receive

the item, they invoke a confirmation of the smart contract

to acknowledge the shipment receipt.

• Step 5: Safe purchase agreement. Finally, smart contracts

release the locked funds back to the seller after receipt of

shipment confirmation.

The security problem of safe remote purchase is that the

current simple design of the smart contract has a Security flaw.

That security vulnerability is exploited when we rely on the

buyer's honesty to say whether they have received the item.

What if the buyer never reports that the item has been received,

and the seller never receives their money?

A. Implementations Tools Used

We used a Solidity tool for put implementations. The

Solidity tool is a high-level object-oriented language that

implements the smart contract. The syntax is quite similar to

Java scripts. It runs on an Ethereum virtual machine (EVM)

with other development tools, including Truffle suit, hardhat,

remix, Ganache, and many others that assist in building smart

contracts. We use a high-level program for the Smart contract

and Defi attacks that compiles EVM bytecode and deploys it

to the blockchain for execution. Further, it is immutable,

indicating that once the transaction has been successfully

mined and sent out, there is no way to revert it [20]. It is

difficult to trace once the attacker gets into the mixer during

the torrential cache, leading to Admin key compromise,

Private key compromise, computer trojan, Phishing attack and

Malicious insider. Malicious insider: in Defi projects, people

share admin keys, and a malicious insider can use that to call

admin functions and transfer all the tokens out [21].

B. Variables to Hold the Item's Value

We need variables to hold the item's value for sale or the

sale price. We will need address types for the seller and the

buyer, and we also need variables to hold the state of the

contract or the state of the purchase. In other words, to

differentiate the different states, we consider the following:

Has the buyer paid yet, received funds, or released funds?

Functions: First, we will need some way for the seller to

initially send money into the contract, which the constructor or

a dedicated function could handle. We will need a function to

confirm the purchase. That will indicate when the buyer has

sent money into the contract; we will also need another

operation to confirm receipt of the item for sale, which the

buyer will call. Eventually, we will need functions to pay the

seller once the deal is done. Additionally, we might need to add

a function to abort the mission, allowing the cancellation of the

entire agreement. This function should only be callable before

the buyer has sent money into the contract.

C. Implementation Tools Remix Editor

This section discusses the implementation tool for our

work. We consider the Remix editor a tool because it is an in-

browser IDE. It supports trial compilation and deployment

during implementation in an isolated environment before the

smart contract is pushed into the cloud. We use Remix to

compile and deploy our Solidity contracts and test them

quickly without installing infrastructures such as truffle or

hardhat.

D. Implementing Purchase Agreement in Smart Contract

The default workspace folders in the file explorer section

contain some premade contracts by remix in Solidity. By

selecting any contract, we can see its content on the right-hand

side. We expanded the sample size of the Solidity folder.

E. Solidity Coding

To begin the solidity coding, we start by selecting a

contract file from the file explorer, removing all the codes from

the file, and then renaming the file to

“PurchaseAgreement.sol”. Sol tells us the file contains solidity

codes at the end of every solidity file. Now, we are ready to

start our smart contract transactions.

Step 1: We set the SPDX identifier; we will first add the

license identifier. (//SPDX-License-Identifier: MIT)

Step 2: We indicate the version of our smart contract by

choosing the related compiler version using the pragma

solidity 0.8.11) code.

Step 3: we have defined our contract class and named it

“Purchase Agreement”, which describes the attributes such as

sellers, buyers, amount, shipment confirmation and wallet

address by using the code (contract PurchaseAgreement {}).

Step 4: we define a variable for an item by using the code (unit

public value;) to store a value that will hold the item for sale.

The “uint" in the code shortens the form to “un256”.

Step 5: illustrates how we define the address of the wallets by

typing the commands (address payable public seller;) and

(address payable public buyer;)

Step 6: we define some variable to hold the state of the contract

at any given time by using the code (enum State { Created,

Locked, Released, Inactive }) to indicate the state, and for that,

we use “ENUM”,

Step 7: We create a state variable using the specified ENUM

state type. The state (public state) will be a public variable used

to interact with other transaction components.

Step 8: we have not assigned any value to the state variable, at

least upfront; in this case, by default, this variable will be

initialised with the initial value of the values we have specified

in the ENUM so that it will be created by default. Figure 4

illustrates the constructor function and its variables:

Step 9: The “confirm purchase” function enables the buyer to

send in money and be designated as the buyer for the contract's

life. We use the function keyword and then confirm the

purchase, which is an external function since the buyer must

be able to invoke this function outside the smart contract code.

Further, we updated the contract state since, by default, we

assigned the state to create the mode. Hence, we need to lock

the contract once the buyer's payment to the seller has been

confirmed.

Step 10: Create a couple of modifiers to facilitate those checks.

We used the modifier as a separate function or entity to add

here to qualify this function and restrict this function to satisfy

the terms of the modifier. To do that, first, we must tackle the

requirement that the buyer send twice the amount of the

purchased item to proceed with the transaction. Here, the value

is the item price that the seller has set, so the transaction should

be equal to two times greater; if that evaluates to false, we will

send back an error message and say: “Please send in 2X the

purchase amount”. To output an error message if the deployer

calls this function while the state is in a different mode, we use

this code: (error InvalidState(). Further, we check the state of

the contract, so for that, we use a modifier, and the modifier

can call the revert function to revert the transaction if the

condition is not met. Then, the revert function will return a call

on a custom error.

F. Create the Modifier

We create our modifier and adjust its conditional statement to

function if we want to revert the transaction. This method

inputs the state type as an argument and state with the

underscore to differentiate that this is an argument from our

modifier. To ensure that the state is not equal to the state

argument we are questioning, we check the modifier type;

then, if the state is invalid, we revert the function and call the

custom error we previously defined. In the end, there is an

underscore and semicolon, a placeholder for executing the rest

of the function that the modifier applied. So, to use this to

confirm the purchase function by placing it after the external

modifier and before the payable function, finally, we have to

input the state argument by using this code: (function

confirmPurchase() external instate payable {). Re-entrancy

attacks, or Ethereum heists, are among the most destructive

attack vectors where malicious smart contracts can drain all the

funds from the victim contract. This attack can function with a

recursive call from an external function to the victim’s contract

withdrawal part. We run a sample of a re-entrancy attack to

explore its procedure and go through a few different ways that

we can protect our code attack.

G. How a Re-entrancy Attack Works

A re-entrancy attack happens when malicious contracts that

we call attackers contracts call victim contracts in case they

gain more control over code execution than was ever intended,

disrupting the intended state of the victim contract and

manipulating it in unexpected ways. For instance, the attacker

can call a withdrawal function on a victim contract, which then

sends funds to the attacker. Still, the attacker then gains control

of code execution via its fallback or receives the part and can

recursively call the victim’s withdrawal function repeatedly

before the victim can update its account balances to reflect the

withdrawal. That continues until the attacker has effectively

drained the victim of all its funds. Figure 2 demonstrates the

attacker and victim re-entrancy attack:

Fig. 2. Attacker and Victim Re-entrancy Attack

We used the same attack in the DAO attack 2016, in which 60

million dollars in Ether was stolen, resulting in the

controversial forking of the Ethereum blockchain into

Ethereum and Ethereum Classic to return the stolen funds. We

demonstrate the attack using the remix Ethereum editor online

platform. In our remix editor, we have two smart contracts:

• Victim: Ether bank’s smart contract (EtherBank.sol)

• Attacker code smart contract (Attacker. sol)

H.

I. Ether Bank Code Smart Contract

Step 1: In the ether bank savings account, there is a

mapping of addresses to balances that keep track of all the

funds in the bank. Figure 3 demonstrates the smart contract:

Fig. 3. Bank Smart Contract

Step 2: The deposit function, an external payable type, includes

the “msg. sender” related to the valet address, and the value is

the amount the client will deposit. The deposit function allows

users to send in some amount of Ether to update the balance.

The withdraw function indicates the withdrawal amount and

could be the entire account balance. Figure 4 shows the

withdraw function from the external type that functions until

there is no available balance.

Fig. 4. Withdraw Function

We discuss the logging, attacker, and constructor functions

of the Logging Function: We need logging as it is the function

that the attacker will call recursively until the entire smart

contract balance is drained. With this function, we can check

the balance at any time during our testing to track the process.

We use the”getBalance” function to input the item name and

output the amount defined for the item.

Attacker Contract: The attacker contract will be called the

Ether bank contract, so to do that, we define an interface with

the functions that will be reached from the Ether bank contract.

Constructor Function: The constructor function assigns the

payment values to the seller, and the owner variable is

associated with the seller's wallet address, designating them as

the owner of the resources. We pass the contract address that

interacts with our contract and call the functions to proceed

with the transaction. We also set the owner variable since we

have some of these functions restricted to the owner only, as

discussed in the constructor function in Figure 5:

Figure. 5. Attacker Contract

J. Attack Function

First step: the attacker depositing into the bank, and the

reason for that is because the withdraw function checks to

make sure that there are some balances associated with the

address invoking withdraws, so we have to be a member of the

bank and have deposited some of the funds to withdraw. The

code in Figure 6 demonstrates the attack function:

Fig 6: Attack Function

Further, the attacker function immediately invokes the

withdraw function; the withdraw function sends the Ether to

the message sender, which is the account gathering the

withdrawal in the Ether bank’s smart contract. Using code:

“payable(msg.sender).sendValue(balances[msg.sender];”

Furthermore, it updates the balances mapping to reflect that

withdrawal; however, what will happen is that in the receive

function of the smart contract, there is a smart contract call

back that executes whenever they receive any funds, and here

is where the attacker gains control over execution and can call

withdraw again and again. They can do this because the victim

has not yet updated the balances to reflect the withdrawal, so

she can pass the requirements check and recursively call

withdrawal. In the receive function, the code: (if

(address(etherBank).balance > 0) {) is used to perform a check

to see if the bank has any money at all. Moreover, as long as it

does, it will keep on recursively calling withdrawal, and once

it is completely drained, it transfers all the funds from the

attacker's smart contract to the attacker’s wallet, which is

owned. From that point, we log in and see the account as the

victim’s account drained. Figure 7 indicates there is no money

in the victim’s account.

Fig. 7. Victim account drained.

V. RESULTS AND DISCUSSION

 This section demonstrates how we implement the Solidity

tool in a virtual environment to detect vulnerabilities and deploy

an attacker during smart contract transactions. This procedure

illustrates how an attacker can exploit the vulnerable current of

most of the bank’s smart contracts by depositing some Ether,

draining all the bank balance and transferring it into their

account. To simulate the bank, we have a bank with three

clients. Each client deposits 10 Ethers to the bank from a

different account number. The attacker will pretend he is the

fourth customer by depositing 2 Ether in the bank and

attempting to withdraw his money.

Right before the bank updates its balance, the attacker will

withdraw 2 Ether from the bank every time until the bank

balance is 0. To achieve that, we follow the procedure below:

• Simulate the bank interaction by having three clients

• Three times deposits of 10 Ether from 3 different accounts

for each client to the bank.

• Deploy attacker smart contract to drain the bank balance

A. Phase 1:

Compile the Bank’s Smart Contract: To compile the bank's

smart contract, first, we select both “Etherbank. sol” and the

attacker.sol contracts. Then, we select the same version for the

compiler we implemented in our ether bank’s smart contract.

Further, we must ensure they are the same version; here, we

use the 0.8.11 version.

Fig. 8. Compile the Attacker and the Bank Smart Contract

Further, we allocate an account number to our bank, as

highlighted in Figure 8.

B. Phase 2: Deploy our Ether Bank’s Smart Contract

First, the transferred amount will be reverted to the

sender’s account after we deploy the smart contract illustrated

in Figure 9; we have access to the function that we defined

earlier with solidity; we will have three different clients' next

steps. Each client will deposit 10 Ether to the bank, and we can

check the balance to monitor the customer's balance every

time.

Fig. 9. Deploy Phase for Smart Contract

First, we check the bank account balance simply by using

the balance button that calls the balance function from our

bank’s smart contract. The balance is ‘0’ as no client has yet

deposited. To deposit as a client, we select the currency type to

Ether, choose 10 Ether to deposit and finally press the deposit

button that calls the deposit function from our solidity code.

Now, we assign the account number to a customer. We

transferred the deposit value to 10 and selected Ether as a

currency. Finally, solidity calls the deposit function that

increases the account balance by adding the current ratio, which

is zero, with the amount the client sends, which is 10 Ether.

 Fig. 10. Attacker Smart Contract Deposit

Further, the deposit function transfers the amount to the

client account number, as shown in a red rectangle at the top

left of Figure 10. The bank has one customer who has deposited

10 Ethers from their valet address into the bank. We have also

assigned our customer an account number. We added two more

customers and deposited 10 Ether for each to make it more

accurate. We deposited Ether from the second customer

account. Furthermore, we changed the account number and

assigned a new account number for our second client. Then, we

had 10 Ether to deposit in our bank. We will call the deposit

function in the bank’s smart contract to do this; we repeated the

deposit operation for the last customer again and assigned a new

account number to our third customer. Again, we will specify

10 Ethers for them to deposit into their account in our bank by

calling the deposit function. We have deposited 30 Ether from

3 clients with three other bank account numbers to our bank.

We can call the balance function to check how much Ether we

have in our bank. Phase 3: compile and deploy the attacker’s

smart contract. We selected our attacker’s smart contract to

compile our attacker’s contract.

Fig. 11. Attacker Smart Contract is Written in Solidity Language

Figure 11 depicts how we set the compiler version to 0.8.11

to compile it successfully and select the attacker contract from

the contract menu. The green check mark beside the compile

menu illustrates that we have compiled our smart contract with

no issues or errors.

C. Deploy the Attacker on the Smart Contract

Deploying the smart contract attacker is different from a

bank’s smart contract because, for the attacker, we have to

target our bank valet address, and all the attacker’s smart

contract functions have to interact with the bank account

directly. The reason is that if there is no account number

assigned to the bank or no cryptocurrency in the bank, then

there is no point in initiating an attack. To use the bank valet

address, we copied the bank valet address and pasted it into the

field box for the attacker's deploy section, then pressed the

deploy button as in Figure 12. We show how we first choose

the attacker’s address. The smart contract selects the bank’s

smart contract. We paste the address into the deployed test and

use the copier feature to copy the bank valet field.

Fig. 12. Deploy the Attacker Smart Contract

In Figure 13, we have copied the bank valet address to

the contract that will appear under the bank’s smart contract.

Deploy our smart contract on it, then press deploy.

Fig 13. Assign the Bank Valet Address to Deploy our Smart Contract

Once it successfully deploys the attacker contract, the

rectangular red box on the right side, which is the compiler

output, indicates that the operation has been successful. As we

mentioned at the beginning of chapter four, to attack the bank,

the attacker first deposits some Ether to establish trust. Then,

with its withdraw function in the loop, the attacker takes

money from the bank until the account balance is zero.

D. Phase 4: Attack and Result

We deposited two Ethers to the bank; select 2 Ethers, then

press deposit. Figure 14:

Fig. 14. Deposit Two Ether to the Bank

Figure 14 illustrates the successful compiler output. Now, we

will clear the output and select 2 Ether to start; we have

deposited 2 Ether.

Fig. 15. The Results Show that the “Victim Account is Drained”

Figure 15 shows the total balance is 6 Ether on the red mark

number 1, and the attacker took 1 Ether from the bank. Before

the bank updated its balance again, the attacker took another 1

Ether from their bank balance every time. Notice that this back

balance, which we can see in this figure, has not been obtained

from the bank. This is the re-entrancy function in the attacker

contract calculating it. In our case, this re-entrancy functions 6

times until the bank balance is zero, which shows the victim's

account drained in Figure 15. Further, the last six re-entrancy

attacks until the bank balance has entirely drained. If the

amount of the Ether that the attacker will drain in every call of

the withdraw function from the attacker contract is greater than

the bank balance, we have still drained the bank balance. We

have redone all the operations from Phase 1 to Phase 4 to get

this message.

Fig. 16. Control Measures for re-entrancy attack

E. Control Measures of Re-entrancy Attack

We discuss how to protect mechanisms against reentrancy

attacks. This part of the contract is the best example of

implementing a defence against a re-entrancy attack where we

have to update the state of the contract and also send funds; the

first step here would be updating the contract state to avoid

someone invoking this contract again and again and sending

funds before the states updated shown in Figure 16.

F. Control Measures of Safe Purchase Agreement

Fig. 17. Control Measures for Safe Purchase Agreement Re-entrancy

In the Safe Purchase Agreement smart contract, we will

make a function and call it to confirm receipt; it should be an

external function and does not need to be payable as we are not

receiving the money in this function. Here, the first step we

will take is to update the state. Here is the state of the contract:

we release the funds and transfer them to the buyer, but this is

not paying the seller; indeed, it is just only returning the deposit

to the buyer, and we will need a separate function for the seller,

here we need to check two factors: First, we must ensure that

only the buyer can invoke the function. Second, we need to

ensure that the state is in the locked position or locked status;

although we have left it locked after confirming the purchase,

we must check to ensure the contract form is correct to invoke

this. We can use the state modifier we have already set up to

handle that. Next, we need to set up a new modifier and a new

custom error to ensure the buyer is the only one who can call

this function; we will implement it right below the first custom

in the smart contract. First, we will do the error message “Only

the buyer can call this function” The error code for that would

be: “error OnlyBuyer;” The next step is to create a new

modifier state that if the sender of this transaction is not the

buyer, then we revert the function and call our only buyer

custom error message; lines 1 to 6 in the Figure 15 illustrates

the code for revert modifier. Before we deploy and test it, we

need to set the value in the constructor, so the value should be

divided by two since we are sending it twice; the new

constructor function is implemented in lines 7 to 10. Now, we

need to pay our seller once the condition of the contract or the

sale has been satisfied; we will implement a function to pay the

seller. This function needs to be external, and only the seller

can invoke this function, so we need a modifier similar to the

one we just set up for the seller. We will also need to recheck

the state, and this time, we need to set the state in the release

mode; we also need to set up a modifier containing a custom

error; the error code is “error OnlySeller()”. Further, updating

and setting the state to inactive is essential to prevent a

reentrancy attack. Then we have to send funds back to the

seller; hence, the seller will first receive the price of the item

sale, and then he will also accept that same amount twice to

represent his initial deposit. Hence, we are going to sell three

times his value. Lines 16 to 21 contain the code for the pay-to-

seller function. The modifier implemented determines that the

seller is the only participant who can invoke the pay function;

otherwise, the transaction will be reverted.

The final function will safeguard the seller if they must

abort the mission and back out of the transaction. We only want

to allow that to happen if we are in the beginning stage, so

before the buyer has sent any money in, otherwise that would

not be entirely fair for the buyer to lock up his funds and cancel

everything. Hence, they can only call this function if we are in

the state that created status. So, after completing the abort

function, we will update the form as we always do; we inactive

the state and ask for a money refund.

The aborted function operates only if the buyer has not

paid yet. If the seller decides to cancel and revert the

transaction, this function will cancel the whole operation.

VI. CONCLUSION

The paper conducts a vulnerability assessment of smart

contracts to find their weaknesses. Since attackers are always

trying to find a new way to get into the system and act

maliciously to achieve their purposes. We focused on

exploiting vulnerabilities in smart contracts using the solidity

code to prevent persistent re-entrancy attacks by implementing

modifiers that allow us to update the bank balance right after

each transaction. We have simulated the smart contract

transaction to demonstrate the bank, client and the attacker's

smart contract. First, we deposited some Ether to the bank from

the client's account and updated the bank balance. Second, we

deposited some ether from the attacker’s account into the bank

and updated the balance. Third, we have withdrawn the same

amount from the bank to the attacker's account. Fourth, we

have withdrawn money from the bank before updating its

balance, so we could call the withdrawn function in the

attacker's smart contract recursively until the bank balance is

fully drained. Figures 24,25 and 26 illustrate the re-entrancy

attack. We have implemented and deployed a modifier to

confirm the shipment status and send it to the smart contract.

In this case, we have ensured the seller gets paid fully and

safely, and the buyer cannot revert the transaction.

Future works will consider smart contract vulnerability

detection using attack datasets and AI for threat predictions.

REFERENCES
[1] Daria A. Snegireva (2021) ‘Review of Modern Vulnerabilities in

Blockchain Systems’, in 2021 International Conference on Quality

Management, Transport and Information Security, (IT QM IS).
doi:10.1109/ITQMIS53292.2021.9642862.

[2] Yang, X., Chen, Y. and Chen, X. (2019) ‘Effective Scheme against 51%

Attack on Proof-of-work Blockchain with History Weighted
Information’, in 2019 IEEE International Conference on Blockchain

(Blockchain). doi:10.1109/Blockchain.2019.00041.

[3] Wang, S.-H., Wu, C.-C., Liang, Y.-C., Hsieh, L.-H., and Hsiao, H.-C.
(2021) ‘ProMutator: Detecting Vulnerable Price Oracles in Defi by

Mutated Transactions’, in 2021 IEEE European Symposium on Security

and Privacy Workshops (EuroS PW).

doi:10.1109/EuroSPW54576.2021.00047.
[4] A. Yeboah-Ofori, S. K. Sadat and I. Darvishi, "Blockchain Security

Encryption to Preserve Data Privacy and Integrity in Cloud

Environment," 2023 (FiCloud), pp. 344-351, doi:
10.1109/FiCloud58648.2023.00057.

[5] Leible, S., Schlager, S., Schubotz, M. and Gipp, B. (2019). A Review

on Blockchain Technology and Blockchain Projects Fostering Open
Science. Frontiers in Blockchain, 2. doi:10.3389/fbloc.2019.00016.

[6] Sinclair, S. (2022). DeFi Exploits Top $1.8B YTD, Though Security

‘Getting Better’ Immunefi Says. [online] Blockworks. Available at:
https://blockworks.co/news/defi-exploits-top-1-8b-ytd-though-

security-getting-better-immunefi-says.

[7] Essaid, M., Kim, D., Maeng, S.H., Park, S. and Ju, H.T. (2019) ‘A
Collaborative DDoS Mitigation Solution Based on Ethereum Smart

Contract and RNN-LSTM,’ in 2019 (APNOMS), pp. 1–6.

doi:10.23919/APNOMS.2019.8892947.
[8] Melinek, Sánchez-Gómez, N., Morales-Trujillo, L. and Torres-

Valderrama, J. (2019) ‘Towards an Approach for Applying Early

Testing to Smart Contracts’:, in Proceedings of the 15th International
Conference. doi:10.5220/0008386004450453.

[9] Hirtenstein, A. (2021). Crypto Hackers Stole More Than $600 Million

From DeFi Network, Then Gave Some of It Back. Wall Street Journal.

[online] 11 Aug. https://www.wsj.com/articles/poly-network-hackers-

steal-more-than-600-million-in-cryptocurrency-11628691400.

[10] L. Ni, S. Zhang, G. Li, K. Han and H. Sun, "A Design of Extensible
Architecture Based on Consortium Blockchain," 2022 IEEE 14th

International Conference on Advanced Infocomm Technology (ICAIT),

Chongqing, China, doi: 10.1109/ICAIT56197.2022.9862749.
[11] L. Marchesi, M. Marchesi, R. Tonelli, M. I. Lunesu, A blockchain

architecture for industrial applications, Blockchain: Research and

Applications, Volume 3, Issue 4, 2022,
https://doi.org/10.1016/j.bcra.2022.100088.

[12] M. Wöhrer, and U. Zdun. Architectural design decisions for blockchain-

based applications. 2021 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pp. 1-5.

[13] Z. Su, H. Wang, H. Wang and X. Shi, "A Financial data security sharing

solution based on blockchain technology and proxy re-encryption
technology," 2020 IEEE doi: 10.1109/IICSPI51290.2020.9332363.

[14] W. Serrano, Verification and Validation for data marketplaces via a

blockchain and smart contracts. Blockchain: Res. Appl. 2022, 3,
100100. https://doi.org/10.1016/j.bcra.2022.100100.

[15] H. Chen, X. Luo, L. Shi, Y. Cao, Y. Zhang, Security challenges and

defence approaches for blockchain-based services from a full-stack
architecture perspective, Blockchain: Research and Applications

(2023), doi: https://doi.org/10.1016/j.bcra.2023.100135.

[16] Li, Z., Wu, H., Xu, J., Wang, X., Zhang, L. and Chen, Z. (2019) ‘MuSC:
A Tool for Mutation Testing of Ethereum Smart Contract’,

doi:10.1109/ASE.2019.00136.

[17] Ashizawa, N., Yanai, N., Cruz, J.P. and Okamura, S. (2022). Eth2Vec:
Learning contract-wide code representations for vulnerability detection

on Ethereum smart contracts. Blockchain: Research and Applications,
p.100101. doi:https://doi.org/10.1016/j.bcra.2022.100101.

[18] Muneeb, M., Raza, Z., Haq, I.U. and Shafiq, O. (2021). A Blockchain-

based Framework for Smart Contracts and Transaction Management.
IEEE Access, doi:10.1109/access.2021.3135562.

[19] Sujeetha, R. and Deiva Preetha, C.A.S. (2021). A Literature Survey on

Smart Contract Testing and Analysis for Smart Contract Based

Blockchain Application Development. 2021 2nd International

Conference on Smart Electronics and Communication (ICOSEC).

doi:10.1109/icosec51865.2021.9591750.
[20] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo and T. Chen, "DefectChecker:

Automated Smart Contract Defect Detection by Analyzing EVM

Bytecode," in IEEE Transactions on Software Engineering, 2022, doi:
10.1109/TSE.2021.3054928.

[21] Ajayi, Oluwaseyi & Saadawi, Tarek. (2021). Detecting Insider Attacks

in Blockchain Networks. 10.1109/ISNCC52172.2021.9615799.

