
UWL REPOSITORY

repository.uwl.ac.uk

Performance Evaluations on AI Regression and Classification Algorithms Using

Ensemble Methods

Ganiyu, Aishat, Yeboah-Ofori, Abel ORCID: https://orcid.org/0000-0001-8055-9274, Darvishi, Iman,

Asare, Bismark Tei, Addo-Quaye, Ronald and Oguntoyinbo, Oluwole (2024) Performance

Evaluations on AI Regression and Classification Algorithms Using Ensemble Methods. In: IEEE The

11th International Conference on Future Internet of Things and Cloud (FiCloud 2024), 19-21 Aug

2024, Vienna, Austria. (In Press)

This is a University of West London scholarly output.

Contact open.research@uwl.ac.uk if you have any queries.

Alternative formats: If you require this document in an alternative format, please contact:

open.access@uwl.ac.uk

Copyright: [CC.BY.NC license]

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Performance Evaluations on AI Regression and
Classification Algorithms Using Ensemble Methods

1st Aishat Ganiyu
School of Eng., Phys. and Math. Sc.

Royal Holloway University of London
London, United Kingdom

aishat.ganiyu.2021@live.rhul.ac.uk

1st Abel Yeboah-Ofori
School of Computing and Engineering

University of West London
London, United Kingdom

abel.yeboah-ofori@uwl.ac.uk

2nd Iman Darvishi
School of Computing and Engineering

University of West London
London, United Kingdom
iman.darvishi@uwl.ac.uk

3rd Bismark Tei Asare

School of Arts, Hum. and Social Sci.
University of Roehampton
London, United Kingdom

bismark.Asare@roehampton.ac.uk

4th Ronald Addo-Quaye
School of Business and Law

Central Queensland University
 Brisbane, Australia

r.addoquaye@cqu.edu.au

5th Oluwole Oguntoyinbo
School of Computing and Engineering

University of West London
London, United Kingdom

21516296@student.uwl.ac.uk

Abstract— Machine Learning techniques are the backbone of
successful Artificial Intelligence (AI) applications as they
empower AI systems to make quality predictions and provide
valuable insights from data that will aid decision-making within
various industries. Ensemble method is a machine learning
technique that helps to determine the suitable model for a
dataset while limiting bias and variance; it is a technique used to
obtain predictions by conducting maximum votes or averaging.
This paper explores various Ensemble methods such as
Bagging/Bootstrap Aggregation, Random Forest, and Boosting
alongside their underlying algorithm Decision Tree for
Regression and Classification cases. The contribution of this
paper is threefold. The foremost objective is to perform a
theoretical analysis of various Ensemble methods with sample
pseudocodes to aid the implementation process. Secondly, we
implement Ensemble method algorithms using basic Python
packages such as numpy, pandas, math, matplotlib and dataset
installation packages for performance evaluations. Finally, we
applied the developed code to real-world datasets across various
industries, including healthcare, manufacturing, and real estate.
The results highlight the different parameters and their
performance on the algorithms while observing the proposed
Ensemble program for performance evaluation.

Keywords— Artificial Intelligence, Bagging, Bootstrapping,
Boosting, Classification, Decision Trees, Ensemble Methods,
Machine Learning, Random Forest, Regression.

I. INTRODUCTION

The issue of determining a suitable model for a dataset

while limiting bias and variance in classification and
regression cases has become imperative. Ensemble methods
are essential for making accurate predictions on various
datasets. They derive multiple models and combine their
outputs to obtain predictions [1] [2]. This can be achieved by
conducting majority votes for classification problems or by
computing the average of the results for regression problems.
For instance, [3] compared various classification algorithms
using Majority Voting to determine the performance
accuracies. [4] [5] applied Ensemble methods such as Boosting
and Random Forest (RF) to conduct performance accuracy on
different datasets. The ensemble method is used to create an
improved Classification model, by combining a series of

k-learned models, 1, 2, …., , which are often referred to

as base classifiers. [1]. For instance, given dataset D, we can

create a k training set, i.e., D1, D2, … Dk. Di (1 ≤ I ≤ k-1)�to
generate classifier Mi. Further, we can classify a new data tuple
by obtaining the vote from base classifier predictions to
determine the ensemble class prediction, which is more
accurate than the base classifiers [1]. Suppose a new tuple X

needs to be classified; the class label prediction will be
collected from each base classifier, and the majority will be
returned. Ensembles yield a better result when significant
diversity exists among the models [1]. Ensemble methods help
to reduce bias or variance and identify a suitable model for
datasets. The uncertainty of choosing an appropriate model is
a challenge that can be resolved by obtaining multiple models
and performing computations, to derive the right model.
Addressing the challenges in Ensemble methods involves
creating different models by conducting maximum votes or
averaging to determine the best model for prediction [1] [2].

Fig. 1. Challenges in Evaluating Ensemble Methods

The key challenges in evaluating model performance are
data issues, model complexities, resource limitations, and
security challenges as illustrated in Fig. 1. In this paper, we
will explore various Ensemble methods such as
Bagging/Bootstrap Aggregation, RF, and Boosting alongside
their underlying algorithm (DT) for Regression and
Classification cases. The contribution of this paper is
threefold. The foremost objective is to perform a theoretical
analysis of various Ensemble methods with sample
pseudocodes to aid the implementation process. Secondly, we
implement Ensemble method algorithms using basic Python
packages such as numpy, pandas, math, matplotlib and dataset
installation packages for performance evaluations. Finally,
we applied the developed code to real-world datasets across
various industries, including healthcare, manufacturing, and
real estate. The results highlight the different parameters and
their performance on the algorithms while observing the
proposed Ensemble program for performance evaluation.

II. STATE OF THE ART

This section discusses the state-of-the-art and related

literature on the various machine learning algorithms such as

Decision Tree (DT), Bagging (Bootstrap Aggregation), RF,
and Boosting used in Ensemble Methods.

The DT model is built as a tree-like structure from the top
and bottom [6]. The function of the DT is to discover patterns
for classification and regression in large data [7]. This can be
achieved by making predictions for a given observation in the
training dataset by computing the variables' mean or mode of
observation. Another function of DT is that it accepts a vector
of input values and provides an output value as the decision.
This is achieved by conducting a series of tests; the internal
node of a DT corresponds to an examination of the value of
each input attribute, the branch node is labelled with the
possible values of the feature, and the leaf node specifies the
value to be returned by the function which is also referred to
as the output [8]. DT algorithms are simple and interpretable
classifiers that stratify and segment the predictor space into
several regions. The splitting rule in the predictor space can be
summarised in a tree [9]. According to [10], tree-based
methods partition the feature space into regions where a simple
model (constant) is fitted into each region. A DT can be
applied to both Classification and Regression tasks.

For instance, given a Regression problem, we have a
dataset consisting of p inputs and one output. For each N
observation, i.e., (xi, yi) where i = 1, 2, …N, the input xi = (xi1,

xi2, ... xip). A typical regression tree will require determining the
splitting points, the splitting variables, and the tree's shape. We
can model the response as a constant cm in each region where
the region ranges through R1, R2, R3 …, and Rm [10] as shown
in (1).

The greedy algorithm can be utilized to derive the best
binary partition. It involves using all the data to determine the
best split ‘s’ and best variable ‘j’ and also defining a pair of
half-planes [10]. R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj

> s} (2). To derive the splitting variable j and the split point s,
we have to find the values that solve equation (2).

�������
Using the formula in (3) and (4), we can solve the inner

minimization for j and s.

 (3)

 (4)

To determine the split point for each splitting variable, we

scan all inputs to determine the best pair (j, s). After selecting
the best split, we partition the data into two regions; we repeat
the splitting process on each of the two regions and for other
resulting regions [10].

Another example is the case of a Classification problem.
Given a set of values, 1,2,3 … K, the criteria for splitting the
node and pruning the tree is required in the Classification tree
algorithm. In Classification, we define a node m, represented

by a region with observations. The proportion of

class k observations in node m is defined as in (5):

 The observations in node m can be classified to class km
with (6) which stores the majority class in node m:

�����������	�� � � (6)

Various node impurity measures can be used for tree-
based algorithms. Misclassification error is a node impurity
measure that works well with regression trees. Equation (7) is
the formula to estimate the misclassification error:

 The Gini index or the Gini impurity is another node
impurity measure, "referred to as a measure of node-purity -a
small value which indicates that a node contains
predominantly observations from a single class.” [9].

 The formula for cross-entropy or deviance is listed in (9).
Entropy is a measure of the uncertainty of a random variable,
the acquisition of information reduces entropy [8]. When a
random variable has one value this implies that its entropy is
0 because it has no uncertainty.

A. Bootstrap Nonparametric Resampling Technique
 Bootstrap technique, [1] [11] is a nonparametric

resampling technique used to assess the uncertainty in an
estimator to measure the standard error of coefficients in a
linear regression model by applying uniform sampling of the
training tuples with replacement. Hence, indicating that a
selected tuple can be reselected and added to the training
datasets. Further, states that Bootstrap can measure the
standard error of coefficients in a linear regression model and
for other statistical learning methods.

B. Bagging Techniques for Applying Decision Trees

Regarding Bagging techniques, [9] describes Bagging
using an example: Given a set of independent observations Z1,

Z2, Z3…. Zn, the variance and the mean is . This
implies that averaging reduces variance. Based on this, the
author stated that the natural way to increase prediction
accuracy and reduce variance is by obtaining multiple training
sets of a population, building a model for each training set as

 and obtain their prediction.

The prediction will then be averaged using (10 & 11),
which would help derive a single low-variance statistical
learning model. Although the above model is infeasible as we
do not have access to multiple training sets, this is why we
introduce bootstrapping, which will help generate sub-samples
of the original dataset/ single training dataset by applying
sampling with replacement to generate B as a different
bootstrapped dataset. The bth bootstrapped training set is

where the method will be trained to get , and all the

predictions will be averaged, and we will derive (11).

 Bagging can be applied to Regression Trees by obtaining
B bootstrapped datasets and training each with a DT model.
i.e., building B Regression Trees for B bootstrapped datasets
and averaging their predictions. The Regression tree has a low
bias but high variance as they are not pruned and have grown
deep. By averaging the B Regression tree, we can reduce the
variance. Bagging with a classification tree is quite different
from regression trees as it involves recording the class
predicted from each B classification tree and carrying out a
majority vote, which is the most commonly occurring class in
the B predictions, to determine the actual prediction. [9]. In
Bagging, when we have a strong predictor and other
moderately strong predictors, the split in each bagged tree is
most likely to select the strong predictor for its split, resulting
in the bagged trees being similar. Hence, the predictions from
the tree are highly correlated to each other [9].

(1)

(2)

(5)

(7)

(10)

(11)

(8)

(9)

C. Random Forest in Ensemble Method
RF is an ensemble of classifiers that comprises DTs. The

DTs undergo two forms of randomization. One of the
randomizations involves the DTs being trained by performing
sampling with replacement using the original dataset while
ensuring it is of the same size. The second form of
randomization is attribute sampling, which involves obtaining
a subset from the input variables at each node split to
determine the best split [12]. According to [9], RF is an
improvement to bagged trees as it involves a minor tweak that
decorrelates the trees. It is pertinent to recall that we build
DTs in Bagging on bootstrapped training samples. For
instance, let the number of predictors considered at each split
be m, and the length or total number of all predictors be p.
Whenever a split is considered for each tree, the split involves
randomly selecting m predictor from the p predictors, and we
are only allowed to choose one m predictor. Within RF, we

determine the predictor for a split by computing the and

approximating it to derive m. Based on the splitting
convention in RF, the algorithm cannot consider most of the
predictors, but only a subset; therefore, an average (p-m)/p
split will not consider the strong predictors, giving room for
the other predictors. This act is called decorrelating the trees;
as a result, the average of the resultant trees varies less and is
more reliable. The predictor choice for m is what
differentiates Bagging and RF. p is the predictor choices for
splits. When m = p, then this is referred to as Bagging, and

when m = this is RF. RF is an improvement of Bagging;

it helps to improve variable selection [13]. The idea of RF is
to support variance reduction in Bagging, and this is done by
reducing the correlation between the trees while paying
attention to the variance by not increasing it. The process is
done in the tree-growing process by randomly selecting input
variables [10]. When RFs are used for Classification, it
obtains a class vote for each tree and classifies by performing
a majority vote. For a Regression problem, RF computes the
prediction average from each tree at a target point x. Based on
recommendations by the inventors, the default value for ‘m’

is with a minimum node size of 1 for Classification, and

the default value for ‘m’ is p/3 with a minimum node size of
5 for Regression where m is the variables selected at random
from p and p represents the input variables [10].

D. Boosting Algorithm for the Ensemble Method

According to [10], Boosting is a popular and compelling
learning method used in Regression and Classification cases.
It was initially created to solve classification problems and
can also be extended to solve regression problems. The
function of Boosting is to obtain the output of weak classifiers
to produce a committee. It is similar to other committee-based
approaches like Bagging. In Boosting, a weight is assigned to
each tuple of the training set, which is then updated after
learning a classifier Mi to permit the subsequent classifier Mi+1
to concentrate on training tuples misclassified by Mi. All the
classifiers are iteratively learned, and the final boosted
classifier, Mx accumulates the votes of the individual
classifiers. The function of the accuracy of the individual
classifiers is determined by the weight of each classifier’s
vote. [1]. Adaboost, a short form for Adaptive Boosting, is a
popular Boosting algorithm. It has a substantial property: if
the input learning algorithm is weak, and its output comes
with a slightly better accuracy on the training set than random
guessing, then the AdaBoost will return a hypothesis that
classifies the training data perfectly for large enough K. The
algorithm helps to boost the accuracy of the original input
learning algorithm on the training dataset [8].

The purpose of Boosting is to sequentially apply weak
classification algorithms to repeatedly modified versions of
the data to produce a sequence of weak classifiers, obtain
predictions from all of them and obtain the final prediction
through a majority vote. [10]. Boosting implements a
weighted training set, which involves assigning a weight of

 0 to each example of a training set; the higher the weight of

an example determines the level of importance of the
hypothesis in the learning process. Boosting assigns a weight
of 1 to each of the examples; it generates the first hypothesis,
which will correctly and incorrectly classify the training
examples. The weight for the misclassified training examples
will be increased to improve the classification performance.
The weight for the correctly classified examples will decrease,
and a second hypothesis will be generated, which will then
apply the updated weighted training set. The process
continues until the K hypothesis has been generated; the K
will be an input to the Boosting algorithm. [8].

III. APPROACH

This section presents an overview of the approach used for

the paper, with a primary focus on assessing the various
machine learning methods and algorithms such as Bagging,
Bootstrapping, DTs, RF and Boosting, where each of their
implementations consisted of two forms -Regression and the
other for Classification. The description of Classification
programs will be explained using the Iris dataset, and Boston
Housing will be used as an example to describe the program
written for the Regression task, as illustrated in Table 1.

TABLE I. DATASET DESCRIPTION

Dataset Type Features Classes Dataset Size
Iris Classification 4 3 150

Boston
Housing

Regression 13 N/A 506

Cancer Classification 24 2 1000

Heart Classification 13 3 1025

Diabetes Regression 10 N/A 442

Car Prices Regression 49 N/A 13

Table 1 highlights the various datasets used to test the

written program.

� The first dataset used for Classification was the Iris
dataset. It comprises 150 observations, four features, and
one target feature of three classes. The classes in the Iris
dataset represent three types of flowers: setosa, versicolor,
and virginica. Each class was assigned 50 observations,
hence the 150 observations in the dataset.

� The Boston Housing dataset was used to test the
Regression implementation. It contains 13 features and
one target feature with 506 observations.

� The cancer patient’s dataset consists of three classes (high,
medium, and low), 1000 datapoints, 24 features,
excluding the target feature -level and an index feature
that counts each observation.

� The Heart disease dataset is another classification dataset.
It consists of two classes represented as 0 and 1. It has
1025 datapoints with 13 features, excluding the target
feature, which holds the actual value of the classes. The
CSV file for the heart disease dataset was downloaded
from the Kaggle website and added to the working
directory of the program file.

� The Diabetes dataset is for Regression. It comprises of
442 observations, 10 features, and one target feature. In
this project, the Diabetes dataset was imported from the
sci-kit learn library.

Our approach considers using the object-oriented
programming (OOP) approach with Anaconda Jupyter
Notebook to create classes, objects, inheritance, and the
freedom of reusing code by referencing functions that have the
code rather than repeating blocks of code across the program.
The program was implemented from scratch using basic
Python packages such as numpy, pandas, math, random,
matplotlib, and dataset installation packages. The pseudocode
and explanations of each algorithm from the background study
were used to guide the implementation process. The
methodology process involves the application of
preprocessing, model development and model evaluation.

Fig. 2. Ensemble Methods Program Development Life Cycle

As illustrated in Fig. 2, the development process consists

of package installation, dataset acquisition and manipulation,
model training, model testing, model evaluation and result.

� The necessary packages such as numpy, pandas, math,
random, matplotlib, and dataset installation packages
were imported to the program working directory.

� Some of the datasets were acquired through Kaggle,
World Bank data, and the UC Irvine machine learning
repository and we performed the split to separate
training, testing and validation sets.

� We trained and tested the models, for the predictions,
we applied a majority vote for classification problems
and performed averaging for regression problems.

� We used the evaluation measures for performance
accuracy, RMSE for regression and a Confusion
Matrix for Classification.

IV. IMPLEMENTATION

We conducted the following activities for the
implementation: Using Jupyter Notebook, we installed the
required packages, such as numpy, matplotlib, pyplot, and
load_Iris datasets from the sci-kit learn library. Afterwards, we
applied the OOP approach to create a program for the DTs for
both classification and regression cases. This required
installing the necessary packages and incorporating the dataset
into the written program.

A. Decision Trees

The DT comprises of the Classification Trees and
Regression Trees. The Classification Trees dataset contains
class labels that can be used to make predictions by computing
the majority vote of the classes after defining a set of rules. The

Regression Trees dataset contains continuous variables whose
mean will be computed to make the predictions.

Classification Tree: The program structure for the
classification DT involves the creation of the parent class
called Node, whose function represents each DT node. The
key variables were initialized through the class init function,
consisting of the attribute that served as a column, threshold,
left node, right node, and leaf node. They were all assigned to
None to keep them open so that whenever the class is initiated,
it can be populated with the known values for these attributes
and the necessary outputs can be stored when required.
ClassTrees inherits the Node class to enable easy access to its
properties and functions. ClassTrees, being the child class to
the Node class, contained the underlying features of the
Classification DT. Its arguments include class_data and the
tree's maximum depth (maxdepth), which were initialised as a
None type. These arguments are variables that can retain data
that will be passed onto the class upon call. The class_prob
function returns the probability of a set of labels upon function
call. It obtains the unique values in y, indicating that y is the
target variable used for measuring the most classes.
 The gini_index function was written to measure the Gini
impurity for the returned probability in class_prob. This
function was programmed by rewriting the mathematical
formula in equation 8 to compute the Gini index and return
the value upon the function call. The threshold function
derives the unique inputs for each column based on a given
condition; that is, when an input is less than or equal to a given
threshold -which is each unique input, then we place the
sorted values as a list and store it in variable B_1.
Furthermore, every other value with inputs exceeding the
threshold will be stored as B_2. Upon function call, the
dictionary of B_1 and B_2 values will be returned.
 The best function retrieved the threshold function to get
the values of the stored dictionary data. The purpose of the
best function is to define the best column name and best
threshold. The best gini was initialized as a negative infinity
float, while the best threshold and best column name were
initialized as None. Using the dictionary, all the column
names and the threshold data were retrieved and looped over,
and the input and labels of each bin were separated. The
probability was obtained for the y labels by calling the
class_prob function and then computing the gini index
function for each value. The information gain was computed
to determine the best Gini, and was used to determine the best
column and threshold as follows:

 (12)

The grow_tree function retrieved the best threshold and the
best column name from the best function. To derive the B1
and B2 values of the best threshold and best column, the
thresholds’ function needed to be called to get the dictionary
as output and use this best threshold and best column as key
for the easy retrieval of the B1 and B2 Values which was then
split into the X and y values for both the B1 and B2 as X_B1,
X_B2, y_B1, y_B2. The leaf node is computed by conducting
a majority vote on the labels, which was done by applying the
np. argmax function on the class probability to get the
maximum index in the list to determine the majority. After
which, we set conditions to produce the node of the tree to
grow the tree completely. The current value is weighed with
the set minimum value, and the specified max depth is
checked with the current depth of the tree. If the program
meets the set condition, then the parent class -Node, will be
called. All its parameters will be filled with the now-known
value, and the string function set for the Node class, a series

of strings naming the parameters with their new values, will
be returned as output onto the screen. Another function called
predict with parameter self, X and Node is used to obtain the
final prediction. It calls the createTree function, which has
three parameters: self, x, and each node. It makes predictions
based on the value of each leafnode in the best function. The
predict function obtains a list of all the predictions and
performs the majority vote to declare the prediction for the
particular tree. The matrix function is relevant for the
experimentation method as it has two parameters, the actual
and the pred, used to measure the performance of the
algorithms. The accuracies can be measured by identifying the
TP, TN, FP, and FN.

Regression Tree: The Regression [3] Tree implementation
differs from the Classification tree. The program structure for
the Regression DT involved importing the necessary
packages, such as numpy and pandas. Unlike in the
Classification tree, where we imported the dataset from the
sci-kit learn library, a dataset was stored in the working folder
called Boston Housing, which contained the test dataset used
to test the implementation to ensure that the code worked and
displayed the expected results. Similarly to the Classification,
the Regression DT had a parent class called ‘Node’. The
purpose of the Node class is to represent each node of the DT.
The key variables were initialised using the class init function,
consisting of the column, threshold, leftnode, rightnode, and
leafnode, by assigning them to ‘None’. So that whenever the
class is initiated, we can populate the known values for these
attributes and store the outputs that would be used when
needed. A new class called RegTrees was created, which
inherited the properties and functions of the Node class.
RegTrees is the child class to the Node class and will contain
the underlying features of the Classification DT. The
arguments of the RegTrees init function are the self property
used to obtain access to class attributes. The second argument
is the maxdepth of the tree, which is defined as None and
could be assigned another value upon class call. In the
RegTrees init function, the dataset was initiated by storing the
directory of the stored dataset as self.dataset, which was
further split into feature and columns variables that represent
the X and y values, and a variable min_sample was declared,
which would be used as a stopping criterion later. Due to the
outputs of the class changing forms, i.e., one of the input
values is 0.00632, and the outcome was displayed as
6.32*103, making it challenging to perform arithmetic
operations. After a series of searches, a code was obtained
from the numpy documentation and referenced in the
program. It helped to retain the actual form of the data.

The MSE function was defined to compute the mean
square error. It has the following parameters: self, act_y –
which collects the current value of y, and pred_y -which
collects the predicted value of y. The formular for MSE

was declared to compute the MSE. The splits’

function is similar to the Classification Tree threshold
function. It has arguments, X, y and the class properties using
self. The purpose of this function was to derive the unique
inputs for each column based on a given condition; that is,
when an input is less than or equal to each unique input, we
place the sorted values as a list and store it as a variable R_1.
Furthermore, every other value whose input exceeds the
threshold will be stored as variable R_2. Upon function call,
the dictionary of the values of R_1 and R_2 will be returned.

The best function -another shared function with the
Classification Tree has arguments self, X and y. We called the
threshold function to get the values of the stored dictionary
data. The purpose of the best function is to derive the best
column name and best threshold based on the best MSE, and

it was initialised as np.inf and frequently replaced with the
current MSE value until we determined the best MSE, best
threshold and best column index (best_idx). Since the most
important values are the best_threshold and best_idx, we
returned the values at the end of the function.

The grow_tree function references the split function and
the best function to obtain their returned value. The output of
the best function acts as a key to the dictionary returned from
the split function; this aided the easy retrieval of the R1 and R2
variables, which were then split into the X and y values to get
X_R1, X_R2, y_R1, y_R2. The Node class was returned after
setting stopping conditions. All the known parameters were
passed onto the Node class, and whenever the Node class was
called, the parameters with their new values were returned as
a series of strings. The last two functions are for prediction.
One of which is called predict with parameter self, X and Node.
This function aims to obtain the final prediction. It calls the
createTree function, which has three parameters: self, x, and
eachnode. It makes predictions based on the value of each
leafnode in the best function. The predict function obtains a list
of all the predictions and performs an average of all their
values to declare the final prediction for the particular tree.

B. Bagging Algorithm Implementation Process

The Bagging Classification involved creating multiple
Classification Trees, which was implemented by adding a
grow_mult_tree with a num_of_trees parameter that
determined the number of Classification Trees that should be
implemented. A bootstrap function was created that involved
performing sampling with replacement of the same size as the
original dataset, and this implied that the parameter in the
grow_tree function X and y were updated as they were passed
into a loop of the num_of_trees variable passed when the
grow_mult_tree function was called.

For the Bagging Regression, we created a function called
reg_predict, then we initiated the grow_tree function and
predicted the values passed on as its parameter for X and y. A
grow_mult_tree function was also included in this class with
num_of_trees as the parameter; a bootstrap function was
created and called in the grow_mult_tree function. The
reg_predict function was also included, and a prediction was
made for each bootstrapped training set value. The predictions
were made iteratively for range num_of_trees (the parameter
for the grow_mult_tree function) and stored in a
store_prediction list. Then, the Bagging class was initiated,
and the store_prediction list was passed in as a parameter. The
Bagging class is a child class for the RegTrees parent class.
We created the createTree function and the mean to obtain the
final prediction.

C. Random Forest Algorithm Implementation Process

The RF for Classification requires the modification of the
threshold function where the split is performed. In previous
programs -the Bagging and Classification Trees, the threshold
function contained two parameters (X and y). When they are
called, it obtains all columns of the dataset and then separates
them into two bins – B1, and B2. RF implementation for the
split is quite different from the case of Classification, and it

involves performing where p stands for the number of

columns in the dataset. Then, we sample them without
replacement and obtain the splits for fewer columns to improve
accuracy and yield better results.

Likewise, the RF for Regression consists of similar
functions; the only difference is the modification of the split
function where the split is performed. As previously stated,
within the Bagging and Regression Trees implementation, the
threshold function contained two parameters (X and y). When

the split function is executed, it obtains all dataset columns and
then separates them into two regions – R1, and R2. The process
of implementing the split in RF for regression is quite different
during training, as it requires computing p/3 (where p stands
for the number of columns in the dataset), which will then be
sampled rather than the entire columns of the dataset, to gain
better accuracy and yield better results.

D. Boosting Algorithm Implementation Process

The Classification tree in boosting was defined by
initiating a Node class after making the necessary imports,
such as the dataset, numpy package and matplotlib package,
which would be used to design plots later. A class Boosting
was then defined, and it inherits the Node class. Subsets of the
datasets were assigned as training sets, test sets, and validation
sets. In Boosting, it is required that we obtain the prediction
of multiple weak classifiers/ learners and use their outputs to
form an ensemble. We represented the weak learner as a
decision stump, a DT with a tree depth of 1. A few changes
were made to the already established Classification tree to
support the processes of the Boosting algorithm. The dataset
labels were converted to -1 and 1 to convert it to a binary
classification task and implement the Boosting algorithm
properly. A function called predicts was defined with one
parameter X. Its function is to make predictions based on the
inputs and assign labels if it exceeds a certain threshold.
Another function called best has three parameters: X, y, and
M. X is for the inputs, y is for the target, and M is for the
number of rounds. The weak learner was trained with a
distribution of equal weight, 1/N. A variable called err was
defined to identify the misclassified label's weight from the
trained model and weigh them with the other weights to obtain
the total error. Alpha is another variable of the best function
alpha; it involves measuring the performance of the weights
by computing the log. The weights were then updated for the
misclassified labels. The alpha and the prediction were
obtained and stored as a tuple for each round and then
appended into a list for both the training and test set before
being assigned to a global variable. Err_rate is a function with
two parameters: true and pred. This function measures the
error rate from the actual and predicted values. To test the
program and illustrate the plots, various ranges [1, 50, 500] of
rounds were set and the err_rate was measured and plotted
against the rounds. Both Classification and Regression share
several key functions, as in the case of other algorithms. The
difference between the two programs is the presence of the
MAE in the Adaboost for Regression trees rather than the
err_rate in Adaboost Classification trees. The MAE stands for
Mean Absolute Error. Its function is to compute the RMSE -
root mean square error, a performance measure for Regression
tasks. Various ranges [1, 50, 500] of rounds were set to test
the program and illustrate the plots, and the RMSE was
measured and plotted against the rounds.

V. RESULTS AND DISCUSSION

In this section, we will discuss the implementation
process of the developed code on real-world datasets from the
healthcare, manufacturing and real estate industries. The
program was tested on these datasets to compare the various
algorithms' performance and ensure that the program worked
well. Additionally, we will introduce the datasets and the
splits for the training, test and validation set. Various plots
illustrate the parameter changes with multiple measures and
how the algorithms differ. An example of the plots is the
confusion matrix, which helped to measure the accuracy
across various parameters, as illustrated in Figure 3. The
structure of the confusion matrix is that the top left is

considered the TN (True Negative), i.e., when the true label
and predicted label are both 0, the top right is the FP stands
for False positive. It occurs when the predicted label is 1. The
true label is 0, the bottom left is FN (False Negative is when
the predicted label is 0 and true label is 1), and the bottom
right is TP (True Positive is when both the predicted and true
labels are 1). Tests were conducted for both the training and
test sets, and the plot highlighting the difference in results was
indicated and explained in this section.

The evaluation metrics used for this Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) for
regression cases. We also used Accuracy, Recall, Precision
metrics for the Classification program as indicated in Table 2.

TABLE II. EVALUATION METRICS

Acronym Full form Formula

RMSE Root Mean Squared Error

MAE Mean Absolute Error

ACC Accuracy Acc =

REC Recall Rec =

PRE Precision Pre =

Where is the actual value, is is the predicted by the

model, and n is the number of test datasets. Table 3 depicts
the various algorithms and their performance accuracies on
datasets with parameters of different values.

TABLE III. CLASSIFICATION DATASETS PERFORMANCE ACCURACIES

Algorithm Iris Cancer Heart Number
of Trees

Tree Depth

Decision
Trees

80% 20% 66% 15 1

100% 20% 66% 10 2

100% 60% 20% 3 3

Bagging 40% 0% 20% 15 1

60% 20% 80% 10 2

80% 20% 80% 3 3

Random
Forest

40% 40% 20% 15 1

40% 20% 20% 10 2

40% 20% 100% 3 3

Boosting 66% 60% 20% - -

We obtained the training, validation and testing data by

splitting the dataset into three, and by applying string slicing,
we received the desired number of observations based on each
class and the chosen observations were concatenated to create
a new dataset that aided the testing process as shown in Fig. 3

Fig. 3. Concatenating Train and Test to Determine Optimality

The exact process was applied to the target feature and

repeated for the test and validation set. The training and
validation sets were concatenated for optimal results, and the
merged dataset was used to train the model. The predict
function was used to obtain predictions while comparing the
actual value to compute the error.

a

A. Iris Dataset for Bagging Algorithm
The Classification for the Bagging function involved running
multiple DTs, obtaining their predictions, and retrieving the
maximum. When the depth was set to 1 and the number of
trees was set to 15, the majority vote was conducted, and the
model was trained. The accuracy was generated based on the
confusion matrix, resulting in an accuracy of 40% and an error
of 60%. When the depth was changed to 2, it resulted in an
accuracy of 60%, and when the depth was changed to 3 and
the number of trees reduced to 3, it resulted in an accuracy of
80%. The error rate reduces every time the depth is changed.
A higher depth led to a reduced error rate and more accuracy
in the dataset.

B. Iris Dataset for Random Forest Algorithm
When the number of trees was set to 15 for depth 1, it

returned an error of 60%. i.e., 40% accuracy. The number of
trees was changed alongside the depth to measure the
accuracy, and it was discovered that the algorithm maintained
the accuracy across the changes made to the depths. The
accuracy obtained for this RF is steady across the dataset
when using depths 1, 2, and 3. Although the accuracy obtained
is lower than that of the Bagging, with RF, decorrelation of
the trees can be successfully achieved with reduced variance
and reliable outputs, as stated by [9].

C. Iris Dataset for Boosting Algorithm
The Adaboost plot indicated at the bottom right of Figure 5

was obtained from the experiment conducted to measure the
accuracy of the various rounds in the Boosting algorithm. The
plot shows the number of rounds against the accuracy, and it
results in a rapid rise from an accuracy of 33% at round 0 to
66% at round 50, and it maintains that to round 500.

D. Discussion
The plots in Fig. 4. illustrate a specific measure and a

corresponding range of parameters. As the key in each plot
states, a blue line indicates the accuracy of the training set,
and a red line represents the test set.

Fig. 4. Plots indicating a change in parameters vs accuracy

The top left plot displays the classification accuracy of

trees across three depths. The training set shows a steady rise
from when the depth is 0, the accuracy is 0%, and when the
depth rises above 1, the accuracy remains above 80%, while
the accuracy for the test set is constant at 40% from depth 0
to depth 2. The plot on the top right shows the accuracy of
the tree across changes in the number of tree parameters.

The plot clearly shows that the accuracy of the training
and test sets is similar, with the test set slightly higher than the
training set. The accuracy of the tree rises and falls and can

hence be considered unreliable. The plot on the bottom left is
that of RF, which produces more reliable outputs. The
accuracy of the training set begins at above 80% before falling
and rising steadily when the number of trees set is above 8.
The test set, on the other hand, follows the training set
carefully. Although its training set starts with a much less
accuracy -60%- they are similar.

E. Boston Housing Dataset for Regression Algorithms

The Regression implementation for the Boston Housing
dataset involved downloading the CSV file of the Boston
Housing dataset from the Kaggle website and adding it to the
working directory of the program file. The Boston Housing
dataset contains 13 features and one target feature with 506
observations. We concatenated the training and test set for the
regression tree and used them to train the model. To measure
the model's performance, the RMSE was computed for the
Regression tree within the Boston Housing dataset, and it was
used to obtain the precise error of the prediction. The plot in
Figure 6 illustrates the RMSE value of the depth parameter at
various levels. It is evident that the RMSE level of the test set,
as indicated by the red line, remains constant at slightly above
1.2. On the other hand, the RMSE of the training set starts at
1.0, then drops to nearly 0 at depth 1 and remains constant
afterwards as illustrated in Fig. 5.

Fig. 5. Regression Trees with Boston Housing Dataset

F. Bagging Algorithm for the Boston Housing Dataset
The plots in Figure 7 illustrate the RMSE values of the

training and test set. The dark red combines the test set -light
red and the train set -blue bars in each plot. The first plot
showed a distribution of the training and test set when the
depth was assigned to 1 and the number of trees was set to 15;
the training set and test set look close to a normal distribution,
with the presence of some outliers which are samples that vary
from a particular trend. Once the number of trees was reset to
10 and the depth was changed to 2, the test set was close to a
normal distribution with outliers and a uniform distribution
for the test set. The following observation was setting the
depth and number of trees to the same value, -3, resulting in a
right-skewed distribution for the test set and a left-skewed
distribution for the training set.

Fig. 6. Bagging RMSE with Boston Housing Dataset

G. Random Forest for Boston Housing Datasets
In Fig. 7. below, the first plot illustrates the distribution of

the graph when the depth is set to 1, and the number of trees
is set to 15; it results in a bimodal distribution for the test set.
The first one is right-skewed, and the second one is uniform.
The training set is also bimodal and shows the presence of two

normal distributions with the presence of outliers:
changing the depth to 2 and updating the number of trees to
10 results in a bimodal distribution with two left-skewed
distributions. The last plot shows a close-to-uniform
distribution when the depth is set to 3 and the number of trees
is set to 3.

Fig. 7. RF with RMSE for Boston Housing dataset

H. Boosting for Boston Housing Dataset
The Adaboost plot in Fig. 8. shows the measure of RMSE

for the various rounds in the Boosting algorithm. The plot
shows the number of rounds against the RMSE, and it results
in a rapid fall to 0.81 from an RMSE value of 1.15 in the test
set, then it remains constant to round 500. The training set, on
the other hand, has an RMSE value of 1.08, then drops to 0.93
and remains constant at around 500.

Fig. 8. Boosting with Boston Housing Dataset

I. Discussion of results
These results provide important insights into how simple
classification and regression trees can lead to overfitting. The
accuracy steadily rose for most of the Bagging problems,
indicating high variance. On the other hand, the RF is
regarded as a more reliable algorithm due to its ability to
eliminate high variance.

VI. CONCLUSION
In this paper, we have explored various algorithms

and performed theoretical analysis on various Ensemble
methods. Additionally, we discussed the implementation
process of the Ensemble method algorithms using basic
Python packages such as numpy, pandas, math, matplotlib and
dataset installation packages for performance evaluations.
Further, we used evaluation metrics such as Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) for
regression cases. We also used metrics such as Accuracy,
Recall, and Precision for the Classification program.
Furthermore, we discussed the developed code's application
and its integration to real-world datasets across various
industries, such as healthcare, manufacturing, and real estate.

The paper discusses the various implementations of
the Ensemble method algorithm by applying statistical
equations to the proposed program on real-world datasets
across various industries, including healthcare,
manufacturing, and real estate. Regarding contribution to
knowledge, all the literature has made extensive contributions
towards performance evaluations on AI regression and
classification algorithms. For instance, [4] proposed a student
performance prediction model using Ensemble methods like
Boosting and RF to enhance the performance of classifiers
like DT. [2] proposed a technique that combines the strength
of various algorithms such as DT, RF and AdaBoost to
improve their performance in regression and classification
cases. [3] conducted predictive analytics on various
algorithms using a single Malware dataset. However, none of
them used an ensemble method on various healthcare,
manufacturing, and real estate datasets to perform
evaluations. Our results highlight the different parameters and
their performance on the algorithms while observing the
proposed Ensemble program for performance evaluation.

The limitation that comes with the issue of corrupted
data and scarcity of high quantity of labelled data, extensive
memory and processing required for the use of large-scale
data to train AI models, the likelihood that adversaries could
manipulate the input data making the intended system
vulnerable to adversarial attack, and the challenge of
algorithms performing well on training sets and poorly on
testing data leading to bias and overfitting can be resolved by
further study. Future work will consider applying various
techniques on AI datasets on various classification algorithms
for cyberattack predictive analytics on IoT devices.

REFERENCES

[1] J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques,
San Francisco: Morgan Kaufmann, 2012.

[2] I. K. Nti, A. F. Adekoya and B. A. Weyori, "A comprehensive
evaluation of ensemble learning for stock-market prediction," Journal
of Big Data, pp. 1-40, 2020.

[3] A. Yeboah-Ofori, S. Islam, S. W. Lee, Z. U. Shamszaman, K.
Muhammad, M. Altaf and M. S. Al-Rakhami, "Cyber Threat
Predictive Analytics for Improving Cyber Supply Chain Security,"
IEEE Access, vol. 9, pp. 94318-94337, 2021.

[4] I. Alqatow, A. Rattrout and R. Jayousi, "Prediction of Student
Performance with Machine Learning Algorithms Based on Ensemble
Learning Methods," Web Information Systems Engineering – WISE
2023, vol. 14306, 2023.

[5] A. A. Nafea, M. Mishlish, A. M. S. Shaban, M. M. Al-Ani, K. M. A.
Alheeti and H. J. Mohammed, "Enhancing Student's Performance
Classification Using Ensemble Modeling," Iraqi Journal for Computer
Science and Mathematics, vol. 4, no. 4, pp. 204-214, 2023.

[6] A. Yeboah-Ofori, C. Swart, F. A. Opoku-Boateng and S. Islam, "Cyber
resilience in supply chain system security using machine learning for
threat predictions," vol. 4, no. 1, pp. 1-36, 2022.

[7] A. Yeboah-Ofori, "Classification of Malware Attacks Using Machine
Learning," International Journal of Security (IJS), vol. 11, no. 2, p. 16,
2020.

[8] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed., New Jersey: Pearson Education, 2010.

[9] G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to
Statistical Learning: With Applications in R, New York: Springer,
2013.

[10] T. Hastie, R. Tibshirani and J. Friedman, Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed., New York:
Springer, 2009.

[11] D. Sarkar and V. Natarajan, Ensemble Machine Learning Cookbook,
Birmingham: Packt, 2019.

[12] C. Bentéjac, A. Csörgő and G. Martínez Muñoz, "A comparative
analysis of gradient Boosting algorithms," Springer, pp. 1938-1967,
2020.

[13] N. Altman and M. Krzywinski, "Ensemble methods: bagging and
RFs," Nature Methods, vol. 14, no. 10, p. 933+, 2017.

[14] C. M. Bishop, Pattern Recognition and Machine Learning, New York:
Springer, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

