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Abstract: Background: Heart rate is an essential diagnostic parameter indicating a patient’s condition.
The assessment of heart rate is also a crucial parameter in the diagnostics of various sleep disorders,
including sleep apnoea, as well as sleep/wake pattern analysis. It is usually measured using an elec-
trocardiograph (ECG)—a device monitoring the electrical activity of the heart using several electrodes
attached to a patient’s upper body—or photoplethysmography (PPG). Methods: The following paper
investigates an alternative method for heart rate detection and monitoring that operates on tracheal
audio recordings. Datasets for this research were obtained from six participants along with ECG
Holter (for validation), as well as from fifty participants undergoing a full night polysomnography
testing, during which both heart rate measurements and audio recordings were acquired. Results:
The presented method implements a digital filtering and peak detection algorithm applied to audio
recordings obtained with a wireless sensor using a contact microphone attached in the suprasternal
notch. The system was validated using ECG Holter data, achieving over 92% accuracy. Furthermore,
the proposed algorithm was evaluated against whole-night polysomnography-derived HR using
Bland-Altman’s plots and Pearson’s Correlation Coefficient, reaching the average of 0.82 (0.93 maxi-
mum) with 0 BPM error tolerance and 0.89 (0.97 maximum) at ±3 BPM. Conclusions: The results
prove that the proposed system serves the purpose of a precise heart rate monitoring tool that can
conveniently assess HR during sleep as a part of a home-based sleep disorder diagnostics process.

Keywords: tracheal audio; heart rate; sleep disordered breathing; polysomnography; digital filtering

1. Introduction

The heart rate, thus monitoring the heartbeat frequency and function, is one of the
most fundamental parameters in sleep medicine [1]. The analysis of this parameter becomes
crucial for the diagnostics of sleep disorders in children, where breathing disorders such
as sleep apnoea or snoring vastly influence the activity of the autonomic nervous system,
consequently inducing rapid changes in the frequency of the heartbeat [2].

There are several methods used clinically for the detection and analysis of heart rate
parameters. The practices used for heart rate monitoring during sleep include electrocar-
diography (ECG) and pulse oximeter plethysmography wave measurement, also known
as the pulse rate. Both methods rely on the R-R interval measurement, where each “R”
stands for a successive heartbeat (as part of a QRS complex). Given the recent development
of wearable technology, the market offers various smart devices, most commonly in the
form of a smartwatch, to provide heartbeat monitoring features ranging from heart rate
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calculation to atrial fibrillation detection. Nonetheless, the effectiveness and accuracy of
these devices remain controversial [3].

Although ECG and the portable Holter ECG monitor are often recognized as the most
efficient and successful methods for heart monitoring, the auscultation techniques are
preferred for the effective diagnosis of various heart diseases; for instance, the ausculta-
tory diagnostic of heart prosthetic valve dysfunction exhibits 92% sensitivity over other
methods [4]. Such an advantage of this method can be crucial for the development of
future heart rate measuring devices fully based on automated tracheal auscultation. Due
to the proximity of the arteries and the heart, audio recordings collected using a contact
microphone placed at the trachea could enable the isolation of recorded heart sounds,
therefore presenting an opportunity to detect and calculate the heart rate. Furthermore,
tracheal sound recordings can provide reliable information on breathing sounds, including
snoring or apnoeic episodes, which provides an opportunity for an accurate obstructive
sleep apnoea [5] diagnosis [6].

In recent years, the field of sleep medicine has seen a shift towards simpler, more per-
sonal devices for monitoring sleep and breathing during sleep. Traditionally, polysomnog-
raphy (PSG) has been used to assess sleep and diagnose sleep disorders, but the use of
home sleep apnoea testing (HSAT) and other personal sleep monitoring devices is becom-
ing increasingly common [7]. The development of sensors capable of evaluating various
signals simultaneously is a key aspect of this trend, as it allows for more comprehensive
and accurate assessments of sleep and breathing patterns.

Many wearable devices built for assessing sleep and sleep-disordered breathing are
worn on a wrist or a finger, but other approaches have also been explored. For example,
sensors placed on the forehead or neck have been used to detect and analyze breathing
patterns during sleep [8]. The neck is particularly promising for sensors’ placement—this
location provides sensors with the ability to detect, record, and analyze each breath. Fur-
thermore, sensors placed just above the sternum can provide important information about
body position during sleep, which is a crucial parameter to analyze in sleep studies [7].

Providing that the sensor’s neck placement allows the efficient detection of breathing
patterns based on audio recordings, it can also be a promising placement for heart rate
evaluation [9,10]. The primary heartbeat features audible in an audio recording obtained
from the neck area are the S1 and the S2 sound components [11]. The S1 and S2, also referred
to as lub-dub sounds, signify the phases of the cardiac cycle associated with closing valves
during systole and diastole [10]. A wireless sensor equipped with a microphone capable
of detecting and recording S1 and S2 episodes could hence provide an efficient heart rate
monitor alternative.

Furthermore, diagnostic tools such as PSG or ECG required for precise heart rate
assessment can be frequently inaccessible in a private home environment. The potential
possibility to calculate the heart rate from audio recordings obtained using a small, easily
managed sensor would allow for the regular and more thorough monitoring of the patient’s
health. Nonetheless, there are very few studies implementing audio recordings for the
detection of heart rate (see Section 4).

Considering the reasoning presented above, the aim of this study was to introduce
a heart rate calculation system based solely on heartbeat detection from tracheal audio
recordings. The objective was to validate the results obtained using the proposed algo-
rithm and wireless audio sensor against the dataset from an electrocardiogram (for initial
algorithm validation), as well as whole-night polysomnography.

2. Materials and Methods
2.1. Participants

A total of 50 participants selected for this research were recruited at the Czerniakowski
Hospital, Warsaw, among patients qualified for the polysomnography (PSG) study with
NOX A1 system (NOX Medical Inc., Reykjavik, Iceland) (Table 1). This allowed for the
simultaneous recording of patients’ heartbeats using traditional methods, as well as the
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desired audio output using the designed sensor. In accordance with PSG test eligibility,
each participant of this study had underlying health issues related to suspected OSA.

Table 1. Demographic overview of the research group involved in the study, depicting minimum
and maximum values within the dataset, as well as mean and standard deviation values for the
entire dataset. TRT—Total Recording Time. TST—Total Sleep Time. AHI—Apnoea-Hypopnoea Index.
ODI—Oxygen Desaturation Index.

Parameter Males Females Total Mean-Max for Total

Participants
Number 33 17 50 50

Age 49.15 ± 13.1 60.12 ± 11.5 52.88 ± 13.5 29.0–77.0
Height (cm) 177.09 ± 5.9 161.53 ± 8.3 171.80 ± 10.0 150.0–186.0
Weight (kg) 100.00 ± 22.2 80.71 ± 21.2 93.44 ± 23.5 53.0–158.0

TRT 07:00:11 ± 0.0 06:55:39 ± 0.1 06:58:38 ± 0.0 03:05:00–08:14:00
TST 06:06:40 ± 0.0 05:33:18 ± 0.1 05:55:19 ± 0.0 02:25:00–07:35:00
AHI 29.66 ± 19.6 26.86 ± 22.2 28.71 ± 20.3 2.4–93.3
ODI 27.79 ± 19.5 25.15 ± 23.3 26.90 ± 20.7 1.4–93.9

Snoring (%) 40.79 ± 20.6 35.92 ± 19.8 39.14 ± 20.2 0.8–80.1
Time % <90% SaO2 13.57 ± 17.4 16.48 ± 24.7 14.56 ± 20.0 0.0–67.9

Among others, those included loud or profuse snoring, witnessed pauses of breath-
ing or gasping for air during sleep, morning headaches, hypertension, as well as other
symptoms related to chronic nasal congestion or upper airway obstruction.

All 50 data samples collected for this study ranged from 3 to 8 h, with an average of 6 h
58 min per participant; 92% of data samples consisted of < 7 h-long recordings. Each data
sample consisted of at least 3 h of audio recorded using the sensor’s contact microphone
and at least 3 h of heart rate measurements obtained during the polysomnography study.

The validation study was performed on six healthy volunteers who agreed to have a
simultaneous 10-min heart rate recording with an ECG Holter and acoustic sensor.

2.2. Sensor and Data Collection Process

For this study, the wireless acoustic sensor (Clebre, Olsztyn, Poland) was used to
measure sounds from the upper respiratory tract during sleep, specifically at the level of
the trachea. Two digital MEMS (micro-electro-mechanical system) microphone units were
selected, both capable of 16-bit registration resolution and digital adjustments of amplifica-
tion, sensitivity, and subrange. The dimensions of the entire sensor are 33 × 39 × 13 mm,
and it weighs 18 g. The microphone used in the sensor is MP34DT06J (by STMicroelec-
tronics, Amsterdam, The Netherlands). It is the MEMS audio sensor omnidirectional
digital microphone, characterized by an acoustic overload point at the level of 122.5 dBSPL,
64 dB signal-to-noise ratio, –26 dBFS ±1 dB sensitivity, and very stable frequency response
across the entire frequency spectrum. We decided not to implement any noise reduction
mechanisms, as this might influence the signal parameters used for the analysis. The
audio tract comprises a separated 2 mm audio channel; also, there is a membrane with
an area of 6.25 cm2. The use of two microphones enabled simultaneous recording of two
distinct signal sources. The first microphone captured ambient noise, while the second,
in the form of a contact microphone, was utilized to record sounds directly from a body,
particularly a trachea. To ensure stability throughout the night, the sensor was positioned
on the subject’s neck, specifically at the sternal notch, and secured in place with medical
tape (Figure 1). This configuration optimized signal quality from an analytical perspective,
with the microphone, its membrane, and acoustic channel all directed toward the body
during data collection.
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The recorded acoustic signals were converted into a digital data stream, with a sam-
pling frequency of 8000 Hz established as a balance between transmission restrictions and
spectral content. This configuration was selected to enable accurate and reliable recordings
of the upper respiratory tract sounds during sleep.

2.3. Signal Pre-Processing Stage

Considering the subject group comprises participants experiencing sleep breathing
disorders, the majority of audio recordings obtained during data collection were highly
interfered with by loud breathing sounds, such as snoring or loud body movement. To min-
imize the interference and distinguish all heartbeats, the frequency range of the recordings
was significantly reduced by applying a bandpass filter of 20 Hz to 25 Hz, thus eliminating
all frequencies above 25 Hz. Such bandpass ensures the removal of most interference while
retaining the heartbeat signal that normally resides within the frequency of 20–150 Hz [12].
Although hardly audible for a human ear, the heartbeats were preserved while eliminating
most of the snoring and breathing interference.

Given that heart sounds are consistently inaudible unless in direct contact with the
chest area, the recording of the ambient microphone had less potential to retain any heart-
related audio information. The stereo signal was split, allowing only the channel containing
the recording of the contact microphone for further processing.

2.4. Validation

For the validation of the designed system, a dataset was developed using Holter moni-
tor measurements. ECG Holter allows for each single heartbeat monitoring, distinguishing
between heartbeat peaks and artifacts, therefore enabling the accurate calculation of true
positives and false positives for each heartbeat detected by the algorithm.

A group of six healthy individuals were selected. An ECG Holter and the designed
wireless sensor were placed on each participant for 10 min. For the validation dataset, the
middle seven minutes of each recording were chosen to avoid any ECG Holter artifacts
frequent in the first two minutes of a recording. To allow a thorough validation of the
results, two independent approaches were established: the estimation of the average heart
rate per minute from each device and the calculation of true positives and false positives
for each heartbeat.

2.5. Main Algorithm

The designed algorithm begins its pre-processing by loading the chosen dataset,
separating individual channels, and saving the right channel output as a mono file. To
accelerate the system’s operation, the acquired mono recording is down-sampled and
equalized, removing signal below 20 Hz and over 25 Hz from the frequency spectrum (as
described in Section 2.3).

Considering significant variations in signal loudness, dependent on body positioning
and the patient’s anatomy, the amplitude of the signal is unified by increasing the amplitude
of quieter sections so that the average absolute amplitude value for each section in one
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recording is equal. For this purpose, the recordings are split into one-second-long sections,
each one of length equal to the audio sampling rate.

To ameliorate the performance of the algorithm on all recordings within the entire
dataset, the average absolute values of each signal’s amplitude are unified. All signals,
unified in amplitude, are then subjected to three cycles of heartbeat peak detection. After
detecting all the most prominent heartbeat peaks during the first cycle, the algorithm
measures intervals between adjacent peaks and preserves only the first audible beats S1 of
each heart contraction cycle, removing the second beats S2.

Subsequently, the intervals between detected S1 peaks are evaluated. The algorithm
first assumes that the human heart rate does not fall below 40 beats per minute. Secondly,
the distance between subsequent S1 peaks is measured. If the interspace is larger than 1.5 s
and therefore corresponds to a heart rate lower than 40, the signal is re-evaluated in the
second cycle with the higher sensitivity of heartbeat peak detection. The above cycle is
repeated once more with slightly increasing its sensitivity.

To avoid over-calculation of heartbeat peaks and identifying peaks where they are
absent, the system assumes that the highest possible human heart rate during sleep does
not exceed 180 beats per minute. In its last cycle, the algorithm measures the space
between adjacent peaks. If the detected heart rate exceeds 180, the heart rate is re-evaluated,
readjusting the heart rate detection threshold for each minute of the recording and deleting
the least prominent peaks.

2.6. Statistical Analysis

Before the application of the developed heart rate detection algorithm, all data
recorded using the wireless acoustic sensor were analyzed to obtain the baseline descriptive
statistics for all patients. For each continuous characteristic (such as weight, height, the
percentage of snoring, or AHI parameter), the mean and standard deviation values were
calculated; furthermore, the minimum and maximum values of each variable present in
the dataset were identified (Table 1). Following the application of the proposed heart
rate detection algorithm, the correlation between the heart rate detected by the developed
system and the PSG-generated heart rate was evaluated. For that, Pearson’s Correlation
Coefficient was implemented.

3. Results

The following part of the paper investigates the performance of the designed algorithm
in the validation process, as well as against the polysomnography-derived heart rate, the
heart rate comparison, and the true positives and false positives calculation approach for
beat-to-beat detection.

3.1. Validation Dataset and ECG Holter
3.1.1. Heart Rate

To validate the algorithm, it was investigated on a separate dataset obtained using the
wireless sensor and the ECG Holter. Each 7-min-long validation recording was compared
to the corresponding matrix of average heart rate measurements collected using the ECG,
as shown in Figure 2. This validation approach resulted in 75% of measurements being
identical or within ±1 BPM deviation, with the maximum deviation of three data points.

3.1.2. True Positives and False Positives

For this testing method, a true positive indicates a heartbeat peak correctly identified
by the algorithm, meaning within the same area that a peak was registered according to the
ECG Holter. Such a comparison can be seen in Figure 3.
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Figure 3. Comparison of audio recording (blue), peaks detected by the algorithm (red), and the peaks
indicated by the ECG dataset (yellow)—data shown for a single participant.

A false positive indicates a peak that was identified by the algorithm in the absence
of a heartbeat, according to the ECG data. Table 2 represents all true positives and false
positives detected for all validation datasets. According to the analyzed data, the average
accuracy of this validation testing reaches over 92% (92.34%).
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Table 2. True positives and false positives are calculated for each validation dataset.

Validation
Dataset Nr

Total Number of S1
Peaks Detected True Positives (TP) False Positives (FP) TP %

1 484 419 65 86.57
2 559 508 51 90.88
3 450 401 49 89.11
4 744 711 33 95.56
5 517 501 16 96.91
6 422 401 21 95.02

MEAN 529.33 490.17 39.17 92.34

3.2. Study Dataset and PSG

The accuracy of the algorithm proposed was evaluated using Pearson’s correlation
coefficient, achieving the average of 0.82 for all data samples, with best results of 0.93, with
an error tolerance of 0 (Figure 4, Table 3). While increasing the error tolerance of ±3 beats
per minute, the best results of the correlation coefficient reach nearly 0.97 (0.9664), with an
average correlation coefficient of 0.89 (0.8932).
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phy (x-axis) and the heart rate calculated by the algorithm designed in this study (y-axis).

Table 3. Correlation Coefficient for Spearman’s and Pearson’s Correlation at ±0 BPM error tolerance.
The last column represents the correlation coefficient at ±3 BPM.

Spearman’s Correlation Coefficient Pearson’s
Correlation Coefficient

Correlation Coefficient at ±3 BPM
Error Tolerance

0.8025 ± 0.088 0.8203 ± 0.076 0.8932 ± 0.069

For a thorough investigation of the algorithm, the Bland-Altman analysis was used.
Each recording of the tracheal audio was evaluated separately, dividing audio into 30 s
windows and producing a matrix of average heart rate values for all windows (Figure 5).
Obtained data was then compared to a matrix of heart rate values obtained during simul-
taneous polysomnography testing, with the average heart rate calculated for each 30 s of
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the testing time. The results of the comparison of both matrices were depicted in separate
Bland-Altman plots for each subject. Figure 6 shows Bland-Altman analysis for the entire
dataset tested collectively, comparing the PSG-generated HR matrix with the matrix of
HR calculated using the proposed algorithm. According to Bland-Altman analysis, the
coefficient of variation was equal to 4.56%, and the mean of ±2.93 SD difference between
audio HR and polysomnography HR was calculated.
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Figure 6. Bland-Altman analysis plot depicting the relation between the heart rate obtained from
polysomnography and the heart rate calculated by the algorithm designed in this study.

4. Discussion

Heart rate [13] is an important physiological parameter, crucial for the evaluation of
sleep quality and diagnosis of various sleep disorders. HR fluctuations remain a crucial
parameter in sleep medicine, as they can be used to evaluate sleep/wake patterns without
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the need for an electroencephalogram [13] signal [14]. Furthermore, changes in HR can
be used to identify apnoeic episodes, and in patients with obstructive sleep apnoea, the
detection of arrhythmias such as atrial fibrillation can be useful in monitoring and treating
the condition [15].

The purpose of this study was to develop a heart rate calculation system based on
heartbeat detection solely from tracheal audio recordings. The audio dataset required for
this study was recorded using a wireless acoustic sensor placed at the patient’s suprasternal
notch. The data for our research was obtained using a small wireless sensor with a built-in
contact microphone that is to be placed just above the patient’s sternum. The Clebre sensor
has already proven its ability to analyze breathing and snoring episodes, detect apnoea,
and assess body positioning during sleep [16–18]. The portable wireless sensor used for
data collection can easily be applied in a home environment for multi-night recordings,
providing an opportunity for more adequate and efficient testing due to space comfortable
for a patient. Adding an algorithm to detect heart rate would be highly beneficial for the
sensor and the system in terms of performing sleep studies.

Subsequently, heart rate was extracted using the proposed heart rate detection and
calculation algorithm and compared with heart rate recordings obtained from the simulta-
neous polysomnography study. The results were obtained using the correlation coefficient.

Most research on HR focuses on the photoplethysmography (PPG) signal obtained
from sensors placed on a finger or, more recently, a wrist. PPG measures the changes in
blood volume in the underlying tissues, which occur in response to each pulse rate. This
signal can be used to derive the heart rate and other cardiovascular parameters, such as
heart rate variability (HRV) and pulse wave velocity (PWV) [3]. Although wrist-worn
devices are becoming increasingly popular for HR monitoring during sleep due to their
non-invasive nature and convenience, their accuracy remains questionable [3].

Recent studies have shown that smartwatches and bracelets can be effective in assess-
ing HR during sleep. In a study by Gruwez et al. [19], the accuracy of a smartwatch was
compared with beat-to-beat synchronized ECG monitoring. The authors found that the
correlation coefficient between smartwatch-detected HR and ECG monitoring reached over
0.9, suggesting that smartwatches could be a valuable tool for continuous photoplethys-
mography monitoring. In the assessment of Samsung HR detection accuracy, Sarhaddi et al.
found the smartwatch had a high accuracy in detecting heart rate during both rest and
exercise, with a mean absolute error of less than 5 bpm [20]. However, the accuracy of
heart rate variability measurement was found to be lower, with a mean absolute error
of 22.6 ms. The study suggests that smartwatches can provide accurate heart rate mea-
surements during daily activities, but further improvements are needed for heart rate
variability measurements.

A study focused on the use of home devices for HR detection investigated the clinical
validation of five direct-to-consumer wearable smart devices to detect atrial fibrillation [3].
The study found that the accuracy of these devices varied significantly, and the sensitivity
and specificity were dependent on the specific device. This proves the use of wearable
devices as an HR detection system needs further improvement and investigation.

A novel method proposed in this research allows for heart rate detection based on
the tracheal audio recordings obtained with a wearable sensor equipped with a contact
microphone. A similar approach has been investigated previously by Kalkbrenner et al. [9]
in a study aimed at detecting apnoea and changes in heart rate in patients with sleep-related
breathing disorders. In their research, Kalkbrenner et al. used a tracheal microphone to
obtain audio recordings for potential heart rate recognition and calculation. A large benefit
of this algorithm was the simultaneous detection of apnoea episodes. Nonetheless, the
method failed for any patients with loud breathing sounds, snoring, or those causing
distribution with frequent movement. The results obtained from 10 patients showed that
the tracheal sounds accurately detected apnoea and estimated heart rate during sleep with
a high level of accuracy (with a correlation coefficient of 0.81) compared to PSG data.
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Following a similar approach, Sharma et al. [10] introduced an algorithm for extracting
the heart rate from acoustic recordings gathered at the neck level. With the application of
Hilbert energy envelope and adaptive thresholding, the authors were able to identify S1 and
S2 heartbeats, respectively, and consequently calculate the heart rate. The study investigates
nearly 75 h of audio recordings from the neck level, from which 4482 min are then evaluated,
and heart rate is extracted. The algorithm achieves a 0.93 correlation coefficient and 94.34%
validation accuracy, providing a ±3.61 BPM and ±10% error tolerance. The authors identify
a significant amount of sound interference (such as snoring). Thus, the algorithm applies a
large amount of pre-processing, including artifact removal, low-pass filter, decimation, and
median filter.

The work proposed by Kalkbrenner et al. and Sharma et al. suggests the vast potential
of heart rate calculation based on tracheal audio recording. Nonetheless, both methods
struggle to identify the heartbeats in a sound environment, such as snoring or change in
the patient’s body positioning [9,10]. The advantage of the algorithm presented in our
work is its high efficiency regardless of the extent of snoring. For instance, the correlation
coefficient for a participant experiencing 68% snoring and AHI of 32.2 equals 0.92. Table 4
presents the correlation coefficients for participants with the highest snoring percentage, as
well as the highest AHI. It also depicts AHI and snoring parameter values for a participant
with the highest correlation coefficient for a thorough comparison.

Table 4. AHI, snoring parameter, and correlation coefficient were calculated for participants with
the highest AHI within the dataset, highest snoring within the dataset, and highest correlation
coefficient, respectively.

Participant with: Gender Age AHI Snoring % Correlation Coefficient

Highest AHI Male 34 93.3 46.8% 0.90
Highest Snoring % Female 76 54.6 80.1% 0.76

Highest Correlation Coefficient Female 44 14.2 34.0% 0.93

Furthermore, the wireless sensor proposed in this work was equipped with an ac-
celerometer, which enables the detection of body placement and activity during sleep,
thereby facilitating the future exclusion of fragments disturbed by movement avoiding the
recording of movement artifacts or fragments disturbed by prolonged loud snoring.

In another related study, Freycenon et al. proposed a method for estimating heart
rate from tracheal sounds recorded during sleep [21]. The study involved 16 patients
undergoing PSG for the diagnosis of sleep apnoea syndrome while simultaneously having
their HR measured using ECG. The Authors used 1-h recording from each patient instead
of the whole-night results. The study applied a deep learning approach to extract the
heart rate signal from the tracheal sound recordings and found that their method achieved
an accuracy between 81% and 98% in estimating heart rate, with an error rate of 5 beats
per minute.

Another advantage of the system presented in this work is the highest average cor-
relation coefficient providing 0 error tolerance, whilst the majority of related research
investigates the results based on ±3 BPM error tolerance. While incrementing the error tol-
erance to ±3 BPM, our average correlation coefficient increased significantly, reaching 0.97
at its maximum. Furthermore, in this research, we propose the largest training dataset (over
378 h) in the current state-of-the-art. A thorough comparison of the current state-of-the-art
is shown in Table 5.
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Table 5. Summary of State-Of-The-Art methods for estimation of heart rate from tracheal audio recordings.

Literature Proposed Method Validation Method Number of
Subjects

Recording
Time Results Advantages of

the Method

Kalkbrenner et al.,
2017 [9]

• Signal
amplification

Subjects undergoing
full night
polysomnography
correlated with
developed system

10 69 h 45 min 0.816 correlation
coefficient

High correlation
coefficient (relative
to currently
presented work).

• 10–50 Hz
bandpass filter

• Peak detection

Frecenon
et al., 2021 [21]

• Adaptive
Prediction Filter

ECG signal as a
reference method for
validation subject.

Study: 16 Study: 16 h Study: average at ±3
BPM = 81–98%

High validation
results (relative to
currently
presented work).• Cross-correlation Validation: 1 Validation: 8 h

30 min
Valid.: average at ±3
BPM = 94.5%

Sharma
et al., 2018 [10]

• Hilbert energy
envelope

Subjects undergoing
polysomnography
correlated with
developed system

13 75 h
Accuracy at ±3.61 BPM
= 94.34%

High validation
results provide a
relatively
large dataset.

• Adaptive
thresholding

Correlation coefficient at
±3.61 BPM = 0.93

THIS
WORK

• Peak
Normalisation Heart rate

calculated by
proposed algorithm
compared with
simultaneous ECG
measurements—
False Positive and
True Positive
calculation.

Study: 50 Study:
378 h 40 min

Study: average correlation
coefficient at zero error
tolerance (±0 BPM) = 0.82,
highest correlation
coefficient at zero error
tolerance = 0.93

Highest correlation
coefficient,
providing 0 error
tolerance (±0 BPM).

• 20–25 Hz
bandpass filter

Largest study
dataset in the
state-of-the-art.

• Peak detection
Validation: 6 Validation:

42 min Validation: 92.34%

Largest validation
dataset in the
state-of-the-art.

• S1 peak
preservation, S2
peak rejection

S1 and S2 peak
detection and
differentiation.

In our study, 50 participants were recruited, each experiencing certain types of sleep
disorders, from habitual snoring to severe obstructive sleep apnoea. From each participant,
the audio data was collected using the sensor during a full-night polysomnography study.

Study Limitations

The development of a novel wireless acoustic sensor deploying tracheal recording
for accurate heart rate detection is a challenging matter due to the nature of sleeping
disorders and the current golden standard for their diagnosis—PSG testing. Throughout
the study, limitations were thoroughly investigated, and the methods were adjusted to
address all issues.

The first recorded limitation pertained to the quality of the desired audio content.
We did not study patients who would have any pathologies in their trachea or larynx.
Subglottic, or tracheal stenosis, unilateral or bilateral vocal fold paralysis, could produce
additional sounds that could influence the quality of our algorithms. This problem needs
to be addressed in future studies. Due to the character of sleeping disorders, the majority of
research subjects were experiencing various breathing difficulties, such as snoring, which
strongly interferes with the desired audio signal. To ensure the maximum preservation
of a heartbeat sound, the according frequency bandpass was implemented, eliminating
the vast majority of interference. However, provided that snoring causes a vibrational
response of the vocal tract, parts of the filtered signal remained affected by the snoring
activity. Nonetheless, the sound of a heartbeat overlapping disturbances caused by snoring
was recorded, causing subtle regular changes in the signal’s amplitude.

Considering that the placement of the sensor changes slightly depending on the
patient’s body positioning during sleep, certain fragments can be significantly decreased in
loudness. Furthermore, the volume of audio recordings varies significantly depending on
each subject’s anatomical structure; in the case of a patient’s obesity, the presence of a larger
amount of tissue can lead to a drop in a heartbeat’s loudness. To reduce this factor’s impact
on the algorithm’s workflow, the amplitude of each signal is averaged and normalized
equally for each subject. Future studies may increase our knowledge about the differences
in the loudness of breathing vs. heart rate signals in accordance with the sleep position.
This is because our sensor detects the sleep position and can allow such analysis. Also,
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thanks to the accelerometer used, we can remove signal analysis during body movement
when the acoustic noise is intensive.

To ensure the correct detection of all present heartbeats while avoiding the incorrect
interpretation of signal peaks where a heartbeat is absent, it was crucial to determine the
maximum and minimum values of beats per minute. According to medical literature, the
maximum human heart rate cannot exceed 220 beats per minute, regardless of age [22],
whereas a heart rate falling below 60 beats per minute is recognized as bradycardia [23].
However, considering this research pertains to asleep individuals, a slight decline in heart
rate is expected. For the purposes of this research, the specific minimal and maximal heart
rate of 40 and 180 beats per minute was established, respectively. This is because we did
not enroll patients with any known cardiac arrhythmias. Additional studies on patients
with irregular heart rhythms are needed to show the performance of this algorithm in
such cases.

5. Conclusions

Audio recordings of heart rate seem much easier and more user-friendly in the home
environment than the ECG. This study of heart rate detection and calculation based on
tracheal audio recordings proves the high accuracy and reliability of the proposed method.
Employing the proposed wireless acoustic sensor and the developed heart rate calculation
algorithm provides a promising result and a solid base for further investigation. Consider-
ing the dataset for this study was obtained by placing the wireless acoustic sensor at the
suprasternal notch, the next step in this research includes the comparison of the algorithm-
generated results depending on the placement of the sensor—suprasternal notch versus
its placement at the heart level. Subsequent future research efforts will include a real-time
application of the algorithm, as well as a possible thorough investigation of sleep/wake
patterns based on combined algorithms analyzing heart rate, breathing parameters, and
body position.
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ECG studies.

Conflicts of Interest: W.K. and M.M. are shareholders of Clebre but received no remuneration for
performing this study. The funders had no role in the design of the study, in the collection, analyses,
or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.



Diagnostics 2023, 13, 2914 13 of 13

References
1. Macey, P.M.; Kumar, R.; Woo, M.A.; Yan-Go, F.L.; Harper, R.M. Heart rate responses to autonomic challenges in obstructive sleep

apnea. PLoS ONE 2013, 8, e76631. [CrossRef] [PubMed]
2. Halbower, A.C.; Degaonkar, M.; Barker, P.B.; Earley, C.J.; Marcus, C.L.; Smith, P.L.; Prahme, M.C.; Mahone, E.M. Childhood

obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med. 2006, 3, e301. [CrossRef]
[PubMed]

3. Mannhart, D.; Lischer, M.; Knecht, S.; du Fay de Lavallaz, J.; Strebel, I.; Serban, T.; Vogeli, D.; Schaer, B.; Osswald, S.;
Mueller, C.; et al. Clinical Validation of 5 Direct-to-Consumer Wearable Smart Devices to Detect Atrial Fibrillation: BASEL
Wearable Study. JACC Clin. Electrophysiol. 2023, 9, 232–242. [CrossRef]

4. Mintz, G.S.; Carlson, E.B.; Kotler, M.N. Comparison of noninvasive techniques in evaluation of the nontissue cardiac valve
prosthesis. Am. J. Cardiol. 1982, 49, 39–44. [CrossRef] [PubMed]

5. Figueras-Alvarez, O.; Cantó-Navés, O.; Cabratosa-Termes, J.; Roig-Cayón, M.; Felipe-Spada, N.; Tomàs-Aliberas, J. Snoring
intensity assessment with three different smartphones using the SnoreLab application in one participant. J. Clin. Sleep Med. 2020,
16, 1971–1974. [CrossRef] [PubMed]

6. Penzel, T.; Sabil, A. The use of tracheal sounds for the diagnosis of sleep apnoea. Breathe 2017, 13, e37–e45. [CrossRef]
7. Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for

Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline.
J. Clin. Sleep Med. 2017, 13, 479–504. [CrossRef]

8. Azarbarzin, A.; Sands, S.A.; Taranto-Montemurro, L.; Vena, D.; Sofer, T.; Kim, S.W.; Stone, K.L.; White, D.P.; Wellman, A.;
Redline, S. The Sleep Apnea-Specific Hypoxic Burden Predicts Incident Heart Failure. Chest 2020, 158, 739–750. [CrossRef]

9. Kalkbrenner, C.; Eichenlaub, M.; Rudiger, S.; Kropf-Sanchen, C.; Rottbauer, W.; Brucher, R. Apnea and heart rate detection from
tracheal body sounds for the diagnosis of sleep-related breathing disorders. Med. Biol. Eng. Comput. 2018, 56, 671–681. [CrossRef]

10. Sharma, P.; Imtiaz, S.A.; Rodriguez-Villegas, E. An Algorithm for Heart Rate Extraction From Acoustic Recordings at the Neck.
IEEE Trans. Biomed. Eng. 2019, 66, 246–256. [CrossRef]

11. Kumar, D.; Carvalho, P.; Antunes, M.; Henriques, J.; Eugenio, L.; Schmidt, R.; Habetha, J. Detection of S1 and S2 heart sounds by
high frequency signatures. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology
Society, New York, NY, USA, 30 August–3 September 2006; pp. 1410–1416. [CrossRef]

12. Mondal, A.; Bhattacharya, P.; Saha, G. An automated tool for localization of heart sound components S1, S2, S3 and S4 in
pulmonary sounds using Hilbert transform and Heron’s formula. Springerplus 2013, 2, 512. [CrossRef] [PubMed]

13. Bogaerts, M.; Schrooten, W.; Lemkens, N.; Indesteege, F.; Postelmans, T.; Lemkens, P. Patient reported outcome measures (PROMs)
in children with sleep-disordered breathing undergoing adenotonsillectomy. B-ENT 2013, 9, 185–191. [PubMed]

14. de Groot, E.R.; Knoop, M.S.; van den Hoogen, A.; Wang, X.; Long, X.; Pillen, S.; Benders, M.; Dudink, J. The value of cardiores-
piratory parameters for sleep state classification in preterm infants: A systematic review. Sleep Med. Rev. 2021, 58, 101462.
[CrossRef]

15. Zhang, L.; Hou, Y.; Po, S.S. Obstructive Sleep Apnoea and Atrial Fibrillation. Arrhythm. Electrophysiol. Rev. 2015, 4, 14–18.
[CrossRef]

16. Kukwa, W.; Lis, T.; Laba, J.; Mitchell, R.B.; Mlynczak, M. Sleep Position Detection with a Wireless Audio-Motion Sensor—A
Validation Study. Diagnostics 2022, 12, 1195. [CrossRef]

17. Mlynczak, M.; Migacz, E.; Migacz, M.; Kukwa, W. Detecting Breathing and Snoring Episodes Using a Wireless Tracheal Sensor-A
Feasibility Study. IEEE J. Biomed. Health Inform. 2017, 21, 1504–1510. [CrossRef]
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