
UWL REPOSITORY

repository.uwl.ac.uk

Development of Artificial Intelligence Systems for Anaerobic Digestion

Operations.

Offie, Ikechukwu Chukwudi (2023) Development of Artificial Intelligence Systems for Anaerobic 

Digestion Operations. Doctoral thesis, University of West London. 

10.36828/xvqy2136

This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/12136/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution-Noncommercial 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


 
 

 

 

Development of Artificial Intelligence Systems 

for Anaerobic Digestion Operations 

 

Ikechukwu Chukwudi Offie 

 

A thesis submitted in partial fulfilment of the requirements of the University of West Lon-

don for the degree of Doctor of Philosophy 

 

Supervisory Team 

Prof Kourosh Behzadian 

Professor of Smart Infrastructure, University of West London 

Prof Joe Rizzuto 

Professor of Civil Engineering, University of West London 

Prof Luiza Campos 

Professor of Environmental Engineering, University College London 

 

September 2023 



 
 

 

ACKNOWLEDGMENT 

This thesis completes a long process that began a few years ago. Along the way I walked with 

many people who were inspirational and incredibly supportive. I lack sufficient words to express 

my gratitude to everyone who helped me get to where I am and make my dream come true. 

However, I will try to thank those who played an important role in this journey. 

First my gratitude goes to my principal supervisor, Prof Kourosh Behzadian for believing in me 

and constantly making efforts to encourage me especially in developing good research writing 

skills. These skills have really helped to boost my confidence in research writing. 

A special gratitude goes to my fellow PhD colleague Dr Farzad Piadeh for taking time to put me 

through machine learning using MATLAB which made my research work relatively easy. 

I would also like to thank Rokiah Yaman, Diego Vega and Dr Mark Walker who provided me with 

the data used to develop the models. I really do appreciate their support towards making my 

dreams come true. 

Words are inadequate to explain my gratitude to my parents, Engr Okey, and Lady Kene for their 

financial support towards achieving my dreams. Leaving them to chase this future was perhaps 

the most difficult choice of my life, but they have supported me in every choice and thanks to them 

I am here now. 

To my siblings, Uchenna, Ebele, and Daniel, thank them for always giving me a listening ear and 

constantly giving me words of encouragement during this journey.  

Lastly, I would like to thank my wife, my best friend and companion Chidinma, for her patience, 

support, and encouragement. She has always believed in me with strong determination, celebrat-

ing my victories and regarding any failure as an accident. I could not have done this without her 

support and words of encouragement. 



 

i 
 

Abstract 

This study explores two novel approaches for improving the performance of a micro anaerobic 

digestion system in generating maximum biogas. The micro anaerobic digestion system was a 

wet system situated in Camley-Central London. It operated continuously for 310 days under mes-

ophilic conditions. The novel approaches include a new artificial intelligence-based model frame-

work and an ensemble-based model framework. Both frameworks were developed using historic 

data obtained from the micro- anaerobic digestion system. The historic data include feed, cater-

ing, oats, liner, water, and biogas. The new artificial intelligence-based model framework entails 

developing a Recurrent Neural Network model for predicting biogas generated from the micro- 

anaerobic digestion system. The ensemble-based model framework entails combining different 

weak learning data mining models to improve the prediction accuracy of biogas generated. These 

weak learning data mining models include Support Vector Machines, K-Nearest Neighbour, De-

cision Tree, Gaussian Process Regression, Discriminant Analysis and Naïve Bayes. Both models 

were optimised after being trained to predict biogas using shuffled frog leaping algorithm to obtain 

the maximum biogas volume. The results showed great potential for the developed new artificial 

intelligence-based model in improving the performance of the micro anaerobic system in yielding 

optimal biogas by 43%. The results also showed that the average biogas produced could increase 

from 3.26 to 4.34 m3/day. The developed ensemble model demonstrated 91% biogas prediction 

accuracy from the micro- anaerobic digestion system.  The results of the weekly operation pattern 

led to 78% increase in biogas generation during the testing period. It also contributed to a 71% 

reduction in total required feeding days and 30% reduction in required pre-feeding days. The 

novel approaches demonstrated promising potentials in improving the performance of the micro-

anaerobic digestion system to obtain maximum biogas with minimum energy and low operational 

costs making it a more viable option for managing organic wastes.  
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1 Chapter 1. Introduction 

The world has continuously experienced rapid industrialised activities and economic development 

over the years (Usmani et al.,2020). These activities which have taken place over the years have 

led to exponential population growth and subsequent urbanization. It has also resulted in a tre-

mendous increase in the amount of municipal solid wastes (MSW) generated annually. Recent 

studies by Kaza et al (2018) have shown that the world generates 2.01 billion tons of MSW annu-

ally with projections that it will increase to 2.2 billion tons by the year 2025 and to 3.88 billion tons 

by the year 2050.  

The generation of MSW poses a multitude of challenges ranging from environmental problems 

such as ocean contamination, transmission of diseases, clogging of drains which causes flooding 

to social threats such as harm to human health and depletion of natural resources (Kumar et al., 

2021). It also causes economic losses as a study carried out by Wahba et al (2019) on Southeast 

Asia revealed that the economic cost of uncollected household waste that is burned, dumped, or 

discharged to waterways, at $375 per ton. The effect of this can lead to a decrease in both the 

value of dumping area and tourism (Saadatlu et al., 2023).  These multitude of challenges occur 

mainly due to the poor management of these wastes, The effect of this has led to the emission of 

greenhouse gases into the atmosphere as studies by Kaza et al (2018) revealed that 1.6 billion 

tonnes of carbon dioxide (CO2) equivalent greenhouse gases were emitted into the atmosphere 

from the volume of solid wastes generated in 2016, This represented about 5 percent of global 

emissions. Kaza et al (2018) also revealed that solid waste–related emissions are expected to 

increase to 2.6 billion tons of CO2-equivalent per year by 2050 if no improvements are made in 

the sector. 

Consequently, organic waste constitutes a significant fraction of the total MSW generated annu-

ally. It forms about 32% of the total MSW generated in high income countries, 53% in middle 
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income countries and 57% in low-income countries. All regions generate about 50% or more or-

ganic waste on average except for Europe, Central Asia and North America where higher fractions 

of dry waste are generated (Kaza et al.,2018). This fraction of MSW has been recognised as a 

critical sustainability challenge, a fact underscored by its inclusion in the United Nations Sustain-

able Development Goals (SDGs) (Soni et al., 2022). It is poorly managed as only 2% of the total 

amount of organic wastes generated are currently being treated and recycled (WBA.,2021).  Fol-

lowing the poor management of organic waste which has contributed to a multitude of changes 

in the environment, society and economy, different nations and governments globally have been 

compelled to invest more financial and material resources in the remediation of organic waste in 

recent years (Wainaina et al., 2020).  

Efforts are currently being made to revolutionize the waste management industry towards achiev-

ing sustainability and profitability (Abdallah et al., 2020). This has led to the application of waste 

management technologies like anaerobic digestion (AD), composting, incineration, and landfill 

amongst others (Fazzo et al.,2020). The AD technology has been identified as one of the most 

effective techniques for the biological treatment of biomass sludges such as sewage sludge, food 

waste, agricultural waste etc. (Dos Santos et al.,2020; Rico et al;2020). The effectiveness of AD 

can be attributed mainly due to its ability to convert organic waste efficiently into valuable re-

sources, thereby contributing to the growth of the economy while preventing the emission of 

GHGs into the atmosphere. Also, the ability of AD to prevent environmental pollution gives it an 

edge over other OWM techniques like landfill, incineration and composting which have been re-

vealed to contribute to environmental pollution (Wainaina et al.,2020).  The multi-faceted nature 

of AD has rendered it a highly ranked technique in the waste management industry and an excel-

lent tool for the realization of circular economy (WBA., 2021). Despite the multi-faceted nature of 

the AD technology, its process is slow as it requires a long hydraulic retention time usually within 

the range of less than 5 days to 40 days depending on the type of digester (Obaideen et al.,2022; 
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Uddin & Wright 2022). The long hydraulic retention time of AD tends to raise the digester volume 

and cost.  (Khalid et al., 2011). Also, the AD technology has been identified to have a low loading 

rate and slow recovery rate (Tang.,2003). These limitations hinder the wide application and adop-

tion of the AD technology to full potential as they have been observed to directly affect the perfor-

mance of AD in the production of biogas (Ankun Xu et al., 2021). To this effect, several mathe-

matical models (theoretical, analytical, and statistical) such as AQUASIM, GRANIT BIOGAS, 

ANESSA and ADM1 have been developed with the aim of estimating and optimising the perfor-

mance of AD (i.e., projection of biogas production and organic fertilizers) but their application has 

shown to have some limitations due to the complexity of their development, data demanding, and 

challenges associated with model calibration (Cruz et al. 2022). Also, the reliability of these mod-

els within the operation phase of AD plants has been observed to be more challenging as the 

operation conditions of AD processes can be highly variable and rapid changes in the control 

parameters are inevitable as it depends solely on waste composition (Cheela et al., 2021) .Based 

on this, the above-mentioned mathematical models are unable to give proper estimations of the 

model performance. Sequel to the shortcomings of mathematical models, data driven models 

such as artificial intelligence (AI) can be introduced as a good surrogate for process-based mod-

elling as they are independent of complex physico-chemical processes. Various AI methods have 

been employed in AD systems for several purposes such as fault detection, process prediction, 

optimisation, and control of biological systems such as AD (Cruz et al.,2022; Wang et al.,2022). 

This is to ensure safety and improve the stability of the AD system (Kazemi et al.,2021). Several 

research works have studied the application of different AI methods in AD processes for modelling 

the relevant non-linear and complex relationships focusing on the optimization of particle size of 

organic matters, organic loading rate (OLR), ratio of carbon to nitrogen (C/N), pH and tempera-

ture, and retention time (Zhang et al., 2019). However, to the best of author’s knowledge, few 

research works have either presented an AI-based framework or an ensemble-based model for 

developing real-time operation strategies to improve the AD performance in producing biogas 
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from the food waste generated in an urban area. Although the development of smart and decision-

making frameworks in waste management have recently attracted more attention by researchers 

(Shahsavar et al. 2021; Shahsavar et al. 2022), none of the previous works either developed a 

framework for the operation of AD systems based on either RNN or a time series ensemble model 

for the real-time operation of AD. Also, no proper investigations were carried out on the effect of 

different waste compositions and the water added to the anaerobic digester on biogas yield. In 

addition, those previously developed models mainly used simple ML or ANN whereas the perfor-

mance of the AD procedure may fit in better with simulation of time-series models that rely on 

earlier timesteps. This is particularly important because AD systems are operated continuously 

and are highly dependent on sequential and continuous input waste load (Yang et al.,2022; 

Chozhavendhan et al.,2023). This type of modelling can be envisaged through the application of 

a recurrent neural network (RNN) model for monitoring the performance and stability of the AD 

processes thus distinguishing it from previously developed AI models (Offie et al.,2022; Offie et 

al.,2023). Furthermore, the application of RNN model in AD has a shorter execution time, it does 

not require the multi-disciplinary knowledge related to bio-kinetics, microbiome, heat/mass trans-

fer and avoidance of model re-calibration if trained based on extensive datasets compared to 

AQUASIM, ANESSA and ADM1 models. Hence, this study is aimed at developing an artificial 

intelligence (AI)-based framework for the optimal operation performance of an AD plant located 

in a residential area based on recurrent neural network (RNN) and optimisation techniques. It is 

also aimed at determining the maximum volume of biogas that can be generated from an AD plant 

using AI-based models. Moreso, a time series ensemble model will be developed using different 

weak learning data mining (WLDM) models to improve the biogas prediction accuracy of the AD 

plant. The developed ensemble model will then be optimised using an optimal algorithm, and the 

best input pattern which can yield maximum volume of biogas from the AD plant on a weekly basis 

will be investigated. This study will be achieved using data collected from a micro-AD plant in 

Camley Central London as the pilot study.  
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This thesis is organized as follows:  

Chapter 1 presents an overview of the study. A background is provided, the problem/knowledge 

gap is stated and a summary of the current state of the research is presented. The aims and 

objectives of the study as well as the research questions and significance of the study are also 

stated. 

Chapter 2 provides a detailed insight into the theoretical background of the subject. A definition of 

anaerobic digestion technology is given followed by a brief history of anaerobic digestion technol-

ogy, its applications globally, the different types of AD systems as well as the challenges associ-

ated with the AD process. A critical evaluation of AD challenges will also be presented in this 

chapter. Moreso, a review of the various AI applications in anaerobic digestion systems for various 

purposes as well as the challenges and knowledge gaps will also be discussed in this chapter.  

Chapter 3 describes the methodology adopted to achieve the aims and objectives of this research 

study. This chapter centres mainly on the series of steps taken to achieve the aims and objectives 

of this study.  

Chapter 4 presents the results obtained from the proposed methodology outlined in this study 

which will be extensively discussed.  

Chapter 5 presents the summary of research findings, the key contributions to knowledge and the 

relevance to the discipline. This chapter also presents the general recommendations for future 

research work based on the research findings which emerged from the analysis of the results 

obtained.  

1.1 Research Aims  

The research aims of this study are. 



 

6 
 

 To develop an RNN model based on AI for improving the performance of the AD system in pro-

ducing maximum volume of biogas. Secondly, to develop a time series ensemble model using 

different weak learning data mining (WLDM) models for the real-time operation of the AD system. 

 

1.2 Research Objectives 

The research aims of this study will be achieved through the following objectives. 

1. To investigate the effectiveness of the developed RNN model in the accurate prediction of 

biogas produced from the AD system.  

2.  To determine the maximum volume of biogas that can be generated from the AD system 

using the developed RNN-SFLA model. 

3.  To determine the effectiveness of the developed time-series ensemble model for the real-

time operation of the AD system.  

4. To determine the optimal weekly pattern capable of yielding maximum volume of biogas 

from the AD system using the developed AI-based models (RNN and Time-Series Ensem-

ble Model).  

1.3 Research Questions 

To address the objectives of this study, the following research questions will be addressed: 

1. What impact does the developed RNN model have both on the AD system and other 

AD systems? 

2.  What is the significance of the maximum volume of biogas generated from the AD 

plant using the developed RNN-SFLA model on the AD system? 
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3. What is the significance of the developed time-series ensemble model on the AD sys-

tem? 

4. What impact does the determined optimal weekly pattern have on the overall operation 

of the AD system as well as other AD systems? 

1.4 Scope of Study 

Organic waste is a major source of concern in the world today. It has raised a lot of public 

health concerns over the years following the numerous environmental impacts associated with 

it. The effect of this has led to the introduction of AD technology which has been considered 

as one of the most effective organic waste management techniques. However, AD has its 

limitations which has hindered its application for full potential. This has necessitated the need 

for the introduction of AI and ensemble-based models into AD with the aim of improving its 

performance. Hence, this research study tends to address the limitations of AD using a new 

AI-based model and an ensemble-based model to improve its effectiveness in biogas produc-

tion. 

Table 1.1: Types of Anaerobic Digesters, HRTs, Temperature Range and TS contents 

Type of Anaer-
obic Digester 

Hydraulic Retention 
Time (HRT) (days) 

Temperature 
Range 

Total Solid 
Content (%) 

Covered La-
goon 

30-40 Psychrophilic 0.5-2 

 
Complete Mix 

0-25 Mesophilic/thermo-
philic 

3-10 

Plug Flow 10-25 Mesophilic/thermo-
philic 

10-15 

Fixed Film Below 5 Mesophilic/thermo-
philic 

1-5 

Source: Uddin & Wright (2022) 
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Table 1.2: Linkage between the Research Objectives and Research Questions  

Research Objectives Research Questions Cross-Refer-
ences 

To investigate the effectiveness 
of the developed RNN model in 
the accurate prediction of biogas 
from the AD system 

What impact does the developed 
RNN model have both on the AD sys-
tem and on other AD systems? 

Chapters 3 and 4 

To determine the maximum vol-
ume of biogas that can be gener-
ated using the RNN-SFLA model. 

What is the significance of the maxi-
mum volume of biogas generated 
from the AD plant using RNN-SFLA 
on other AD systems? 

Chapter 4 

To determine the effectiveness of 
the time-series ensemble model 
for the real-time operation of the 
AD system 

What is the wider significance of the 
developed time-series ensemble 
model for the AD system? 

Chapter 3 and 4 

To determine the optimal weekly 
pattern capable of yielding maxi-
mum volume of biogas from the 
AD system using the developed 
AI-based models. 

What impact does the optimal weekly 
patterns have on the overall opera-
tion of the AD system as well as other 
AD systems? 

Chapter 4 
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2 Chapter 2. Literature Review 

This chapter focuses mainly on the existing literature on the application of AI- and ensemble-

based models in AD systems with the aim of improving their performance in the generation of 

maximum volume of biogas. To a large extent, an overview of anaerobic digestion technology 

is given laying emphasis on the history of the anaerobic digestion technology, types of anaer-

obic digestion systems, different designs, processes, parameters/factors influencing the AD 

process,  its applications in the treatment of organic waste at different levels in different coun-

tries across the globe, its linkage to the SDGs and the challenges associated with anaerobic 

digestion technology and the challenges associated with the AD process will be presented in 

this chapter.  A critical evaluation of AD challenges especially with regards to the management 

of the end products as well as the current stringent legislation on the reuse of the end-products 

will also be carried out in this chapter. 

Lastly, a review of the concept of artificial intelligence, its brief history and applications in AD 

systems will be presented in this chapter. The challenges and knowledge gaps associated 

with the previous application of AI in AD systems will also be stated under this chapter. 

 

2.1 Anaerobic Digestion (AD) Technology 

Anaerobic Digestion is a process in which microbes break down or digest complex organic 

waste into another form in the absence of oxygen (Obaideen et al.,2022). The diverse micro-

bial population degrades organic waste resulting in the production of biogas and other energy- 

rich organic compounds such as liquid and solid fertilizer highly useful to mankind in numerous 

ways as end products (Azeem et al.,2011), as observed in Figure 2.1.  It has been identified 

as a green technology which has been applied for more than 100 years to stabilize organic 

waste including sewage sludge, food waste and livestock wastes to produce methane 
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gas/biogas as a by-product (Cruz et al.,2022). The history of AD can be traced back to the 

10th Century BC and 16th Century in Assyria and Persia respectively where biogas was used 

to heat bath water (Auer et al.,2017). In the 17th Century, Jan Baptita Van Helmont discovered 

that flammable gases could evolve from decaying organic matter. In 1778, the physicist Ales-

sandro Volta scientifically identified that gas as methane (Gijzen., 2002). Later in 1808, Sir 

Humprey Davy discovered that methane was present in the gases produced during the anaer-

obic digestion of cattle manure and in 1859, the first digestion plant was built at a leper colony 

in Bombay, India. 

 

                         Figure 2.1: Anaerobic digestion technology and its applications 

   In 1895, anaerobic digestion got to England when biogas was recovered from a carefully 

designed sewage treatment facility and used to fuel streetlamps in Exeter. This then resulted 

in the development of microbiology as a science, which led to research by Buswell and others 

in the 1930s to identify anaerobic bacteria and the conditions that promote the production of 

methane. The AD technology rose to prominence following the shortage of fuel during World 

War II (1939-1945) where it was used to produce fuel from biogas. However, interest in AD 
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dropped after the World War II until in the 1970s where it sparked interest as a result of the 

global energy crisis.  

The AD technology has been identified as one of the most attractive methods for the treatment 

of both organic liquid effluents and organic solid wastes (Dhussa et al.,2014). It has continu-

ously received attention globally over the years having been successfully implemented both 

at the industrial and domestic level playing a vital role in our world (Karagiannidis & 

Perkoulidis.,2019). It has proven to be highly useful in the areas of biowaste management, 

food production, energy production and pollution prevention.  

2.1.1 Types of AD Systems 

AD technology is made up of different types which exist based on the moisture content of the 

feedstock, feeding frequency, mixing type and temperature (Uddin & Wright 2022). This is 

illustrated in Figure 2.2. The moisture content of the feedstock is divided into two categories 

namely wet AD and dry AD. In the wet AD system, the moisture content of the feedstock is 

more than 85%. Feedstocks are stirred mechanically to prevent solid precipitation. Generally, 

substrates are continuously fed to the anaerobic digester and removed after a specific HRT 

has been attained. Feedstocks containing high moisture content such as sewage sludge and 

animal manure adopt wet AD process due to the high energy demand required to reduce their 

moisture content. Dry AD is used for feedstock having a higher solid content above 15% (Ud-

din & Wright 2022). The feedstocks are stacked in a sealed tank with hot water or slurry spread 

over the feedstock to provide a specific digestion temperature. Substrates such as solid ani-

mal manure, biosolids from municipal solid waste (MSW), food waste, yard trimmings, and 

energy crops are suitable for the dry AD process.  

The feeding frequency is subdivided into two categories namely, A batch digester and the 

continuous digester. In the batch digester, feedstocks are added at the beginning of the pro-

cess and kept covered for a specific period. The digester is then emptied prior to the addition 
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of the next batch of feedstocks. Operation and maintenance of a batch digester is simple, but 

the production of biogas is periodic. However, in the continuous anaerobic digester, feed-

stocks are continuously added with biogas and digestates being removed at a similar rate. 

Continuous digesters constantly produce biogas with minimum digester downtime. 

In the case of mixing, the feedstock can either be completely mixed or not mixed at all. Mixing 

of feedstock can be carried out in different ways, such as mechanical agitation, biogas recir-

culation, recirculation of digesting content using either a pump or nozzle. The mixing process 

requires a complex design of the digester (Uddin & Wright.,2022). The operating costs of the 

mixing category are usually higher compared to the non-mixing category. 

Lastly, the temperature of AD is categorized into three different types namely psychrophilic, 

mesophilic, and thermophilic. The psychrophilic temperature occurs at temperatures less than 

20 degrees Celsius. Mesophilic temperature occurs at temperatures within the range of 30-

45 degrees Celsius. The thermophilic temperature operates at temperatures within the range 

of 55-60 degrees Celsius (Uddin & Wright.,2022). However, previous research studies carried 

out on anaerobic digestion technology have shown that anaerobic digestion operations are 

mostly carried out at mesophilic temperatures (El-Mashad et al., 2003; Khalid et al.,2011). 

The operation in the mesophilic range is more stable thereby requiring a smaller expense of 

energy (Fernandez et al., 2008; Ward et al., 2008). Another study by Castillo et al. (2006) 

revealed that the best operational temperature was 35˚C with an 18-day digestion period. The 

study by Castillo et al in 2006 also revealed that a little fluctuation in temperature from 35 ˚C 

to 30˚C caused a reduction in the rate of biogas production (Chae et al., 2008).  Generally, a 

temperature range between 35– 37˚C is considered suitable to produce methane and a 

change from mesophilic to thermophilic temperatures can cause a sharp decrease in biogas 

production until the necessary populations have increased in number (Khalid et al.,2011). 
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Figure 2.2: Structure of the types of AD Systems 

2.1.2 Types of AD Designs 

 The AD system has different standard digester designs. These standard digester designs 

include, covered lagoon, complete mix, plug flow and fixed film.  

In covered lagoons, feedstocks are stored in an underground lagoon covered with a gas-

tight flexible cover. The lagoon serves simultaneously as storage and reactor.  Covered 

lagoon digesters are best suitable in warmer regions where the ambient temperature is 

sufficient to provide the required digestion temperature. Feedstocks having low solid con-

tent within range 0.5–2% are optimal for this type of digester due to the easy and inexpen-

sive handling of larger volumes. The typical HRT is 30–45 days. Often, screening larger 

solid particles from the feedstock is necessary to prevent a crust from forming on the la-

goon surface to lower the biogas production efficiency (Uddin & Wright 2022). 

A complete mix digester Is an above-ground tank made of insulated concrete or steel. A 

rigid or flexible cover is used to hold the produced biogas and later collect via gas 
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collecting pipes. Heat exchangers maintain the digestion temperature, and generally, a 

mechanical mixing system is attached to ensure complete mixing of the feedstock. Com-

plete mix digesters are capable of handling non-homogeneous feedstock with higher solid 

content (3–10%) feedstock. Like covered lagoons, they are suitable for any ambient con-

ditions. The HRT for complete mix digester is lower than for a covered lagoon ranging 

from 10 to 25 days. 

Plug flow digesters operate similarly to the complete mix digester, except for the feedstock 

having no mechanical mixing. The plug flow digester is a horizontal, cylindrical shape re-

actor where feedstock enters from one end and the digestate exits from the other end. 

The incoming feedstock pushes out an equal amount of substrate while digestion occurs 

along the way. Plug flow digesters are typically in-ground and covered with a flexible cover. 

The feedstock solid content needs to be high (<10–15%) to ensure the movement of fluid 

through the reactor (Uddin & Wright.,2022).  

 Fixed film digester design promotes microbial growth as a thin film on the surface, often 

called a biofilm. A column packed with supporting media such as a small plastic ring or 

wood chips is placed inside the digester. This type of digester is not suitable for all sub-

strates as the packed column has a very narrow space for the substrate flow. The accepta-

ble solid content for this type of digester is 1–2%; higher solids can clog the substrate flow 

through the digester media. A shorter HRT, typically 2–6 days, is the main characteristic 

of this type of digester, resulting in a smaller digester volume. 

 

2.1.3 Processes of the AD system 

The anaerobic digestion of organic material is a complex and multi-step process (Khalid et 

al.,2011). It involves several different degradation steps. The microorganisms that participate 

in the process may be specific for each degradation step and thus could have different 
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environmental requirements (Gupta et al.,2022). These stages include enzymatic hydrolysis, 

acidogenesis/fermentation, acetogenesis and methanogenesis (Park et al.,2005; Charles et 

al.,2009) as shown in figure 2.3. A pre -treatment step is usually carried out to precede the 

actual biodegradation process. This is to adequately prepare substrates with different struc-

tures such as lignocelluloses (Sarsaiya et al., 2019a). It also helps to improve the quality of 

biogas generated as the quality of biogas generated from an AD plant is dependent on the 

quality of the substrate/waste input. The enzymatic hydrolysis stage is a chemical process 

where, complex organic molecules are converted into a simple substance like amino acid, 

long-chain carboxylic acid, and sugars (Rasapoor et al., 2020). Fermentation/Acidogenesis is 

a biological process in which bacteria are used to decompose the simple monomers to sugars 

and amino acids into different by-products like ammonia, hydrogen, organic acids, and carbon 

(Pramanik et al., 2019). Similarly, acetogenesis is the biological reaction, where volatile fatty 

acid (VFA) is converted into amide ion, hydrogen, and carbon dioxide. Methanogenesis is a 

biological process where methanogens are used to convert digested materials into methane 

and carbon dioxide which forms biogas (Arif et al., 2018).   

Due to the AD process which involves a series of biochemical and physical processes, its 

efficiency and stability are influenced by various parameters depending on the type of the AD 

plant. These parameters include temperature, pH, moisture content, carbon to nitrogen ratio 

(C: N), organic loading rate (OLR), hydraulic retention time (HRT), Total Solids (TS) and Vol-

atile Solids (VS) (Khalid et al., 2011; Uddin & Wright 2022). The temperature parameter has 

a significant effect on the microbial community, kinetics of the process and stability as well as 

the methane yield from the biogas produced). For instance, low temperature during the AD 

process has been observed to decrease the growth of microbes, the rate of substrate utiliza-

tion as well as the production of biogas (Trzcinski & Stuckey, 2010). It could also result in an 

exhaustion of cell energy, a leakage of intracellular substances or complete lysis (Kashyap et 

al., 2003). In addition, high temperatures cause a decrease biogas yield due to the production 
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of volatile gases such as ammonia which suppresses methanogenic activities (Fezzani and 

Cheikh, 2010). Generally, anaerobic digestion operations are carried out at mesophilic tem-

peratures (i.e., temperature between 35˚C-37˚C). This is because AD operation in the meso-

philic range is more stable and requires a smaller energy expense compared to the thermo-

philic range (Fernandez et al., 2008). Also, temperature within this range (mesophilic) ensures 

suitable production of both methane and biogas from AD.  

The pH parameter has a significant effect on the microbial degradation efficiency which influ-

ences biogas yield produced from AD operations (Jayaraj et al.,2014). Moisture content influ-

ences the performance of the degradation process by dissolving readily degradable organic 

matter (Khalid et al.,2011). The carbon to nitrogen ratio of the organic material plays a crucial 

role in achieving a balanced AD process. The carbon ratio is the energy source for microor-

ganisms, while the nitrogen ratio is required for the microbial growth or metabolism. The OLR 

describes the input rate of the organic material per unit volume of the anaerobic digester. It is 

dependent on the concentration of the substrate organic matter. OLR is also a critical opera-

tional parameter influencing biogas production from AD as it represents the biological conver-

sion capacity of the AD system (Sun et al.,2017). The HRT variable is another important vari-

able/parameter influencing AD operations. It has a significant effect on the performance of the 

anaerobic digester in producing biogas efficiently (Ezekoye et al.,2011). However, its signifi-

cance in the performance of the anaerobic digester in producing biogas efficiently is depend-

ent on the temperature of the digester.  Also, it plays a major role the efficiency of the AD 

system as literature has shown that the AD system is inefficient at lower OLR. It improves with 

an increase in OLR at an appropriate range. On the other hand, the increase in OLR beyond 

its appropriate range leads to a drastic decrease in biogas yield. This causes a corresponding 

failure of the AD system (Li et al.,2015). Total Solid (TS) of the feedstock plays a vital role in 

the performance of the AD plant. According to studies carried out by Yi et al (2014), change 

in the content of total solids will lead to a change of microbial morphology in systems which 
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had a significant impact on the performance of the AD system. For instance, an increase in 

the total solid content led to a better performance of the AD system including reduction of 

volatile solids and methane yield.  The Volatile Solid (VS) is a fraction of the TS mostly within 

the range of 89-92%. Like TS, it provides useful information about the yield of biogas expected 

from the AD process as well as the efficiency (Orhorhoro et al.,2017).    

2.1.4 Link between AD and SDGs 

The application of AD technology for biowaste management, food production, energy produc-

tion and pollution prevention purposes cuts across the three pillars of sustainable develop-

ment (i.e., environment, society, and economy). These three pillars of sustainable develop-

ment form the basis of human existence (Obaideen et al.,2022). It can operate at sizes from 

that of a test tube to tanks of many thousands of cubic meters (WBA., 2021). As such, it is 

adaptable and has been revealed to play vital roles in contributing towards the achievement 

of 15 out of the 17 sustainable development goals (SDGs) both directly and indirectly in the 

remotest parts of the global south to the organic wastes created by world cities such as New 

York (Obaideen et al.,2022). The various contributions of AD towards the achievement of the 

15 out of the 17 SDGs are presented in Table 2.1. 

An example is the application of AD for the purpose of providing clean and affordable energy 

in line with contributing towards achieving SDG 7. The application of AD for this purpose has 

been observed both in developing countries and developed countries across the globe. For 

instance, countries like China, India, Bangladesh, Nepal, Vietnam, Sri Lanka, Pakistan and 

Thailand have extensively applied on AD on small scale for household cooking, heating, and 

lighting (Eurostat & European Statistics.,2017; N. Scarlet.,2015).  Reports by Fairfield in 2021 

revealed that there were more than 6 million anaerobic digesters in China and India alone 

where most of the anaerobic digesters are small scale. It has also been extensively applied 

in developed countries within the EU where they have been used for advanced purposes and 
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are currently the world leader in the production of biogas for electricity from more than 17,400 

biogas plants. In addition, AD technology has also been used in the United States where there 

were more than 2100 biogas plants in 2017, of which 250 farm-based digestion plants using 

livestock manure (US, EPA.,2017). Also, about 1240 WWTPs operating anaerobic digesters 

producing biogas from 15,000 WWTPs were reported to exist in the US in 2017. In the case 

of Africa, biogas production from AD plants is still less developed compared to other regions 

globally however, biogas digesters have been installed in several African countries like Bu-

rundi, Botswana, Burkina Faso, Cote d’Ivoire, Ethiopia, Ghana, Guinea, Lesotho, Kenya, Na-

mibia, Nigeria, Rwanda, Senegal, South Africa, Uganda, and Zimbabwe) through the imple-

mentation of national programs (Viancelli et al.,2019; Cheng S et al.,2014). These programs 

have been successfully implemented in Rwanda, Tanzania, Kenya, Uganda, Ethiopia, Cam-

eroon, Benin, and Burkina Faso (Austin & Morris 2012). Furthermore, a Biogas Partnership 

Programme (ABPP), supported by the Ministry of Foreign Affairs of the Netherlands and Neth-

erlands Development Organisation aimed at developing national biogas programs in five Af-

rican countries (Ethiopia, Kenya, Tanzania, Uganda, and Burkina Faso) was established for 

building 100,000 domestic digestors to provide access to clean energy for a half million people 

by 2017. The program led to the installation of almost 60000 biogas plans in these five coun-

tries (16,419 in Kenya, 13,584 in Ethiopia, 13,037 in Tanzania, 6504 in Uganda and 7518 in 

Burkina Faso) as reported in 2017 (N. Scarlet et al.,2018). Several agricultural and domestic 

biogas plants have also been set up for rural households in Latin America. Further studies 

conducted by N. Scarlet et al (2018) revealed that the network for Biodigesters in Latin Amer-

ica and the Caribbean have promoted the development of small bio-digesters in Bolivia, Costa 

Rica, Ecuador, Mexico, Nicaragua, and Peru where Bolivia was reported to be leading with 

over 1000 domestic biogas plants installed. Large-scale biogas plants have been built to use 

effluents from palm oil mills and large farms in Colombia, Honduras, and Argentina (Kapoor 

& Vijay 2013). Brazil was reported to have 127 biogas plants using agricultural and industry 



 

19 
 

residues, biowaste, sewage sludge, and landfill gas, which produced about 1.6 million Nm3 

/day, (584 billion m3 biogas/year) representing 3835 GWh of energy in 2015 (IEA.,2015; N. 

Scarlet et al.,2018). The installed biogas electricity capacity has increased significantly in the 

last years, reaching 196 MW in 2015 and 461 MW in 2016 (IRENA.,2023). The installed bio-

gas electricity capacity was also observed to increase to 486 MW in 2022(IRENA.,2023). 

Through the application of AD technology across these countries, it helps to prevent environ-

mental pollution as the AD technology serves as an alternative to household energy sources 

such as wood, coal, and liquefied petroleum gas which have adverse effects on the environ-

ment through the burning of fossil fuels (a major contributor to global warming which exacer-

bates the variability of climate) (Hoppe and Sander, 2014).It has also helped to improve the 

quality of living standards through the provision of better air quality and better health as the 

production of biogas from the use of AD for domestic purposes has helped to replace the use 

of firewood which produces a lot of smoke and soot particles harmful to the human health 

(Gautam et al.,2009).  

Another research study of the application of AD for 12 remote families in a project to replace 

firewood with biogas indicated that firewood usage decreased by 50-60%, and the cooking 

time was reduced by 1hr (Garfi et al., 2016). The resultant effect of this led to a reduction in 

the burning of fossil fuels and deforestation which are major contributors to global warming, 

climate change and melting of the polar ice which have adverse effects on the human health. 

Moreover, the use of biogas for cooking has helped to reduce the burden of women in remote 

families charged with the responsibility of going to long distances to collect firewood used for 

cooking (WBA.,2018). This is in line with the achievement of SDGs 3 and 5 respectively.  

Furthermore, the application of AD for the purpose of generating renewable energy has 

demonstrated to have positive impacts on the environment, society and economy, contributing 

towards the achievement of SDGs 4, 6,8,9,11,12, 13,14, 15 and 16. This observation has 

been made by different research works that have been carried out on the AD technology in 
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Bangladesh where showing the contributions of AD towards improving the quality of education 

in rural communities through increasing energy accessibility thereby contributing towards 

achieving SDG 4. This assessment of a study about cow dung used to generate biogas and 

its effect on the sustainable development of a district in Bangladesh showed that the biogas 

plant provided an efficient way of converting cow dung into useful energy and fertiliser (Shai-

bur et al., 2021). It also enhanced the cooking environment for biogas digesters, which de-

creased the time required to collect wood for cooking food, providing people ample time to 

attain education.  

The application of AD for energy generation has contributed towards economic growth, es-

tablishment of small-scale industries in rural areas as well as sustainable cities and commu-

nities in different parts of the world. These are in line with achieving SDGs 8,9 and 11. These 

have been observed in China, India, United States, France, Italy, United Kingdom, and Ger-

many where series of digesters have been constructed and used for treating different kinds 

of organic wastes (Akhiar et al., 2020). In addition, it has helped to enhance the efficiency of 

natural resource usage and improving the waste recycling process as more organic wastes 

have been diverted from landfills. This is in accordance with achieving SDG 12. The diversion 

of more wastes from landfills has also helped in contributing towards the mitigation of climate 

change, in accordance with achieving SDG 13. It has contributed towards minimising air pol-

lution from the emission of GHGs such as methane and carbon dioxide.  

Moreover, it has helped to promote environmental sanitation globally in line with contributing 

towards achieving SDGs 6, 14 and 15 through water and soil pollution prevention which occur 

from landfill leachate. The establishment of AD programmes in rural communities can also 

help to unite people as it brings them together for the achievement of a common goal (WBA, 

2018). Through this means, peace and unity amongst the people are promoted as the estab-

lishment of AD technology for biogas and organic fertiliser production have several communal 

and societal benefits. This is in line with achieving SDG 16 (Winter.,2008). Furthermore, AD 
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technology has been found useful in the area of food production through the promotion of 

sustainable agriculture in accordance with achieving SDG 2 (Obaideen et al.,2022). Though 

it is still emerging in developing countries around the world however, reports have shown that 

the application of AD in agriculture has significantly increased the carbon content of the soils 

(Lohani et al.,2021). It has also led to a better soil coverage, reduced leaching, and run-off 

due to self-sufficiency in fertilisers (Bong et al., 2017). Reports have also shown that adding 

value to the waste through the application of AD has helped to change it from a burden on the 

government into an opportunity to produce biogas, bio-fertiliser and create new jobs especially 

in China and United States with the aim of achieving SDG 1 (Obaideen et al., 2022).  

The AD technology is a well-established technology for the treatment of both solid and liquid 

organic wastes (Dhussa et al.,2014). It is regarded as a more preferable waste management 

option than others in the organic waste management industry. This is because it has a low 

energy requirement and a low biomass for operation unlike the composting technology. Also, 

the ability of AD to prevent environmental pollution as it takes place in the absence of oxygen 

makes it a more preferable and sustainable option for managing organic wastes compared to 

other organic waste management techniques like landfill, incineration, and composting. 
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        Figure 2.3: Processes in Anaerobic Digestion Technology 
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Table 2.1: Connection between the potential contribution of AD to the SDGs 

SDG Objective Contribution of AD to SDG                              Refer-
ences 

1. No 
Pov-
erty 

To eradicate poverty in all its forms 
everywhere across the globe. 

Assisting the smallholder by providing 
affordable fertilizer and eliminating the 
issues of the complexity of the fertilizer 
supply chain. 
 Creation of jobs through the adoption 
of a new business 

 Herrmann., 
2013 

2. Zero 
Hunger 

End hunger, achieve food security 
and improved nutrition. 
 To promote sustainable agriculture 
everywhere across the globe. 

Restoring soils through the recycling of 
nutrients, organic matter, and carbon 
Increasing the yield of crop through the 
use of nutrient-rich digestate bio-ferti-
lizer.  
Recirculating phosphorus, which is vital 
for the growth of plants but limited in 
supply. 

Arthurson., 
2009 

3. Good-
Health 
and 
Well-
Being 

To ensure healthy lives and promote 
well-being for all ages. 

Reduction of indoor air pollution through 
the substitution of solid biomass-based 
domestic fuels with biogas 
Diverting organic wastes from landfills 
by treating and recycling organic 
wastes will help to reduce odours and 
the spread of diseases. 

 (Ilo et al., 
2020; Zeng 
et al., 2020) 

4. Quality 
Educa-
tion 

Ensure inclusive and equitable qual-
ity education and promote lifelong 
learning opportunities for all. 

Increasing energy accessibility in rural 
areas will improve the quality of educa-
tion. 

Obaideen et 
al., 2022 

5. Gen-
der 
Equal-
ity 

To achieve gender equality and em-
power all women and girls globally 

Reducing the burden of collecting fire-
wood in remote areas with the aim of 
improving the quality of women and 
children’s lives. 

Tamburini et 
al., (2020) 

6. Clean 
Water 
and 
Sanita-
tion 

To ensure the availability and sus-
tainable management of water and 
sanitation for all 

Providing decentralized, local treatment 
of biosolids in remote and rural commu-
nities to reduce odours and the spread 
of disease.  
Stabilizing and recycling biosolids 
through anaerobic digestion to enable it 
to be applied back to land. 
Reducing the carbon loading of 
wastewater to reduce its impact on wa-
ter bodies. 

Adnan et al., 
2019 

7. Afford-
able 
and 
Clean 
Energy 

Ensure access to affordable, reliable, 
sustainable, and modern energy for 
all 

Reducing the dependence on fossil-fuel 
based energy sources by replacing with 
biogas.  
Capturing waste heat from co-generat-
ing units linked to biogas plants. 
Utilizing locally produced waste and 
crops to generate energy for rural and 
remote communities.  
Storing biogas to produce energy when 
required 

 
 
Ullah et al., 
(2017) 
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8. Decent 
Work 
and 
Eco-
nomic 
Growth 

To foster sustained, inclusive, and 
sustainable economic growth, full 
and productive employment  

Increasing the gross domestic product 
(GDP) by enhancing waste utilization.  
 Reducing materials carbon footprint 

(Ahmad et 
al., 2018 
Adnan et al., 
2019; 
Hansupalak 
et al., 2016; 
Okoro & 
Sun., 2019) 

9. Indus-
try, In-
nova-
tion, 
and In-
fra-
struc-
ture 

To build resilient Infrastructure,  
To promote sustainable industrializa-
tion and  
foster Innovation 

Improving the self-sufficiency and sus-
tainability of industries by extracting the 
energy from their own effluents  
Collaboration between industries and 
agriculture for mutual benefit  
Generating short term construction em-
ployment and long-term equipment 
manufacturing and maintenance em-
ployment 
  Encouraging the growth of micro-en-
terprises through the provision of relia-
ble electricity 

(Verhoog et 
al., 2016)  
(Abdul Aziz 
et al., 2019)  

11: Sustain-
able Cities 
and Com-
munities 

To make both cities and human set-
tlements safe, resilient, and sustain-
able 

Meeting the needs of people for basic 
services including energy and water. 
Reducing the adverse environmental 
impact of cities by investing in renewa-
ble energy, managing scarce re-
sources, and improving waste and recy-
cling systems. 

 (Yasar et al., 
2017), (Ve-
livela et al., 
2020) 
(Kelebe et 
al., 2017) 

12: Re-
sponsible 
Consump-
tion and 
Production 

Ensuring sustainable consumption 
and production patterns 

Enhancing the efficiency of natural re-
source usage. 
 Reducing air and water pollution  
Improving the waste recycling process 

Paolini et al., 
2018, (Jeong 
et al.,2017) 

13: Climate 
Action 

To take urgent action towards the 
mitigation of climate change and its 
impacts 

Reducing the emission of GHGs 
through the provision of a lower-emis-
sion energy source.  
Reducing methane emissions from the 
livestock industry.  
Reducing GHG emissions from landfills.  

Lima et al., 
2018 

14: Life Be-
low Water 

To conserve and sustainably utilize 
oceans, seas, and marine resources 
for sustainable development. 

Reducing marine pollution by prevent-
ing land source pollution 
Improving the freshwater ecosystems 
through the enchantment of wastewater 
treatment. 

Khaled et 
al.,2022 

15: Life on 
Land 

To protect, restore, and promote sus-
tainable use of terrestrial ecosys-
tems, sustainably manage forests, 
combat desertification, halt and re-
verse land degradation and halt bio-
diversity loss 

Recirculating nutrients and organic mat-
ter in organic wastes through anaerobic 
digestion and returning them to the soil 
in the form of digestate biofertilizer.  
Substituting firewood with biogas as a 
domestic fuel helps in reducing defor-
estation. 
Improving land-use productivity and re-
ducing land-use change. 

(Studer et al., 
2017 
; Tamburini 
et al., 2020) 

16: Peace 
and Justice 

To promote peaceful and inclusive 
societies for sustainable develop-
ment, provide access to justice for all 

Some research studies have shown 
that the increase in power availability is 
directly linked to peace. Hence the 

(Winter., 
2008) 
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Strong In-
stitutions 

and build effective, accountable, and 
inclusive institutions at all levels 

establishment of AD in communities 
lacking adequate power supply helps to 
unite people in communities, bringing 
them together for the achievement of a 
common goal. 

 

2.1.5 Challenges associated with the AD processes and how they can be addressed. 

Despite the numerous potentials of AD technology, it still suffers from various challenges which 

have hindered its widespread application. Some of the significant challenges associated with the 

AD process include feedstock variability, low process efficiency, and process instability amongst 

others (Uddin & Wright.,2022). The instability of the AD process affects biogas production and 

sometimes leads to failure of the process. Following this, a wide range of techniques have been 

identified suitable for addressing these challenges. These techniques include thermal, chemical, 

and mechanical pretreatment methods.   

Different thermal, chemical, and mechanical pretreatment methods have been identified to im-

prove the hydrolysis or solubility of the digester’s organic materials (Uddin & Wright.,2022). For 

instance, conventional heating of the substrate, also known as the thermal process, increases the 

solubility of organic materials in water. It also provides pathogen-free feed to avoid process inhi-

bition. This technique is specifically useful for industrial-scale wastewater treatment. Also, micro-

wave irradiation has being identified as a low-energy alternative. This technique uses focused 

direct heat to improve the degradability of complex polymers. In the case of lignin-rich substrate, 

the addition of acids or bases can improve solubility and enhance the production of biogas. 

Though this process is energy and cost-intensive, the addition of oxidants is useful when the 

waste substrate mainly consists of recalcitrant components such as lignin (Uddin & Wright.,2022).  

Mechanical pretreatment methods such as grinding, shredding, milling, and screening are mostly 

used to improve the efficiency of the digestion process. This method mainly increases the mole-

cule surface area and enhances bacterial activity during the digestion process. Another 
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mechanical pretreatment method used in AD is high pressure homogenization (HPH). This 

method has been found to be useful in homogenizing the substrate where the substrate cell mem-

branes are disrupted using high pressure induced shear ranging between 30-150MPa. Also, pro-

cess inhibitions which occur due to the accumulation of harmful intermediate products and nutri-

ents imbalance can be minimized through different techniques. However, the optimisation of OLR 

is a well-known approach used in reducing the accumulation of VFA. In addition, codigestion or 

adding other organic materials assists in the maintenance of nutrient balance. It also helps to 

avoid process inhibition. Codigestion has also been revealed to be applicable for ensuring opti-

mum C/N ratio (Uddin & Wright.,2022).  

The chemical pretreatment method involves the application of additives into the AD system. Ad-

ditives are used in the digester to improve material conversion and biogas production. It supports 

the growth of microbes, adsorption of inhibitory products, nutrient supplementation, and enhanc-

ing buffering capacity (Arif et al.,2018). Various conductive materials such as sand, molecular 

sieve, zeolite, charcoal, etc., are used as additives to improve syntrophic activity while creating 

an enabling environment for microbial growth (Yang et al.,2016). These materials can also absorb 

inhibitory products like NH3 and H2S resulting in more efficient conversion. If any substrate lacks 

specific nutrients necessary for the digestion process, micro- and macro-nutrient supplements are 

added to the anaerobic digester (Uddin & Wright.,2022). The addition of additives stimulates bio-

gas production while helping to maintain process stability (Romero-Guiza et al.,2016). 

However, it is important to note that the suitable method for addressing these challenges associ-

ated with the AD process solely depends on the type of feedstock, digestion technology and tar-

geted outcome. This is because not all types of techniques are applicable for every AD technol-

ogy. 

2.1.6 Critical Evaluation of AD Challenges with Specific Emphasis on End Product Man-

agement  
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The AD process is a biochemical process as it involves a series of biological and chemical pro-

cesses as discussed on 2.1.1. These series of processes lead to the production of biogas and 

digestate. Biogas consists of methane (45%-75%) as a renewable energy source, carbon dioxide 

(25%-55%), and small amounts of hydrogen sulfide (H2S) and hydrogen (H2) (Panuccio et al., 

2016). Digestate is the remaining slurry formed from the AD process. Depending on the compo-

sition of feedstock and the design of AD system, about 20–95% of the organic matter is broken 

down to produce these end products (Moller and Müller, 2012).   

These two products of AD have several environmental, social, and economic benefits which have 

made AD technology a preferable option for the treatment of municipal organic wastes. However, 

despite the numerous benefits associated with the two end products of AD, they have been re-

vealed to have negative environmental impacts which are harmful to human health in various 

ways.  For instance, digestate has the potential to cause harm to both the growth of plant and the 

soil which can lead to problems for its sustainable disposal due to its chemical composition (Rigby 

and Smith, 2013), Also, the early application of digestate and its longer retention time in the soil 

without usage by crops has the potential to cause the loss of nutrients and their translocation 

towards deeper soil layers or the emission of NO3 into groundwater (Formowitz and Fritz, 2010). 

Moreover, digestate pH values above 8 could lead to additional volatilization losses (Formowitz 

and Fritz, 2010).  

In the case of biogas, one of the major challenges facing its application is contamination with 

different critical impurities such as sulfur compounds, siloxanes, halogens, VOCs, ammonia etc 

(Obaideen et al.,2022). These impurities are dependent on the feedstock used in biogas produc-

tion. They have various negative impacts which even after their purification, the existence of 

traces of these impurities will result in the corrosion of the engine and other metallic parts 

(Obaideen et al.,2022). They can also lead to the blockage of gas pipelines like in the case of 

SiO2 which is formed from siloxanes (i.e., an organic silicon compound related to detergent and 
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lubricant existent in MSW). This thereby incurs additional costs required for either maintenance 

or replacement of the damaged parts. Also, biogas contains a large fraction of carbon dioxide, 

which decreases the energy density of the biogas fuel. This is another constraint associated with 

biogas composition as the removal of carbon dioxide through mechanization as a means of in-

creasing energy density requires extra equipment and energy (Xue et al.,2020; Wang et al.,2020). 

Ammonia formed from the degradation of nitrogen-containing compounds such as protein is a 

very corrosive gas which forms NOx when burned (Braganca et al.,2020). The formation of NOx 

has a severe greenhouse gas effect capable of contributing to global warming (Braganca et 

al.,2020; Deublein & Steinhauser.,2011). VOCs are corrosive and have a bad smell with some of 

them having a toxic effect on the environment (Braganca et al.,2020). H2S and other sulfur com-

pounds are corrosive and capable of blocking the catalyst's active sites.  

Aside from the challenges associated with the management and application of the end products 

of AD (biogas and digestate), the AD system has some technological challenges which affect the 

transformation of digestate into valuable materials such as the incomplete biodegradation of the 

organic matter, the presence of certain complex organic pollutants (e.g., herbicides, fungicides, 

industrial wastes, hormones (Shargil et al., 2015) and the excessive concentration of salts, and 

pathogenic bacteria (Fecal coliforms 3.60 × 104 –1.06 × 106 CFU g− 1 TS). In addition, data on 

organic pollutants and other compounds are scarce, and variable due to the heterogeneity of 

feedstock composition and the type of digestion process.  

Another crucial challenge is the wide variety of possible superstructure combinations (feedstocks, 

process technologies, operating conditions, valuable products, impurities). In addition, the diges-

tate obtained from the AD process has a high-water content. This makes its storage and trans-

portation expensive (Boulamanti et al., 2013; Herbes et al., 2020; Silkina et al., 2017. Due to the 

composition of digestate which might contain a wide variety of materials toxic to humans, living 
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organisms, and ecosystems, its disposal is usually a major source of concern (Jomova and Valko, 

2011; Silkina et al., 2017).  

Furthermore, the formation of aromatic hydrocarbons like toluene during the AD of activated 

sludge is another unpleasant phenomenon of the AD system (Ullah et al.,2017; Rasi et al.,2007). 

This is due to the harmful nature of toluene to human health. In addition, the sludge may form a 

solid layer cake at the bottom of the digester that can cause unsuitable mixing, equipment mal-

functioning, increase energy consumption, develop membrane fouling, decrease membrane 

productivity, and require frequent cleaning (Zacharof and Lovitt, 2014). 

Due to the negative impacts of these end products, stringent legislations and standards have 

been formulated, reviewed periodically, and enforced to address the negative impacts associated 

with the application of these end products capable of causing pollution, environmental degrada-

tion, and the spread of communicable diseases. Though these formulated policies vary across 

different countries, they have common targets for achieving sustainable development for environ-

mental elements, communicating clear standards and regulations for wastes management, envi-

ronmental laws to regulate the relevant processes associated with the production of biogas and 

digestate as well as their corresponding applications (Lamolinara et al.,2022).  

 This can be observed in the EU, which has continuously reviewed its regulations over the years. 

For example, the action plan for the circular economy (in 2017), for the promotion of waste recy-

cling across the member states to achieve the objective of recycling 70% of the municipal solid 

waste (MSW) and 5% of landfilling by 2030. In Australia, there are landfill tipping fees, but no 

legislation to incentivize the process of diverting organic waste from landfills. On the contrary, 

California’s legislation requires municipalities to install AD facilities for the diversion of organic 

waste (Clarke, 2018). In some countries regulations about digestate and biogas are complex, 

while in others, the process of reuse is relatively clear (Edwards et al., 2015; Lamolinara et 

al.,2021). 
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Globally, the UK, Germany, and the USA are countries leading these incentive policy programs. 

For instance, in the UK, several government programs and supported entities such as the Waste 

& Resources Action Program (WRAP, 2020), the AD Quality Protocol (ADQP) of the Environment 

Agency, and the AD, and Bioresource Association (ADBA) have been created. The WRAP pro-

gram developed the PAS 110 aimed at encouraging the development of the digestate market 

through the creation of a technical standard industry for producers to check and ensure that di-

gested materials are of consistent quality and fit for the desired purpose. It has also set out the 

minimum qualifications required for the digestate, separated liquor, and separated fiber which 

may be used as a fertilizer or soil improver (Pell Frischmann Consultants Ltd, 2012). The ADQP 

is targeted at providing increased market confidence in the quality of products made from waste, 

thereby encouraging greater recovery and recycling. This protocol is a set of criteria to produce 

quality digestate from the AD of material that is biodegradable waste, including the whole diges-

tate, the separated fiber fraction, and the separated liquor. Producers and users are not obliged 

to comply with the quality protocols. Failure to comply with it will lead to wastage of the quality 

digestate from AD and waste management regulations will apply to its handling, transport, and 

application. The ADQP was reviewed by the UK Environment Agency in 2014 to give room for 

the classification of digestates produced. It also encourages producers to improve their quality 

(UK Environment Agency, 2014). Finally, the ADBA focuses on consulting services aimed at im-

proving the entire life cycle of biogas and digestate generated at an industrial scale.  

The German Renewable Energy Act (REA), in its different versions, has laid the legal foundation 

for the development of the biogas sector in Germany. This law and regulations associated with it 

have created advantageous conditions (incentives) for the access of biogas to the electricity mar-

kets, as well as measures for a safe investment, and financing of biogas plants (Thran et al., 

2020). This is due to the experience, and continuous development of biogas production in Ger-

many (Pfeiffer and Thran, 2018). Efforts are being made to evaluate the impact of this law on the 
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economy, increasing capacity (Scheftelowitz et al., 2018), energy efficiency, and flexible energy 

supply, as well as the impacts on structural change in agriculture, and investment decisions 

(Sorda et al., 2013). During its progression, this law addressed all the elements of the biogas life 

cycle, and recent versions include incentives and regulations on the use of digestate as fertilizer. 

The REA also makes concerted efforts to resolve conflicting objectives that may exist between 

energy and agricultural legislation (Lamolinara et al.,2022).  

In the USA, both the US EPA and the USDA have created specific programs to include the Ag-

STAR program (EPA-USDA) (US EPA, 2020a) and the Rural Energy for American Program 

(REAP) (USDA, 2015). The AgSTAR program has developed a set of guides, regulations, infor-

mation, technologies, and tools to encourage the production of biogas and digestate (US EPA, 

2020a; US EPA, 2020b). The USDA’s REAP is targeted towards providing financing to small rural 

businesses to promote the use of renewable energy that includes the production of biogas (USDA, 

2020). Other governments and financial incentives applied by the US EPA are Renewable Iden-

tification Numbers (RIN) under the Renewable Fuel Standard Program (US EPA, 2020c), Renew-

able Energy Certificates (RECs) (US EPA, 2020d), and Nutrient Credits (Ross, 2012).  

These incentives promote the reduction of organic waste discharged into the environment using 

it as a bargaining chip for both producers and consumers (Lamolinara et al.,2022). The exchange 

of these credits applies to both fuels and fertilizers in the quest to encourage the utilization of 

biofuels and biofertilizers. The introduction of quality control of digestate has been a crucial point 

for its reuse and valorization. Regulation, certification, and quality standards of digestate reinforce 

the confidence of users in the application of digestate safely and in a manner that respects health, 

environment, and legal requirements. 

 The development and implementation of incentive policies and regulations for the sustainable 

management of organic waste by AD, producing biogas and digestate as valuable products have 

shown to be highly beneficial. They have also contributed to the advancement of AD technology 



 

32 
 

through the adoption of pretreatment, in vessel cleaning and post treatment techniques amongst 

others to improve both the performance of AD technology and the quality of the products gener-

ated from the AD technology. However, these techniques have been revealed to have various 

shortcomings such as high capital cost, high energy consumption and sophisticated operating 

conditions such as maintenance and odor control (Yang et al.,2010; Logan & Visvanathan 2019). 

These shortcomings have hindered their applicability on a full scale. (Weiland 2010; Rongwong 

et al., 2018). Due to these shortcomings, research on improving the performance of AD systems 

for the generation of both biogas and digestate has continued to be of interest to the scientific 

community (Ardolino et al.,2021; Kumar Khanal et al.,2021). However, more emphasis on the 

generation of maximum volume of biogas from AD in the quest to meet up with the ever-increasing 

energy demands of man. This represents a significant gap in knowledge which has prompted the 

introduction of AI into AD systems for improving the performance of AD in the production of max-

imum biogas volume as a means of contributing towards filling the significant gap in knowledge.  

2.2 Artificial Intelligence 

Artificial Intelligence (AI) can be described as computational methods which imitate human mental 

activities such as thinking, inference, classification, interpretation, estimation, and decision-mak-

ing (Shehab et al.,2020). The history of AI can be traced back to the 4th century B.C when Aristotle 

invented syllogistic logic, the first formal deductive reasoning system. After the invention of syllo-

gistic logic in the 4th century, an Arab man named Al-Jazari came up with a design in the 13th 

century which is what is believed to be the first programmable humanoid robot, a boat carrying 

four mechanical musicians powered by water flow.  

Years later, the seeds of modern AI were planted by classical philosophers in their attempt to 

describe the process of human thinking as the mechanical manipulation of symbols. This work 

culminated in the invention of a programmable digital computer in the 1940s. This device and the 

ideas behind it inspired a handful of scientists who began to discuss the possibility of developing 
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an electronic brain. This was later developed to perform difficult tasks in the early years of the 

21st century after series of challenges had been encountered in the 1970s and 80s. Having been 

identified as a tool for performing difficult tasks, AI has constantly been applied in various fields 

over the years for solving problems and has proven to be successful. It has also been subjected 

to a series of advancements over the years in the quest to become a better tool/technique.  

AI can be divided into four main techniques. These techniques include machine learning (ML), 

natural language processing (NLP), automation and robotics, machine vision (MV). Due to the 

limitations of the conventional computational techniques revealed by several research authors to 

be time consuming and complex in solving analytical problems, AI has been incorporated into 

almost all fields of study (Yuksel et al.,2023). This is due to the capabilities of its modelling tech-

niques in handling multidimensional and noisy data which substantiates the increase of AI appli-

cation fields. It has several models which have been found highly suitable in various fields of 

study. In the field of medicine, it is used to perform a better diagnosis where the technologies are 

used to understand the natural language and respond to the questions asked. In the finance in-

dustry, AI is used for collecting personal data and later used to provide financial advice to people. 

AI has also been found useful in the field of education where the grading system can be auto-

mated, and the performance of the students can be assessed based on which the learning pro-

cess can be improved. Other applications of AI include business to automate the repetitive tasks 

performed by humans with the help of robotic process automation computer programs like chat-

bots are used to assist customers in scheduling appointments and ease billing process, smart 

home devices, security and surveillance, navigation and travel, music etc.  

Furthermore, AI-based models have been extensively applied in the field of engineering for tack-

ling engineering problems. In the field of environmental engineering, it has been widely imple-

mented to solve problems related to air pollution, water, and wastewater treatment modelling, 

simulation of soil remediation and groundwater contamination and solid waste management stra-

tegic planning. (Yetilmezsoy et al.,2011). They are also capable of solving ill-defined problems, 
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configuring complex mapping, and predicting results (Yetilmezsoy et al.,2011). Examples of AI-

based models include artificial neural network (ANN), fuzzy logic (FL), expert system and genetic 

algorithms (GA). Each of these AI models serves a specific function. For example, ANN models 

can train data for regression and classification. Expert systems such as fuzzy logic can acquire 

human cognitive and reasoning skills in addition to possessing knowledge base. These systems 

have a simple linguistic syntax which is proficient in managing complex operations and qualitative 

attributes (Yetilmezsoy et al.,2011). Evolutionary algorithms such as genetic algorithms (GA) 

adopt the concept of natural selection to obtain optimum results by selecting the best fit data 

capable of handling unforeseen conditions (Kalogirou;2003a).  

Generally, AI-based models offer an alternative effective approach compared to the conventional 

models and have continued to gain significant attention globally in the scientific community fol-

lowing its discovery. The effectiveness of AI models can be attributed mainly to its ease of use, 

high prediction accuracy in analysing large amounts of datasets within a short time and a signifi-

cant reduction of manpower and resource consumption in unnecessary repetitive experiment. 

Another advantage of AI-based algorithms over the conventional techniques is they do not require 

multi-disciplinary knowledge related to biokinetics, microbiome, and heat/mass transfer. In addi-

tion, the avoidance of model recalibration if trained based on extensive datasets has made it a 

preferable technique than the conventional techniques. These attributes of AI explain why it has 

continued to benefit many different industries over the conventional models in the world of today. 

Hence, the rationale behind its adoption for achieving the purpose of this research study. 

2.2.1 Application of AI in AD systems 

AI has been applied in AD systems over the years for several purposes as presented in table 2.2 

below. Some of these purposes include real-time monitoring, process prediction, process control 

and stability parameters as well as real-time monitoring (Andrade Cruz et al.,2022; Wang et 

al.,2022). The advances in the application of AI in AD for these purposes have been made 
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possible through the use of machine learning (ML) models developed based on AI. The use of ML 

models in AD is due to its emergence as a data-driven technique independent of complex inter-

actions used in mathematical models (Wang et al., 2020).  

The ML method is entirely based on either readily available online data or historical recordings of 

the process (Kazemi et al., 2021). It involves three main stages, namely 1. The training stage 

which involves feeding the algorithm with a training dataset to let the model learn the unseen 

patterns in the data. 2. The validation stage where a different dataset is used to increase the 

model’s performance by fine-tuning the classifier’s hyperparameters; and 3. The testing stage 

where a different sample of data is used to determine the model’s final accuracy (Cruz et al.,2022). 

ML are grouped into two different types. These two different types include black-box ML and ex-

plainable ML. The explainable ML approach attempts to provide a deeper understanding of the 

functional dependence of the output variables on the input variables. The black-box ML approach 

on the other hand, is an entirely empirical data-driven modelling technique which does not include 

phenomenological information on AD. It has two types of modelling techniques: (a) regression 

(e.g., Neural Network (NN), gaussian process regression (GPR), linear regression, logistic re-

gression, ridge regression, lasso regression, polynomial regression, Bayesian linear regression, 

etc.) and (b) classification (e.g., SVM, KNN, logistic regression, naive bayes (NB), etc.) (Asgari et 

al., 2021a).  

A regression model predicts output variables (e.g., biogas yield) based on numerical (e.g., total 

solids (TS) or categorical (e.g., reactor type) predictor variables of AD processes. On the other 

hand, a classification model developed for AD processes is mostly used for the detection of faults 

or anomalies in an AD reactor such as process inhibition due to VFA accumulation. The explain-

ability of the results obtained from black-box ML models are enabled by approaches such as 

correlation analysis, feature importance assessment, partial dependence analysis, etc.  

Following the emergence of ML models, several ML models have been successfully developed 

and applied in AD systems for modeling the nonlinear and complex relationships of the AD 
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process (Alejo et al., 2018; Zareei and Khodaei, 2017). These models have also been developed 

to predict biogas yield, process stability parameters and effluent quality indicators (Cruz et 

al.,2022).   

For instance, Tufaner and Demirci (2020) employed ANN models in predicting biogas production 

under controlled laboratory-scale experiments. This was achieved using different input parame-

ters such as reactor fill ratio, influent pH, effluent pH, influent alkalinity, effluent alkalinity, organic 

loading rate, effluent chemical oxygen demand, effluent total suspended solids, effluent sus-

pended solids, and effluent volatile suspended solids. De Clercq et al.,2020 employed RF and 

extreme gradient boosting-XGBoost in the prediction of methane production from an industrial-

scale plant using feedstock composition as the model input parameters.  

Similarly, in a pilot-scale study, biogas production from cow manure co-digested with maize straw 

was predicted and optimised using an ANFIS model under the influencing parameters of C/N ratio, 

various total solid content and stirring intensity of substrates (Zareei and Khodaei, 2017). Alejo et 

al (2018) investigated the performance of SVM in forecasting the concentration of total ammonia 

nitrogen (TAN) produced during the AD of a complex substrate. The forecasting of TAN concen-

tration was achieved using TAN, VS, CODinf and TS as the model input parameters. Senol (2021) 

carried out investigations on the AD of sewage sludge under various ultrasonic pretreatment con-

ditions and predicted its methane yield with ANN, modified logistic model and modified Gompertz 

model using different sonication times, SEA values and incremental soluble COD values as input 

variables.  Kazemi et al (2021) employed extreme learning machine (ELM) and ensemble neural 

network (ENN) to monitor and detect random faults in AD processes using pH, pressure, CO2 and 

ammonia as the input variables. Seo et al (2021) applied RNN in predicting biogas from dry AD 

of food waste.  

The prediction of biogas using RNN was based on SRT, soluble COD, total VFA, total ammonia 

and free ammonia. Offie et al., (2022) developed an RNN model for real-time monitoring of an AD 

plant with the aim of improving the operation of an AD plant in producing biogas. This was 
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achieved using different waste compositions of feed and water as the input parameters. Li et al 

(2022) developed an integrated gradient boosting decision tree (GBR) model for predicting me-

thane yield and methane content in AD-generated biogas. This was achieved using different feed-

stock properties (food waste, manure, algae, and biomass waste), total VFA, methane and mi-

crobes as the model input parameters.   

Recent studies by Gupta et al (2023) revealed that DT-based ML models have been previously 

developed to predict critical parameters in AD process such as CH4 yield and CH4 composition in 

biogas. For instance, prior research work by Kazemi et al (2020b) used an ensemble approach 

to predict the transient VFA accumulation in AD reactors which is highly detrimental to biogas 

production. The prediction of transient VFA accumulation in AD reactors was achieved using 13 

process variables. These variables include Effluent COD, Effluent Alkalinity, Influent TSS, Effluent 

TSS, Effluent Ph, Effluent BOD, Gas flow, methane mole fraction, carbon dioxide mole fraction, 

hydrogen mole fraction, pressure, effluent ammonia, and influent flow. 

 AI has also been applied in AD systems for optimisation purposes using optimisation algorithms. 

These algorithms are combined with ML models either as a pre-processor or post-processor. In 

the pre-processing applications, the optimisation solvers (e.g., GA and ACO) have been used to 

select the most influential process variables for developing an FNN model that predicted biogas 

yields (Beltramo et al., 2019). The research work indicated that the addition of GA- or ACO-based 

feature selection to the FNN model reduced the dimensionality of the problem by eliminating su-

perfluous features. This resulted in a reduction of model overfitting. It also improved the accuracy 

of FNN by 6.2% In another instance, PSO- or GA-based optimisation algorithms have been used 

downstream to ML models (mainly FNN) for maximising the yield of biogas or CH4 produced by 

AD plants (Alrawashdeh et al., 2022; Asadi & McPhedran, 2021; Zaied et al., 2020). Integration 

of FNN with a GA-based multi-objective optimisation framework has also been attempted to de-

termine the pareto frontier (trade-off diagram) between biogas production and effluent COD, which 

revealed that maximizing the first variable inevitably minimized the latter (Huang et al., 2016).  
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Recently, Alrowais et al (2023) successfully slime mold algorithm (SMA) integrated into a time-

series model and a partially connected RNN model for calculating the optimal structure of the 

RNN model and the optimal value of its parameters such as the optimal number of neurons in the 

hidden layers, number of feedback connections, activation functions and connection weights.  

The successful application of ML models in AD systems has attracted a lot of researchers in the 

discipline over the years. This is due to its ability to manage complex multivariate data, predict 

nonlinear connections and handle missing data. In addition, ML online web tools and waste map-

ping have the potential to enhance the AD plant operator’s analytical capabilities, decision mak-

ing, and planning (De Clercq et al., 2019).  

Despite the ability of ML algorithms to manage complex multivariate data, predict nonlinear con-

nections, and handle missing data, selecting the best ML algorithm for performing a certain task 

in AD systems is highly critical. This is to enable the best results to be achieved using the ML 

algorithm (Alzubi et al., 2018).  

 

2.2.2 Challenges and Knowledge Gap of AI applications in AD 

  Over the years, significant efforts have been made in the application of ML models developed 

based on AI in AD systems with the aim of improving AD processes in achieving better output. 

However, despite these significant efforts made towards developing ML models based on AI for 

improving AD processes over the years, the development of ML and its application in AD systems 

is still in its initial stage (Gupta et al.,2023). This is because majority of the works done treat ML 

modelling of AD as a “black box approach” with limited (or zero) physical understanding of process 

phenomena. This approach poses different challenges. 

First and foremost, black-box models are mostly developed based on experimental data obtained 

from prototypical laboratory scales or pilot-scale reactors, which have led to limited 
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generalizability for industrial scale development (Jia et al., 2022). The resultant effect of this has 

made it potentially problematic for the extrapolation of these models to predict a full-scale system. 

Secondly, most of the developed ML models applied to AD processes have been observed to lack 

the presentation of SHAP, permutation feature importance and partial dependence quantification 

(Gupta et al.,2023).  These metrics have been revealed to be highly vital for understanding the 

correlation and variational relationship between predictors (input) and predicted (output) varia-

bles. In cases when comparison is done with several types of ML algorithms for automatic optimal 

algorithm selection, it was observed that most of the research done previously was carried out in 

terms of their predictive accuracy.  

Thirdly, most of the ML models developed for AD processes are either based on metagenomics 

data or operational parameters. Examples of unifying metagenomic data and operation parame-

ters are rare, for which the generalizability of the model is compromised. Moreover, despite the 

promising potential of GPRs for model uncertainty quantification, their application in ML modelling 

of AD processes is still limited as it has not been extensively used.  

These challenges associated with the application of ML models in AD systems represent some of 

the current knowledge gaps associated with the application of AI in AD systems which this re-

search study tends to fill as a means of contributing to knowledge. 

For example, the development of the AI-based models adopted for the purpose of this research 

study was achieved using real data collected from a micro-AD plant operating in an urban area. 

The adoption of this approach is quite innovative as it not only tested the effectiveness of the 

developed models in achieving the aims of this research study, but it also explored the feasibility 

of implementing the developed models on a real case scenario thereby promoting the widespread 

application of AI on industrial AD systems.  

Also, the use of GPR as one of the WLDM for developing the time series ensemble-based model 

was another innovative approach adopted in this research study. Though it was not applied for 

the purpose of uncertainty quantification, but its application as a base model for predicting 
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different classes of biogas and as one of the WLDM for first predicting different classes of biogas 

and then combined with other WLDMs to form the ensemble model to improve the prediction 

accuracy of biogas using a real case scenario explored the potential capability of the GPR model 

in the modelling of AD processes. 

Moreover, most of the AI applications in AD systems have been carried out for water and 

wastewater treatment plants as well as for agricultural and livestock waste where AD have been 

extensively applied for sludge treatment and biogas production respectively. However, the practi-

cal implementation of AI models in real AD systems for organic municipal waste is a relatively 

recent development (Offie et al., 2023).  

Furthermore, the introduction of user-friendly frameworks such as optimal weekly operation pat-

terns of the different feed variables are rare as most of the previous research works carried out 

on AD systems focused mainly on the optimisation of biogas using different algorithms to generate 

maximum volume of biogas from AD systems. Thus, the introduction of optimal weekly operation 

pattern for the different feed variables was a significant attempt to advance the application of AI 

in AD systems. 
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Table 2.2: Further applications of machine learning applications in AD systems 

AI model Purpose of application Input 
Variable 

Output 
Variable 

Optimal  
Model 

R2   
RMSE 

References 

ANN Simulation and optimisation of bio-
gas production from Russeifah bio-
gas plant 

Slaughterhouse waste, res-
taurants, fruits, vegetables, 
and dairy markets 

Biogas GA-ANN 0.87   
Qdais.,2010 

ANN To predict the rate of both biogas 
and methane production from a pi-
lot scale mesophilic UASB reactor 
To determine the effectiveness of 
ANN in predicting biogas and me-
thane production by comparing it 
with other non-linear regression 
models. 

Volumetric organic loading 
rate (OLR), influent and efflu-
ent pH, operating tempera-
ture, influent and effluent alka-
linity, effluent chemical oxy-
gen demand (COD), and vola-
tile fatty acid (VFA) concentra-
tions 

Biogas 
Methane 

 - 0.94 
0.92 

0.062 
0.065 

 
 
 
 
Yetilmezsoy 
et al.,2013 

RNN To predict the rate of biogas pro-
duction from an AD plant 

Flow rate, dry matter, volatile 
solids, pH, and temperature 

Rate of bi-
ogas pro-
duction 

- - 0.004 Dhussa et al., 
2014 

FFNN To evaluate methane yield from bi-
ogas in a laboratory scale anaero-
bic reactor. 

Moisture content, pH, total vol-
atile solids, and volatile fatty 
acids 

Biogas 
yield 

ANN-BP 0.73  Nair et al., 
2016 

FFNN  To optimise biogas from food 
waste. 

Substrate mix percentage, 
plant pH level, digestion pe-
riod and digester temperature 

Biogas 
yield 

BPNN - 0.0000
06 

Pal-
aniswarmy et 
al.,2017 

FFNN  To model and optimise the oil, refin-
ery wastewater and chicken ma-
nure. 

Total ammonia nitrogen, free 
ammonia nitrogen, total con-
tent of volatile fatty acids, pH, 
acetic acid, propionic acid, bu-
tyric acid, and temperature 

Biogas 
production  
Bio-
methane 
content 

ANN-LM 0.88 
 
 
 
0.51 

 Mehryar et 
al.,2017 

FFNN Modelling of biogas is produced 
from cattle manure with the co-di-
gestion of different organic wastes. 

Working days, influent chemi-
cal oxygen demand, Influent 
pH, influent alkalinity, influent 
ammonia, total phosphorus, 
hydraulic retention time, waste 
adding ratio, and pretreatment 
and reactor number. 

Biogas 
yield 

 0.75  Tufaner et 
al.,2017 

FFNN To predict the rate of biogas pro-
duced from potato starch pro-
cessing wastewater. 

Ammonium, COD, pH, alkalin-
ity, total Kjeldahl nitrogen, total 
phosphorus, volatile fatty acid, 
and hydraulic retention time 

Biogas 
rate, 
Methane 
rate. 

ANN 0.98  Antwi et al., 
2017 
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AI model Purpose of application Input 
Variable 

Output 
Variable 

Optimal  
Model 

R2   
RMSE 

References 

To predict the methane rate from 
potato starch processing 
wastewater. 

FNN Modelling and optimisation of spe-
cific biogas production from mixed 
ligno-cellulosic co-substrates under 
mesophilic and thermophilic condi-
tions. 

Feedstock  
composition 
HRT, temperature 

Biogas 
yield 

- 0.99 43 
ml/gVS 

Ghatak & 
Ghatak 
(2018) 

FFNN Prediction of biogas production us-
ing ACO and GA input features se-
lection method 

Concentration of VFA, total 
solids, volatile solids acid de-
tergent fibre, acid detergent 
lignin, neutral detergent fibre, 
ammonium nitrogen, hydraulic 
retention time and organic 
loading rate   

Rate of bi-
ogas pro-
duction 

 0.9 0.0624 Beltramo et 
al.,2019 

FFNN To predict biogas from chemically 
treated co-digested agricultural 
waste. 
 
To optimize cumulative methane 
from the produced biogas. 

Composition of the substrate, 
operating temperature, dose 
of the NaHCO3, and hydraulic 
retention time (HRT) 

Cumula-
tive me-
thane 

 0.99  Almomani et 
al., (2020) 

RF, FNN, 
ELM, C-
SVM, GP 

Online monitoring of volatile fatty 
acids in AD processes 

pH, TAN, pressure, TS, COD,  
ALK, gas flow, mole 

VFA GP 0.99  Kazemi et al.  
(2020b) 

LSTM, DA-
LSTM, DA-
LSTM, VSN 

To predict and improve the produc-
tion of biogas from an anaerobic co-
digestion process.  

Sludge inflow and outflow, 
temperature, SRT. VS/TS, 
BOD, COD, SS, TN, TP 

Biogas 
production 

DA-LSTM-
VSN 

0.76  Jeong et al 
(2021) 

GLMNET, 
RF, 
XGBOOST 
FNN, KNN, 
C-SVM 

To investigate the feasibility of six 
ML algorithms in predicting me-
thane yield. 

Feedstock composition, oper-
ational conditions, and ge-
nomic data 

Methane 
yield 

RF 0.82 40 
ml/gVS 

Long et al 
(2021) 

ANN, MG To predict the cumulative biogas 
(CBY) and methane yield (CMY) 
from the anaerobic digestion of sev-
eral organic wastes 

volatile solid to total solid ratio 
(VS/TS), carbon content, car-
bon to nitrogen ratio (C/N), 
carbon content and digestion 
time 

  
GA-ANN 

0.99
96 
 
0.99
98 

0.0045 
 
0.0046 

Mougari et 
al., (2021) 
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AI model Purpose of application Input 
Variable 

Output 
Variable 

Optimal  
Model 

R2   
RMSE 

References 

XGBOOST
, C-SVM, 
RNN, RF 

Improving the prediction accuracy 
of methane yield using different ma-
chine learning models.  

pH, alkalinity, COD removal 
efficiency, VFA 

CH4 yield RNN 0.97 23ml/ 
gCOD 

Park et al 
(2021) 

RF, 
XGBOOST
, C-SVM, 
LSTM, 
 RNN 

To improve the process stability of 
bio electrochemical anaerobic di-
gestion processes (BEAD) using 
five different ML models 

OLR, pH, alkalinity, VFA, and 
COD removal efficiency 

CH4 yield RNN 0.97 0.025 Cheon et al 
(2022) 

Linear re-
gression, 
GLMNET, 
KNN, C-
SVM, DT, 
RF, 
XGBOOST 

To predict the possible impacts of 
wide range temperature fluctua-
tions on the process of AD 

Temperature, pressure, feed, 
volume, and nutrient solution 
usage 

CH4 yield C-SVM 0.85 - Cinar et al 
(2022) 

RF, 
XGBOOST, 
FNN 

To explore various machine learn-
ing algorithms for predicting the 
changes in the abundance of anti-
biotic resistance genes in anaero-
bic digestion 

Operating mode, feedstock 
pre-treatment, additives, tem-
perature, and HRT 

Relative 
abun-
dance of 
ARG and 
MGE 

FNN 0.79 - Haffiez et al. 
(2022) 

C-SVM, RF, 
AdaBoost, 
XGBOOST 

To predict the concentration of total 
volatile fatty acids in multiple full-
scale food waste anaerobic diges-
tion systems with different machine 
learning models and feature analy-
sis 

Feedstock composition, VS, 
TS, HRT, pH, ALK, COD 

VFA XGBOOST 0.64  Choi et al 
(2022) 

Hybrid ma-
chine learn-
ing based 
on LSTM 
and RF 

To improve the prediction of biogas 
generation output by redefining the 
key input parameters 

Kitchen waste, starchy waste, 
human faecal waste, bagasse 
waste, pig manure waste, 
leachate waste, and chicken 
litter 

Biogas 
yield 

 - 15.26 Chiu et 
al.,2022 

RNN-SMA, 
RNN 

Compare the effects of thermophilic 
& mesophilic anaerobic co-diges-
tion for sustainable biogas produc-
tion using an experimental and 
RNN model study. 

Temperature, Digester time, 
Carbon-Nitrogen ratio 

Biogas 
production 

- 0.99 
0.99 

0.007 
0.0005
2 

Alrowais et al 
2023 
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3 Chapter 3. Methodology 

This chapter presents the different procedural steps adopted for addressing some of the technical 

limitations of the AD technology. The different procedural steps adopted in this research study 

also tend to address some of the economic challenges/limitations associated with the AD tech-

nology. Details of this will be provided in section 3.1. Thus, these steps are explained in a manner 

that enables its broad adoption in similar AD projects. To this effect, the case study used for the 

proposed methodology is explicitly presented in section 3.1. The different procedural steps 

adopted are targeted towards achieving the aims and objectives of this research study. The pro-

cedural steps adopted are also targeted towards addressing the research questions raised in 

chapter 1 of this research study which are centred mainly on improving organic waste manage-

ment using AD, facilitating the implementation of circular economy, and contributing towards 

achieving the various SDGs linked to AD. Firstly, a new AI-based framework developed for the 

prediction and optimisation of biogas obtained from a micro-AD plant based on data driven mod-

els. The proposed methodology adopted for developing a new AI-based framework is presented 

in Figure 3.1. The new AI-based framework presented in Figure 3.1 comprises of three main 

stages namely data collection and preparation, model development and performance assess-

ment. Secondly, a novel approach for the development of a time series ensemble model for im-

proving the accuracy of biogas predictions from the micro-AD plant is presented. The develop-

ment of the ensemble model is based on different weak learning data mining (WLDM) models. 

The WLDM models are also data driven. The proposed methodology adopted for developing the 

ensemble model is presented in Figure 3.3. Similar to the new AI-based framework, the ensemble 

model is also comprised of three main stages. These stages include data collection and prepara-

tion, feature extraction and selection, model development and performance assessment. The 

stages of both frameworks are commonly used for developing most data-driven environmental 
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models (Piadeh et al.,2022). Both frameworks are mainly used as the core tools for estimating 

and optimising biogas generation based on the feed data collected over preceding days. Each of 

the steps outlined in both frameworks were conducted using the MATLAB 2021b software which 

provides functions both for the estimation and optimisation of the AD performance. 

 

 

             Figure 3.1. AI-based framework for the operation of the micro anaerobic digestion plant 

3.1 Description of the case study 

The purpose of this research study was achieved using a micro-AD plant located in Camley Street 

Natural Park Central London, United Kingdom. The micro-AD plant used as the pilot study for this 

research was a wet system which ran continuously for a period of 310 days at an average tem-

perature of 35.7˚C (i.e., under mesophilic conditions). It was mainly used for treating commercial 

organic waste produced within the locality. Further details of the micro-AD plant are provided in 

section 3.2. The selection of this specific micro-AD plant for this research was due to the opera-

tional challenges associated with the micro-AD plant initially selected for this research study. The 
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effect of this made it difficult for the efficient collection of data required to develop the AI-based 

models. Also, the lack of laboratory equipment necessitated the need for a pilot plant to be inves-

tigated in the first place. Hence, the rationale behind the collaboration with the operators of the 

micro-AD plant located in Camley Central London to adopt their micro-AD plant for achieving the 

purpose of this research study. 

The adoption of this micro-AD plant was targeted towards addressing some of the technical and 

economic challenges affecting the implementation of AD technology for managing organic waste. 

The effect of these challenges has hindered the implementation of circular economy and the 

achievement of the various SDGs linked to AD.  Also, the adoption of a micro-AD plant for man-

aging organic waste has been revealed to have offer great support in addressing organic waste 

management issues especially in urban/municipal areas (Walker et al.,2017). Moreover, micro-

AD plants have been identified to have great potential in addressing one of the major economic 

challenges associated with conventional AD plants (Walker et al.,2017). This economic challenge 

includes the reduction of transportation costs through the establishment of a micro-AD plant in 

urban/municipal areas where organic waste is generated in large quantities. This makes it easy 

for the generated organic waste to be sent to plants unlike the conventional AD plants mostly 

located at city/community outskirts.    

 In addition, the establishment of micro-AD plants in urban/municipal areas offer promising poten-

tial for community involvement compared to conventional AD plants which are located at city/com-

munity outskirts which are non-resident areas. This helps to promote peace in communities, es-

pecially in communities around the world where peace is non-existent as the establishment of 

micro-AD plants in these communities for biogas generation will help to bring people together for 

achieving a common goal beneficial to the development of the community. Another benefit of the 

micro-AD plant is its ability to foster circular economy by means of creating a ‘biorefinery’ that will 

dispose of local waste, utilize its energy potential, and produce a natural fertilizer that can be used 
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in urban agriculture, horticulture, and hydroponics. Despite these benefits associated with the 

micro-AD plant, circular economy is yet to be fully implemented thereby hindering the realization 

of the various SDGs. This is due to the technical limitations associated with AD which have hin-

dered the performance of AD in producing maximum volume of biogas sufficient to satisfy the 

ever-increasing energy demands of the people. Also, the application of micro-AD technology is 

not very common in many parts of the world as most research studies previously carried out on 

AD have focused mainly on conventional AD technology (Sawatdeenarunat et al.,2015).  

Hence, the development of a new AI-based framework and ensemble-based model framework in 

improving the performance of AD for maximum biogas generation is not only targeted towards 

further addressing some of the identified drawbacks but also making micro-AD technology a more 

familiar and accessible technology globally for treating organic wastes. The effect of this approach 

could potentially increase the uptake of micro-AD technology by increasing understanding of the 

field and capturing feedstocks from sources that are out of the catchment area of larger plants. 

3.2 Data collection and preparation  

This stage entails the collection of raw data from an AD plant, analysis of the raw data collected, 

imputation for infilling missing data using some data-mining-based techniques and the selection 

of relevant data for the development of the RNN model. The data used in the development of the 

AI-based model was collected from a micro-AD plant. The micro-AD plant was designed as a pilot 

study by a consortium of researchers and companies. As stated in section 3.1, the micro-AD plant 

is located in Camley Street Natural Park Central London, United Kingdom (UK) with the schematic 

diagram shown in Figure 3.2. The micro-AD plant was built within the grounds of the Camley 

Street Natural Park in London, UK (Walker et al.,2017). The site was used to convert the locally 

produced commercial organic waste collected by cargo bicycles into biogas for cooking, heating, 

and electricity purposes (Walker et al.,2017).  It had a manual screener for removing impurities 

from collected food waste, a pre-feed tank with a volume of 0.65 cubic meters, a grit/inert 
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container for storing the grits and contaminants removed from the waste and a feed pump as 

illustrated in figure 3.2. It also had a main anaerobic digester of volume 2 cubic meters containing 

an automated mechanical mixer (Methanogen UK Ltd., UK) and heater by an internal water heat 

exchanger. Other main components of the micro-AD plant as shown in figure 3.2 include the 

hydrogen sulphide scrubber filled with activated carbon pellets for controlling odour and pollution 

from hydrogen sulphide, floating gasometer for biogas storage, digestate sedimentation tank 

which had a volume of 0.46 cubic meters for storing the digestate obtained after the AD process. 

It also a digestate liquor storage tank of 0.2 cubic meters. The micro-AD plant was monitored for 

a period of 310 days (i.e., approximately 10 months during which the operational parameters, 

biological stability, and energy requirements of the micro-AD plant were evaluated.  

 

                       Figure 3.2. Schematic diagram of the micro-AD plant used in this study. 

The data collected from the micro-AD plant include temperature, pH, volatile solids, total solids, 

feed into the main digester, feed composition into the pre-feed tank. The feed composition was 

made up of apple, catering and coffee, coffee, digestate, green waste, oats, soaked peanuts and 

muesli, tea, tea leaves, tea bags, oil, soaked muesli, soaked liners, and catering. Other sets of 

data collected are the water added to the pre-feed tank and the volume of biogas generation. The 

feed into either the pre-feed tank or the main digester was usually done every few days when 

both feed amounts and biogas volume in the storage were recorded. The data collected enabled 

the calculation of the total feed and water added to the AD plant over its operational period of 310 

days, hydraulic retention time (HRT), total biogas production as well as the average overall, 
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specific, and volumetric biogas production. These data collected represent the factors influencing 

the performance of the micro-AD plant used as the pilot study for producing biogas. It was ob-

served that out of the monitoring period of 310 days of the micro-AD plant, there were days when 

no feed was added to either the pre-feed tank or the main digester and no volume of biogas 

generated from the plant was recorded while daily continuous data for both feed and biogas are 

necessary for developing a time-series ANN model that takes lag days into consideration.  

Furthermore, some days were observed to have missing output data (i.e., there was feed but 

there was no reading for volume of biogas generation). The effect of this can hinder the accu-

racy of the developed model of the micro-AD plant especially for the prediction of the biogas 

volume generated and the optimisation of biogas thereafter. Hence, to overcome this barrier 

some data-mining techniques were first analysed in this research study for estimating the 

missing data. This was to determine the most suitable one for infilling the missing data. It is 

worth noting that the missing data in this research study refers to the absence of biogas read-

ings in two types: (1) data samples with feed values available (input) but no reading for biogas 

generation (output); and (2) data samples with feed value equal to zero but no reading for 

biogas generation. Therefore, the entire dataset was first divided into two groups of data with 

feeding inclusive and data without feeding. Some data mining techniques were then tested to 

identify the relationship between the feed data and the generated biogas for data groups with 

feeding data. Out of those data mining techniques, the one which had the least range of data 

fluctuations was regarded as the best data mining technique for infilling the missing data. 

Hence, the best data mining technique was selected for infilling the missing data of the first 

group (i.e., data with feed values but no biogas values) as presented in figure 4.2 under the 

results section. The second type of missing data (i.e., data where feeding is zero and biogas 

data was not recorded) were infilled based on the linear regression of the remaining total 

biogas data read. The data mining techniques explored in this research study include Random 

Forest (RF), K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Naïve Bayes (NB), 
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Kriging, Feed Forward Neural Network (FFNN) and Linear Regression (LR). Sequel to the 

infilling of missing data using data mining technique, the RNN model was developed as de-

scribed in section 3.2. Sequel to this, a sensitivity analysis was carried out for each of the 

operational feed variables to determine their correlation and impact on the volume of biogas 

generation.  

Based on the initial cross-correlation analysis of all input variables demonstrated as Fig. 4.1 

and Table 4.2 presented in the results section, the daily feed into the digester, the water added 

to the digester showed significant correlation and corresponding impact on the biogas volume 

generated. In addition, out of various waste compositions, only oats, soaked liners, and ca-

tering were selected whereas other waste compositions were negligible as they were ob-

served to have no significant correlation and hence no meaningful impact on the volume of 

the biogas generated from the micro-AD plant.  

Generally, the production of biogas from an AD plant is influenced by multiple factors which 

are interconnected. These factors include feedstock composition, environmental parameters 

(temperature, pH, moisture content and HRT) and organic loading rate (OLR) as stated in the 

literature review section. However, some of the environmental parameters such as tempera-

ture, pH and HRT were excluded from the analysis for estimating biogas generation. OLR was 

also excluded from the analysis for estimating biogas generation. These parameters were 

excluded following the cross-correlation analysis conducted for each of the AD parameters 

which revealed that the excluded parameters were relatively constant during the operation of 

the micro-AD plant. This was indicated by the lag times observed for each of the operational 

parameters as presented in figure 4.2. In addition, the volatile solids and total solids which 

were measured were also observed to be relatively constant during the operation. Hence, 

these operational parameters were also excluded from the analysis for estimating biogas gen-

eration. 
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3.3 Model Development for RNN/NARX 

The development of the RNN/NARX model for the purpose of this research study, was achieved 

in three stages as illustrated in figure 3.1. These stages include 1. Developing the model for pre-

dicting biogas generated from the micro-AD plant. 2. Tuning the model parameters using shuffled 

frog leap algorithm (SFLA) 3. Optimising the biogas generated used SFLA. The RNN/NARX 

model was developed with three hidden 10-neuron layers with the architecture shown in the figure 

3.1. This model was developed based on the selected input variables of the micro-AD plant. These 

input variables include the actual/estimated daily feed added to the main digester denoted as X1 

in figure 3.1, the feed composition which comprised of catering denoted as X2, oats denoted as 

X3, and soaked liners denoted as X4 added to the pre-feed tank (i.e., the top three highly correlated 

variables with biogas generation), the water added to the pre-feed tank denoted as (X5), and the 

volume of biogas generation which represented the output variable denoted as Y. The model was 

then set for training, validation, and testing. The model settings are as follows: Levenberg-Mar-

quardt method used for the training process, mean square error (MSE) as the indicator for eval-

uating the performance of the model and 6 epochs (iterations) were adjusted for training failure. 

The database used for the model development was divided into three parts. These parts include 

70% for training, 15% for validation and 15% for testing. The trained model was then used to 

predict the biogas generation (Yp) from the micro-AD plant in the case study. Sequel to this, the 

trained model was tuned using an optimisation method as the NARX model needed lag time 

specification in days (known as delay factor Fi), i.e., range of input variables for previous timesteps 

to use for estimation of 1 timestep ahead (Yt+1) based on input data (decision variables). This was 

done to obtain the most accurate output data (biogas generation).  

The employment of an optimisation method was used to determine the optimal lag time for each 

decision variable as presented in the results section. This was also aimed at obtaining the most 
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accurate output data i.e., biogas generation. In addition, the optimisation method enabled the 

maximum volume of biogas generated to be obtained.  

Furthermore, the optimisation method showed the best distribution of each of the decision varia-

bles required to obtain maximum volume of biogas. Based on these, the optimisation model was 

developed using shuffled frog leaping algorithm (SFLA). SFLA is a memetic meta-heuristic and 

nature-based algorithm highly useful in solving combinational optimisation problems (Eusuff & 

Lansey.,2006). It has the ability to search in both local and global search space where each lag 

time represents one frog (Bui et al., 2020).  

In this research study, each frog, i.e., decision variable, represents a lag time to find the minimum 

root mean square error (RMSE) and the highest Normalized Nash-Sutcliffe Efficiency (NNSE) for 

this optimisation approach. Hence, 4 trials for exploration and 4 trials for exploitation were set for 

each iteration of optimisation, with the stopping criteria being set to an improvement of less than 

1%. Each of the six decision variables (i.e., F0-F5 illustrated in Figure 4.3 under the results section) 

is an integer value ranging between 0 to 10 due to the results of cross-correlation analysis on 

inputs provided in Figure 4.1 under the results section. Through this approach, the delay factor 

(range of previous Xi data) for each input data/decision variable can be determined. It was then 

used again to specify the required weights for the daily feeds added to the main digester, daily 

feed compositions and the water added to the pre-feed tank to maximise the output (i.e., maxi-

mum volume of biogas generation from the micro-AD plant) for each of the days in a cyclic period 

of feeds. It is pertinent to note that the cyclic period was based on the (lag time) delay factor 

specified in the first optimisation model. While the stopping criteria and trials were set similarly, 

each NARX input for each day were selected as the decision variable. To simulate the real oper-

ation and put a cap for the feeds/water added to the plant, constraints were defined based on the 

historic operation of the micro-AD plant. These constraints are as follows: (1) maximum feed 

equals to 80 kg every 4 days. Where the 4 days in this context was based on the cyclic period of 

5 days (i.e., four days of input data and biogas generation on the fifth day) specified as a result of 
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the optimisation model for the largest lag time (as presented in the results section); (2) total weight 

of feed and all pre-feeding compositions should be equal during the optimisation; (3) added water 

is limited to 30% of total feed weight, (4) all decision variables need to be either zero or positive 

values. 
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3.4 Performance assessment of the RNN Model 

Two metrics i.e., RMSE and NNSE were used in this research study as the performance indicators 

for evaluating the performance of the developed RNN model. These two metrics were selected 

as the performance indicators based on previous case studies where both metrics have been 

extensively applied and proven to be reliable indicators for evaluating the accuracy of a developed 

model. The RMSE measured the error between the predicted biogas volume and the actual bio-

gas volume measured from the micro-AD plant. The NNSE on the other hand estimated the var-

iation between the predicted biogas volume and the measured biogas volume.  

Based on these two metrics, the effectiveness of the RNN/NARX model in achieving the aims and 

objectives of this study was determined. To further confirm the effectiveness of the developed 

model, sensitivity analysis was carried out for each of the operational input parameters. The es-

sence of the sensitivity analysis was to determine the correlation and impact of each of the input 

parameters on the predicted output (volume of biogas generated). This was done by removing 

one input parameter and running the model afterwards with NNSE and RMSE both under obser-

vation. When conducting the sensitivity analysis, the optimal waste composition was taken into 

consideration where the impact of each waste composition was analysed and evaluated to deter-

mine the significant impact of each waste composition on the generation of biogas. The impact of 

each waste composition on the generation of biogas was then compared with the operator’s anal-

ysis. This measure was taken to further confirm the accuracy of the developed model. In addition, 

an uncertainty analysis was also conducted to show how the relative accuracy changes when 

running the model with dataset reduction. The essence of this was to prevent overconfident pre-

dictions which can be harmful when applied in real-life scenarios. 

Thus, the uncertainty analysis was conducted by reducing the dataset at 10% interval with the 

relative accuracy of the developed model obtained for each corresponding reduction in the da-

taset observed. Further analyses of biogas generation for the different decision variables were 
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also conducted on the feed, water, waste composition, and the impact of the distribution of the 

optimal values of the pre-feed composition variables on biogas generation for oat, catering and 

liner data. The essence of these analyses was to further evaluate its importance in the perfor-

mance of the developed RNN model for improving the performance of the AD plant in generating 

biogas. The results of these further analyses carried out on the developed RNN model will be 

presented and discussed extensively in the results section. 

3.5 Methodology for the Development of the Ensemble Model 

The proposed framework for the development of the ensemble-based model for the real-time 

operation of AD in the production of maximum biogas volume was carried out in three main stages 

as presented in figure 3.3 below. These stages include: 1. Data collection and preparation/Data 

Acquisition 2. Model development and 3. Performance assessment. To ensure the applicability of 

the proposed framework to scenarios with limited data availability, only data obtained from a sin-

gle micro-AD plant commonly used for treating food wastes within an urban area were used for 

the purpose of maintaining simplicity. Also, the single micro-AD plant used for this purpose was 

the same with that used for developing the RNN/NARX model. The data collected from the single 

micro-AD plant were numerical and time-series data. These data include soaked oats, soaked 

liner, tea or coffee residuals, and cupboards, which were fed to the pre-digester after separation 

and screening through grits or other means. Additionally, the volume of water added to the pre-

digester, feeding rates to the main digester, and the amount of biogas produced. These data were 

collected at varying intervals, ranging from a few minutes to daily Similar to the development of 

the RNN model, the data collected had missing values which were cleaned based on recommen-

dations from Offie et al., 2023. 

The numerical and time-series data collected from the micro-AD plant were transformed into fea-

tures and selected based on the further explanation provided in Section 3.5. The relevant features 

were extracted from the data collected which were subsequently transformed into group features. 
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Each of the group features were also categorized into different classes namely zero, low, medium, 

and high. Further details of this will be explained in section 3.5. These features were used for the 

development of the weak learning data mining models (WLDM) explained in section 3.6. The 

weak learning data mining models were developed and stored in a data warehouse along with 

their key performance indicators (KPIs), which serves as the foundation for constructing the pro-

posed ensemble model. Details of this will be provided in Section 3.6. Following the construction 

of the ensemble model, rigorous testing was conducted on real-time unseen data to evaluate its 

performance under real-world conditions. The outcomes of this testing and a detailed analysis of 

the results are presented and discussed in the results section. This analysis provides an in depth 

understanding of the model’s effectiveness and its potential for real-time optimisation in practical 

scenarios.  

 

 

                Figure 3.3: Proposed framework for the development of the ensemble model 

3.6 Data Collection and Preparation  

This stage involves the extraction and selection of features relevant for the development of the 

model. However, this procedure was conducted sequel to the collection of raw data from the 

micro-AD plant, analysis and infilling of missing data observed in the dataset using different data 

mining techniques as explained in section 3.1. Similar to the procedural steps for development of 

the RNN model, the temperature, HRT, VS, TS, and pH values were observed to be constant 

throughout the AD operational process as the values for each of the parameters were within a 

specific range. Hence these parameters were not taken into consideration when developing the 

Step 2: Model development

Data warehouse structuring

Developing weak learner base models

Developing ensemble models

Step 1: Data collection and preparation

Data collection Feature extraction

Feature selection

Step 3: Performance assessment

Sensitivity analysis Uncertainty analysis 

Optimal weekly operation for obtaining 

maximum generated biogas

Discussion on selected key performance indictors
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ensemble model. As earlier stated, the relevant features were extracted from the collected dataset 

and classified into group features. This is presented in Table 3.1 below. These group features 

include feed, catering composition, oats composition, liner composition, water, and biogas feature 

as shown in table 3.1.  Each of these group features contained 7 features which represented the 

7 days of weekly operation. Each of these group features were further grouped into four different 

classes for feed, catering composition, oats composition, soaked liner composition and the water 

added to the digester. These classes include, 0 (zero), L(low), M(medium), and H(high). In the 

case of the biogas feature, it was grouped into three different classes namely L(low), M(medium), 

and H(high). This is also described in table 3.2 below. The classification of both the feed and 

biogas features were based on the operational conditions of the micro-AD plant and view of the 

expertise. On the other hand, the water feature was classified based on the clustering method. 

Following this, the extracted features presented in table 3.1 were then refined using three estab-

lished techniques namely principal component analysis (PCA), partial least squares (PLS), and 

sequential sensitivity analysis (SSA). These techniques are widely accepted as prerequisite steps 

for the identification of the key variables enhancing classification performance and reducing com-

putation times (Masahiko et al., 2019). 

Principal Component Analysis (PCA) is a sophisticated statistical method widely applied in data 

science especially for reducing the dimensionality of data sets (Jollife & Cadima 2016). It focusses 

mainly on the transformation of complex high-dimensional data into a simpler, more manageable 

form while preserving significant information. This is mainly achieved through the extraction of 

principal components from the datasets. The PCA technique, otherwise known as dimensionality 

reduction technique, has become integral in various fields of discipline ranging from finance to 

genomics, where the management and interpretation of vast amounts of data is a common chal-

lenge (Jollife & Cadima 2016). It has also been widely used in wastewater treatment plants for 

process monitoring and in AD plants for diagnosing the state of anaerobic digestion (Li & Yan 

2019). In addition, PCA has been applied at the preliminary stages of data analysis for uncovering 
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hidden trends in the data. Moreso, it is useful in multivariate data analysis, dealing with observa-

tions of multiple interrelated variables. 

PLS is a technique used to estimate linear relationships between dependent and independent 

variables. It shows the direct effect of independent variables on the dependent variables. In addi-

tion, it can reduce the dimensionality of correlated variables, modelling the underlying and shared 

information of the variables. PLS has been widely applied in anaerobic digestion processes for 

monitoring the process parameters, biogas prediction and the simulation of the best operational 

condition for the generation of maximum biogas volume (Awhangbo et al.,2020). It has also been 

applied as a multivariate data analysis technique which combines the methodologies of regres-

sion and linear analysis (Boulesteix & Strimmer 2006).  It is widely employed in the different fields 

of study where handling unobservable or hidden variables is vital. As such, it has been found to 

be highly useful in the field of business, management and accounting, social sciences, econom-

ics, finance, environmental sciences, medicine, and health professions amongst others. 

Sequential Sensitivity Analysis (SSA) is a technique used to determine the impact of each in-

put/decision variable on the output variable (biogas). It is an integral part of anaerobic digestion 

modelling as it provides information on the most influential parameters on the model output 

(Barahmand & Samarakoon., 2022). SSA also reduces the amount of estimation required. SSA 

plays a vital role in modelling AD systems which helps in the operation of a biogas production 

unit. 

Hence, sequential sensitivity analysis (SSA) was carried out by removing one feature at a time 

and measuring the accuracy difference of the developed WLDM models. Based on the analysis, 

the key features were then selected and stored in a data warehouse for developing and testing 

the WLDM models. This analysis was conducted for each of the group features as presented in 

the results section. 
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    Table 3.1: Potential features extracted for developing weak learning data mining models. 

Group  
Feature 

Data 
 Unit 

Description  Class 

Feed kg/day 
The weight of organic material 
sent to the digester for decom-
position. It was measured in kg. 

0: zero feeding 
L: feeding less than 20 kg/day 
M: feeding between 20 and 40 kg/day 
H: feeding more than 40 kg/day 

Catering % daily feed 

The composition of food waste 
produced in commercial kitch-
ens, canteens, and restau-
rants. 

0: zero ratio in daily composition 
L: less than 16% in daily composition 
M: between 16% and 50% in daily 
composition 
H: more than 50% in daily composition 

Oat % daily feed 
The composition of organic 
wastes containing oat grains 

0: zero ratio in daily composition 
L: less than 9% in daily composition 
M: between 9% and 45% in daily com-
position 
H: more than 45% in daily composition 

Liner % daily feed 
The composition of organic wastes 
containing liners soaked in liquid. 

0: zero ratio in daily composition 
L: less than 7% in daily composition 
M: between 7% and 63% in daily com-
position 
H: more than 63% in daily composition 

Water % daily feed 
The amount of moisture content 
added to the digester during its op-
erations. 

0: zero ratio in daily composition 
L: less than 5% in daily composition 
M: between 16% and 40% in daily 
composition 
H: more than 40% in daily composition 

Biogas m3/day 
The end product of the entire an-
aerobic digestion process. It was 
measured in volumes. 

L: less than 1 m3/day  
M: between 1 and 4 m3/day 

H: more than 4 m3/day 

0: Zero      L: Low    M: Medium    H: high 
*: Each group feature contains 7 features representing 7 days of weekly operation  
Classification is provided based on operational practices and desired industrial goals. Range of 
each class are provided by the analysis on raw data and using k-mean classification model 

 

3.7 Model Development 

The development of an ensemble model involved the combination of multiple WLDMs to create a 

more robust and accurate biogas prediction model. For the purpose of this research study, the 

stacking method was selected. The selection of this method for achieving the purpose of this 

research study was on the basis of its previous applications in different fields of study, where it 

has proven to be well suited for creating ensemble models from multiple WLDM models. The 

stacking method has the ability to reduce both bias and variance (Gupta et al.,2023) The ability 

of the stacking method to reduce both bias and variance distinguishes it from the bagging and 
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boosting method which can reduce only one of both (Chauhan 2021). This particular attribute of 

the stacking method helps to improve its accuracy in the prediction of biogas as it combines the 

predictions of different WLDM models otherwise known as base models to obtain a final prediction 

(Chauhan 2021). It also makes the model more flexible to be applied to any machine learning 

algorithm. In addition, it makes the model more robust than other ensemble models thereby mak-

ing it less susceptible to overfitting, The development of WLDMs involved six different techniques 

namely: decision trees (DT), k-nearest neighbour (KNN), gaussian process regression (GPR), 

support vector machine (SVM), naïve Bayes (NB), discriminant analysis (DA). These specific 

models were selected based on their widespread application and recognized potential in previous 

anaerobic digestion processes, where they have been used for various purposes (Cruz et al., 

2022; Gupta et al., 2023; Khan et al., 2023). Each model was developed using MATLAB 2022b 

and optimised through automatic hyperparameter optimisation, aiming to minimise the five-fold 

cross-validation loss over thirty iterations. Further details on the optimisation process are pre-

sented in Figure A3 in the Appendix. In addition, error bias was mitigation using the 5-fold cross-

validation method. The dataset was divided into three distinct portions for training and testing the 

models. Specifically, 60% of the dataset was allocated for training the individual WLDM models, 

20% of the dataset was reserved for testing the performance of these models while the remaining 

20% of the dataset was set aside for evaluating the proposed ensemble model. To ensure a 

balanced and equal representation of the databases, the group features were randomly distrib-

uted across the training, validation, and testing databases (See Table A3 in the Appendix).  

Subsequently, the built WLDM models were stored in a model library and their KPIs are stored in 

data cube. The KPIs of the developed models in predicting biogas was assessed using the con-

fusion matrix concept as a statistical classification technique (Grandini et al., 2020; Tharwat, 

2021). This technique involved mapping the predicted biogas classes (i.e., low, medium, high) 

onto the confusion matrix. Using this mapping of the confusion matrix, this study employed two 

main KPIs of true positive rate (TPR) i.e., ratio of correct prediction of ith class of yielded biogas 
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and true negative rate (TNR) i.e., ratio of correct rejection for situation in which yielded biogas is 

not ith class. These two KPIs are determined for each class of low (class 1), medium (class 2), 

and high (class 3) yielded biogas. TPR and TNR rate are determined based on Equations 1 and 

2. Model library and data cube is integrated as a data warehouse that used for developing en-

semble model. 

 

TPRI (%) =
TPi

ni
× 100 Equation 1 

𝐼 (%) =
TNi

ni
× 100 Equation 2 

 

where TPRi is the TPR of ith class, TNRi is the TNR of ith class, TPi is the number of correct ith 

class prediction, TNi is the number of correct rejections of non- ith class prediction, and ni is the 

total number of measured ith class. 

The ensemble model was developed by combining the developed WLDMs to create a more robust 

and accurate prediction model. As earlier stated, the stacking method was selected due to its 

widespread application in different fields of study. Most importantly, it has been successfully ap-

plied in previous AD systems (Mukasine et al.,2024) This method involved the training of all 

WLDMs on the same set of training data. The WLDMs were blended afterwards using a decision 

tree framework inspired by bucket of models’ method, as shown in Figure 3.4. To determine the 

class of yielded biogas, a set of WLDM models are adjusted. These models are then selected 

based on their higher performance in each key performance indicators (KPIs) previously stored 

in data cube. For example, as shown in Figure 3.4, group 1 models are the models in which TPR1 

was recorded in the range of acceptable (e.g., DA, DT, and NB model in Figure 1). Here this rate 

was selected as 70% based on recommendations of Cruz et al. (2022), Gupta et al. (2023), and 

Khan et al. (2023). The predicted class by these models were blended by voting techniques. The 

predicted classes i.e., F1, F2, and F3 were fed into a decision tree framework to determine the final 
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prediction. This framework operates under specific conditions to identify the most appropriate 

predicted class. In scenarios where a single predicted class aligns with the selected group, that 

particular class is chosen as the final prediction. To illustrate this process, consider an example 

where group 3 predicts a high value for F3 (F3=H), and F2 is predicted to be anything other than 

medium (F2=L or H, but not M), and similarly, F1 is predicted to be anything other than low (F1=M 

or H, but not L). Under these conditions, the correct predicted class would be H, following the fifth 

left branch of the decision tree in Figure 3.4. On the other hand, if all models predict their respec-

tive classes, the model with the highest average of TPR takes precedence. This is demonstrated 

in the first right branch of the decision tree presented in Figure 3.4. This approach to ensure that 

the model with the highest degree of accuracy/correct estimation is selected when all models 

agree on their predictions. In cases where none of the models can accurately predict their respec-

tive classes, the final decision is made by assessing the overall performance of these models 

using the highest average of TPR and TNR. This criterion is represented by the first left branch 

of the decision tree in Figure 3.4. When faced with situations where two models strongly advocate 

for their respective classes and are unable to reach a consensus, the model with the highest 

Score value (Sij), as determined based on equation 3, is selected as the final decision.  

S𝑖𝑗 =  TPR 𝑖 𝑓𝑜𝑟 𝑔𝑟𝑜𝑢𝑝 𝑖 +  TNRi for group j Equation 3 

 

where Sij is the determined score, i and j are the two selected groups.  

For this purpose, two scores are determined. As an example, let us consider a situation where F3 

and F2 are predicted as H and M, respectively, and F1 is predicted as not L. In this scenario, the 

first score is calculated as the summation of the TPR of group #3 and the TNR of group #1 (S31 

in the second right branch of the decision tree in Figure 3.4). The other score is computed as the 

summation of the TPR of group #2 and the TNR of group #1 (S21). To make the final decision, the 

two scores are compared. If S31 is greater than S21, F3 is selected as the final prediction. Other-

wise, F2 is chosen. This approach effectively evaluates the capability of true prediction of the two-
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group model (consisting of groups 1 and 2 in this example) based on the TNR rate of the other 

model group (group 3). By employing this decision tree framework, the system systematically 

determines the final prediction in cases involving multiple predicted classes from distinct groups. 

This method ensures a structured and reliable approach to arrive at the most suitable prediction 

based on the aligned groups' predictions. 

 

                     Figure 3.4: Data warehouse and proposed ensemble model 
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Sequel to the development of the ensemble model, the developed model was then optimised 

using SFLA. This was to determine the optimum condition for the weekly operation of micro-AD 

plant for maximum biogas generation. The developed model was optimised for 7-days ahead to 

determine the optimum condition for the weekly operation of the micro-AD plant. To achieve this 

objective, a set of constraint rules was integrated into the process of selecting the optimal sce-

nario. These constraint rules served as guiding principles to determine the best course of action, 

considering a range of factors. The key constraint rules were established based on the view and 

technical expertise of the micro-AD operator. The constraints serve as general recommendations 

for other similar AD projects which seek to apply these principles to optimize patterns either in 

their research or practical projects. The following key constraint rules were then established: (1) 

minimising input loads to ensure that the highest possible yielded biogas was obtained for each 

unit of added materials, optimising resource utilisation, (2) minimising input days to mitigate the 

operational costs associated with material handling, transportation, and processing, (3)  minimis-

ing added water load aligning with the goal of conserving water resources and mitigating associ-

ated energy costs, resulting in more sustainable and efficient operation, (4) minimising feeding 

days for cost savings arise from frequency of operational activities and associated resource con-

sumption. By integrating these constraint rules, the optimisation framework strived towards strik-

ing a balance between the maximisation of biogas production, minimisation of resource inputs, 

and the optimisation of operational costs. This comprehensive approach ensured that the chosen 

scenarios were in accordance with achieving both environmental sustainability and economic ef-

ficiency goals which have sustainable societal benefits. By understanding and following this pat-

tern, operators can effectively optimise their operations to maximise biogas yield. The proposed 

pattern was evaluated against conventional AD operation for a period of one month. 

3.9 Performance assessment of the developed WLDM & Ensemble models 
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Several benchmark models were developed to facilitate a comparative analysis with the developed 

ensemble model. These models are intended to further enhance predictive performance and pro-

vide a comprehensive evaluation of the different techniques used. The implementation of these 

benchmark and ensemble models serves as a valuable reference point for evaluating the effective-

ness of the developed models in improving the biogas prediction accuracy. These benchmark mod-

els include: (1) hard voting stacked model determining final class based on the majority class label 

predicted by the individual WLDM models, (2) soft voting stacked model considering the probabili-

ties or confidence scores assigned by each WLDM model for each class and blending them to make 

the final prediction. Furthermore, optimised stacking models are created by combining the best 

performing developed WLDM models including (1) the ensemble of the best performing WLDM in 

TPR1 i.e., low based, (2) the ensemble of the best performing WLDM in TPR2 i.e., medium based, 

and (3) ensemble of the best performing WLDM in in TPR3 i.e., high based. Moreover, to ensure 

the generalization and comprehensiveness of the proposed model, other blending methods such 

as bootstrap aggregating (Bagging) and boosting were also selected including the optimised ver-

sions of (1) RF, and (2) Subspace of developed NB, (3) XGBoost, (4) Gentle boos of developed 

DA model, (5), Random under sampling and boosting (RUS Boost) of GPR model. The shuffled 

frog leaping algorithm (SFLA) optimisation technique, along with the classification and optimisa-

tion toolboxes of MATLAB 2022a, were employed to identify the best type of documented various 

models of stacking, bagging, and boosting. During the optimisation, the number of learners varied 

from 1 to 500, the learning rate ranged from 0.001 to 1, the maximum number of splits varied from 

1 to 18618, and the classification error improvement threshold was set at 0.01%. To assess the 

performance of ensemble models, in addition to TPR and TNR, Accuracy or correct prediction of 

all classes (ACC), false positive ratio (FPR) i.e., portion of abnormal prediction, overestimation 

rate, and underestimation rate were used as the performance assessment metrics. These metrics 

are determined based on Equations 3-6. 
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ACC (%) =
∑ TPi + TNi

∑ ni

× 100 Equation 3 

FPRi =
FPi

TNi + FPi

 Equation 4 

Overestimation (%) =
∑ FPi

∑ ni

× 100 Equation 5 

Underestimation (%) =
∑ FNi

∑ ni

× 100 Equation 6 

Where FPRi is the FPR of the ith class, FPi is the portion of the situation in which ith class is predicted as 

higher yielded biogas, FNi is the portion of the situation in which ith class is predicted as lower yielded 

biogas. 

Furthermore, sequential sensitivity analysis (SSA) was carried out to determine the impact of 

each feature on the generated biogas. To achieve this, one feature was removed at a time and 

the accuracy difference of the developed WLDM models was measured. This method serves the 

purpose of gaining insights into the impact of each feature on the proposed ensemble model. 

Uncertainty analysis was also carried out to show changes in the relative accuracy with corre-

sponding reductions in the dataset. The results of both the sequential sensitivity analysis (SSA) 

and uncertainty analysis will be presented and discussed under the results section.   

3.10 Summary 

The proposed methodology for this research study explored three different novel approaches in 

achieving the aims and objectives of this research study. These three different novel approaches 

include 1. The size of the dataset used for the development of both RNN and Ensemble-based 

model 2. Application of SFLA for the optimisation of the developed models.3. Incorporation of 

time-series concepts into the ensemble model. These three novel approaches will be discussed 

in detail as follows. 

The size of the dataset used for model development: The size of the dataset used for the 

development of both the AI-based and Ensemble model was obtained from an AD plant which 

was observed to be limited as it had an operational period of 310 days (i.e., an operational 
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period of approximately 10 months). The utilisation of this size of dataset for the development 

of both the RNN and Ensemble model is quite rare especially in the development of the RNN 

model (i.e., a neural network model). This is due to the fact that series of research studies 

conducted previously on AD systems using RNN have demonstrated its ability to effectively 

predict biogas production and other AD output variables such as methane production 

amongst others using datasets having longer periods of operation ranging from a period of at 

least 1 year to a period of 8 years (Dhussa et al.,2014; Wang et al.,2021). In addition, the 

development of neural network models using datasets of large sizes can be attributed mainly 

to the fact that the use of limited dataset for model development has frequently been observed 

to be less effective in improving the performance of AD systems compared with traditional 

machine learning models (Feng et al.,2019). To this effect, datasets of large sizes are gen-

erally desired for the development of neural network models to ensure a higher level of model 

accuracy (Seo et al.,2021).Moreover, the size of the dataset previously used in developing 

different ML models such as SVM, DT, KNN etc for predicting biogas and other AD outputs 

have shown analysis over longer periods of operation ranging from 2- 8 years demonstrating 

satisfactory performances (Liu et al.,2022; Wang et al., 2021).  The utilisation of dataset hav-

ing limited size (i.e., 310 days) for the development of both RNN and the ensemble model for 

achieving the aims and objectives of this research study, further tested the feasibility of the 

developed models. It also provided a useful insight on the ability of both models to improve 

the performance of an AD plant with limited period of analysis. This will enable the right de-

cisions to be made in the future by the operator on the best approach to adopt in order to 

further improve the effectiveness of the AD system.  

The application of SFLA as the optimisation tool:  SFLA was used as the optimisation tool for 

the developed RNN and Ensemble models to improve biogas production with the aim of obtaining 

maximum volume of biogas from the micro-AD plant. It was also used to determine the optimal 
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daily feeding pattern that can yield maximum volume of biogas from the micro-AD plant. The 

application of SFLA for the optimisation of biogas production from AD is also a novel approach. 

Though SFLA has commonly been applied in different aspects of civil engineering such as water 

resources management for solving optimisation problems (Guo et al.,2020), construction/project 

scheduling to assist decision-makers in the identification of the best Pareto solution for time-cost-

resource trade-off (TCRTO) problems under the constraint of precedence, resource availability, 

and on-site peak electricity power load (Tao et al.,2019) and pier maintenance. Its application in 

for the optimisation of estimated biogas produced from the operation of AD is highly innovative 

as previous research studies have employed different optimisation algorithms in the optimisation 

of estimated biogas production from AD. These different optimisation algorithms include Genetic 

Algorithm (GA), Hybrid Bayesian Optimisation (HBO) method and Adaptive Neuro-Fuzzy Infer-

ence System (ANFIS) (Kana et al.,2012; Sadoune et al.,2023; Zareei &Khodaei (2017). Other 

optimisation algorithms applied in the optimisation of estimated biogas production from AD include 

Ant Colony Optimisation (ACO), Response Surface Methodology (RSM) and Seagull Optimisation 

Algorithm (SOA) (Beltramo et al.,2016; Dahunsi et al.,2017; Abdel daiem et al.,2022). Further-

more, Particle Swarm Optimisation (PSO) algorithm has also been applied in the optimisation of 

biogas (Zeinolabedini et al.,2023). The application of SFLA for achieving the purpose of this re-

search study further tested the effectiveness of SFLA in the optimisation of estimated biogas from 

AD operations. It will also serve as a decision-making tool for future researchers who intend to 

adopt optimisation algorithms to further improve biogas production.  

Incorporation of Time-Series into the Ensemble Model:  The incorporation of time-series into 

the ensemble model is yet another novel approach   adopted for achieving the purpose of this 

research study. This is because previous research studies carried out on ensemble models de-

veloped using different ML models have either focussed on investigating the feasibility of the 

ensemble models developed from different ML models used in predicting biogas and other AD 
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outputs or predicting the correlation between operational parameters and biogas production quan-

tities obtained from a real-scale AD plant. (Long et al.,2021; Xu et al.,2021; Oznur & Yildirim 

2023). 

Additionally, the feasibility of the developed ensemble models has been investigated using differ-

ent performance indicators such as coefficient of determination for their evaluation (Wang et 

al.,2023; Li et al.,2022). The incorporation of time-series into the ensemble model represents a 

significant advancement aimed at enhancing the capability of the developed ensemble model to 

improve the performance of the AD plant in generating maximum biogas volume. Also, the intro-

duction of a user-friendly weekly operation pattern enables easy implementation by AD operators. 

Furthermore, this approach will make it relatively simple and practical thus enabling its straight-

forward application in various industrial settings. This will allow operators who may not have ex-

tensive technical expertise in advanced modelling techniques to easily understand and interpret 

the input variables and the corresponding output classes. Moreover, dealing with different vol-

umes and numbers in a practical setting can be highly challenging and cumbersome where these 

models may simplify the decision-making process by providing clear indications of the system's 

operational state or the class to which inputs or outputs belong.  

These three novel approaches have contributed towards filling a significant gap in knowledge. 

They also helped to address some of the technical and economic limitations associated with the 

real-life application of AD. Through this means, the novel approaches have provided answers to 

the research questions raised in the introduction of this research study. However, some key op-

erational and environmental parameters of the AD plant were excluded when developing both 

models. These parameters include temperature, pH, HRT, OLR, TS and VS. The exclusion of 

these parameters was on the basis of the cross-correlation analysis which were observed to be 

constant during the operation of the AD plant thereby having no significant correlation on the 
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volume of biogas compared to the feed, composition variables (i.e., oat, catering and liner) and 

water added. Further details will be presented in 4.5 under the results section.  

 Although these parameters influence the performance of the AD process in biogas production, 

they are unsuitable for the detection of abnormal conditions (Kazemi et al.,2021). For instance, a 

decrease in biogas production or pH implies that instabilities have already occurred in the pro-

cess. Also, the OLR and HRT values are dependent on the decision of the plant’s operator 

(Kazemi et al.,2021). Normally, these parameters change when there is a change in feed compo-

sition or due to instability of the process. Moreover, early indicators of process imbalance such 

as gas composition measurement (CH4, CO2, H2), redox potential, alkalinity and VFA concentra-

tion can provide apriori indications of the process imbalance, they do not give direct information 

as regards to the exact cause of process imbalance (Boe et al., 2010; Dixon et al., 2007).  

Table 3.2: Summary of the Novel Approaches adopted in this Research Study. 

Novel Ap-
proach 

Description of Nov-
elty 

Justification of the Novel Approach References 

Size of the Da-
taset used for 
the develop-
ment of both 
Models 

The utilisation of this size 
of dataset for the develop-
ment of both the RNN and 
Ensemble model is quite 
novel  

Previous research studies conducted on AD 
systems using RNN and other ML models for 
the Ensemble model have demonstrated 
their ability to effectively predict biogas pro-
duction and other AD output variables using 
datasets having longer periods of operation 
ranging from a period of at least 1 year to a 
period of 8 years  

(Dhussa et al 
2014; Liu et 
al., 2022 
; Wang et al 
(2021) 
 

SFLA optimisa-
tion algorithm 

The adoption of SFLA as 
the optimisation algorithm 
method in obtaining max-
imum volume of biogas 
from AD is also novel    

SFLA has commonly been applied in differ-
ent aspects of civil engineering such as wa-
ter resources management for solving opti-
misation problems, construction/project 
scheduling, time-cost-resource trade-off 
(TCRTO) problems and pier maintenance 

(Guo et 
al.,2021; Tao 
et al.,2019) 
 

Incorporation of 
time-series into 
the developed 
Ensemble 
Model 

This represents a signifi-
cant advancement aimed 
at enhancing the capabil-
ity of the developed en-
semble model.  It enables 
its easy implementation 
by AD operators.  
straightforward applica-
tion in various industrial 
settings. 
 

Previously developed ensemble models had 
either focussed on investigating the feasibil-
ity of the ensemble models developed or fo-
cussed on predicting the correlation be-
tween operational parameters and biogas 
production quantities obtained from a real-
scale AD plant 

(Long et 
al.,2021; Xu 
et al.,2021; 
Oznur & Yild-
irim 2023) 



 

71 
 

  



 

72 
 

4 Chapter 4.  Results and Discussion 

The results of the proposed methodology adopted for the development of both the new AI-based 

framework and the time-series ensemble-based model in predicting and optimising biogas from 

a micro-AD plant is presented and extensively discussed in this chapter. The discussions will be 

based on the observations made in the results presented for the different analysis carried out for 

both the new AI-based framework and the Ensemble-based model respectively. The discussions 

will also focus on how the results obtained can help to address some of the technical limitations 

of the micro-AD plant as well as the potential impact they have on the environment, society, and 

economy. This is in accordance with achieving the aims and objectives of this research study. 

Furthermore, the discussions tend to provide answers to the research questions outlined in the 

scope of this study using the novel approaches adopted in the proposed methodology. 

4.1 Performance Statistics of the Micro-AD plant 

Table 4.1 shows the performance statistics of the various operational parameters of the micro-AD 

plant used as the pilot study for achieving the aims and objectives of this research study. The 

various operational performance statistics presented in Table 4.1 were obtained using the raw 

data collected from the micro-AD plant. The raw data collected enabled the calculation of the total 

feed and water added to the micro-AD plant over its operational period of 310 days. It also enabled 

the calculation of other parameters used in the development of both models. These parameters 

include average daily biogas volume and volumetric daily biogas volume. Other parameters such 

as volatile solids. HRT, average temperature of the digester, average OLR, average biogas me-

thane content etc were also recorded during the operation of the micro-AD plant as presented in 

Table 4.1. These operational parameters were used for the purpose of comparison with the results 

of the developed AI-based model. This was to further confirm the effectiveness of the developed 

models in improving the volume of biogas generated from the micro-AD plant. From table 4.1, it 
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can be observed that the data obtained on the average daily feed amount and average volume of 

daily biogas produced from the micro-AD plant, was calculated based on the daily biogas data 

recorded during the operation of the micro-AD plant.  

Table 4.1; Key Operational Performance of the Micro-AD plant 

Measurements Value Unit 
Average daily feed amount  14.3 kg/day 

Average daily volatile solid 
added 

3.22 kg/day 

Average organic loading rate 1.6 kg VS m-3/day 

Average water added  2.3  kg/day 

Average daily biogas production   3.15 m3/day 

Volumetric daily biogas produc-
tion 

1.57 m3 biogas m-3 digester day-1 

Total mass of food added to the 
plant 

4574 kg 

Specific biogas yield 220 m3 tonne-1fresh matter 

Specific methane yield 595.5 m3 CH4 tonne-1 VS 

Average biogas methane content 60.6 % 

Average hydraulic retention time 127.2 days 

Average temperature of the di-
gester 

35.7 ˚C 

 

4.2  Outcome of the Data Mining Techniques for Infilling the Missing Data 

Figure 4.1 shows the performance of the different data mining techniques applied for infilling the 

missing data observed in the data collected from the micro-AD plant. The performance of each of 

the different data mining techniques was evaluated using the RMSE of the test data based on the 

cross-validation method in which all data samples took part in the evaluation of the test set of data 

(Eghbali et al., 2017). The 6-fold cross-validation method was used in this research study for 

assessing the performance of each of the data mining techniques employed for infilling the miss-

ing data. Based on the results presented, it was observed that the Kriging technique had the least 

range of fluctuations compared to the other data mining techniques as it demonstrated to have 

an average RMSE value of 1.23 m3/day unlike the other techniques which were observed to have 

RMSE values within the range of 1.25-2.25 m3/day. This implies that the application of the kriging 
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technique will give rise to a closer range of data compared to the other data mining techniques 

employed in this research study.  

Thus, the Kriging technique was selected and used to obtain the missing biogas values with com-

plete feed values thereby giving rise to more accurate predictions of the biogas produced from 

the AD plant. This further confirms the effectiveness of the Kriging technique in infilling missing 

data where other previous studies have not highlighted the challenge of missing data and have 

in most cases, used simple common techniques such as linear regression and linear interpolation 

for infilling missing data (Pei et al., 2022; Seo et al.,2021). The performance of the kriging tech-

nique also confirms its effectiveness over widely known infilling techniques such as KNN and 

SVM which have proven to be effective. This is especially important because similar to many 

industrial and real practices, the generated biogas was not measured daily and only 40% of the 

non-sequential data were recorded. This represents 123 non-sequential data out of the 310 days 

of operation.  

Hence, the application of this infilling technique was highly useful as it was able to address the 

challenge of missing data which is a major challenge currently being faced in many industrial and 

real practices. It provided acceptable results used to develop the RNN/NARX model used for 

accurate prediction and optimization of the generated biogas volume from the micro-AD plant. 

The acceptable results provided by the kriging technique were also applicable for the develop-

ment of both the six different WLDM models and the ensemble-based model thereafter.  
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Figure 4.1. Performance of data mining techniques applied for infilling the missing data. 

 

4.3 Cross Correlation Analysis of the Operational Parameters 

Table 4.2 and Figure 4.2 presents the results of the cross-correlation analysis carried out on the 

raw data collected from the micro-AD plant. This analysis was a measure of the operational pa-

rameters of the micro-AD plant where the impact of each of the operational parameters on bio-

gas was measured with respect to lag time which indicated the point where the best match be-

tween the operational/input parameter and biogas occurred.  As stated in the methodology, this 

analysis was carried out to determine the input parameters which had a significant impact on 

biogas yield.  

From figure 4.2a, it was observed that feed parameter had a correlation coefficient of 0.60 at the 

5th lag. This implies that biogas was generated 5 days after the addition of feed into the AD 

plant. In figures 4.2b and c, the TS and VS parameters were observed to have a correlation co-

efficient of 0.99 at the 0th lag respectively.  

The occurrence of both TS and VS coefficient at the 0th lag indicates that both TS and VS had 

no significant impact on the biogas yield.  This can also be observed in the STD of the non-zero 
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value for both TS and VS presented in Table 4.2 which appeared to be relatively low compared 

to the other parameters.  

Figure 4.2d showed that catering had a correlation coefficient of 0.42 at the 3rd lag. This implies 

that biogas was generated 3 days after the catering was added into the AD plant. In figure 4.2e, 

it was observed that oats had a correlation coefficient of 0.31 at the 3rd lag thereby implying that 

biogas was also generated 3 days after the addition of oats to the AD plant. Similarly in figure 

4.2f, liner was observed to have a correlation coefficient of 0.38 at the 3rd lag just like catering 

and oats. The similarity in the lag time between catering, oats and liner indicates their significant 

impact in the volume of biogas generated from the AD plant.  

Figure 4.2g showed the correlation between water and biogas where water had a coefficient of 

0.38 at the 2nd lag. This implies that biogas was generated 2 days after the addition of water to 

the AD plant. In figure 4.2h, the correlation between the digester temperature and biogas was 

illustrated where temperature was observed to have a coefficient of 1 at the 0th lag. The occur-

rence of the coefficient at the 0th lag indicates that temperature has no significant impact on bio-

gas. Hence, the results of the cross-correlation analysis of the raw data presented in table 4.2 

and figure 4.2 indicates that the biogas generated from the AD plant was mainly influenced by 

feed, catering, oats, liner, and water. 

Table 4.2: Initial Cross-Correlation Analysis of the Raw Data 

Parameter  Recorded zero value 
(%) 

 STD* of non-zero 
value 

 Cross – correla-
tion** 

Feed (Kg/day)  50  28.28±17.33  0.60 at 5th lag 
TS (%)  0  0.26±0.04  0.99 at 0th lag 

VS (%)  0  0.25±0.04  0.99 at 0th lag 
Apple Pomace (Kg/day)  100***  NA+  NA 
Catering (Kg/day)  28  32.64±24.40  0.42 at 3rd lag 
Coffee (Kg/day)  100  NA  NA 
Feedstock (Kg/day)  100  NA  NA 
Green waste (Kg/day)  100  NA  NA 
Oats (Kg/day)  11  30.26±12.56  0.31 at 3rd lag 
Soaked muesli (Kg/day)  100  NA  NA 
Soaked liners (Kg/day)  22  5.66±4.12  0.38 at 3rd lag 
Soaked peanuts 
(Kg/day) 

 100  NA  NA 

Tea (Kg/day)  100  NA  NA 
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Tea leaves (Kg/day)  100  NA  NA 
Tea bags (Kg/day)  100  NA  NA 
Oil (Kg/day)  100  NA  NA 
Water (Kg/day)  28  3.5±0.71  0.38 at 2nd lag 
Biogas production 
(m3/day) 

 0  3.26±1.21  - 

Digester temperature 
(oC) 

 0  32.90±0.13  1 at 0th lag 

*: Standard deviation                            **: Cross-correlation between interested parameter data and bio-
gas data 
***: Lack of data                                  +: Not applicable 
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(g)  (h) 

 

 

Figure 4.2. Cross-correlation between the yielded biogas and: (a) feed, (b) TS, (c) VS, (d) catering, 

(e) oat, (f) liner, (g) water, (h) temperature 

 

4.4 Outcome of the developed RNN model tuning and calendar distribution of inputs  

Sequel to the infilling of missing data, the RNN model was developed using the datasets and 

tested afterwards using both RMSE and NNSE described in the methodology as the performance 

indicators. The optimal number of lag times for each input variable can be seen in Figure 4.3 

below. This was obtained after 8 trials as shown in figure 4.3 below. The figure also shows the 

obtained lag times in each iteration and their corresponding model performance metrics. As it can 

be seen in the figure, the RMSE was observed to decrease for each trial step ahead while the 

NNSE increased concurrently. This was expected as the closer the RMSE value is to zero, the 

more accurate the model is in giving precise predictions of biogas Also, the closer the NNSE value 

is to one, the model accurate the model is in predicting biogas. Based on the result presented in 

figure 4.3, it was observed that the longest optimal daily lag time is 5 days for the added water 

variable, followed by 3 days for feed added to the main digester, and then 1 day for other variables 

(i.e., catering composition, oat composition, soaked-liner composition, and biogas generation). 

These values obtained indicate that the generated biogas is influenced by the long term and 

gradual effects of added water and daily feeding weight whereas the oat, catering and soaked 
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liner waste compositions can immediately impact on biogas for only one day. It was also observed 

that the yielded biogas is heavily dependent on the calendar distribution of feeding and water in 

comparison to the weights of added feeding material to the digester. Furthermore, one day lag 

time in the waste composition indicates that the process of biogas generation is highly impacted 

by the different rate of compositions which are added to the pre-digester, even if this ratio is not 

completely similar to the material entered into the digester.  

Figure 4.3. The trend of the SFLA optimisation method to determine optimal daily lag time of input 

variables. 

Moreover, the cross-correlation analysis, illustrated in Fig.4.2, shows the highest correlation co-

efficient between biogas generation and the feed added to the main digester occurs in previous 

5 days (used as initial for F1 in Fig. 4.3) whereas optimised lag time for feed is reduced to 3 days 

(trial 7 in Fig. 4.3). Similarly, daily lag times for catering, oat and liners were observed to decrease 

from 3 days in initial trial based on the cross-correlation analysis to only 1 day. However, the high 

correlation of 5 to 3 days before for the added water were initially ignored (number 2 in the initial 

row for F5 in Fig. 4.3 vs number 5 in the last row). This can be due to the impact of the combination 

of input variables on optimal lag times that is shown in the significant improvement of metrics, i.e., 

RMSE (decrease from 1.4 to 0.4) and NNSE (increase from 0.6 to around 0.9). Although most of 
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the previously developed NARX models recommended using cross-correlation results for devel-

oping NARX model (Abdel daiem et al., 2022), the difference between initial lag times and final 

lag times obtained from the SFLA method shows the added value of using optimisation models 

to fine tune these time-series models. This shows that the applied optimisation method could 

speed up the modelling while increasing the accuracy as it was observed in the RMSE values 

which significantly decreased to 0.4 from 1.4 while the NNSE had a significant increase to ap-

proximately 0.9 from 0.6. This is very important because although almost all research studies that 

previously used RNN/NARX model, recommended the use of cross-correlation results for devel-

oping the RNN/NARX model (Abdel daiem et al., 2022), the difference between the final delay 

factors, i.e., obtained days, and initial values experienced an increase in value through the appli-

cation of the optimisation models to fine tune these time-series models. Thus, the ability of the 

applied optimisation method to fine tune the RNN model is highly beneficial as it can improve the 

efficiency of the AD process in the production of biogas thereby, addressing one of the major 

technical limitations of AD mostly encountered in real industrial practices. 

 

4.5 Performance of the Developed RNN Model   

In figure 4.4a, comparisons were made between the measured biogas and the predicted biogas 

over the test period of 47 days. Based on the figure presented, sudden drops and rises in the 

volume of the predicted biogas were observed along days 4-10, 16-19, 22-25 and 40-43 respec-

tively. These sudden drops and rises indicate signs of instability in biogas production from AD 

operation along these days. These signs of instability can be attributed to the exclusion of the 

temperature parameter in the development of the RNN model as different research studies have 

revealed that the temperature parameter plays a vital role in ensuring the stability of the AD sys-

tem which influences biogas production from the AD system (Dela-Rubia et al., 2002; Bouallagui 

et al., 2009b; Riau et al., 2010). Thus, the exclusion of temperature parameter in the development 
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of RNN gave rise to the sudden drops and spikes in the volume of the predicted biogas observed 

along days 4-10, 16-19, 22-25 and 40-43 respectively.  This further confirms the significance of 

temperature in the production of biogas from AD operations. 

Figure 4.4b also shows the performance assessment of the developed model where the scatter 

plot of predicted biogas versus corresponding measurements for one day lead time (i.e., one day 

ahead) for the three types of the feed classified according to their weight. From figure 4.4b, the 

RMSE values are observed to be 0.33 m3/day for heavy weight feed (i.e., feed weights greater 

than 20 kg), 0.46 m3/day for medium feed (i.e., feed weights within the range 10-20 kg) and 0.39 

m3/day for light weight feed (i.e., feed weight less than 10kg). Considering the size of the dataset, 

these RMSE values obtained are relatively low with the heavy weight feed having the least range 

of errors compared to the other two feeds. Also, the coefficient of variance (CV), for the three 

types of feed showed that the heavy weight feed was the least compared to the other two types 

of feed. The results of the RMSE and CV indicate that the biogas estimation model is more sen-

sitive to the feed with heavy weight compared to the feed with lower weights. However, the three 

RMSE and CV values obtained are quite low thereby indicating that the variation between the 

measured and predicted biogas is quite minimal. This thereby implies that the efficiency of the 

model developed is relatively high hence it is reliable to be used as a surrogate model for estima-

tion of biogas generation in the micro-AD plant. Furthermore, the coefficient of variance (CV) in 

this research study was 13%. This implies a low spread of data values. This is most preferred as 

it suggests that the data values are quite close to the mean. However, the three RMSE values 

obtained which are relatively low indicate that the efficiency of the model developed is relatively 

high. Hence, it is reliable to be used as a surrogate model for estimation of biogas generation in 

the micro-AD plant.  

Finally, an average relative RMSE of 2% was observed in Figure 4.4b. This average relative 

RMSE value obtained is very low, compared to other similar research studies, which were previ-

ously reported to be within a range of 5-10% by Wang et al., (2020) and Pei et al., (2022), 8.9% 
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by Long et al. (2021), and 4.3% by Tufaner and Demirci (2020). This RMSE value obtained con-

firms the effectiveness of the developed model in predicting the biogas generated from the AD 

plant. It also indicates that the developed RNN/NARX model is robust enough to be used for 

relatively high fluctuated biogas generation. These research studies could successfully track the 

fluctuation by demonstrating more than 0.9 for coefficient of regression (R2) or NSE (Tufaner and 

Demirci, 2020; Park et al., 2021; Pei et al., 2022), whereas the NNSE value obtained was 0.84 in 

this research study. Although the NNSE value obtained can be quite acceptable for this model 

but the high range of measured biogas (3.26±1.21 reported in Table 4.2) may be considered as 

the lack of perfect ability of the model to track biogas especially with the sudden rise or drop in 

biogas volume as shown in Figure 4.4a). 
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(c) (d) 

Figure 4.4 (a) scatter plot of predicted biogas vs corresponding measurements for 1 day ahead, (b) 

comparison of observations with estimations, (c) analysis of the percentage of dataset used for 

model development, (d) Impact of feed compositions in the pre-feed tank on the biogas generation. 

 

Figures 4.4c and 4.4d presents the results of the further analyses carried out on the developed 

RNN model where the results of both the uncertainty and sensitivity analysis are presented. As 

stated in the methodology, these analyses were significant to further confirm the effectiveness of 

the developed RNN/NARX model.  The uncertainty analysis presented in Figure 4.4c implies that 

despite the minor higher resistance of NNSE in comparison to RMSE, the prediction accuracy of 

the RNN/NARX model, decreased with a corresponding decrease in the dataset. 

 While this finding was expected mainly because of the limited dataset (only 310 days) used for 

all steps of training, validation and testing the developed RNN model is still highly dependent on 

the volume of the dataset which has no unform pattern and correlation. This finding confirms the 

relatively lower coefficient of cross-correlation analysis input variables and the generated biogas, 

as illustrated in Figure 4.2. Figure 4.4d shows the results of the sensitivity analysis conducted by 

removing one decision variable and running model for one step ahead. From the sensitivity anal-

ysis presented in figure 4.4d, the catering composition was observed to have the highest level of 
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accuracy compared to the other input variables. This shows that the developed RNN model is 

heavily dependent on the catering composition. The oats composition also demonstrated to have 

a very high level of accuracy and is the next to the catering composition. This indicates that both 

the oat and catering composition have the greatest significant impact on the biogas generation in 

the micro-AD plant compared to the other input variables.  

The result of the sensitivity analysis also confirms the accuracy of the developed model as the 

analyses made by the operator of the micro-AD plant indicated that the catering composition 

demonstrated to have the highest composition of food waste comprising of 52% of the total food 

waste which had a major impact of the volume of biogas generated from the micro-AD plant 

(Walker et al.,2017). The analysis carried out by the operator also revealed that oats had a high 

composition of food waste compared to the other variables as it was next to catering comprising 

of 17% of the total food waste thus, the oats composition also had a significant impact on the 

biogas volume (Walker et al.,2017).   

 

4.6 Periodic test and optimal results for the RNN/NARX model 

SFLA optimisation method was used to specify the optimal calendar distribution and daily weights 

for each variable to maximise biogas generation. The optimisation method had 18 decision vari-

ables including four variables for feed added to the main digester at days t-3 to t, six variables for 

the water added to pre-feed tank at days t-5 to t, two variables for each of the three composition 

types (catering, oat, and liner) at days t-1 and day t-2, and biogas generation at day t and t-1.  

The objective value is to maximise the biogas generation at day t+1. From table 4.3, the optimum 

values (i.e., optimum condition) for each of the aforementioned input variables were presented. 

The decision variables in the table are shown as predictors and the objective value is the estima-

tion of biogas generation on the following day. As observed in the table, the estimation of maxi-

mum biogas generation was on day t+1 which is 4.52 m3/day based on the 18 optimal decision 
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variables at the preceding days between day t and t-3. This is the maximum possible volume of 

biogas that can be generated from this micro-AD plant based on the optimal values of decision 

variables. The analysis of the optimal decision variables shows that the entire feed for a cycle of 

four days can only be added on the last day (i.e. 80kg on day t), 60kg of catering is added to the 

pre-feed tank in two days, 55kg for day t-1 and 5kg for day t; 20kg of oat is added on day t-1; 

liner-soaked is not added and 15kg of water was added only on day t-1. To estimate the volume 

of biogas generated on the following day i.e., day t+2 based on the decision variables given in 

table 4.3 for the last 4 days i.e., between day t-2 and day t+1, the estimated biogas generation 

was observed to be 4.23 m3/day. This decrease in the volume of biogas generated is due to the 

fact that the daily distribution of the input variable especially feed, catering and water is different 

from the optimal values obtained above. Similarly, the estimation of biogas generation in the fol-

lowing days (i.e., day t+3 and t+4) was observed to decrease further. On the other hand, if the 

same amounts of feed, catering and water are added every 4 days, the estimated biogas gener-

ation is repeated every 4 days. In other words, the estimation of the biogas values obtained after 

day 4 is observed to be similar to the predictor of the biogas values as the value t+3 is similar to 

the value t-1 and value t is similar to value t+4 accordingly. This indicates that the volume of 

biogas generated after every four days can be repeated with the same proportion of input param-

eters.  

Another observation made in table 4.3 was the absence of the liner input variable in the generation 

of biogas volume. This shows that the liner variable had no significant impact on the maximum 

volume of biogas generated. This observation confirms the analysis made by the operator of the 

micro-AD plant where the liner composition was observed to be insignificant as little amount of 

liner was added to the digester thereby indicating that liner composition had no significant impact 

in improving the volume of biogas generated from the micro-AD plant. Also, it was observed from 

the table that no feed was made in the first two days of the operation (i.e., t-3 and t-2). Through 

this means, the micro-AD plant can be operated by local communities with minimum labour (i.e., 



 

86 
 

most of the feeding is arranged for one day every -four days) to achieve the maximum efficiency 

of biogas generation.  

The impact of this tends to address the problem of high operational costs associated with AD 

plants which is one of the economic challenges affecting the implementation of AD technology as 

a waste management option globally. This explains why cheap and unsustainable waste man-

agement practices such as landfills are still being utilised in many regions across the globe. Thus, 

the optimisation of the developed RNN model will lead to the optimisation of the total weight of 

feedstock processed to obtain maximum volume of biogas while reducing the operational cost of 

the micro-AD plant. Also, the efficacy of this tested approach demonstrates great potentials in 

making the micro-AD plant a more accessible and familiar option compared to the conventional 

AD plant as more people/investors will be encouraged to establish the micro-AD plant as an or-

ganic waste management technique in municipal areas. The effect of this has great tendencies in 

contributing towards the further reduction of transportation cost which is a major economic chal-

lenge associated with the utilisation of conventional AD plants for organic waste management 

(Walker et al.,2017). This implies that the developed AI and optimised model (RNN-SFLA) has 

the potential to address some of the economic challenges hindering the implementation of AD. It 

also demonstrates the ability of the developed RNN-SFLA model to improve organic waste man-

agement using AD technology thereby contributing towards the implementation of circular bioe-

conomy as the integration of RNN-SFLA into the micro-AD plant will help in encouraging more 

investors towards the establishment of more micro-AD plants.  

The establishment of more micro-AD plants will bring development in rural communities across 

the globe through the promotion of small -scale industries in rural communities using clean energy 

generated from AD for various purposes. Also, the establishment of small– scale industries will 

help to create employment opportunities for people within the communities, thereby helping to 

reduce poverty within the area.  
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In addition, more organic wastes will be diverted from landfills through the establishment of more 

micro-AD plants for treating and managing organic wastes. This will help to minimise soil and 

water pollution which occur from the leachate of underground water pollution as well as potential 

run-offs due to the leaching of organic, inorganic, and various other substances of concern (SoC) 

contained in the waste. It will also help to minimise air pollution which occurs due to the suspen-

sion of particles. The diversion of more organic waste from landfills will also help to minimise odor 

pollution from the deposition of municipal solid waste (MSW). This will help to reduce health im-

pacts which may occur through the pollution of the underground water and the emission of gases, 

leading to carcinogenic and non-carcinogenic effects of the exposed population living in their vi-

cinity.  

Table 4.3. Optimum condition for the operation of the micro-AD plant for maximum biogas gen-

eration 

Parameter 

 Days 

 Predictors (input data)  Predictions 

 t-3  t-2  t-1  t  t+1  t+2  t+3  t+4 

Feed  0  0  0  80         

Biogas  -  -  4.11  4.08  4.52  4.23  4.11  4.08 

Catering  -  -  55  5         

Oat  -  -  20  0         

Liner  -  -  0  0         

Water  0  0  15  0         

 

Figure 4.5 shows the further sensitivity analysis carried out for biogas generation at day t+1 based 

on the percentage of variables over the past three days i.e., days t-2, t-1, and t for all the decision 

variables. This was to further evaluate the impact of the different input variables on the generated 

biogas.  Figure 4.5a, shows the impact of the “feed to the main digester” on the volume of biogas 

generated was observed where different percentages of the feed data for days t and t-1 are shown 

in the horizontal axes and feed data for days t-2 are shown as graphs with an interval of 10%. As 

can be seen, the maximum volume of biogas generated (4.52 m3/day) can only occur when AD 

is fed only on the last day (day t). In addition, every redistribution of feeding shows a decrease in 
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the biogas generation which can be translated as relative sensitivity of the model to the daily 

distribution of feed. For example, when feeding the AD plant in day t-1 instead of day t, the volume 

of biogas generated was observed to decrease from 4.5m3/day to around 2.5 m3/day (see blue 

circle in the left-up and down-right). The results also show that the model is highly sensitive to the 

amount of feed in last two days (i.e., day t and t-1) and the feed ratio for the other day, i.e., day t-

2 that is unimportant (See blue circles vary more than the other lines thereby indicating that the 

model is sensitive to day t and day t-1).  
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(e) 

Figure 4.5. Biogas generation for the day t-2 distribution of the different decision variables: (a) 

feed, (b) water, (c) composition; and the impact of the distribution of the optimal values of the 

pre-feed composition variables on biogas generation for: (d) catering, oat (e) liner 

 

Figure 4.5b shows the impact of the water added on the volume of biogas generation which was 

analysed at 20% intervals of the percentages. Compared to the feed distribution in Fig 4.5a, the 

daily distribution of added water is relatively unimportant for the model as the volume of biogas 

generated slightly increased by approximately 5% as it moved from 4.3 to 4.5 m3/day.  

Figure 4.5c presents the impact of the three different composition variables on the volume of 

biogas generation. It can be seen that the catering composition added to the pre-feed tank results 

in the maximum volume of biogas amongst other variables. This implies that the catering compo-

sition has a higher influence on biogas generation compared to the other two composition varia-

bles. This also confirms the analysis made by the operator of the micro-AD plant. Following this, 

the oat composition also generated a high volume of biogas as shown in Figure 4.5c. This also 

indicates that the oat composition has a strong influence on the volume of biogas generation while 

the liner composition had no significant influence of the volume of biogas generation. This is also 

in line with the sensitivity analysis presented in Figure 4.5d where both the catering and oat com-

positions had high volumes of biogas while the liner composition generated no significant biogas 

volume. In figure 4.5d, that the model shows a higher level of sensitivity to the addition of liner 

than the daily distribution of composition. For example, while daily distribution of oats and catering 
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has no significant impact on the generated biogas, it is highly sensitive to the amount of added 

liner. When applying optimal operation strategy, it is crucial to understand the significance of the 

distribution of composition variables added to the pre-feed tank over the cyclic period.  

Hence, the impact of distribution of the optimal amount of the pre-feed composition variables on 

biogas generation is further analysed in figure 4.5d-e for three individual variables i.e., catering, 

oats, and liner separately. More specifically, Figure 4.5d considers distribution of optimal value of 

the catering variable at day t where other variables are fixed here as 20kg for oat zero for liner 

and optimum condition of accumulative rate of catering is 60kg (i.e., 55kg for day t-1 and 5kg for 

day t). As can be seen in Figure 4.5d, the biogas generation decreased for other distribution rates 

down to 4.515 m3. This indicates that while the AD plant is highly dependent on catering (as 

shown in the sensitivity figures), its distribution between the day t and t-1 has no significant impact 

on biogas generation. Although there was a drop in the volume of biogas generation as the share 

of oat on day t increased compared to the optimum value, the drop in biogas volume has no 

significant impact on biogas generation. In Figure 4.5e, the share of liner in day t (%) is observed 

where each line corresponds to a percentage of liner in total waste. The horizontal axis shows 

how this percentage is distributed between day t and day t-1. Hence, for 20% of the liner, the 

available data is for 0-5-10-15 and 20%. From Figure 4.5e, it can be observed that the increasing 

liner causes a decrease in the volume of biogas as the lines move closer to 100% after line 50%. 

Finally, the strategy for the optimal generation of biogas was compared with best feeding events 

and entire test period (47 days). As it can be seen in figure 4.6a, the biogas generation in all three 

best identified feeding events, is relatively similar and a uniform increase with a maximum weekly 

volume of 26.14 m3. However, the maximum volume of biogas generation for the optimised oper-

ation is 29.97 m3 i.e., an improvement rate of approximately 15%. In figure 4.6b, the average 

volume of biogas generated for the first 40 days were observed to be 3.26 m3/day. It was also 

observed that the average volume of biogas generated for the 47-day test period was 4.34m3/day. 

The average volume of biogas generated for the entire 47-day test period indicates that the RNN-



 

91 
 

SFLA model has the potential to improve the performance of the micro-AD plant as the average 

volume of biogas generated from the micro-AD plant by the operator was observed to be 

3.15m3/day.  

However, the generated biogas experienced a decrease from days 40-46 as the average volume 

of biogas generation between days 41-46 was observed to be 1.48 m3 /day. Similarly, the gener-

ated biogas volume for the entire test period for the measured event shows an increase up until 

day 40 when it experienced a slight decrease in the generated biogas volume. It then increased 

the next day with a maximum volume of 139.51 m3.  

On the other hand, the generated biogas volume in the optimised operation can uniformly in-

crease with a steeper slope and achieve up to a maximum of 199.46 m3 i.e., a significant improve-

ment of approximately 43% for biogas generation compared to business-as-usual. The proposed 

model shows an outstanding performance in both short- and long-term operation, i.e., 7 days and 

47 days in which longer period results in more volume of biogas enhancement. The ability of the 

developed RNN-SFLA model to improve biogas generation by 15% and 43% over a period of 7 

and 47 days respectively indicates the effectiveness of the RNN-SFLA model in improving biogas 

generation from the micro-AD plant. It also demonstrates the benefit of developing an optimised 

strategy like SFLA for the operation of the micro-AD plant having the potential to improve the 

overall performance and productivity of the micro-AD plant thereby resulting in a considerable 

increase in the amount of biogas volume generated. This helps to overcome the critics made on 

the technical limitations of AD such as low yield and slow operation which has often discouraged 

the further application of the technology for the management of organic wastes. The application 

of SFLA as an optimisation tool is particularly important for future research works in AD as the 

application of SFLA as an optimisation tool in AD operations is a novel approach which to the 

best of the author’s knowledge, has never been applied within the context of AD.  
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(a)  (b) 

Figure 4.6. Comparison between the best feeding events and the proposed (optimised) opera-

tion for operation in (a) 7 days and (b) 47 days 

4.7 Significance of the developed RNN Model 

The RNN model was developed to improve the performance of a micro-AD plant in producing 

maximum volume of biogas. The development of the RNN model using a real micro-AD plant 

was a significant advancement in the field of AI applications in AD systems globally. This is be-

cause previously developed models mainly used simple ML or ANN which were mostly applied 

on laboratory scales thereby limiting their application in the context of industrial setting. The use 

of simple ML or ANN on laboratory scales has also limited their widespread deployment. The 

developed RNN model demonstrated promising potential in the effective prediction of biogas. 

This was indicated by the performance indicators used in the research study (RMSE and 

NNSE). It also demonstrated to have great potential in improving the performance of the micro-

AD plant through the production of maximum volume of biogas. This was indicated over a 7- 

and 47-day period as presented in figure 4.6. 

The ability of the developed RNN model to predict biogas accurately from a micro-AD plant is 

highly relevant for various key reasons. It gives room for effective energy planning and manage-

ment by providing decision makers with the means to ascertain the potential energy output.  

Day 40

130.61

139.51

199.46

0

25

50

75

100

125

150

175

200

225

1 5 9 13 17 21 25 29 33 37 41 45

C
u

m
u

la
tv

ie
 b

io
g

a
s 

(m
3
)

Test days

Measured

Proposed

Improvement (%): 42.97

Average Biogas generation

All 46 days: 3.03 m3/day

First 40 days: 3.26 m3/day

days 41-46: 1.48 m3/day

Average Biogas generation 

4.34 m3/day

26.14
29.97

0

5

10

15

20

25

30

1 2 3 4 5 6 7

C
u

m
u

la
t
v

ie
 b

io
g

a
s
 (

m
3
)

Days

Event 1
Event 2
Event 3
Proposed event

Improvment ratio: 14.64% 



 

93 
 

This information is vital for assessing the feasibility and profitability of implementing these sys-

tems on a larger scale (Wang et al., 2020). Secondly, the optimisation of biogas produced from 

the micro-AD plant using SFLA gives operators an insight into the mechanisms behind optimal 

biogas production. This information is vital as it enables the operators to adjust key operational 

variables for the purpose of ensuring the efficient utilisation of feedstock. It also helps to reduce 

the operational cost, improve the efficiency of the process, and minimise the risk of system fail-

ures while increasing biogas produced from the AD system (Khan et al., 2023).  

Through the application of the RNN model in the AD system for the above-mentioned reasons, 

some of the technical and economic challenges associated with the application of AD as a waste 

management option can be tackled. This will assist in making the AD system a more suitable 

waste management option within the global context, especially in regions around the world where 

the application of AD technology is yet to be implemented due to some of these challenges. This 

approach will contribute towards the implementation of circular bioeconomy. It will also contribute 

towards realizing the potential of AD technology in meeting up with the ever-increasing energy 

demands of the people globally. 

4.8 Results of the Feature Extraction and Selection Analysis 

Figures 4.7a and b presents the results of the PCA, PLS and sequential sensitivity analysis (SSA) 

conducted for all the group features outlined in Table 3.1 in the methodology section From the 

results of the PCA and PLS analysis presented in figure 4.7a, it was observed that out of the forty-

two (42) total time-series features, fifteen (15) features account for over 90% of the cumulative 

explained variances (91.3% in Figure 4.7a). In addition, the feeding of the last four days (t to t-3) 

contributed significantly to this group of features. This indicates its high impact on the modelling 

process.  

This observation was further corroborated by the sequential sensitivity analysis shown in Figure 

4.7b where the feed feature was observed to have the highest impact on biogas volume compared 
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to the other features. This indicates the significance of the feed feature in volume of biogas gen-

erated from the AD plant.  

In addition, the biogas levels at time t and t-1 were observed to exhibit a substantial impact on 

the modelling outcomes. This suggested that some part of biogas production may be influenced 

by the feeding activities of the current day and the day before for prediction of yielded biogas for 

next day. Moreover, the analysis demonstrates that the waste composition during the last two 

days significantly affects both the PLS analysis and the accuracy of WLDM modelling. Finally, the 

analysis identifies the last four days of added water to the pre-digester as the most influential 

factor. The overall importance of the features obtained from the PLS analysis appears to align 

well with the results of the sequential sensitivity analysis, specifically when considering the crite-

rion of cumulative PLS over 90%. This implies that the features selected based on their cumulative 

PLS values above 90% indeed have a significant impact on the accuracy of the model.  

However, it is important to recognise that changing the criterion for cumulative PLS may lead to 

different results. For instance, if the criterion is set to cumulative PLS over 95%, additional fea-

tures with negligible impact on accuracy may be included in the analysis, thereby making the 

model less efficient in practice, Comparing figure 4.7a with 4.7b for more reference. On the other 

hand, if the cumulative PLS criterion is lowered to 85%, relevant features with a noticeable impact 

on accuracy, such as the three features related to added water, might be excluded, leading to 

potential loss of predictive power. Therefore, relying solely on the PLS analysis, which is com-

monly utilised in series of research works, might not always yield the most accurate or appropriate 

results.  

Thus, the incorporation of the sequential sensitivity analysis mentioned earlier, is vital in the 

feature selection process. Such an approach allows for a more robust comprehension of the 

features’ actual influence on the accuracy of the model. It also helps in making informed de-

cisions as regards their inclusion or exclusion. Through this means, the reliability or suitability 

of the final model for practical applications is increased. Finally, based on the feature analysis, 
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among all the extracted time-series features, the last four days of digester feeding, added 

water to the pre-digester, the biogas generation data for two days, as well as information 

regarding oats, liner and catering added in last two days were selected to develop the final 

WLDM models and the proposed ensemble model thereafter.  

 

                                                                    (a) 

 

                                                                      (b) 
Figure 4.7. Feature analysis of input data: (a) PLS analysis of extracted features, (b) average 

accuracy decrease of all WLDM obtained by sequential sensitivity analysis. 

 

4.9 Performance of the WLDM models 

The results of performance of the six different WLDM models are presented in Figure 4.8, based 

on three KPIs: TPR, TNR, and ACC. The confusion matrix of these models can be found in Figure 
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A1 in the Appendix. For the TPR of the low class (Figure 4.8a), the DA, DT, and NB models were 

observed to demonstrate an acceptable rate in the prediction of low class of biogas. This indicates 

their ability to correctly identify instances in this class however, the DT model had a higher per-

formance than the DA and NB models. The superior performance of the DT model over the DA 

and NB models further confirms the effectiveness of the DT model to predict biogas accurately 

as previously revealed in different research studies conducted by different researchers. For ex-

ample, in a study by Wang et al (2021a), DT was reported to be an effective ML tool for predicting 

biogas produced from AD. The research study by Wang et al (2021a) also revealed that DT per-

formed better than the NN models due to its high dimensional adaptive feature learning capability. 

Another research study conducted by both Cheon et al.,2022 and Park et al.,2021 respectively 

revealed the ability of DT models to further improve the predictive accuracy of AD variables. Sim-

ilarly, recent research studies conducted by Gupta et al (2023) also confirmed the effectiveness 

of DT in predicting biogas and other AD output variables.  

Further research studies by Gupta et al (2023) also reported that an ensemble DT model had 

successfully been used to predict the transient VFA accumulation in AD reactors which is highly 

detrimental to biogas production. In the case of the medium class (Figure 4.8b), GPR, DA and DT 

demonstrated acceptable rates of predicting the medium class of biogas. However, the GPR 

model was observed to have a superior performance than the other WLDM models (DA and DT) 

in predicting biogas accurately. This confirms the effectiveness of the GPR model in predicting 

the accuracy of biogas.  Though limited research studies conducted previously have applied the 

GBR model in predicting the accuracy of biogas (Gupta et al.,2023).  

However, research studies by Trucchia & Frunzo (2021) reported that GPR-based surrogate mod-

elling has been used for the quantification of uncertainty and global sensitivity analysis of modified 

ADM1 which was observed to be capable of predicting both CH4 production and VFA accumula-

tion in AD processes. Also, the GPR based surrogate model has been revealed to rank different 

model parameters based on their relative impact (Gupta et al.,2023). 
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 The performance of GPR-based surrogate modelling with FNN and the polynomial chaos expan-

sion (PCE) (a method of expressing a random variable as a polynomial function of other random 

variables) were compared for a WWTP with an AD unit (i.e., BSM2) (Al et al., 2019). The results 

obtained showed that GPR-based global sensitivity analysis had a better performance the FNN 

and PCE models in terms of training time. This can be attributed to the fact that they required 

lower number of datapoints during training. 

 Furthermore, for the high class of biogas, (Figure 4.8c), all the WLDM models, except for the 

GPR model were observed to exhibit excellent performance in recognising situations with high 

yielded biogas. However, the NB model was observed to perform better than the other WLDM 

models (i.e., SVM, KNN, DT and DA). The performance of these models confirms their effective-

ness in the prediction of biogas as models such as NB, SVM, KNN, DT and DA have been re-

vealed in previous research works. For example, De Clercq et al (2019) employed different ma-

chine learning models (SVM, logistic regression (LR), RF, XGBoost, and KNN) in the enhance-

ment of biogas produced from industrial facilities. This was achieved by designing a graphical 

user interface to the machine learning models capable of predicting biogas output given a set of 

waste inputs. The study by De Clercq et al (2019) revealed that KNN obtained the highest predic-

tion accuracy compared to the other machine learning models. Recently, Yildirm & Ozkaya (2023) 

employed five different machine learning (ML) algorithms (RF, ANN, KNN, SVR, and XGBoost) 

in describing and predicting the correlation between the operational parameters and the quantity 

of generated biogas collected from a real-scale anaerobic digestion plant. The research study by 

Yildirim & Ozkaya (2023) revealed that both SVR and KNN had high total biogas prediction accu-

racies of 0.8655 and 0.8326 over time respectively. Similarly, Wang et al (2020) applied KNN, 

SVM, GLMNET and RF in the prediction of methane yield from biogas where KNN had the highest 

prediction accuracy. Alejo et al (2018) developed a C-SVM model to predict the effluent compo-

sition of the two-stage AD process with poultry manure as a feedstock. The accuracy of C-SVM 

was compared with other predictive models based on FNN and stoichiometric analytical methods, 
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where C-SVM showed superior prediction accuracy. Long et al (2021) investigated the feasibility 

of six ML algorithms (SVM, GLMNET, RF, KNN, NNET and extreme gradient boosting 

(XGBOOST) in improving biogas production through the prediction of methane yield where SVM 

was reported to have the second highest degree of accuracy after RF. Similarly, Onu et al (2023) 

confirmed the effectiveness of SVM in the accurate prediction of biogas and other output variables 

from AD.  

Though, there has not been many applications of DA in the prediction of biogas from AD however, 

DA was applied together with UV/vis spectroscopic probes in the prediction of organic acid from 

a biogas plant where it was reported to have an accuracy of more than 87% (Wolf et al.,2010). 

Another research study conducted by Molina et al (2009) revealed that factorial discriminant anal-

ysis (FDA) was successfully applied together with phenomenological analysis to characterize 

steady states and dynamic response analysis against disturbances which occur during the sys-

tematization of indicators for two types of wastewaters.  Brambilla et al (2012) revealed that linear 

discriminant analysis (LDA) was successfully used in multivariate statistical data processing in 

conjunction with principal component analysis (PCA) to monitor biogas and methane production 

from an AD plant under different operational parameters .Limited research studies have shown 

the application of the NB model in AD systems however, NB has been revealed as an effective 

classifier having been successfully applied in previous research works for different classification 

purposes (Wickramasinghe &., Kalutarage,2021).   

On the other hand, in figure 4.8d, the GPR model was the only WLDM model observed to have 

TNR for low class of biogas. In figure 4.8e, only the NB model demonstrated to have TNR for 

medium class of biogas. Figure 4.8f indicated that only the DT model was observed to have TNR 

for high class of biogas. When comparing figures 4.8d-f with figures 4.8a-c, it becomes evident 

that although the models excel in detecting the high-class station, they also display many in-

stances of underestimation and overestimation in other situations, as evident from the low TNR 
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in the low class and high class, which are only relatively compensated in the medium class (Figure 

4.8e). 

These limitations result in low overall accuracy for all the WLDM models in the prediction of bio-

gas. This includes the best-performing one, DA, as shown in Figure 4.8g, where it achieves an 

accuracy close to 80%. These findings suggest that while the selected models demonstrate to be 

proficient in certain areas, they still suffer from some shortcomings which hinder their overall ac-

curacy. Consequently, the proposed ensemble model combined the strengths of the superior 

WLDM models in each class to improve the prediction performance in a broader range of scenar-

ios.  

   

(a) (b) 
(c) 

 

   

(d) (e) 
(f) 
 

20

30

40

50

60

70

80

90
DA

DT

GPR

KNN

NB

SVM

20

30

40

50

60

70

80

90
DA

DT

GPR

KNN

NB

SVM

20

30

40

50

60

70

80

90
DA

DT

GPR

KNN

NB

SVM

20

30

40

50

60

70

80

90
DA

DT

GPR

KNN

NB

SVM

20

30

40

50

60

70

80

90
DA

DT

GPR

KNN

NB

SVM

20

30

40

50

60

70

80

90
DA

DT

GPR

KNN

NB

SVM



 

100 
 

 

(g) 

 
Figure 4.8: Performance of developed WLDM models: (a) TPR of low class, (b) TPR of medium class, 

(c) TPR of high class, (d) TNR of low class, (e) TNR of medium class, (f) TNR of high class, (g) ACC 

rate 

Figure 4.9 presents further illustrations on the performance of each of the WLDM models in the 

prediction of the three different classes of biogas. This was illustrated in the results of confusion 

matrix for each of the WLDM models. From figure 4.9a, it was observed that the DA model had 

an 82% correct estimation of the low class of biogas. It was also observed that it had 18% over 

estimation for the low class of biogas. For the medium class of biogas, DA had a correct estimation 

of 71%. It also had over estimation of 18% and under estimation of 11%. In the case of the high 

class of biogas, DA had a correct estimation of 75% and an under estimation of 15%. The perfor-

mance of DA further confirms its effectiveness in the accurate prediction of the three different 

classes of biogas.  

In figure 4.9b, the DT model was observed to have a slightly similar performance with the DA 

model in the effective prediction of the different classes of biogas. It had a correct estimation of 

82% and an over estimation of 18% for the low class of biogas like DA model. In the case of 

medium class of biogas, the DT model obtained a 71% correct estimation of biogas like the DA 

model. It also under estimation of 13% and an over estimation of 16%. The performance of the 

DT model further confirms the effectiveness of the DT model in predicting the different classes of 

biogas as reported previously.  
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In figure 4.9c, the GPR model had a correct estimation of 41% for low class of biogas and an 

overestimation of 59%. For the medium class of biogas, GPR demonstrated to have 74% correct 

estimation, 8% under estimation and 18% over estimation. In the case of high class of biogas, the 

GPR model gave 65% correct estimation and 35% under estimation.  The performance of the 

GPR model in the three different scenarios of biogas indicates that it can provide a better and 

more effective prediction of the medium and high classes of biogas compared to the low class of 

biogas.   

Figure 4.9d showed that the KNN model had a correct estimation of 47% and an over estimation 

of 53% for low class of biogas. For the medium class of biogas, it was observed to have a correct 

estimation of 39%, an under estimation of 8% and an over estimation of 53%. In the case of the 

high class of biogas, the KNN model had a correct estimation of 80%, an under estimation of 10% 

and an over estimation of 10%. The performance of the KNN model in the three different scenarios 

implies that it can effectively predict the high class of biogas with minimal under estimations and 

over estimations respectively. 

Figure 4.9e demonstrated the performance of the NB model in the prediction of the three different 

classes of biogas. In the case of the low class of biogas, NB was observed to have correct esti-

mation of 82%. It also had an under estimation of 18%. For the medium class, NB had a correct 

estimation of 29%, an under estimation of 21% and an over estimation of 50%. In the case of the 

high class of biogas, NB had a correct estimation of 90% and an under estimation of 10%.  Similar 

to the KNN model, the NB model demonstrated a high level of effectiveness in the accurate pre-

diction of high class of biogas compared to the low and medium classes of biogas.  

In figure 4.9f, the SVM model had a correct estimation of 53% and an over estimation of 47% for 

the low class of biogas. For the medium class, it had a correct estimation of 39%, an under esti-

mation of 8% and an over estimation of 53%. For the high class of biogas, SVM had a correct 

estimation of 80% and an under estimation of 20%.  The performance of the SVM model also 

demonstrates its effectiveness in the prediction of high class of biogas compared to the low and 
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medium classes of biogas. The performance of each of the WLDM models in the confusion matrix 

results presented further confirm the effectiveness of the DA model which supersedes other 

WLDM models. However, the overestimation and underestimation of the predictions made re-

mains a challenge hindering the overall performance of the WLDM models. 
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   Figure 4.9 Confusion matrix result of WLDM models: (a) DA, (b) DT, (c) GPR, (d) KNN, (e) NB, (f) 

SVM 

Figure 4.10 also shows further confusion matrix results of the WLDM models comprising of the 

proposed model, the low based, medium based, high based, hard voting, soft voting, RF, sub-

space NB, XGBoost, gentle boost DA and RUS boost GPR.  Aside from the proposed model, 

other models form the bagged, stacked and boost models respectively. Each of these models 

were compared with the proposed model to determine the effectiveness of the proposed model 

in improving the prediction accuracy of biogas.  

 Over estimation   Correct estimation   Under estimation 
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From figure 4.10a, the proposed model was observed to have 90% correct estimation and 2% 

over estimation of the low class of biogas. It was also observed to have 88% correct estimation, 

8% over estimation and 4% under estimation for the medium class of biogas. In the case of the 

high class of biogas, the proposed model obtained 93% correct estimation and 7% under estima-

tion.  

In figure 4.10b, the low based model had 85% correct estimation and 15% over estimation for the 

low class of biogas. For the medium class of biogas, it had 72% correct estimation, 8% under 

estimation and 20% over estimation. In the case of the high class of biogas, the low based model 

had 53% correct estimation and 47% under estimation. The results of performance of the low-

based model in predicting the three different classes of biogas gives a strong indication of the 

proficiency of the low-based model in predicting low class of biogas compared to the medium and 

high class of biogas respectively. 

Figure 4.10c showed that the medium based model had a correct estimation of 50% and an over 

estimation of 50% for the low class of biogas. For the medium class of biogas, it had a correct 

estimation of 84%, an under estimation of 4% and an over estimation of 12%. For the high class 

of biogas, the medium based model demonstrated to have a correct estimation of 47%, and an 

under estimation of 53%. The results obtained in figure 4.10c indicate that the model is most 

proficient in the accurate prediction of the medium class of biogas compared to the low and high 

class of biogas.  

In figure 4.10d, the results obtained high based model were observed to be most proficient in the 

accurate prediction of the high class of biogas compared to the low and medium classes of biogas 

respectively. It was observed to have a correct estimation of 50% and an over estimation of 50% 

in the case of low class of biogas. For the medium class, the high based model had a correct 

estimation of 68%, an under estimation of 4% and an over estimation of 28% while it had a correct 

estimation of 87% and an under estimation of 13% for the case of high class of biogas.  



 

104 
 

Figure 4.10e showed that the hard voting model had a correct estimation of 30% and an over 

estimation of 70% for the low class of biogas. In the case of the medium class, it was observed 

to have a correct estimation of 76%, over estimation of 12% and under estimation of 12%. For 

the high class, it had a correct estimation of 43% and under estimation of 57%. The performance 

of the hard voting model presented in figure 4.10e implies that it is most proficient in giving more 

accurate predictions of the medium class of biogas compared to the low and high class of biogas. 

In figure 4.10f, the soft voting model had a correct estimation of 45%, and an over estimation of 

55% for the low class of biogas. For the medium class of biogas, it was observed to have a slightly 

better prediction accuracy as it demonstrated to have a correct estimation of 56% an under esti-

mation of 28% and an over estimation of 16%. In the case of high class of biogas, the soft voting 

model obtained a much higher prediction accuracy than the low and medium class of biogas as it 

had a correct estimation of 80% and an under estimation of 20%.  

Figure 4.10g showed that the RF model had correct estimation of 83% and an over estimation of 

17% for the low class of biogas. For the medium class, it had a correct estimation of 72%, an 

under estimation of 8% and an over estimation of 20%. For the high class, the RF model had a 

correct estimation of 73% and an under estimation of 27%. The performance of the RF model 

gives a relatively strong indication of its effectiveness in the prediction of the three classes of 

biogas however, it tends to be more proficient in the accurate prediction of the low class of biogas 

than the medium and high class of biogas. 

In figure 4.10h, subspace NB demonstrated to have a correct estimation of 65% and an over 

estimation of 35% for the case of low class of biogas. For the medium class, it was also observed 

to have a correct estimation of 64%, an under estimation of 16% and an over estimation of 20%. 

In the case of high class, subspace NB had a correct estimation of 87% and an under estimation 

of 13%. The performance of subspace NB implies that it is most effective in the accurate predic-

tion of high class of biogas compared to the medium and low class of biogas. 
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Figure 4.10i showed that XGBoost had a correct estimation of 78% and an over estimation of 

22% for the low class of biogas. For the medium class of biogas, XGBoost was observed to have 

an underestimation of 4%, a correct estimation of 76% and an overestimation of 20%. In the case 

of high class of biogas, it had a correct estimation of 77% and an under estimation of 23%. The 

performance of XGBoost indicates that it is proficient in the accuracy in the prediction of the three 

classes of biogas. However, it demonstrates a higher level of proficiency in the accurate prediction 

of the low class of biogas. 

In figure 4.10j, gentle boost DA was observed to have a correct estimation of 77% and an over 

estimation of 23% for the case of low class of biogas. For the medium class of biogas, it had a 

correct estimation of 48%, an under estimation of 20% and an over estimation of 32%. For the 

case of high class of biogas, gentle boost DA had a correct estimation of 82% and an under 

estimation of 18%.  The results presented in figure 4.10j indicate the high effectiveness of gentle 

boost DA in giving accurate predictions of the high class of biogas compared to the low and me-

dium class of biogas.  

Figure 4.10k showed the performance of RUS Boost GPR over the three different classes of 

biogas. For the case of the low class of biogas, RUS Boost GPR was observed to have a correct 

estimation of 55% and an over estimation of 45%. It had a correct estimation of 72%, an under 

estimation of 16% and an over estimation of 12% in the case of the medium class of biogas. In 

the case of the high class of biogas, RUS Boost GPR had a correct estimation of 83% and an 

under estimation of 17%. RUS Boost GPR demonstrated relatively high performance in the accu-

rate prediction of the medium and high class of biogas compared to the low class of biogas whose 

performance was observed to be slightly above average. Generally, the proposed model was 

observed to have the best performance in the accurate prediction of the three classes of biogas 

compared to the other WLDM models. It was also observed to have minimal over estimation and 

under estimation compared to the other WLDM models. Though the occurrence of over estimation 

and underestimation remains a challenge, the performance of the proposed model further 
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confirms the effectiveness of the proposed model in achieving the aims and objectives of this 

research study. 
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Figure 4.10. Confusion matrices result of WLDM models: (a) proposed, (b) low based, (c) medium 

based, (d) high based, (e) hard voting, (f) soft voting, (g) RF, (h) subspace NB, (i) XGBoost, (j) gentle 

boost DA, (k) RUS boost GPR. 

4.10 Outcome on the Performance of the Developed Ensemble Model 

The results of the performance of the proposed ensemble model and other benchmark models 

are presented in figure 4.11. From the results presented in figure 4.11, it was observed that 

the accuracy of the proposed ensemble model was observed to be 91%. Comparing the per-

formance of the proposed ensemble model to the DA model in Figure 4.8g, it can be deduced 

that there was an 11% improvement in the prediction accuracy of biogas. (i.e., from 80% 

obtained in DA model in Figure 4.8g to 91%). This shows an outstanding performance of the 

proposed ensemble model in comparison to the other benchmark models with a remarkable 

4.5% for each underestimation and over estimation while the other benchmark models had 

relatively higher underestimation and overestimation. This finding indicates that the proposed 

ensemble model could perfectly fill the knowledge gap by improving the accuracy of biogas 

predictions. The ability of the proposed ensemble model to improve the accuracy of biogas 

predictions implies that the ensemble model can improve the overall performance of the mi-

cro-AD plant in generating biogas. Also, it was observed that both hard and soft voting of all 

stacked models showed accuracies around 63% and 51% respectively. The performance of 

both hard and soft voting of all stacked models. Comparing the results of the hard and soft 

voting of all stacked models with the result of DA model presented in figure 4.8g, it can be 

deduced that using all the WLDM models to improve the prediction accuracy of biogas is a 

less meaningful approach as it cannot improve the prediction accuracy of biogas effectively. 

On the other hand, group stacking of the models based on their capability in specific class, 

for example low or high class shows better result, compared to the hard and soft voting of all 

stacked models especially for high-based model which could improve the prediction accuracy 
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to almost 70%. However, the high overestimation of the benchmark stacked models is still 

challenging, especially for optimal operation in which higher rate of yielded biogas is the goal. 

The results reveal a clear superiority of the bagging and boosting models, particularly RF and 

XGBoost, over the benchmark stacking models. This finding aligns with previous research 

conducted on numerical problems (Xu et al., 2021; Sonwai et al., 2023). However, it’s im-

portant to note that despite this progress, the accuracy achieved, which remains below 80%, 

still falls short when compared to the performance of the proposed stacked model. To validate 

these outcomes, the research study examined the receiver operating characteristic (ROC) 

curves and their corresponding area under the ROC curve (AUC) for the top four performing 

models as presented in figures 4.11 b and c respectively.  

Detailed comparisons between the performance of the developed ensemble models and the 

WLDM models can be depicted in Figure 4.8 b-g. The proposed ensemble model notably 

exceled by consistently maintaining an AUC above 0.94 across all classes. It particularly 

demonstrated an exceptional performance in the high class where the AUC was reported as 

0.98 (Figure 4.9b). In contrast, the alternate benchmark models exhibited AUC values ranging 

from 0.74 to 0.8 in the high class, while their performance notably deteriorated in the medium 

class with AUC figures of 0.62 to 0.72. Moreover, it is worth noting that the optimal thresholds 

for the proposed model remained relatively consistent along the x-axis, within the range of 

(0.8-1, 0.2-0.1), while for the other models, these thresholds shifted towards higher values.  
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Figure 4.11 Performance of different benchmark ensemble models in comparison to proposed 

model. 
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Table 4.4 presents further details on the performance of the developed ensemble models for 

the benchmark stacked models, benchmark bagged models and benchmark boosted models 

in giving both TPR and TNR for the three classes of biogas (i.e., low, medium, and high) 

respectively. The table presented below, also showed the degrees of accuracy for all the 

benchmark models. From the table presented below, the proposed model was observed to 

have the highest TPR and TNR for the three different classes of biogas compared to the other 

benchmark models presented below. The effect of this gave rise to the high degree of accu-

racy obtained. The result of the proposed model presented in table 4.4, provides a more com-

prehensive justification on the accuracy value obtained (i.e., 91%).  

Another observation made in the performance of the developed ensemble models is the de-

gree of accuracy obtained for the benchmark stacked, benchmark bagging and benchmark 

boosted models respectively. From the performance of the benchmark models, it was ob-

served that both bagging and boosted models had better performances than the stacked mod-

els as they had relatively higher degrees of accuracy compared to the stacked models.  

The bagged and boosted models were observed to have accuracies within the range of 70%-

77% while the stacked models had accuracies within the range of 51%-71% in the prediction 

of biogas. This indicates that the performance of both the bagged and boosted models super-

sedes the performance of the stacked model in predicting biogas accurately. However, de-

spite the performance of both the bagged and boosted models, it still had a lower performance 

than the DA model (see figure 4.8g) in overall accurate prediction of biogas. 
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Table 4.4 Performance of the developed ensemble models 

Model 
 

ACC 
 TPR class  TNR class  
 Low  Medium  High  Low  Medium  High 

Proposed 
 

91  90  88  93  91  92  89 

 
Benchmark stacked models 

 Low based 
 

68  85  72  53  62  66  78 

 Medium based 
 

60  50  84  47  64  48  69 

 High based 
 

71  50  68  87  78  72  60 

 Hard voting 
 

51  30  76  43  58  38  56 

 Soft voting 
 

63  45  56  80  69  66  51 

 
Benchmark bagging models 

 RF 
 

75  83  72  73  73  77  77 

 Subspace NB  74  65  65  87  77  78  65 

                
Benchmark boosted models 

 XGBoost 
 

77  78  76  77  76  77  77 

 Gentle Boost DA 
 

70  78  48  82  67  80  60 

 RUS Boost GPR  72  55  72  83  78  72  64 

  

Furthermore, the results of the ROC curve for the best performing ensemble models presented in 

Table 4.5 showed that the proposed ensemble model outperformed the other benchmark models 

as it had the highest TPR and the lowest FPR for the three classes of biogas compared to the 

other benchmark models. The proposed ensemble model demonstrated TPRs above 0.8 for the 

three classes of biogas compared to the other benchmark models which had lower TPRs. The 

proposed ensemble model also demonstrated FPRs below 0.15 compared to the other bench-

mark models which had FPRs from 0.15 and above. The result of the TPRs and FPRs obtained 

for the proposed ensemble model is another indication confirming the high level of accuracy of 

the proposed model as it obtained relatively high TPRs (i.e., above 0.8) with a corresponding low 

FPR (i.e., below 15%). 

Generally, the observations made in the results of the performance of the proposed ensemble 

model obtained in this research study, provide strong evidence of the superior performance of the 

proposed ensemble model in comparison to the other benchmark models. The superior 
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performance of the proposed ensemble model also confirms the effectiveness of the proposed 

model in improving the accuracy of biogas predictions from the AD plant. This research finding is 

in line with achieving the aims and objectives of this research study. 

Hence, the developed ensemble model has the potential to improve the performance of AD in the 

production of biogas. The implication of this indicates that the proposed ensemble model can help 

to address some of the technical limitations of this research study as it can help to improve the 

effectiveness of the micro-AD plant in the production of biogas leading to an increase in the pro-

duction of sustainable biogas. This is a positive approach in contributing towards achieving the 

full potential of the AD technology which has been revealed in previous research works to have 

the potential of meeting the world’s ever-increasing energy demands through the production of 

biogas (a renewable alternative energy source) (Abdel daiem & said, 2022; Obaideen et al.,2022).  

Also, the increase in the production of sustainable biogas will have positive impacts on the envi-

ronment as it plays a distinct role in the ongoing fight against global warming and climate change 

(Alrowais et al.,2023). This is because the production of sustainable biogas replaces dependency 

on fossil fuels, reduces the energy demand of waste treatment plants, and can yield valuable 

organic fertilizers useful in improving agricultural yield compared to chemical fertilizers which are 

still being used in many parts of the world (Pohl et al., 2012) 

  Table 4.5: Result of the ROC curve of the best performing ensemble models 

Model 
 
Parameter 

 Sample 

  0  1  2  3  4  5  6  7  8  9  10 
                         

High class 
Proposed model  FPR3  1.00   0.47   0.35   0.18   0.10   0.07   0.04   0.03   0.03   0.02   0.01 

 TPR3  1.00   0.99   0.99   0.98   0.95   0.92   0.88   0.75   0.63   0.50   0.39 
 AOC  0.53   0.12   0.16   0.08   0.03   0.02   0.01   0.00   0.00   0.01   0.00 
 G-mean  0.00   0.73   0.80   0.89   0.93   0.93   0.92   0.85   0.79   0.70   0.62 

Benchmark 
 subspace NB 

 FPR3  1.00   0.92   0.89   0.82   0.70   0.57   0.32   0.28   0.20   0.11   0.03 
 TPR3  1.00   0.96   0.94   0.93   0.90   0.80   0.69   0.62   0.44   0.20   0.08 
 AOC  0.08   0.03   0.07   0.11   0.12   0.20   0.03   0.05   0.04   0.02   0.00 
 G-mean  0.00   0.28   0.32   0.41   0.52   0.59   0.68   0.67   0.59   0.42   0.27 

Benchmark 
RF 

 FPR3  1.00   0.91   0.80   0.62   0.53   0.44   0.21   0.16   0.11   0.07   0.03 
 TPR3  1.00   0.99   0.96   0.93   0.84   0.78   0.67   0.63   0.37   0.21   0.13 
 AOC  0.09   0.11   0.17   0.08   0.08   0.18   0.03   0.03   0.01   0.01   0.00 
 G-mean  0.00   0.30   0.44   0.59   0.63   0.66   0.73   0.73   0.57   0.44   0.36 

Benchmark  FPR3  1.00   0.93   0.77   0.49   0.38   0.35   0.29   0.20   0.12   0.04   0.03 



 

113 
 

XGBoost  TPR3  1.00   0.98   0.91   0.78   0.76   0.68   0.62   0.48   0.37   0.26   0.14 
 AOC  0.07   0.16   0.25   0.09   0.02   0.04   0.06   0.04   0.03   0.00   0.00 
 G-mean  0.00   0.26   0.46   0.63   0.69   0.66   0.66   0.62   0.57   0.50   0.37 

                         
Medium class 

Proposed model  FPR2  1.00   0.47   0.36   0.27   0.17   0.13   0.06   0.05   0.04   0.03   0.01 
  TPR2  1.00   0.96   0.94   0.92   0.89   0.87   0.81   0.64   0.49   0.31   0.18 

 AOC  0.53   0.10   0.09   0.09   0.03   0.07   0.01   0.00   0.00   0.01   0.00 
 G-mean  0.00   0.72   0.78   0.82   0.86   0.87   0.87   0.78   0.69   0.55   0.42 

Benchmark 
 subspace NB 

 FPR2  1.00   0.96   0.79   0.73   0.63   0.55   0.49   0.44   0.32   0.24   0.11 
 TPR2  1.00   0.95   0.86   0.83   0.77   0.71   0.64   0.55   0.41   0.26   0.17 
 AOC  0.04   0.16   0.05   0.08   0.06   0.04   0.03   0.07   0.03   0.03   0.02 
 G-mean  0.00   0.19   0.42   0.47   0.53   0.57   0.57   0.55   0.53   0.44   0.39 

Benchmark 
RF 

 FPR2  1.00   0.93   0.84   0.59   0.50   0.31   0.26   0.21   0.11   0.04   0.03 
 TPR2  1.00   0.92   0.84   0.77   0.73   0.66   0.62   0.54   0.41   0.29   0.12 
 AOC  0.07   0.08   0.21   0.07   0.14   0.03   0.03   0.05   0.03   0.00   0.00 
 G-mean  0.00   0.25   0.37   0.56   0.60   0.67   0.68   0.65   0.60   0.53   0.34 

Benchmark 
XGBoost 

 FPR2  1.00   0.87   0.74   0.65   0.58   0.52   0.46   0.41   0.30   0.24   0.14 
 TPR2  1.00   0.93   0.88   0.81   0.75   0.69   0.60   0.55   0.43   0.35   0.26 
 AOC  0.13   0.12   0.08   0.06   0.05   0.04   0.03   0.06   0.03   0.04   0.04 
 G-mean  0.00   0.35   0.48   0.53   0.56   0.58   0.57   0.57   0.55   0.52   0.47 

                         
Low class 

Proposed model  FPR1  1.00  0.47  0.36  0.27  0.17  0.13  0.06  0.05  0.04  0.02  0.01 
 TPR1  1.00  0.99  0.97  0.96  0.94  0.92  0.83  0.67  0.56  0.33  0.18 
 AOC  0.53  0.11  0.09  0.10  0.03  0.07  0.01  0.00  0.01  0.00  0.00 
 G-mean  0.00  0.73  0.79  0.84  0.88  0.89  0.88  0.80  0.74  0.57  0.42 

Benchmark 
 subspace NB 

 FPR1  1.00  0.94  0.73  0.45  0.31  0.24  0.18  0.17  0.12  0.09  0.02 
 TPR1  1.00  0.99  0.96  0.84  0.67  0.58  0.47  0.35  0.31  0.24  0.12 
 AOC  0.06  0.21  0.27  0.12  0.05  0.03  0.00  0.02  0.01  0.02  0.00 
 G-mean  0.00  0.24  0.51  0.68  0.68  0.66  0.62  0.54  0.52  0.47  0.34 

Benchmark 
RF 

 FPR1  1.00  0.95  0.75  0.57  0.49  0.42  0.34  0.26  0.21  0.14  0.09 
 TPR1  1.00  0.99  0.97  0.96  0.89  0.84  0.74  0.74  0.62  0.39  0.23 
 AOC  0.05  0.20  0.17  0.08  0.06  0.07  0.06  0.04  0.04  0.02  0.02 
 G-mean  0.00  0.22  0.49  0.64  0.67  0.70  0.70  0.74  0.70  0.58  0.46 

Benchmark 
XGBoost 

 FPR1  1.00  0.93  0.63  0.54  0.48  0.33  0.23  0.15  0.07  0.05  0.02 
 TPR1  1.00  0.99  0.95  0.90  0.86  0.74  0.64  0.54  0.52  0.30  0.09 
 AOC  0.07  0.30  0.09  0.05  0.13  0.07  0.05  0.04  0.01  0.01  0.00 
 G-mean  0.00  0.26  0.59  0.64  0.67  0.70  0.70  0.68  0.70  0.53  0.30 

AOC: Area of curve   G-mean: geometric mean    FPRi: False positive rate in ith class    TPRi: True positive rate in ith class   

 

 

4.11 Outcome of the Uncertainty and Sensitivity Analysis 

Figures 4.12(a) and (b) shows the results of the uncertainty and sensitivity analysis for the devel-

oped ensemble model for the prediction of biogas. From the results presented in figure 4.12a, it 

was observed that the models demonstrated a notable ability to be trained using a reduced da-

taset size of up to 80% of the total available training data, all the while maintaining a remarkable 
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95% accuracy retention. In simpler terms, the models displayed robust performance within this 

specified range of training dataset size, displaying resilience against the impact of dataset reduc-

tion.  

However, it is important to note that as the dataset size was further reduced beyond this range, 

the models exhibited an adaptive behaviour resulting in a gradual nonlinear decline in accuracy. 

Additionally, as the dataset size decreased to less than 30%, the models encountered significant 

challenges, which led to a complete failure in performance, with accuracy levels decreasing ab-

ruptly to almost 0%. This particular revelation bears substantial significance. Despite the models 

being developed within a relatively uncomplicated framework utilising input data spanning close 

to a year, the demonstrated adaptability and efficiency within this context can have far-reaching 

implications. Such efficiencies have the potential to yield substantial energy cost savings. The 

effect of this can have positive benefits on the application of AD technology as it will make the AD 

technology a more economical technology for the management of organic wastes.  

This approach will also make the AD technology more attractive for potential investors/govern-

ment officials especially in developing countries where the adoption of the AD technology for the 

management of organic wastes has been discouraged due to high operating and maintenance 

costs. In addition, it can also mitigate the need for recurrent and time-consuming retraining. This 

will make it relatively easy to implement especially within the context of broader industrial appli-

cations. 

The sensitivity analysis focused on the influence of removing individual groups of features as 

presented in Figure 4.11b. The observed decline in overall accuracy underscores the pivotal role 

of specific group features, particularly the feeding-related attributes, in shaping the model's per-

formance. Also, the removal of these feed-related features resulted in a substantial 50% drop in 

accuracy. This contributed significantly to both overestimation and underestimation tendencies. 

Interestingly, the nature of impact varies across different group features. Specifically, the removal 

of catering and oat-related group features primarily led to an increase in underestimation, while 
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the attributes related to biogas, water, and liner exerted a more pronounced effect on overesti-

mation tendencies.  

This outcome underscores the critical importance of the composition of input materials, with each 

material potentially exerting a distinct influence on the model's predictive performance. Moreover, 

insights derived from previous biogas production provide valuable clues to the model regarding 

the residual potential for the release of biogas. This, in turn, has the potential to mitigate overes-

timation in future predictions. Remarkably, the incorporation of this group of features as input has 

the capacity to alleviate a significant portion of overestimation instances, effectively addressing 

approximately 20% of such cases. 

 

(a) 
 

 

(b) 

 

          Figure 4.12 (a) uncertainty analysis on the dataset (b) sensitivity analysis 
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4.12 Performance of the Applied Optimisation Method 

The SFLA optimisation method was used to specify both the optimal weekly condition and 

best input pattern for obtaining maximum volume of biogas from the micro-AD plant. The re-

sults obtained are presented in Figure 4.13a. This pattern undergoes rigorous testing with 

previously unobserved data spanning over a period of 76 days. A comparative analysis was 

then conducted against the actual operational performance which recorded the most produc-

tive phase of biogas generation during this period.  

Figure 4.13b clearly demonstrates the efficacy of the proposed pattern in increasing the num-

ber of days with high biogas yield. According to the data, the implementation of the proposed 

pattern led to a notable 78% increase in the duration of time during which substantial biogas 

production was achieved. This significant improvement indicates the effectiveness of the pro-

posed approach in the optimisation of biogas generated from the AD plant. From figure 4.13a, 

it was observed that high portions of feed feature were fed into the digester only on the 4th 

and 7th days. The catering feature was fed on the 3rd, 4th, 6th, and 7th days at high and low 

portions, respectively. Low portions of the oat feature were fed on the 3rd and 6th days. Water 

was added to the digester on the 3rd, 4th, 6th, and 7th days at low amounts to obtain maxi-

mum volume of biogas. Intriguingly, the absence of the liner input in the optimal condition 

implies it has no significant impact on enhancing biogas generation. This finding underscores 

that the inclusion of the liner feature did not significantly contribute to the overall biogas yield, 

thus making its omission from the optimal setup a justifiable decision. This justifiable decision 

is based on the analysis of the operator which revealed that an insignificant portion of liner 

was added to the digester. In the case of the feed feature, high-class variables were strategi-

cally incorporated into the digester for a mere two days within the week. This observation 

reveals a potential strategy for the optimisation of biogas generation, indicating that rather 

than the continual input of materials, a more effective approach could involve extending the 
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intervals between the addition of the feed feature by 2 or 3 days, followed by a substantial 

surge in the system's load. This noticeable difference becomes apparent in Figure 4.13c, 

where a clear departure from the usual practice of frequent waste feeding into the pre-digester 

(black dots) is vividly reduced by implementation of the proposed strategy (red dots). Results 

highlight a substantial and statistically significant reduction of 71% in the amount of time spent 

on operational activities, during which the mechanised pumping mechanism facilitates the 

controlled transfer of materials into the digester. This reduction carries important implications 

such as energy conservation, as well as a notable decrease in the demands for careful mon-

itoring and extensive maintenance efforts. In addition, the manner in which catering, and oat 

materials are suggested highlights contrasting patterns. The model proposes an initial infusion 

of a substantial quantity of catering materials into the pre-digester, followed by a subsequent 

day with a low catering input. Conversely, a light input of oat material on one day is suggested.  

Furthermore, the recommended approach for adding water demonstrates a distinct trend. It 

suggests that the addition of low amounts of water should be prioritised on days when waste 

materials are input (as evident on days 3, 4, 6 and 7 in Figure4.13a). Upon comparing the 

input pattern with the real case observations presented in Figure A4 of the Appendix, it be-

comes evident that the total operation days for each input increased by approximately 25%. 

However, when considering the overall picture, as presented in Figure 4.13d, a 30% decrease 

in the total number of pre-feeding days were observed. This implies that despite the individual 

increase in the number of input materials being added, the strategy of compacting them on 

specific days contributed to a reduction in the overall operation days and associated costs. 

The results of the applied optimisation method (SFLA) presented in the figure 4.13 for obtain-

ing maximum biogas generation indicates that the generation of maximum biogas volume 

from the micro-AD plant can be achieved with minimum labour and minimum energy cost. 

This is important as it helps to reduce the operational cost of the micro-AD plant while obtain-

ing maximum volume of biogas.  



 

118 
 

The effect of this can help to address the high operational costs which is one of the economic 

challenges associated with AD plants.   

4.13 Practical Implementation Challenges of the Proposed AI-Based Solutions for New 

and Existing AD systems. 

The development of both RNN-SFLA model and time-series ensemble model using historic data 

obtained from a micro-AD plant provided vital information to the AD operator on how the perfor-

mance of the micro-AD plant can be improved to generate maximum biogas volume which is 

highly vital especially for meeting the energy demands of the people. The information provided 

from these developed models also gave an insight on the optimal operation patterns/strategy 

which can yield maximum volume of biogas based on the different feedstock used with minimal 

amount of energy and labour. The information provided based on the results obtained demon-

strated to have the potential to address the high cost of operations of the plant. This is a major 

challenge mostly associated with the application of AD for treating organic wastes. However, de-

spite the potentials of these developed models, some challenges associated with the practical 

implementation of the developed models in other AD plants were observed.  

Firstly, the exclusion of operational parameters like temperature and pH amongst others in the 

development of the RNN model for biogas prediction which gave rise to signs of instability indi-

cated by the sudden rise in drop in the predicted biogas compared to the measured biogas ob-

served in the biogas predicted from the micro-AD plant along days 4-10, 16-19, 22-25 and 40-43 

as presented in figure 4.4, has a significant challenge in the application of the RNN model in other 

AD systems. The challenge associated with the RNN model application lies in its inability to en-

sure complete stability when applied in other AD plants to predict biogas. This is due to the ex-

clusion of the temperature parameter which plays a vital role in ensuring the stability of the AD 

plant for biogas production. 
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Secondly, the optimal operation strategy/pattern obtained for both the RNN model, and time-se-

ries ensemble model was based on the feedstock used for the micro-AD plant. Though it provided 

useful information to the operator of other AD plants however, a crucial challenge lies in its inability 

to be applied in other AD plants which have completely different composition of feedstock. 

Thirdly, the sensitivity analysis carried out for the developed models gave useful information to 

the operator of the AD plant on the impact of each input variable/parameter on the generation of 

biogas. The information provided based on this analysis also has its limitations as the sensitivity 

analysis carried out by the developed models were based on specific feedstocks which might not 

be applicable in other AD systems for generating biogas. 

 Though these outlined challenges have the tendency to limit the practical application/implemen-

tation in other AD plants, the proposed AI-based models can be applied in AD plants which have 

similar qualities with the AD plant used for achieving the purpose of this research study.  
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(a)  (b) 

 

 

 

(c)  (d) 

 
Figure 4.13. Comparison between optimal weekly operation pattern and testing event (76 days): (a) suggested optimum condition for the 
operation of the micro-AD plant for maximum biogas generation, (b) yielded biogas, (c) feeding to digestor, and (d) pre-feeding days
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5 Chapter 5. Conclusions  

5.1 Summary 

This research study first developed a three-step AI-based framework for the estimation of 

biogas generation from a micro-AD plant. Sequel to the development of the AI-based frame-

work, an ensemble-based framework that offers a suggested real-time weekly operation pat-

tern for improving biogas generation from the micro-AD plant was developed. The first step of 

this research study entailed the collection of raw data from the micro-AD plant, selection of 

the relevant parameters from the raw data collected, infilling the missing data observed in the 

data collected for developing data-driven models using different data mining techniques and 

the development of the RNN/NARX model. The developed RNN model was trained to predict 

biogas generated from a micro-AD plant. Following this, the RNN model was tuned using the 

SFLA optimisation model to specify the optimal variables and obtain the optimal biogas gen-

eration from the micro-AD plant. The SFLA optimisation model also showed the optimal 

weekly pattern for the feeding distribution pattern for the generation of maximum volume of 

biogas from the AD plant. Sensitivity analysis was conducted on the developed RNN model 

to determine the impact of each input variable on the volume of biogas generated. Uncertainty 

analysis was also carried out to determine the correlation between the dataset and the devel-

oped model. The second step of this research study analysed the concept behind the extrac-

tion and selection of features from the collected data, the development of different WLDM 

models and the development of the ensemble model from the combination of the different 

WLDM models. It also emphasized on the use of applied data cubes and data warehouse 

which assisted in constructing the real-time platform and the KPI performance of WLDMs for 

developing ensemble models. In addition, the effectiveness of the developed ensemble model 

in improving the prediction accuracy of biogas was determined through comparisons with dif-

ferent benchmark models developed alongside with the developed ensemble model. 
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Furthermore, the developed ensemble model was optimised using the SFLA optimisation 

model to determine the optimal weekly operation for obtaining maximum biogas volume. Sim-

ilar to the RNN model, further analyses were also carried out on the developed ensemble 

model. These analyses include sensitivity analysis and uncertainty analysis. The sensitivity 

analysis was carried out to show the impact of each input feature on the biogas generated 

from the AD plant. The uncertainty analysis on other hand, was conducted to show the varia-

tions in the relative accuracy with the corresponding reduction in the dataset. The develop-

ment of both model frameworks shows the advances made towards further improving the 

effectiveness of anaerobic digestion operations for generating maximum volume of biogas. It 

also shows the efforts made towards tackling the issues associated with the management of 

organic wastes thereby addressing one of the key environmental challenges being faced in 

the world today. 

 

5.2 Key findings 

Based on the application of the proposed model frameworks for achieving the aims and ob-

jectives of this research study, different key findings were observed which provided answers 

to the research questions raised in the introduction. These key findings are as follows, 

• The Kriging technique demonstrated to be the most effective technique for infilling the 

missing data in the collected dataset compared to the popularly applied conventional tech-

niques, particularly KNN, SVM, LR (linear regression), FFNN and linear interpolation. This 

indicates that the application of the Kriging technique for infilling missing data has the 

potential to address the major challenge being faced by many real industrial practices 

suffering from the lack of proper databases and some inputs such as biogas generation 

which are not being measured daily as required due to unavoidable constraints. It also 

indicates that the Kriging technique can contribute to a higher level of model prediction 
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accuracy compared to other conventional infilling techniques applied in previous research 

studies. The Kriging technique can also play a vital role in improving the optimisation ability 

of the model with the aim of improving the overall performance of the AD plant. The per-

formance of the kriging technique used to infill the missing data for the development of 

both RNN and the ensemble model contributed towards achieving objectives 1, 2 3 and 

4. It was also a preliminary approach towards addressing research questions 1, 2, 3 and 

4 respectively. 

•  The recommended model tunning method for including data of influential days, i.e., using 

cross-correlation analysis for finding the lag time could either prevent underestimation by 

ignoring some influential days or overestimation by including ineffective days. The results 

obtained show that yielded biogas is highly sensitive to the three waste compositions (i.e., 

catering, oats, and liner) added to the pre digester as it yielded biogas after one day, 

whereas it changed gradually to three days for feed and five days for added water. In 

addition, the model tuning method demonstrated to have the potential to improve the over-

all efficiency of the AD plant by speeding up the modelling process while improving the 

accuracy of the model. The ability of the model tuning method to improve the overall effi-

ciency of the AD plant showed a significant attempt made in achieving one of the aims of 

this research study.  

•  The developed RNN model had a low average RMSE of 0.39 and a relative value of 2% 

for 310 datasets. This shows how effective the developed RNN model is in the accurate 

prediction of biogas even with smaller datasets. The ability of the RNN model to effectively 

predict biogas from the AD plant was in line with achieving objective 1. However, the de-

veloped model also has an NNSE of 0.84 which is acceptable  though low compared to 

other studies. Hence, it requires further investigation.  

• The generation of biogas from the micro-AD plant was observed to be strongly influenced 

by the oats and catering composition compared to the feed, liner composition and water 
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added to the digester. This finding also confirms the accuracy of the developed RNN 

model as the analysis of different feedstock carried out by the operator of the plant re-

vealed that the oats and catering composition had a higher influence on the volume of 

biogas generated compared to the other feedstock. Also, the addition of liner to the micro-

AD system can significantly reduce the volume of biogas produced. Furthermore, chang-

ing the calendar pattern of adding water, catering, and oat had no significant improvement 

in the volume of biogas generated. The result performance of the RNN model in the pre-

diction of biogas shows an attempt made to achieve the 1st objective as the effectiveness 

of the developed RNN model was ascertained using the sensitivity analysis which was 

compared with the operator’s analysis. It also tends to answer the 1st research question 

as the performance of the RNN model provided information which can be useful to the 

operator of similar AD systems as regards to its sensitivity to the different input variables 

in generating biogas. 

• The developed optimal operation pattern could result in 15% and 43% increase for a 7-

day and 47-day period, respectively in the biogas generation from the micro- AD plant 

compared to business as usual. The result of the developed optimal operation pattern 

provided an insight on the potentiality of the optimisation method used in this research 

study which can be applied in other AD systems having similar feed composition variable 

with the aim of improving the performance of the AD system in the generation of biogas.  

These results provided answers to the 2nd research question. The results obtained demon-

strated efforts made towards achieving the 2nd objective of this research study which im-

plied that the developed AI based model (RNN-SFLA) has the potential to improve the 

performance of the micro-AD plant in generating maximum volume of biogas.  

• The performance of the developed ensemble model demonstrated to have the highest 

level of accuracy in giving correct estimations compared to other benchmark models. It 

demonstrated to have an accuracy of 91% while other benchmark models demonstrated 
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accuracies observed to be within the range of 50%- 80%. The developed ensemble model 

also had the least degree of underestimations and over estimations compared to the other 

developed models.  The performance of the developed ensemble model indicates that the 

ensemble model has the potential to improve the accuracy of biogas prediction thereby 

serving as a useful tool/information to the operator of the AD system especially on the 

possible volume of biogas expected from future AD operations. This tends to answer the 

3rd research question as it demonstrated its significance in providing vital information use-

ful to the AD operator especially in terms of amount of energy generation and planning. 

The various comparisons between the developed ensemble model and other benchmark 

models were targeted at achieving the 3rd objective of this study. 

•  Both PLS and sequential sensitivity analysis carried out reveal a high sensitivity to the 

feed feature compared to the other input features.  

• . The optimised weekly AD operation demonstrated promising results which was targeted 

towards achieving the 4th objective and providing answers to the 4th research question. It 

had a substantial 78% increase in the number of days achieving high volume of biogas 

generation, accompanied by a 71% reduction in total required feeding days and a 30% 

reduction in pre-feeding days. These results have a positive economic impact on the over-

all operation of the AD plant as an increase in the volume of biogas obtained from the AD 

plant with a significant reduction in the required feeding and pre-feeding days will lead to 

a corresponding reduction in O & M costs. 

• The optimal condition for the weekly operation of AD showed that the liner feature had no 

influence in obtaining maximum volume of biogas from the micro-AD plant as there was 

no input from it in the optimization of biogas. Also, the optimal condition revealed that the 

feed feature was the only feature which was required to be added to the digester only 

twice a week (i.e., on the 4th and the 7th day) to obtain maximum volume of biogas. This 

implies that the developed ensemble model can help to reduce operating and 
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maintenance (O & M) costs of this micro-AD plant while generating maximum volume of 

biogas. The ability of the developed ensemble model to reduce the O & M cost of AD 

makes it a more economical technology thereby addressing the 4th research question.     

The optimal condition also revealed that no input variable is required to be added to the digester 

on the 1st, 2nd, and 5th days respectively for maximum volume of biogas to be obtained. In addition, 

high portion of catering and low portion of oat together with a low amount of water are required 

on the 3rd day. On the 4th day of the operation, low amounts of water, a low portion of oat, a low 

portion of catering and a high portion of feed are required. On the 6th day of the operation, a high 

portion of catering, a low portion of oats and a low amount of water are required to be added to 

the digester to obtain maximum volume of biogas. Lastly, a low portion of catering composition 

and a low amount of water are required to be added to the digester in addition to a high portion 

of feed for obtaining maximum volume of biogas. The optimal feeding pattern implies that the 

application of the  ensemble model can help to overcome some of the economic constraints of 

the micro-AD plant as the optimal feeding pattern will help to conserve both the energy required 

for AD operations and the cost of labour while generating maximum volume of biogas. This also 

provided answers to the 4th research question as well as the 4th research objective.  

5.3  Key Contributions to Knowledge and Relevance to the Discipline 

The development of both the RNN model and the time-series ensemble model for the real-time 

operation of a micro- AD plant is a significant advancement in enhancing the predictive capabili-

ties of AI based models for improving the performance of AD operations in generating maximum 

volume of biogas. This significant advancement is due to the increasing demand to expand the 

application of AI models in AD systems for classification and regression purposes especially as 

an initial step before the use of advanced models. Based on this, the application of RNN and the 

time series ensemble model contributed to knowledge in different ways. 
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First, the development of the RNN-SFLA model for predicting biogas generation from a micro-

AD plant and optimising the generated biogas provided an insight on the effect of different 

waste compositions and water added to the digester on maximum biogas generation. It also ex-

plored the feasibility of RNN model application within the industrial context, taking into consider-

ation earlier timesteps. This is particularly important as previous research works have either 

used simple ML or ANN models on a laboratory scale which limited its widespread deployment. 

Secondly, the development of a time series ensemble model offered a more straightforward ap-

proach which can enable AD operators to easily understand and interpret the input and output 

variable (biogas). It also enabled them to interpret the different classes of biogas. The simplicity 

of its operation made it more accessible and user-friendly, especially for operators who may not 

have extensive technical expertise in advanced modelling techniques. 

 Through the application of these developed models in a micro-AD plant, it can help to simplify 

the decision-making process as dealing with numbers and volumes in a practical setting can be 

challenging and cumbersome. They provide clear indications of the operational state of AD sys-

tem as well as the class to which each input or output variable belong. Moreover, these frame-

works introduce user-friendly weekly operation patterns which enable easy implementation by 

operators which can be applicable in other worldwide micro- AD projects. These weekly opera-

tion patterns can also serve as a guide to operators of non-micro-AD projects on how best to ef-

ficiently utilise feedstock in obtaining maximum biogas volume.   

The key contributions of this research to knowledge hold significant relevance not only to the 

field of AI but also in the field of organic waste management using AD technology. This is be-

cause through the application of these models in AD, some of the technical and economic con-

straints associated with the AD plant can be addressed.  In addition, these models can be ap-

plied in similar AD projects to address similar constraints. This will help to further promote the 

application of AD as an organic waste management technique, especially in many developing 
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countries around the world where the application of AD is yet to be implemented mainly due to 

some of the technical and infrastructure constraints associated with AD systems.  For instance, 

the optimal weekly pattern helps to minimise the need for enormous amounts of water required 

for wet AD operations which is a major challenge in developing countries due to shortage in wa-

ter supply. The optimal weekly operation pattern also helps to reduce the operational cost of la-

bor required for the operation of AD. This is very vital as it is one of the economic constraints 

currently hindering the implementation of AD in many developing countries. This approach will 

assist in contributing towards the implementation of circular economy. Furthermore, promoting 

the application of AD can help to promote net zero emissions into the atmosphere thereby con-

tributing towards climate change mitigation alongside promoting energy security through biogas 

generation. 

5.4 Recommendations for Future Work 

The developed RNN and ensemble-based models demonstrated to be effective in predicting and 

optimizing biogas from the micro-AD plant. This conforms with the aims and objectives of this 

research study thereby contributing to a gap in knowledge. Both the developed RNN and ensem-

ble models have also shown to have promising potentials in improving the effectiveness of AD in 

producing biogas. This will not only enable the AD technology to maximise its full potential in 

meeting up with the world’s ever increasing energy demands but it will also assist in contributing 

both directly and indirectly towards the achievement of the various SDGs such as SDG 1(No 

poverty), SDG 2 (Zero Hunger), SDG 3 (Good Health and Wellbeing), SDG 4 (Quality Education), 

SDG 5 (Gender Inequality),  SDG 6 (Clean Sanitation and Water), SDG 7 (Clean and Renewable 

Energy), SDG 8 (Decent Work and Economic Growth), SDG 9(Build Resilient Infrastructure, Pro-

mote Sustainable Industrialisation and Foster Innovation), SDG, 11 (Sustainable Cities and Com-

munities), SDG 12 (Sustainable Waste Management), SDG 13 (Climate Action), SDG 14 (Life 

below Water), SDG 15 (Life on Land) and SDG 16 (Promote peaceful and inclusive societies) 
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through the increased application of AD in many parts of the world where the AD technology is 

yet to be applied. However, there are certain limitations observed in the course of this research 

study which need to be acknowledged, as a means of pointing towards avenues for further re-

search and development (R & D). 

• For the optimal input pattern, it is recommended that the micro-AD plant is fed in one day 

and allowed to rest for three days in comparison with gradual feeding to obtain the maxi-

mum volume of biogas generation. 

• Further research studies are required to be conducted to improve the ability of the devel-

oped RNN model in tracking sudden drops or rising biogas, especially because many ob-

stacles in operation may happen in practice which might affect the overall output. Also, 

the findings obtained in this research study require to be further assessed and verified in 

other AD plants with longer analysis periods to show the efficacy of the developed 

RNN/NARX model. 

• Further analysis and data modelling are required to address other technical challenges 

associated with AD technology such as long retention time. 

• A series of pre- processing steps such as utilising data mining techniques and supporting 

the capabilities of remote sensing should be taken into consideration to overcome the 

limitation of having access to comprehensive big data and operational databases for time 

spans shorter than a day and datasets spanning over a year. 

• The proposed ensemble model and the distinct weekly pattern should be subjected to 

longer-term analysis and testing across different periods and within comparable AD pro-

jects. This will provide a meticulous understanding of the effectiveness of the proposed 

ensemble model and potential scalability in the prediction and optimisation of biogas. 

• An intriguing avenue for exploration involves the integration of the real-time operational 

pattern with risk scenarios. This avenue could include scenarios such as shifts in the 
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composition of waste, or errors made by operators while adding input materials which 

have led to uncertainties in the dataset. The introduced pattern and optimisation frame-

work have the potential to dynamically adapt the weekly pattern to tackle these operational 

challenges. This approach proffers suggestions for a wider application within the realm of 

digital visualization projects. 

• It is recommended that the impact of both the developed RNN and time-series ensemble 

model on the composition of biogas should be investigated in future research studies. This 

is to further ascertain their feasibility in improving the composition of biogas generated 

from AD. Also, investigations on the limitations of heavy metals mobility on the overall 

digestate quality should are also recommended for future research works as this research 

centred mainly on improving the volume of biogas produced from AD. 
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7 Appendices 

Table A1. Optimal cyclic pattern of feeding to the micro-AD plant and waste composition to obtain 

maximum biogas generation in a four-day cycle.  

Parameter 

 Days 

 Predictors (input data)  
between t-3 and t 

 Prediction of t+1 

 t-3  t-2  t-1  t  t+1       

Feed  0  0  0  80         

Biogas  -  -  4.11  4.08  4.52       

Catering  -  -  55  5         

Oat  -  -  20  0         

Liner  -  -  0  0         

Water  0  0  15  0         

Parameter 

 Days 

 Predictors (input data)  
between t-2 and t+1 

 Prediction of t+2 

   t-2  t-1  t  t+1  t+2     

Feed    0  0  80  0       

Biogas    -  4.11  4.08  4.52  4.23     

Catering    -  55  5  0       

Oat    -  20  0  0       

Liner    -  0  0  0       

Water    0  15  0  0       

Parameter 

 Days 

 Predictors (input data)  
between t-1 and t+2 

 Prediction of t+3 

     t-1  t  t+1  t+2  t+3   

Feed      0  80  0  0     

Biogas      4.11  4.08  4.52  4.23  4.11   

Catering      55  5  0  0     

Oat      20  0  0  0     

Liner      0  0  0  0     

Water      15  0  0  0     
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Parameter 

 Days 

 Predictors (input data)  
between t and t+3 

 Prediction for t+4 

       t  t+1  t+2  t+3  t+4 

Feed        80  0  0  0   

Biogas        4.08  4.52  4.23  4.11  4.08 

Catering        5  0  0  55   

Oat        0  0  0  20   

Liner        0  0  0  0   

Water        0  0  0  15   

Table A2. Selected weak learning data mining models. 

Selected 
methods 

 Description  
Optimised  

hyperparameters 

DA  Multiple linear regression expressing one dependent 
variable as a combination of other features or meas-
urements 

 ⁻ Delta: Linear coefficient threshold 
⁻ Gamma: Amount of regularisation 

DT  The regression tree utilised a top-down recursive tree 
of an inner node. The decision tree model is divided into 
smaller subgroups until ultimately separated into an ex-
clusive mutual subset. 

 ⁻ Minimum leaf size: Minimum number 
of leaf node observations 

GPR  The kriging method providing the best linear unbi-
ased prediction at unsampled locations 

 ⁻ Sigma: Initial value for the noise stand-
ard deviation 

KNN  Non-parametric method finding the closest neigh-
bourhoods based on similarity  

 ⁻ Distance: Neighbour search method 
⁻ Neighbours number: Number of near-

est neighbours in observant data to 
find for classifying each point when 
predicting 

NB  Supervised learning method applying the theory of 
Bayes with strong independence assumptions be-
tween the different features 

 ⁻ Kernel distribution: Approach of data 
distribution and data smoothing  

⁻ Width: Regulating width of Kernel 
smoothing window  

SVM  Linear classification by splitting the data into subsets, 
e.g., pattern recognition and data classification 
based on the statistical learning theory and structural 
risk minimisation principle 

 ⁻ Kernel scale:  Approach of data distri-
bution and data smoothing 

⁻ Box constraint: controller of the maxi-
mum penalty aiding to prevent overfit-
ting 

 

DA: Discriminant Analy-
sis 

DT: Decision 
Tree 

GPR: Gaussian Process Re-
gression 

KNN: K-Nearest Neighbour-
hood 

NB: Native 
Bayes 

SVM: Supervised Vector Machine with Error-Correcting Output 

                               

Table A3. Ratio of different used biogas loads used for different steps of model development. 

Step 
 Yielded biogas class (%) 

 Low  Medium  High 

WLDM training  24.34  46.71  28.95 

WLDM testing  26.32  34.21  39.47 

Ensemble testing  22.37  46.05  31.58 
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Figure A2. Comparison between optimal weekly operation pattern and testing event (76 days): (a) adding water, (b) adding catering mate-
rial, (c) adding oat material. 
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Figure A3. Optimisation results of the WLDM models for: (a) discriminant analysis, (b) decision tree, (c) Gaussian process regression, (d) k-nearest neighbour-
hood, (e) naive bayes, (f) supervised vector machine 

 

 


