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Doppler echocardiography is a widely utilised non-invasive imaging modality for assessing the functionality
of heart valves, including the mitral valve. Manual assessments of Doppler traces by clinicians introduce
variability, prompting the need for automated solutions. This study introduces an innovative deep learning
model for automated detection of peak velocity measurements from mitral inflow Doppler images, independent

from Electrocardiogram information. A dataset of Doppler images annotated by multiple expert cardiologists
was established, serving as a robust benchmark. The model leverages heatmap regression networks, achieving
96% detection accuracy. The model discrepancy with the expert consensus falls comfortably within the range
of inter- and intra-observer variability in measuring Doppler peak velocities. The dataset and models are
open-source, fostering further research and clinical application.

1. Introduction

In contemporary cardiac research, the predominant method for
evaluating ventricular filling is through pulsed-wave Doppler echocar-
diography. This modality quantifies the transmitral velocity during
diastole, comprising of two distinct components: (i) the E-wave (mea-
sured at the peak early phase of ventricular filling), which is started
by active mechanical suction of blood from the atrium by the recoiling
and simultaneously relaxing ventricle, and (ii) the A-wave (measured
at the peak of late diastolic filling corresponding to the atrial phase of
ventricular filling), caused by the contraction of the left atrium, which
caps off the ventricle and raises its pressure and volume.

At present, velocity assessments on Doppler traces are predomi-
nantly executed manually by clinicians, resulting in substantial intra-
and inter-observer variability [1-3]. It has been demonstrated that
human factors are the source of the error in peak Doppler velocity
measurements [4].

Given the protracted nature of manual analysis, such manual as-
sessments frequently focus on a singular heartbeat, rather than a com-
bination of heartbeats with subsequent averaging, which has been
recommended by the current clinical guidelines [5].

The integration of an automated systems could potentially facili-
tate the standardisation of these measurement methodologies, thereby
reducing test-retest variability, and optimising clinical workflow. The
main goal of the present study was therefore to develop a pipeline
for the automated measurement of the Doppler transmitral velocity
peaks, and to validate this method against the gold-standard manual
measurements, procured from human specialists.

This paper begins by reviewing existing work on automated Doppler
mitral inflow measurements. We then outline our key contributions
in this area. The methodology section details our dataset, ground-
truth definitions, and deep learning framework. In the results and
discussion, we analyse model performance, observer variability, and
note limitations. The paper concludes with a summary of our findings
and potential future research directions.
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1.1. Related work

Basic image processing methods — Early attempts to automate
Doppler measurements in echocardiography primarily used basic sig-
nal and image processing techniques [2,6-11]. These methods en-
compassed traditional image processing tasks like noise filtering and
edge detection to acquire the Doppler envelope, and thresholding for
identifying key points essential for extracting clinical measurements.

For instance, Taebi et al. [10] presented a threshold-based method
for extracting positive and negative peak velocity profiles from Doppler
images. The method involves manual determination of the Doppler
region of interest (ROI), calculation of average pixel intensity within
the ROI, and smoothing using moving average. Using two thresh-
olding methods, pixel edges are detected, and positive and negative
peak velocity profiles are constructed by connecting upper and lower
edges. Experimental results highlight the method’s efficiency and com-
putational advantages over edge detection methods like Prewitt and
Canny.

Kiruthika et al. [11] introduced an image processing approach
for delineating Doppler envelopes and calculating peak velocity. The
method includes semi-automated Doppler region localisation, filtering,
and application of the Canny edge detector for spectral envelope seg-
mentation. The highest peak value is then detected by scanning the
curve.

Additional studies in this category can be explored in the works of
Biradar et al. [12], Syeda-Mahmood et al. [13], Greenspan et al. [14],
and Shechner et al. [15].

Despite their foundational role, these algorithms encountered limi-
tations related to suboptimal contrast and image artifacts. Additionally,
their effectiveness was impeded by the necessity for meticulous hyper-
parameter tuning tailored to specific views. Consequently, these chal-
lenges hindered the development of a robust and universally applicable
automated Doppler analysis.

Deep learning approaches — In recent years, there has been a
significant shift towards the application of advanced Deep Learning
(DL) techniques, including convolutional neural networks (CNNs), for
automating mitral inflow measurements. These deep neural networks
have shown promise in improving the accuracy and efficiency of this
critical cardiac assessment.

Zamzmi et al. [16] used Faster R-CNN to extract Electrocardiogram
(ECG) signals, which were used to segment each Doppler image into
individual beats. However, the cardiac beat segmentation was done
manually in about 10% of their images because the automatic segmen-
tation failed due to large overlap between Doppler and ECG signals or
noisy ECG signal with multiple peaks. They then used Machine Learn-
ing approaches such as K-means clustering algorithm and Gradient
Vector Flow driven snake for spectral envelope delineation, and peak
detection. The use of a small patient dataset (only 701 images which
included different Doppler modalities) and the algorithm’s dependence
on the ECG were the main limitations of this study.

Elwazir et al. [17] adopt a different method. They train a deep
learning classifier to differentiate between echocardiographic study
types. In order to derive the envelope profile, mitral inflow images
are segmented using a U-Net network. The beats were distinguished
using ECG tracings. The E-and A-waves were then detected by signal
processing of the segmented envelope. They reported mean velocity
error of 0.06 + 0.03 m/s and 0.05 + 0.03 m/s for E-wave and A-
wave, respectively. The fact that only echo images of normal patients
without abnormalities were included in the training data, their system
was dependent on the ECG signal to detect the heartbeats, and they
used only one set of manual measurements to examine the performance
of their proposed model, were a significant limitation of the study.

Jahren et al. [18] investigated methods for isolating heartbeat
cycles on cardiac spectral Doppler spectrograms independent of an
ECG signal. They combined a CNN module that collected local features
from an image with a Recurrent Neural Network (RNN) module that
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connected the extracted features temporally. The heartbeat detection
model attained an accuracy rate of 97.7% for accurate detections and
a false detection rate of 2.5%. However, this study did not go beyond
identifying the end-diastole locations in spectral Doppler spectrograms.

Yang et al. [19] developed a framework using DL-techniques to de-
tect valvular heart diseases, as part of which, they calculated the mitral
valve area. The method involves segmenting the Doppler waveform
and extracting boxes containing one heartbeat from the segmented
waveform. Extracted boxes are fed to HRNet [20] to obtain two key-
points. Similarly, for Aortic Stenosis, the maximum blood flow velocity
was obtained by simply taking a maximum value from the segmented
waveform. Despite their framework being able to perform complex
analysis of valvular heart diseases, measurements involving Doppler
mitral inflow involved multiple steps: separation of the Doppler wave-
form into boxes and only then passing these boxes into a keypoint
detection model, which could predict a fixed number of keypoints.

We have previously reported on a DL-based ECG-independent tech-
nique to isolate heartbeats and localise blood flow velocity peaks on
Tissue Doppler Images [21].

Summary — This literature survey highlights the progression from
basic signal and image processing to advanced Deep Learning tech-
niques in automating Doppler measurements in echocardiography. De-
spite these achievements, challenges persist, including reliance on ECG
signals, need for manual intervention in semi-automated approaches,
limited datasets, and complex multi-step processes. The survey indi-
cates a need for further improvement in developing more integrated,
efficient, and universally applicable models for Doppler measurement
automation in echocardiography.

1.2. Main contributions

To the best of our knowledge, no approach utilises current state-of-
the-art DL methods for fully automated and ECG-free estimation of peak
velocities from mitral inflow Doppler images. This study, therefore,
presents an innovative deep learning model designed for the automated
detection of peak velocity measurements from mitral inflow Doppler
images. The study’s main contributions are as follows:

Creation of a dataset of Doppler images, annotated by accred-
ited and experienced echocardiography experts, which has been
made publicly available through this report for use in developing
automated models.

Creation of a majority-based consensus dataset to serve as a
uniquely robust and representative benchmark for performance
evaluations.

Demonstration of the feasibility of using CNNs to reliably detect
and measure mitral inflow Doppler peak velocities, independent
of ECG information.

Public release of our developed codes and DL models, which
not only provide a benchmark for future studies but also enable
external validation of our reported models.

2. Method
2.1. Patient datasets and expert annotations

Fig. 1 presents a visual flowchart outlining the steps involved in
preparing the dataset for this study.

Development-dataset — A large random sample of 1064 echocar-
diographic studies from different patients, conducted in years between
2010 and 2016, was extracted from the echocardiogram database of
Imperial College Healthcare NHS Trust. The echocardiograms were
acquired during examinations performed by experienced echocardio-
graphers, following standard protocols. Ethical approval was obtained
from the Health Regulatory Agency for the anonymised export of large
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echocardiographic studies extracted from Imperial College Healthcare NHS database and

anonymised
Development dataset Test dataset
random sample of 1064 studies between 2010 500 studies over a period of 3 working days in
and 2016 2019

l

each image annotated by one accredited
clinician

l

used for model training and validation

used for testing model

l

each image annotated by five accredited
clinicians

l

Consensus measurement

L

intra- & inter-observer
variability

Fig. 1. Flowchart demonstrating the pipeline for preparing the two datasets used in this study; ethical approval was obtained from the Health Regulatory Agency.

quantities of imaging data. As the data was originally acquired for
clinical purposes, individual patient consent was not required.

Still pulsed wave mitral inflow Doppler images were automatically
extracted from each DICOM-formatted echo exam using our previously
developed echo view classifier [22]. Automated anonymisation was
then performed to remove the patient-identifiable information.

Next, utilising our online labelling platform (https://unityimaging.
net), a sample snapshot from which is shown on Fig. 2, each image
underwent labelling once. A pool of accredited and experienced clinical
experts marked the E- and A-wave velocity keypoints on the Doppler
images. The experts were given instructions to annotate all visible
peak velocity points across several heartbeats present in each image,
excluding low-quality points that they deemed unsuitable for clinical
practice. This labelled dataset was utilised for model developments.

The model development dataset (images and labels) are available
under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International license at https://intsav.github.io/doppler.html [23].
The release of associated dataset received a Favourable Opinion from
the South Central — Oxford C Research Ethics Committee (Integrated
Research Application System identifier 279328, 20/SC/0386).

Test-dataset — The testing dataset was curated from a series of
investigations conducted over a period of three working days in 2019,
years away from the development dataset. The testing set is composed
of 200 Doppler images.

This research adopts a unique approach to model evaluation by
leveraging a consensus testing dataset which capitalises on the col-
lective measurements of multiple experts. For each image in the test
dataset, we acquired annotations from multiple experts, resulting in a
rich array of data points that encapsulates a variety of perspectives.

From these multiple annotations, we derived a consensus measure-
ment for each image, representing the majority agreement among the
experts.

Five experts labelled each image using the same platform (2 of
the 5 experts also re-annotated at least one heartbeat on each image,
allowing the measurement of intra-observer variability). The images
were presented in a random order, and each expert was blinded to
any previous labelling by themselves or others. Again, the experts
were instructed to label every peak unless the image quality rendered
it impossible to do so. This provided us the high quality consensus
reference measurements which could also be used for examining the
inter- and intra-observer variability.

To generate the consensus dataset necessary for our evaluation, we
employed the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [24,25] algorithm, an efficient and effective method
for discovering clusters of arbitrary shape in spatial data. DBSCAN
has the advantage of not requiring a predetermined number of clus-
ters, making it particularly suitable for our application where clusters
(corresponding to peak velocities) may vary across images.

Critical to our implementation of DBSCAN were two parameters:
epsilon and MinPts. The epsilon parameter, which defines the maxi-
mum distance between two samples for them to be considered as in
the same cluster, was set to a distance of 30 pixels. This value was
chosen to reflect the reasonable expectation of proximity in experts’
annotations for a given peak. The MinPts parameter, the minimum
number of samples in a neighbourhood for a point to be considered as
a core point, was set to the majority number of experts. This ensured
that a core point, and hence a cluster, was established only when the
majority of experts agreed on an annotation for a peak.

The clustering process was based solely on the x-axis coordinates
of the experts’ annotations, postulating that for each peak, experts
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Fig. 2. A snapshot of Unity platform, used for labelling in this study. Platform is accessible at https://unityimaging.net.

should make proximate annotations to each other, and there should not
be any repetitive annotations for a peak from any expert. Each peak
was anticipated to be annotated once by each expert, facilitating the
clustering operation.

Our use of DBSCAN focused on identifying and utilising only core
points within each cluster. This approach served to exclude potential
outliers or less-agreed upon points that might be included as bor-
der points, thereby enhancing the precision and robustness of the
consensus.

Once clusters were identified, we calculated the consensus mea-
surement for each cluster by averaging the coordinates of all core
points within that cluster. This method yielded a consensus value for
each peak velocity in an image, effectively synthesising the collective
insights of the expert annotators.

This consensus-based approach offers several significant benefits.
Firstly, it mitigates the potential bias associated with a single expert’s
interpretation, thereby augmenting the reliability and objectivity of
the evaluation metrics. Secondly, by encapsulating the natural vari-
ability and nuances among expert annotations, the consensus set offers
a more comprehensive and representative ‘gold standard’ for perfor-
mance evaluation. Finally, this method enables the assessment of the
model’s alignment with a broader expert community rather than a
single perspective, facilitating a more robust and thorough validation
of the model’s accuracy and reliability.

This dataset is being kept private exclusively for competition pur-
poses.

2.2. Ground-truth definition

A multi-stage heatmap regression network is utilised to detect the
peak velocities. Instead of predicting Cartesian coordinates, the model
uses a different Gaussian response heatmap or belief map for every key-
point of interest. This heatmap is an image that shows the probability of
a specific keypoint residing at a pixel. The model then obtains keypoints
by identifying the local maximums in the heatmaps. Indirect inference
through a predicted heatmap provides several advantages over direct
prediction [26].

(A) Image with annotations (B) Heatmaps for E peaks (C) Heatmaps for A peaks

Fig. 3. Example of Ground-truth definition: (A) Original image with manually anno-
tated peak velocities where red and white circles indicate E- and A-waves, respectively;
(B, C) corresponding generated heatmaps (overlayed on the original image for
visualisation purposes), used as Ground-truth.

A set of heatmaps was developed for each image that served as
the Ground-Truth. For each image, there were two heatmaps: one
representing the Ground-truth for E-wave, and the other for A-wave;
forming a 2-channel Ground-truth for the neural network.

At each manually identified wave peak coordinate, a symmetric
Gaussian distribution with a standard deviation ¢ was created to form
the heatmaps. For each input image I € R"*H,

Gaussian distributions are generated using Eq. (1).

(x - Gik)2 +O- ij)2
202 )

Yk = exp(— 1)

Here, o is a size-adaptive standard deviation, Y, is a heatmap
representation of landmark coordinate, where kth is a channel index
(E-wave or A-wave), and G along with G, are the ground-truth
landmark coordinates in each k channel.

Fig. 3 illustrates typical generated heatmaps with Gaussian peaks.
The spread of the Gaussian peaks, which is controlled by the standard
deviation ¢ value, was set to 5, which is sufficient to precisely narrow
down and localise landmarks while avoiding any irrelevant background
information from the image.
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Fig. 4. Illustration of the proposed network. The backbone at each stage is U-NET [27] with the depth of 6. The U-net illustration was created using the PlotNeuralNet tool

(https://github.com/HarisIgbal88/PlotNeuralNet).

2.3. Deep learning framework

In our study, we employed a heatmap regression network for key-
point detection, focusing specifically on the identification of Doppler
mitral peaks. This network generates a heatmap for each image, where
the intensity of each pixel represents the probability of a keypoint being
present at that particular location [28,29].

Heatmap regression networks leverage the spatial distribution of
features within an image to predict the likelihood of keypoints’ loca-
tions. This approach is formalised by the function H(x,y) = P(k | x, ),
where H is the generated heatmap, P is the probability, and k is the
presence of a keypoint at location (x, y).

The network architecture is designed to optimise this probability
distribution across the image, ensuring that the peaks in the heatmap
align with the actual keypoints in the image, such as the E-and A-
waves in Doppler mitral inflow images. This method allows for pre-
cise localisation of keypoints, even in complex medical images where
the keypoints of interest may vary in number and position due to
patient-specific factors or the quality of the imaging process.

Fig. 4. provides a schematic overview of the proposed automatic
measurement framework, which is comprised of a multi-stage network
in which the output from each stage is concatenated with the original
image and sent to the next stage [30-32].

By delivering heatmap estimations along with the original image to
each successive stage, the network can reassess its initial predictions.
These heatmaps function as a versatile, non-parametric representa-
tion of the spatial uncertainty associated with each keypoint location.
This grants the subsequent network stage with invaluable information,
empowering it to develop rich, image-dependent spatial models that
capture the relationships between the keypoints. In this process, the
model learns from its previous attempts, especially focusing on parts of
the image where it was less certain, to improve its predictions.

Based on research done by Newell et al. [30], we applied the loss
at each stage and optimised with the same Ground-truth. In our study,
Binary Cross Entropy and Sgrensen Dice Coefficient were minimised in
unison. Kurmann et al. [33] demonstrated that Cross-Entropy loss is a
feasible option for landmark detection tasks. The use of Dice loss can
facilitate the detection of multiple keypoints on a single heatmap by a
model.

The Dice loss formula is shown in Eq. (2).
2.|AnN B|
[Al +|B|
Here, A represents the Ground-truth and B represents the predic-
tion. The formula will compute how much the predicted keypoint
heatmap overlaps with its Ground-truth. Binary Cross-Entropy can be
defined in Eq. (3).

(2)

N
= X (%, log(B) + (1 = ¥,) x (log(1 = P) ®)
i=1

Here, P is a predicted heatmap, Y is a Ground-Truth representation
and N is number of predicted samples.

Compared to methods, which predict a fixed number of keypoints,
and each keypoint is predicted on a separate channel, our model can
predict a varying number of keypoints on the same channel.

Empirically, we employed a two-stage network, and at each stage
we implemented a U-Net-like [27] architecture with an encoder—
decoder structure. Each stage receives an input of shape 1024 x 1024
with N channels (although we defined input images for the model to
be of Greyscale with one channel, stages can process multi-channel ma-
trices, which allows the concatenation of original image with previous
stage output), and produces an output of the same shape, 1024 x 1024,
but with 2 channels; each responsible for predicting peaks of one of
wave type (i.e., E and A).

The input image is convolved through the first stage, which pro-
duces a set of heatmap approximations which are concatenated with
the original image and employed as input for the second stage. The
final set of heatmaps utilised for evaluation are generated by the second
stage.

Doppler mitral inflow images can contain a varying number of
heartbeats; this will depend on the patient’s heart rate and the sweep
speed selected by the operator during image acquisition. Therefore, our
network’s ability to detect an arbitrary number of peak locations in the
images is crucial.

2.4. Implementation and evaluation details

The models were implemented using the TensorFlow 2.0 deep learn-
ing framework [34] and trained using an Nvidia GeForce RTX 4090.
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Variable-sized images were zero-padded to a uniform size of 1024
X 1024 pixels. The model was trained using 957 images, and the pa-
rameters were fine-tuned using a validation set of 107 images, utilising
a 90:10 dataset split. Training was conducted over 25 epochs with a
batch size of 2. To minimise over-fitting, early stopping was employed,
when training was maintained until the validation loss plateaued,
restoring best weights after training stopped. The two-stage heatmap
regression model was trained using the ADAM optimiser [35] with a
learning rate of 0.0001, and Binary Cross Entropy + Sgrensen Dice
Coefficient loss. The performance of the fine-tuned model was then
examined using the test dataset containing 200 images.

During post-processing, heatmap predictions, which ranged from
0 to 1, were extracted. To ensure high accuracy, we only considered
those with a confidence threshold of >0.7. Although our model did
not generate Gaussian-like heatmaps, values close to 1 indicated high
certainty about a keypoint’s location. We attribute this to our use of the
Serensen Dice Coefficient in the training loss function.

While Stern et al. [36] suggest converting the heatmap to a binary
mask through thresholding and locating the mass centroid to determine
the ideal keypoint position, our model tends to indicate a far higher
likelihood at a point of interest. As a result, we were able to identify
local maxima with a high degree of reliability without needing to locate
the mass centroid.

To assess the performance of the trained deep learning model,
predicted Cartesian coordinates for E- and A-wave velocities were com-
pared to manual annotations provided by the human experts. To this
end, all coordinates were converted into cm/s using OCR technique.

To obtain Cartesian coordinates from the predicted heatmaps, all
local maxima were identified using a Greedy iterative process, which
is described in Algorithm 1.

This strategy allows finding all significant peaks in a heatmap.
However, it also has some potential issues to be aware of. Specifically,
the choice of how large a region to zero out around each maximum can
have a significant effect on final results. If the region is too large, there
is a risk to eliminate potential peak predictions; if it is too small, the
same peak can be detected multiple times.

Despite these potential issues, it still suits primary use-case, because
peaks on mitral Doppler images are well separated from each other.

Subsequently, the task at hand involved locating the corresponding
Ground-Truth peak point for each predicted keypoint. In order to
accomplish this, a 60-pixel-wide zone centred around each Ground-
Truth keypoint was defined, extending 30 pixels in both directions. This
arrangement was found to be adequate in encapsulating an entire wave
in virtually all instances, predicated on a commonly employed sweep
speed of 100 mm/s.

A keypoint detection is assumed successful if the prediction and
Ground-truth are less than 30 pixels apart on X-axis. Therefore, if a
ground-truth keypoint coordinate fell within this boundary, we con-
sidered the predicted keypoint to be a successful detection (i.e., True
positive). Conversely, predicted keypoints that could not be matched
any Ground-truth point were assumed incorrect detections (i.e., False
positive). If a Ground-truth keypoint had no corresponding prediction,
it was classified as a missed keypoint (i.e., a False negative). Whole
process can be summarised as follows:

1. True Positives (TP): These represent keypoints in the predic-
tions set that correspond to a keypoint in the Ground-Truth set
within the distance threshold.

2. False Positives (FP): These represent keypoints in the predic-
tions set that lack a corresponding keypoint in the Ground-Truth
set within the distance threshold.

3. False Negatives (FN): These represent keypoints in the Ground-
Truth set that do not have a corresponding keypoint in the
predictions set within the distance threshold.
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Fig. 5. Illustration of beat-matching conditions with predicted E- and A-wave coordi-
nates (large red and yellow circles, respectively), corresponding ground-truth keypoints
(small green and blue circles, respectively) and defined 30 pixels boundaries for each
Ground-Truth peak (magenta coloured vertical lines). (A) Two predictions fall within
Ground-Truth boundaries, resulting in True Positive predictions, and one prediction is
not matched to any Ground-Truth, resulting in False Positive case. (B) E-wave prediction
is considered as True Positive, and as no predicted peaks present for A-wave annotation,
it is counted as False Negative case. (C) Only E-wave is counted as True Positive,
whereas A-wave prediction is counted as False Positive.

Algorithm 1 Find Cartesian Coordinates from Predicted Heatmaps

1: Initialize: threshold, distance = 30, max =0

2: Initialize: List to store maxima coordinates

3: while true do

4:  Find the global maximum: Search for the highest value in the heatmap

5 for i =0 to rows — 1 do

6 for j =0 to columns — 1 do
7: if heatmaplil[j] > max then
8: max = heatmap|i][j]

9: Xppax =1
10: Vmax = J
11: end if
12: end for
13:  end for
14:  if max < threshold then
15: Terminate: Stop if the maximum is below the threshold
16: break
17:  end if

18:  Store the maximum: store(x,,,, Ymax)
19:  Zero out a region around the maximum: Clear an area around the
found maximum

20: for i = x,,,, —distance to x,,,, + distance do

max

21: for j =y, — distance to y,,. + distance do
22: heatmapli][j] =0

23: end for

24:  end for

25:  Reset: max = 0 Reset the maximum for the next iteration
26: end while
27: Return: List of all stored maxima

Precision and sensitivity were computed over the pool of all heart-
beats, across all patients. F1-score was calculated as the harmonic mean
of precision and sensitivity.

For the ‘True positive’ cases, statistical analysis of the levels of
agreement between the automated measurements and the human ex-
perts was performed using Bland-Altman plots; bias (mean of differ-
ences) and Standard Deviation were calculated where the confidence
interval was defined as + 1.96 SD.

An illustration of beat-matching conditions, providing examples of
three possible scenarios (i.e., True positive, False positive, and False
negative) are provided in Fig. 5.

3. Results and discussion

Examples of successful automated predictions (true positives) are
shown in Fig. 6. The results show that the model is capable of recognis-
ing various potential appearances of mitral inflow Doppler waveforms,
such as double peaks (clearly separated E and A waves), singular
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Fig. 6. Examples of successful automated predictions (true positives), showing predicted E- and A-wave coordinates (large red and yellow circles, respectively) and corresponding

ground-truth keypoints (small green and blue circles, respectively).

peaks (only one wave present), overlapping waves, and peaks in noisy
heartbeats.

The agreement between the model’s predictions and the consensus
measurements for all E- and A-waves was examined via the Bland-
Altman analysis, shown in Fig. 7.

The analysis consisted of two parts. First, we undertook a beat-by-
beat comparison, where the individual cardiac cycles, originating from

all Doppler strips (i.e., patients) in the testing dataset, were placed in
a pool of heartbeats and used for analysis.

Our Bland-Altman analysis revealed a bias of 0.29 cm/s and a
standard deviation of 3.61 cm/s for the E-wave, and a bias of 0.13 cm/s
with a standard deviation of 2.12 cm/s for the A-wave. When compared
with the findings of Elwazir et al. [17], who reported a higher bias of
6 cm/s for the E-wave and 5 cm/s for the A-wave, along with a standard
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Performance comparison of the standard U-Net model, different U-Net backbones (ResNet-50, MobileNet v2, EfficientNet-B0), and LinkNet, in
the context of detecting E-wave and A-wave keypoints. It includes an evaluation of bias and standard deviation (Std) for each model. Best value

in each column is highlighted. All values are converted to cm/s.

Model E-wave A-wave
Each beat Patient average Each beat Patient average
Bias Std Bias Std Bias Std Bias Std
ResNet-50 U-Net 1.62 2.78 1.55 1.86 0.55 2.44 0.5 1.86
MobileNet v2 U-Net 0.45 3.65 0.39 2.44 -1.24 3.52 -1.55 4.24
EfficientNet-BO U-Net 1.36 3.02 1.54 2.29 -0.09 5.24 0.23 3.89
LinkNet 1.18 2.48 1.18 1.9 0.31 45 0.18 2.13
U-Net (Main model) 0.29 3.61 0.31 2. 0.13 2.12 0.14 1.54
E-Peak A-Peak as our backbone models for keypoint detection, specifically ResNet-
50 [37], MobileNet v2 [38], EfficientNet-BO [39], and LinkNet [40],
ias: : Bias: 0.13, SD: 2.12 . - . ;
0 Blas: 0.29, SD: 3.61 &) 15 all implemented using the Segmentation Models library [41]. For each
- o ® model, we measured bias and standard deviation for both E-wave and
E E beat- A-wave keypoints, considering the metrics for each beat (beat-by-bet)
g o g bbg;t and patient average (patient-by-patient).
g g While this comparative analysis yielded valuable insights into the
£ £ different architectural approaches, the results, presented in Table 1,
=20 =20
. . . were clear: U-Net consistently maintained strong performance across
* Mean of measurements (cm/fs) Maanof measurements (emie) the majority of measurements. No single alternative architecture
Bias: 0.31, SD: 2,00 Blas: 0.14, SD: 1.54 demonstrated a deﬁmtl\(e advante.lg'e over U-Net. CfmSIderlng its strong
* * performance and established position as a well-suited model for med-
3 ° . g” ical image processing, we opted for U-Net as the core model for our
Ev £ patient- subsequent investigations.
g ol g of- - by-
: T patient . o
g g 3.1. Inter- and intra-observer variability
= -20 a -20
. -2 Whereas previous evaluations have shed light on our model’s align-
20 40 60 80 100 120 140 160 180

0 20 40 60 8 100 120 140 160 180

Mean of measurements (cm/s) Mean of measurements (cm/s)

Fig. 7. Bland-Altman plots for beat-by-beat (upper row) and patient-by-patient (lower
row) analysis for E (left column) and A (right column) Doppler peak velocities, where
the agreement between the expert consensus and the model is shown. Beat-by-beat
is the pool of all detected heartbeats present in Doppler images across all patients
in the testing dataset, and patient-by-patient is when a representative measurement is
obtained for each patient by taking the average of all automatically detected heartbeats
(true positives) in each image.

deviation of 3 cm/s for both waves, our results indicate lower bias but
higher Standard deviation. In contrast, the study by Zamzmi et al. [16]
demonstrated even smaller biases of —0.6 cm/s for the E-wave and —0.7
cm/s for the A-wave. The estimated standard deviations, 1.5 cm/s for
the E-wave and 2.6 cm/s for the A-wave, are somewhat comparable to
ours but reflect a different pattern in measurement precision. It should
be noted that their approach can be considered as semi-automated, as
it required manual segmentation of heartbeats in instances where the
automated process was unsuccessful.

Additionally, we extended our analysis to a patient-by-patient basis,
where a representative peak velocity measurement was obtained for
each Doppler image (i.e., patient) in the testing dataset by taking
average of measurements across all heartbeats present in that image.
The patient-by-patient analysis yielded a bias of 0.31 cm/s and a
standard deviation of 2.00 cm/s for the E-wave. For the A-wave, the
bias was at 0.14 cm/s, with a lower standard deviation of 1.54 cm/s.

A slightly better patient-by-patient agreement between the two
methods may be due to averaging multiple cardiac cycles in a Doppler
strip that can potentially reduce the effect of potential outliers.

No systematic bias was observed in either analysis. The results
underscore the model’s ability to capture and predict the expert con-
sensus, thus reinforcing the potential of our model in the realm of
automated peak velocity measurements in mitral inflow Doppler im-
ages.

While the U-Net architecture served as our primary model, we
also examined the performance of alternative network architectures

ment with the consensus of expert annotations, they do not fully
capture the extent of variability among the experts themselves.

Therefore, the measurements by individual experts were compared
with the consensus (mean) measurement. The standard deviation of
the pooled data from all five experts for all heartbeats, indicating the
inter-observer variability, was 3.25 cm/s and 2.79 cm/s for E- and A-
waves, respectively. This measure demonstrate the inherent subjectivity
in the task of annotating peak velocities in mitral inflow Doppler
images, thereby providing a context within which the performance of
our automated system can be assessed.

Using a common reference (average of all experts) unfairly favour
the human experts because they are part of the reference; the common
reference could not be considered independent from the expert under
study. To ensure fair comparison, Fig. 8 plots agreements between
two sets of measurements; each human expert is compared with 4
other experts, when their consensus (mean) is considered as the ref-
erence annotation (blue boxplots). The model is also compared with
the consensus of the same 4 human annotations (orange boxplots).

All 10 panels suggest performance of the model is similar, if not
better, to that of an individual expert when using the other experts as
a reference standard.

Since different experts make different judgments, it is not possible
for any automated model to agree with all experts. However, it is
desirable for the model to not be an outlier when compared with the
distribution of human judgments; that is, to behave approximately as
well as a human expert.

To test this, a simple visual summary of the automated measure-
ments in the context of expert performance is given in Fig. 9 for the
E-wave velocity, where the model’s predictions for each heartbeat are
represented by green dots, and individual human measurements are
denoted by grey dots.

A close observation of the figure reveals an interesting pattern: the
model’s measurements consistently fall within the spread and range
of the experts’ annotations. This result implies that our model’s pre-
dictions are not outliers, but rather align with the variability that
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Compared with Compared with Compared with Compared with Compared with
the consensus of the consensus of the consensus of the consensus of the consensus of
. Experts 2-5 Experts 1, 3-5 Experts 1-2, 4-5 Experts 1-3, 5 Experts 1-4
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Fig. 8. Comparative Analysis of human expert and Al evaluations for E-wave (upper panel) and A-wave (lower panel) velocity values. Each human expert is compared to the
consensus (mean) of all other 4 experts (blue boxplots). In each case, alongside these comparisons, are those obtained from the AI model relative to the consensus of the same 4
annotations (orange boxplots). In the box-and-whisker plots, the thick line represents the median, the box represents the quartiles, and the whiskers represent the 2.5% and 97.5%

percentiles.

E-Peak velocity range

Velocity value (cm/s)
o « 5 K 5 & &
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Fig. 9. Performance of the automated model in quantifying E-wave Doppler velocities (green dots) in the context of range of manual measurements by individual human experts
(grey dots) across all heartbeats in the testing dataset. The measurements are presented in ascending order of peak velocity, as defined by expert consensus. Also shown, is the
magnified version of an outlier, when the automated prediction fell outside the manual range, together with the corresponding Doppler wave.

naturally arises among the expert annotators. In other words, our
model’s performance mirrors the human experts’ range of agreement,
effectively positioning its predictions within the same range (or close
to it) of variability, that characterises expert human annotations. The
A-wave velocity measurements had a similar pattern.

The range of human expert judgments for each heartbeat may be
assumed as the uncertainty of the reference method and, therefore, the
highest accuracy obtainable. The mean velocity range was 6.58 + 3.86
cm/s and 6.87 + 3.49 cm/s for E- and A-wave, respectively.

For each heartbeat, there were six measurements for each velocity
peak (five human and one automated). By chance alone, in one-third
(33.3%) of the cases, the measurement of an individual “operator”
(human or automated) would be the smallest or the largest among
the six measurements (one-sixth chance of being smallest + one-sixth
chance of being largest).

As shown in Fig. 10, the model performs similarly to human opera-
tors: it is an outlier sometimes, but so is each of the humans. For E-wave
velocities, expert 1 had the highest percentage of 48.3% for being at
an extreme. Expert 3 had the second highest percentage (43.0%) of
heartbeats for being the outlier. For A-wave velocities, expert 3 had
the highest percentage of 56.6% for being at an extreme.

The model was the outlier in only 9.6% and 9.0% of the heart-
beats for E- and A-waves, respectively. This suggests that the model
performed no worse than human experts in measuring peak velocities.

The intra-observer variability, representing the mean difference
between two measurements by the same expert on separate occasions,
was 1.71 + 4.32 cm/s and 1.55 + 2.45 cm/s for E-wave and A-
wave velocities, respectively. A second expert, repeating measurements
twice, showed similar variability, with values of 0.09 + 2.81 cm/s for
E-wave velocities and 0.51 + 2.8 cm/s for A-wave velocities.
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Precision, Recall and F1 Score for detection of peak velocity waves by each human expert and the automated model, when compared to the
corresponding independent consensus of human experts. The performance of the model has also been provided compared to the consensus of

all human experts.

Reference measurement E-wave A-wave
Precision Recall F1 Score Precision Recall F1 Score
Expert 1 Consensus of experts 2-5 0.98 0.97 0.98 0.97 0.98 0.97
Model 0.96 0.91 0.93 0.96 0.88 0.91
B omemasmmizs  n % n ok o o
Mogel | Comensusof xpers 12,45 o] 01 oo 056 0w oo
Expert 4 Consensus of experts 1-3, 5 0.99 0.98 0.98 0.93 0.99 0.96
Model 0.96 0.91 0.93 0.95 0.88 0.91
Expert 5 Consensus of experts 14 0.98 0.95 0.96 0.99 0.93 0.96
Model 0.96 0.91 0.93 0.96 0.87 0.91
Model Consensus of experts 1-5 0.96 0.91 0.93 0.96 0.87 0.91
Smallest Largest instances, it falls upon the human experts to leverage their expertise
-Expert 1 and experience to discern and eliminate the artifact signal during the
~ - Expert 3 processing stage. Additionally, our model encounters difficulties when
§ - Expert 4 faced with peaks that extensively overlap, thereby intensifying the task
W - Expert 2 of differentiating between them.
-Expert 5 Another complication arises when dealing with peaks exhibiting low
_ Model contrast which, due to their subdued visibility, present a challenge for
the model to detect. The model also grapples with occasional anomalies
— where it incorrectly identifies an irrelevant location for a peak or
misclassifies it.
Y4 -Expert 1 . . . )
o Expert 2 Despite the apparent clarity of these situations to the human eye,
2 expert 5 they continue to pose significant challenges for the models. This high-
lights the complex nuances of image interpretation that our model must
“Expertd learn to master.
_— Model In order to examine the impact of these occurrences on the final
70 60 50 40 30 20 10 0 10 20 30 40 50 60 70

Percentage of outliers

Fig. 10. Relative frequency of being the smallest (left side) or largest (right side) peak
Doppler velocity measurement for the E-wave (upper panel) and A-wave (lower panel).
All 6 operators (5 human experts and one automated model) are sorted based on the
frequency of being the extreme (largest or smallest).

3.2. Detection capacity

Table 2 presents the Precision, Recall, and F1l-score metrics for
all comparisons. It is evident that the model demonstrates a similar
precision, but slightly lower recall compared to individual experts when
it comes to detecting and classifying Doppler peak velocities. Human
experts had precision and recall of >93% in detecting both E- and A-
wave Doppler peaks. The model had precision and recall of >95% and
>87%, respectively.

When compared to consensus of all human experts, the automated
model had precision 96% in detecting both types Doppler peaks, im-
plying instances of undetected/missed or misclassified peak points.

The model showed a lower recall of 87% in detecting A-waves, com-
pared to 91% for E-waves. Lower recall suggests the model may mis-
classify peaks or incorrectly identify artifacts as peak points. These find-
ings highlight potential areas for further improvement in our model. By
focusing on strategies to enhance recall without significantly impacting
precision, the model’s overall performance could be further optimised.

Fig. 11. depicts examples of failed predictions. Our observations
underscore that a primary obstacle for our neural network model
involves addressing peaks surrounded by, or located adjacent to, arti-
facts. This is manifested by several missed A-wave points it the figure.
Such circumstances significantly complicate the model’s capacity to
discriminate between an actual artifact and a relevant peak. In such
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reported measurements for each patient, we conducted another patient-
by-patient Bland-Altman analysis, focusing on representative values
obtained from the automated model. Rather than solely comparing true
positive cases in a pairwise manner, we independently calculated the
average velocity for the manual and automated measurements for each
individual patient, and then compared the average velocities.

For instance, consider a scenario for a single patient, where the
human experts identified 6 E-waves (i.e., heartbeats), and we computed
their average velocity. Meanwhile, the model correctly detected 4
E-waves (true positives), missed two E-waves (false negatives), and
incorrectly identified an artifact as an E-wave point (false positive). As
a result, the average automated E-wave measurement for this patient
was determined from 5 predictions, representing what the model would
report.

Subsequently, we compared these representative automated and
manual measurements, as depicted in Fig. 12. There is a slight increase
in the discordance between the model and consensus measurements
compared to what was presented in Fig. 7, which only encompassed
true positive cases. Nevertheless, this difference still falls within the
range of inter- and intra-observer variability. This clearly demonstrates
the feasibility of using our proposed model to reliably detect and
measure peak Doppler velocities, independent of ECG information.

From the complete test dataset, only one image (0.5%) was found
for which the model failed to detect any heartbeat. This image is
showcased in the bottom-right corner of Fig. 11. The likely cause is
the presence of numerous heartbeats in the Doppler strip, a result of
the sweep speed chosen by the operator during image acquisition. The
model encountered a singular example in the testing dataset, and there
were no analogous instances in the development dataset from which it
could learn.
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Fig. 11. Examples of failed predictions, with automated E- and A-wave predictions (large red and yellow circles, respectively) and ground-truth E- and A-wave annotations (small
green and light blue circles, respectively). Top left: one missed A-wave (false negative). Top right: 4 missed waves (false negative) and one artifact peak (false positive). Bottom
left: 3 missed A-waves (false negatives). Bottom right: missed all measurements for this patient.
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Fig. 12. As in Fig. 7 (lower row), but automated values include both true and false
positives to represent what the model would report for a patient, if deployed in the
clinics.

4. Conclusions

This study investigates the feasibility of using deep neural networks
for fully automated detection and measurement of peak velocities in
mitral Doppler inflow in 2D echocardiography, and independent from
the ECG signal.

The automated model were successful in detecting E- and A-wave
velocities in 96% of the heartbeats. The performance of the model is
similar to that of human experts. Experts do not completely agree on
where to measure the peak Doppler velocity because the judgment is
complex, but the automated model behaves similarly to human experts,
being no more likely to be an outlier than the experts. We believe
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that performing as well as a human operator indicates reasonable
performance of an automated algorithm.

The model discrepancy with the expert consensus falls comfortably
within the range of inter- and intra-observer variability, which un-
derscore the inherent variability between and even within individual
expert annotations, reflecting the complex nature of this task. This
demonstrates the reliability of the model in measuring the peak Doppler
velocities, compared with the experienced human experts.

The assessment of cardiac timing and heartbeat detection in an
echocardiogram examination relies on analysing an accompanying ECG
signal. However, the ECG recordings often involve the cumbersome
and occasionally inconvenient setup of multiple cables. In an age
where highly portable scanners can conduct targeted studies lasting
just a few minutes [42], the ability to detect cardiac timing events
autonomously, without relying on the ECG signal, holds significant
potential for integrating automated technology into handheld devices.

In the absence of publicly available echocardiography datasets
specifically tailored for mitral Doppler inflow measurements and corre-
sponding gold-standard expert annotations, we have made our patient
dataset accessible for download at intsav.github.io/doppler.html [23].
By doing so, we aim to establish a benchmark for future studies
and foster advancements in this field. Additionally, we have made
all developed models from this study available under open-source
agreements, inviting others to scrutinise, adapt, and enhance them. This
transparency in sharing both datasets and models encourages external
validation of our findings, ensuring the robustness and applicability of
our automated approach in clinical practice and research.
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4.1. Future work

Building upon the current success of the deep learning model for
automated peak velocity detection, several exciting avenues exist for
future research and development. These advancements hold the po-
tential to further refine the model’s performance, broaden its clinical
applications, and ultimately improve patient care.

One promising direction involves augmenting the training dataset
with synthetic cases generated by Generative Adversarial Networks
(GANSs) [43]. This would allow the model to encounter specific scenar-
ios that are challenging or underrepresented in real-world data, such as
complex valvular abnormalities or irregular rhythms. By strengthening
its ability to handle diverse situations, the model’s generalisability and
robustness would be significantly enhanced.

Another intriguing path lies in utilising self-supervised learning
techniques to pre-train the model on unlabelled data [44]. This ap-
proach would leverage the vast wealth of readily available echocardio-
grams, even those without manually labelled measurements, to improve
the model’s initial performance and learning efficiency. By extracting
valuable features and representations from unlabelled data, the model
would be significantly better prepared for fine-tuning with labelled
data, ultimately leading to a more robust and generalisable solution.

Furthermore, expanding the dataset to include a more diverse range
of cases could further enhance the model’s ability to handle variations
in patient demographics, pathologies, and imaging conditions. This ex-
pansion would contribute to a more comprehensive and representative
training dataset, improving the model’s real-world applicability.

Exploring the feasibility of real-time application is crucial for inte-
grating the automated model into clinical workflows. Optimising the
model’s efficiency and speed could enable its use in real-time echocar-
diography examinations, providing timely and accurate assessments
during patient evaluations.

Finally, considering the addition of other Doppler measurements,
such as the left ventricular outflow tract, could broaden the scope
of the model’s applications. Incorporating multiple Doppler measure-
ments may enable a more comprehensive assessment of cardiac func-
tion, offering valuable insights into different aspects of cardiovascular
health.
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