
UWL REPOSITORY

repository.uwl.ac.uk

Enhancement of Big Data Security in Cloud Computing Using RSA Algorithm

Yeboah-Ofori, Abel ORCID: https://orcid.org/0000-0001-8055-9274, Darvishi, Iman and Sakirudeen

Opeyemi, Azeez (2024) Enhancement of Big Data Security in Cloud Computing Using RSA

Algorithm. In: FiCloud 2023 : The 10th International Conference on Future Internet of Things and

Cloud, 14-16 August 2023, Marrakesh, Morocco.

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/10615/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Enhancement of Big Data Security in Cloud
Computing Using RSA Algorithm

 1Abel Yeboah-Ofori 1Iman Darvishi 2Azeez Sakirudeen Opeyemi
School of Computing and Engineering School of Computing and Engineering School of Computing and Engineering
 University of West London University of West London University of West London

 United Kingdom United Kingdom United Kingdom
 abel.yeboah-ofori@uwl.ac.uk iman.darvishi@uwl.ac.uk 21518893@uwl.ac.uk

Abstract--The enhancement of big data security in cloud computing
has become inevitable dues to factors such as the volume, velocity,
veracity, Value, and velocity of the big data. These enhancements of
big data and cloud technologies have computing enabled a wide range of
vulnerabilities in applications in organizational business environments
leading to various attacks such as denial-of-service attacks, injection
attacks, and Phishing among others. Deploying big data in cloud
computing environments is a rapidly growing technology that
significantly impacts organizations and provides benefits such as
demand-driven access to computational services, a distorted version of
infinite computing capacity, and assistance with demand-driven
scaling up, scaling down, and scaling out. To secure cloud computing
for big data processing, a variety of encryption techniques such as RSA,
and AES can be applied. However, there are several vulnerabilities
during processing.

The paper aims to explore the enhancement of big data security in
cloud computing using the RSA algorithm to improve the deployment
and processing of the variety, volume, veracity, velocity and value of the
data utilizing RSA encryptions.

The novelty contribution of the paper is threefold: First, explore the
current challenges and vulnerabilities in securing big data in cloud
computing and how the RSA algorithm can be used to address them.
Secondly, we implement the RSA algorithm in a cloud computing
environment using the AWS cloud platform to secure big data to
improve the performance and scalability of the RSA algorithm for big
data security in cloud computing. We compare the RSA algorithm to
other cryptographic algorithms in terms of its ability to enhance big
data security in cloud computing. Finally, we recommend control
mechanisms to improve security in the cloud platform. The results
show that the RSA algorithm can be used to improve Cloud Security
in a network environment.

Keywords-Cloud Security, Big Data Security, Encryption, RSA
Algorithm, Cyber Security

I. INTRODUCTION

The recent introduction of big data and cloud computing
technologies has enabled a wide range of applications in
organizational business environments, leading to various
attacks such as denial-of-service attacks, injection attacks,
and Phishing among others. Cloud computing can be
referred to as an online service or resource that utilizes,
offers and deliver physical or virtualized resources through
the Internet [1]. It enables organizations to focus on their core
competencies by totally abstracting processing, storage and
network resources to workloads as needed and utilizing a
plethora of pre-built services [2]. Big Data is typically
characterized as a collection of extremely large data sets of
various types, making it challenging to process them using
conventional data processing platforms and methods. It
refers to enormous data volumes that are orders of magnitude
larger in number (Volume), more varied in kind, containing
organized, unstructured & semi-structured data (Variety),
arriving at a faster rate than any enterprise has ever had to
cope with (Velocity), the uncertainty and potential
inaccuracies of the data which can make it difficult to trust
the insights gained from the data (Veracity) and the
likelihood of data leaks and cyberattacks that could
jeopardize the security of big data (Vulnerability) [3] .
Many businesses in a variety of sectors use big data to
uncover new information and enhance existing processes
[4]. Some examples include Technology (Google, Amazon),

Retail (Walmart, Sainsbury) among others. However, there
are still some significant issues in the 5 Vs of big that need
to be addressed:
• Velocity: The speed at which data is generated and

processed can make it difficult to keep up, which can
lead to missed or inaccurate insights [5] Volume: Storing
and processing large amounts of data can be a significant
challenge, as it can require significant amounts of
storage and computational resources. This can make the
data vulnerable to attacks that attempt to overload
systems, such as denial-of-service attacks [6].

• Variety: The wide range of data types and formats can
make it difficult to properly process and analyze data,
which can lead to errors and inaccuracies in the insights
gained from the data.

• Veracity: The data quality and trustworthiness can be a
problem for big data, as it can be challenging to confirm
the veracity and correctness of the data [7].

• Value: The value of data is determined based on the
organizational business goals. The sensitivity and
privacy issues arise as any form of attack could
compromise confidentiality, integrity and the
availability of the big data leading to ID theft,
Intellectual property theft, breach of trust and litigation
issues.

Vulnerabilities that come with such 5 V’s data stored can be
vulnerable to breaches and cyberattacks, which can lead to
the loss or theft of sensitive information [8]. Deploying big
data in cloud computing environments is a rapidly growing
technology that has a significant impact on organizations and
provides benefits such as demand-driven access to
computational services, a distorted version of infinite
computing capacity, and assistance with demand-driven
scaling up, scaling down, and scaling out. Additionally,
deploying servers in the cloud is so convenient and easy that
it speeds up the provisioning of big data [9]. To protect big
data in cloud computing, researchers have devised many
strategies such as using RSA and MD5, RSA and AES as
discussed in section 2. These approaches cover several big
data security principles, and all of them aim to create a
secure environment.

The paper aims to explore the enhancement of big data
security in cloud computing using the RSA algorithm to
improve the deployment and processing of the variety,
volume, veracity, velocity and the v of the data utilizing
RSA encryptions. The novelty contribution of the paper is
threefold: First, explore the current challenges and
vulnerabilities in securing big data in cloud computing and
how can use the RSA algorithm be used to address them.
Secondly, we implement the RSA algorithm in a cloud
computing environment using the AWS cloud platform to
secure big data to improve the performance and scalability
of the RSA algorithm for big data security in cloud
computing. In addition to RSA itself being used in cloud
security, this work investigates integrating RSA encryption
technology with cloud services such as AWS. It describes
how to set up metrics on CloudWatch to monitor and issue

mailto:abel.yeboah-ofori@uwl.ac.uk
mailto:iman.darvishi@uwl.ac.uk
mailto:21518893@uwl.ac.uk

alerts as needed, launch an EC instance, build an S3 bucket,
and create an IAM user. We compare the RSA

algorithm to other cryptographic algorithms in terms of
its ability to enhance big data security in cloud computing.
Finally, we recommend control mechanisms to improve
security in the cloud. The results show that we RSA algorithm
can be used to improve Cloud Security in a network
environment.

II. RELATED WORKS
This section discusses the stet of the art and related

works regarding big data security and cloud computing. The
related work considers encryptions including RSA, and AES
among others used in enhancing big data. Regarding the use
of RSA in enhancing cloud security, [10] the researchers
proposed a hybrid cryptographic model combining AES and
RSA as a means to recognize some of the dangers to
information confidentiality, identify, and conceal sensitive
data and securely transmit big data over the cloud. The RSA
public key is used by the sender to encrypt the concealed
data to create cypher data, and the receiver's key is then used
by the AES technique to encrypt the RSA public key. Once
the key has been encrypted and the cypher data has been
transmitted, it is then sent only to the receiver. The receiver
decrypts the RSA keys using their private keys, and they
translate the encrypted data back to their original form using
the decrypted AES symmetric keys. Further, [11] the authors
propose a hybrid cryptosystem based on RSA and Paillier for
encrypting HDFS files. In this hybrid system, public and
private keys are generated by the HDFS client, and the file
cache in HDFS encrypts the file using the unstructured data.
Data is then saved in the cloud and subsequently clustered in
the HADOOP File System (HDFS) after applying the
proposed encryption strategy. Using the hybrid system, the
user will utilize their private key to obtain the decrypted data
after the server has presented the encrypted data to the
decryption process. In [12] presented an improved CP-ABE
with an RSA algorithm to secure outsourced big data stored
on cloud servers and to restrict access to, disseminate, and
safeguard information. The five stages of the proposed
model's activities setup, user key generation, data
encryption & decryption, and revocation perform actions
that successfully identify the users who decipher the
ciphertexts during decryption. Before allowing users to
access the secret key and the ciphertext to compute
decryption, the cloud environment uses the users' IDs to
determine whether or not they are malevolent. The
ciphertext will receive updates from both the public key and
the master key during the revocation procedure. New users
will be assigned a secret key based on the MK to gain access
to the publicly available data and reversibly acquire secrecy.
Furthermore, [13] proposed the use of an enhanced RSA
algorithm (ERSA) to provide data privacy in cloud
environments. To prevent attacks or intrusion, the speed of
the encryption and decryption procedures was improved,
and the key used for the processes was tightened. The
proposed ERSA method uses two alternatives "N" values for
encryption and decryption in contrast to the traditional RSA.
Similar to the High Speed and Secure RSA technique, the
generated N1 and N2 values use prime numbers rather than
two Random numbers. In [14] the authors proposed a
method for handling authentication and data security in
Cloud computing that combined digital signatures and RSA.
The RSA algorithm was used to encrypt data uploaded to the
Cloud, while the MD5 algorithm was used to verify

authenticity. User requests are encrypted by using the
system’s RSA public key before being sent to cloud
providers to ensure secure communication. In [15] the
authors implemented a multi-prime RSA algorithm as a
middle secure layer of storage to enhance user data security in
the cloud. Using prime numbers selected at random, the
multi-prime RSA technique creates a public and private key.
The recipient receives the encrypted data once it has been
removed from the storage service. In [16] the authors
proposed an RSA algorithm to provide data security that
could be accessed by the user who requests it to prevent
unauthorized access it encrypts user data before it is
uploaded to the cloud. The user submits a request to the
cloud provider for the requested data, and the cloud provider
confirms the user's identity before sending the requested
data. The RSA Public Key is shared by everyone in their
cloud environment. However, the Private Key is only known
by the user who originally held the data.

All the works of literature are relevant and contribute
to encryptions in enhancing encryptions in the cloud.
However, none of them used RSA in the AWS platform to
enhance big data security in the cloud.

III. APPROACH

This section discusses the approach used for the
implementation of the proposed RSA algorithm. We used
Amazon Web Services (AWS) for the cloud computing
platform. The rationale for using AWS for our
implementation is that it offers tools such as EC2, S3 bucket
and Cloudwatch. The platform provides scalability,
security, and cost-effectiveness, making it a suitable choice
for this study. The RSA encryption algorithm will be
implemented through Elastic Compute Cloud (EC2)
instances and Simple Storage Service (S3) providing storage
for both encrypted & decrypted datasets. These strategies
allow EC2 instances to manage virtual environments
designed specifically for executing the RSA encryption
algorithm while S3 acts as a storage hub. With various
monitoring tools available within AWS resources; we
remain confident in optimizing decryption speed throughout
implementations irrespective of variations in file sizes.
NOAA/PMEL has been selected for this research owing to its
reputation for providing credible environmental and
oceanographic data. By leveraging their datasets' accuracy, our
big data security analysis was fortified with contextual
information related to climate variations, oceanic states
atmospheric trends among others. This additional information
helped us unearth uncommon traits or irregular occurrences
which aided immensely towards informed decisions on pertinent
security matters. The dataset consists of 100 records with 20
variables per record. The choice to use this dataset was made
based on its applicability to the study's goals and research
topic. Also, it was selected because of its size and diversity,
which enable a thorough investigation and evaluation of the
suggested RSA algorithm for protecting big data stored in
the cloud. To obtain the dataset, the following steps were
taken: we access the AWS Open Data Registry website
(https://registry.opendata.aws/). We search for the
NOAA/PMEL dataset using the search bar on the website.
Python was used to carry out these preprocessing processes,
and the generated dataset was then utilized to carry out the
analysis and assessment of the suggested RSA algorithm.

A. Selection of AWS Technologies

Several technologies were chosen based on their suitability
with the AWS cloud platform and the project's goals to

https://registry.opendata.aws/

implement the suggested RSA method for securing big data
stored in the cloud. These technologies include:

• Amazon S3: The encrypted data are stored S3 which is an

extremely robust and scalable object storage service that

enables customers to store and access any volume of data.
It enables access control policies.

• Amazon EC2: The encryption and decryption
procedures are carried out via a virtual machine that
was built and managed using this technology. The
cloud's scalable computing capability offered by EC2
makes it simple to deploy apps and services.

• Amazon CloudWatch: This technology was utilized to
monitor the S3 bucket and EC2 instance for any
possible difficulties or issues already present. To
simplify the operation of the infrastructure, it gathers
and displays real-time logs, metrics, and event data in
automated dashboards.

• Python: The Python programming language was used to
write the encryption and decryption code. Python is a

popular language for data analysis and scientific
computing and provides a wide range of libraries and tools
for encryption and decryption.
• OpenSSL: The public and private key pair necessary

for the RSA algorithm was created using OpenSSL.
OpenSSL is a widely-used open-source software
library for secure communication.

• Sublime Text: The Python code was written using
Sublime Text because of its ease of use, customizable
interface, and compatibility with numerous
programming languages. Figure 1 illustrates the code
used to generate the encryption process, and the
validated key pair.

Fig 1. Python Code used to Verify the Key Pair in Sublime Text

• Kali Linux VM Terminal: Kali Linux VM
terminal was employed to connect to the EC2
instance using SSH as it provides a secure shell
connection and allows for remote access to the EC2
instance. Figure 2 shows the command used to list
the files in the EC2 instance

Fig 2 Linux VM for Connecting to the EC Instance

The selected technologies provided a scalable and secure
environment for implementing the proposed RSA
algorithm.

B. RSA Implementation Process
We used RSA encryption techniques to encrypt big

data in a cloud-based environment to ensure security so
that access is restricted to authorized users. AWS is one
of the main providers of large-scale cloud-based data
processing, which can effectively store and distribute
extremely huge datasets on servers that can run
concurrently. It offers a unique computing strategy based
on distributed file systems and saves data in clusters.
Before storing data in the cloud, users' data will be
encrypted. Authentication of the user is performed by the
cloud provider when the user requests data from it. As part
of this study, we will implement the RSA algorithm, and
analyze its performance based on time & space
complexity, and throughput parameters. The suggested
work will be executed using Python and Kali Linux VM
terminal to obtain the results for various evaluation
settings. Implementing the RSA algorithm requires the
following steps: Key generation, Encryption and
Decryption. Each message is represented by a unique
integer in the RSA block cypher that uses both public-key
and private-key components. While the private key is
solely known to the original owner of the data, the public
key is universally known in the cloud environment. As a
result, the encryption of data is carried out by the cloud
service provider while the decryption of the data is
performed by the cloud user. After being encrypted with
the public key, the data can only be decrypted with the
accompanying private key.

C. Key Generation:

The key pair is generated by connecting the user EC
instance using its public DNS to an SSH client on the CLI
before the encryption of the data. The pseudocode

breakdown for creating a public-private key pair with
OpenSSL is as follows:
Step 1: Generate a private key using OpenSSL

openssl gen-key -algorithm RSA -out
private_key.pem
-aes256

“This command generates a private key file named
"private_key.pem" using the RSA algorithm with AES
256-bit encryption”.

Step 2: Extract the public key from the private key using
OpenSSL openssl rsa -in private_key.pem -pubout -
out public_key.pem
“This command extracts the public key from the
previously generated private key file and saves it to a
new file named "public_key.pem".

D. Encryption Phase
This is the process of transforming original plain

data into cypher text.
Step 1: Connect to EC instance using SSH client
Step 2: Load the public key from a file
Step 3: Obtain text file to encrypt from the S3 bucket
Step 4: Convert the text data to binary format
Step 5: Break the binary data into chunks of 190 bytes
(less than the RSA key length)
Step 6: For each chunk: a. Pad the chunk to 192 bytes
with random bytes

b. Convert the padded chunk to an integer M
c. Compute ciphertext C = M ^ E mod (N1)
d. Store ciphertext in a list of encrypted chunks

Step 7: Upload encrypted data back to the S3 bucket
Step 8: Close the SSH connection

E. Decryption Phase

This is the process of returning the encrypted data
to its original plain form.

Step 1: Connect to EC instance using SSH client
Step 2: Load the private key from a file
Step 3: Obtain the text file to be decrypted from the S3
bucket
Step 4: Decrypt the file using the private key
Step 5: Upload the decrypted data back to the S3 bucket
Step 6: Close the SSH connection
Once the file has been encrypted, it will be automatically
uploaded to the storage service in the cloud environment.
The encrypted file can only be decrypted by authorized
users using the corresponding private key. We implement
the encryption/decryption algorithm in the next chapter.

IV. IMPLEMENTATION

This section discusses the implementation process

used for the paper. Data transmission across a
communication channel can be made secure by using the
RSA encryption technique. The computationally
demanding RSA algorithm necessitates the use of a
programming language with strong mathematics libraries
and functions. Python offers a large range of libraries and
packages for data encryption and security, such as
PyCrypto and cryptography [17], which provide the
capabilities needed to implement the RSA method. The
libraries enabled to create of RSA key pairs, encrypting
and decrypt data with the RSA technique, and
communication with AWS.

A. Setting Up EC2 Instance and S3 Bucket for Big Data
Encryption in the Cloud:
This section outlines the exact steps we used to establish an
EC2 instance and S3 bucket, set up the security groups, and
upload a dataset for encryption to the S3 bucket. Implementing
the RSA method for big data security in cloud computing
requires completing this crucial step.

Launching an EC2 Instance: The first step is to launch an
EC2 instance. This involves logging in to the IAM user AWS
Management Console that we have created using the root
account, we selected EC2 from the list of services, and then
clicking on the Launch Instance button. Next, we select the
Amazon Machine Image (AMI) for the instance: Amazon
Linux 2023 AMI 2023.0.20230315.0 x86_64
HVM kernel-6.1, and choose the appropriate instance type as:
m5.2xlarge Then, configure the instance details, add storage,
and configure security groups. To perform any actions on an
EC2 instance, the IAM user was allocated the following
permissions in JSON format. The EC instance console shows
the instance’s running status during the tests as follows.
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow", "Action": [

"ec2:DescribeInstances",
"ec2:DescribeInstanceStatus",

"ec2:RunInstances",
"ec2:TerminateInstances"

{
"Version": "2012-10-17",
"Statement": [

{
"Effect":
"Allow",
"Action": [

"s3:CreateBuck
et",
"s3:DeleteBuck
et",
"s3:GetObject",
"s3:PutObject",
"s3:ListBucket"

],
"Resource": [

"arn:aws:s3:::bigdatasecuritys3bucket",
"arn:aws:s3:::bigdatasecuritys3bucket/*"

]
}

]
}

],
"Resource": "*"

}
]

}

Configuring Security Groups: A crucial component of
protecting an EC2 instance is using security groups that
specify inbound and outbound traffic rules. We set up the
security groups that specify the inbound and outbound rules
(SSH & TCP traffic) and associating the security group with
the EC2 instance.

Creating and Uploading Dataset to the S3 bucket: The
next step is to create an S3 bucket. This involves logging

in to the AWS Management Console, we selected S3
from the list of services and then clicked on the Create
Bucket button. We choose a unique name for the bucket
(bigdatasecuritys3bucket), selected the region for the
bucket as eu-west-2, and configure the bucket properties.
Once the S3 bucket is created, the next thing we did was
upload the NOAA/PMEL dataset to the bucket for
encryption. Then configured the permissions for the
uploaded files, including the owner and access
permissions. To perform any actions on an S3 bucket, the

IAM user was allocated the following permissions in JSON
format. Figure 3 is an illustration of the S3 bucket console
showing the NOAA/PERM dataset.

B. Installation of Dependencies for RSA Algorithm

This section outlines the installation process for the
necessary dependencies required to implement the RSA

algorithm. These dependencies are essential for the proper
functioning of the algorithm. The installation procedure for
the requisite dependencies needed to implement the RSA
algorithm was described in this section. It is crucial to
make sure that all dependencies have been correctly

installed before we begin to implement the RSA
algorithm

Fig 3. Creating an S3 Bucket for Object Storage on AWS

Steps:
1. Opened a terminal window on the EC2 instance.
2. Updated the package index by running the command: sudo

apt update.
3. Installed Python 3 and pip3 by running the command: sudo

apt-get install python3 python3-pip. Install Python
dependencies on the Kali Linux VM

4. Installed the Python cryptography library by running the
command: sudo apt-get install cryptography

5. Installed the required Python packages by running the
following command: sudo apt-get install pycrypto boto3
(pycrypto is a Python package that provides cryptographic
services, including the RSA algorithm. boto3 is a Python
package that provides an interface to interact with Amazon
Web Services (AWS) services, including S3.

6. Installed the Amazon Web Services Command Line
Interface (AWS CLI) by running the command: sudo apt-
get install awscli.

7. We configured the AWS CLI by running the command: aws
configure. Entered our Access Key ID, Secret Access
Key, default region name, and default output format.
Figure 4 shows the command for configuring AWS on Kali
Linux VM

Fig 4. Configuring AWS CLI on Kali Linux VM

C. Steps to generate RSA keys using OpenSSL

RSA keys are an important component of the RSA
encryption algorithm. We have to generate a pair of keys
before we can encrypt files in the S3 bucket. In this
section, we will explain how we generated the RSA key
pair using OpenSSL and the significance of these keys in
the encryption process. OpenSSL is a popular encryption
toolkit that is used to generate RSA keys
1. Installed OpenSSL on our Kali Linux VM using the
command: sudo apt-get install openssl. Figure 5 shows
the command used to install OpenSSL on Kali Linux

2. To generate a private key, we ran the following
command: openssl genrsa -out private_key.pem 3072. This
command will generate a 3072-bit RSA private key and
save it in the private_key.pem file. The private key will
be used to decrypt any data encrypted by the corresponding
public key in the S3 bucket. Figure 6 shows the command
used to generate the private key needed for the decryption
of the encrypted dataset.

Fig 5. Generating a 3072-bit private key

To generate a public key from the private key, we ran the
following command: openssl rsa -in private_key.pem -
outform PEM -pubout -out public_key.pem. This command
will generate a public key and save it in the
public_key.pem file. The public key will be used to encrypt
the data set in the S3 bucket. Figure 7 is an illustration of the
command used to generate the public key needed for
encrypting the dataset

Fig 6. Generating the Public key from the private key

The private key has to be protected to prevent

unauthorized access. To do this, we set the appropriate file
permissions on the private_key.pem file by running the
following command. Chmod 400 private_key.pem

This command will set the file permissions so that only
the owner of the file can read it. In conclusion, creating
RSA keys using OpenSSL is a straightforward process that
entails creating a private key, creating a public key from the
private key, and safeguarding the private key to thwart
unauthorized access. Data will be encrypted using the public
key and then decrypted using the private key.

D. Source Code for Encryption & Decryption of Data sets
stored in the S3 Bucket

The source code for encrypting the data presented is a
Python script named bigdatasecurityencryption.py. It is
used to access data stored in an S3 bucket, break the data
into chunks, pad each chunk, and encrypt the data using the
RSA algorithm with a public key. The encrypted data is
then uploaded back to the S3 bucket.

The S3 bucket and other crucial information for
accessing the data are initially set by the script. After that, it
sets up an S3 client using the Python Boto3 package. Using
the get object() function, it downloads the requested object
from the S3 bucket, and the 'Body' key is used to read the
binary data from the response. The open() function is then
used by the script to load the public key from the supplied
file path and save it in a variable. It divides the binary data
into 190-byte chunks and adds arbitrary padding to make
each chunk 192 bytes long. The ciphertext is then calculated
using the RSA method and the pow() function and is then
stored in a list after each padded chunk has been converted
to an integer.

Afterwards, the original data is then encrypted
using the RSA technique and the public key that was

previously loaded using the Openssl command line
program. The rsautl command is executed with the correct
arguments for encryption using the check output() function
from the subprocess library. The encrypted information is
kept in a variable. Finally, the script uses the put object()
method to upload the encrypted data to the S3 bucket and
outputs a success message if the upload was successful.
Figure 8 shows the Python code used to encrypt the dataset
in the AWS S3 bucket and Figure 11 shows the result of the
encryption for each data set in the bucket

Fig 7. Encryption code in Sublime text

The source code for decrypting the encrypted data set in
the S3 bucket is also presented in the Python script. It uses
the private key to decrypt the data, which was previously
encrypted with the public key. The S3 bucket name,
encrypted object key name, and desired decoded object key
name are first set, along with the object details. The path to
the private key file is also specified.

After initializing the S3 client, the encrypted
object is downloaded from the S3 bucket. This is followed
by loading the private key from the given file. The
encrypted data was decrypted piece by piece before being
concatenated into binary data. The RSA decryption
algorithm is applied to each encrypted chunk iteratively by
the code. The padding bytes are then subtracted before the
result is added to the binary data and transformed back to
the original binary chunk format. Following converting
binary data back to text file content, OpenSSL uses the
private key to decrypt the encrypted data. The decrypted
data is stored in the decrypted data variable. The decrypted
data is then uploaded to the S3 bucket with the chosen key
name. Figure 9 is an illustration of the Python code used
to decrypt the encrypted data in the AWS S3 and Figure 11
shows the result of the decryption process for each dataset.

Fig 8. Decryption Code in Sublime Text

E. Configuring CloudWatch
CloudWatch is a monitoring service provided by

Amazon Web Services (AWS) that can be used to collect
and track metrics, collect and monitor log files, and set
alarms. In this project, the EC2 instance and S3 bucket
were monitored using CloudWatch to make sure they were
operating normally and to get alerts when issues arises. To
configure CloudWatch for our EC and S3, we followed the
steps below: After the alarms are configured, we will be
notified via email when the conditions specified in the
alarm are fulfilled. This will make it possible for us to take

the necessary steps to guarantee that both our EC2 instance
and S3 bucket are functioning properly. Figure 10 depicts
statistics and alerts of the metrics configured on AWS
CloudWatch.

Fig 9. Configuring CloudWatch to Monitor EC2 Instance and S3 Bucket
Performance

F. Result Analysis
We conducted several experiments on NOAA/PMEL

dataset to assess the efficiency and performance of the
developed RSA method for big data security in cloud
computing. The dataset consisted of 20 objects with varying
sizes ranging from 252KB to 584MB. We contrasted the
performance of the RSA algorithm with that of AES. The test
results demonstrated that the RSA method offered a high
level of security with little performance cost. For large data
files, RSA was shown to perform encryption and decryption
more quickly than AES. This is because RSA encryption is
a one-way operation, and after encryption is complete,
decoding happens quickly.

When compared to AES, the RSA algorithm also offered
a high level of security. The enormous key size of RSA made
brute force attacks more difficult to defeat, and even if an
attacker managed to obtain the public key, it would take a
long time to decrypt the data. Additionally, the RSA method
implementation for big data security in cloud computing
added another level of security to the data stored in S3
buckets. The only way to decrypt the data is with the
appropriate private key, which was used to encrypt it using a
public key. The risk of data breaches was decreased because
of the additional layer of security this gave the data. Figure
11 gives information about the encrypted and decrypted files
in the S3 bucket.

Fig 10. Sample of Encrypted & Decrypted Files in our S3 bucket

The findings in the test demonstrated that using the RSA
technique to encrypt sensitive data kept in S3 buckets was a
reliable and secure option. Additionally, the encryption and
decryption processes were fast and provided a high level of
security against unauthorized access to data.

G. RSA Algorithm and AES Security Comparison
RSA and AES are two popular encryption algorithms

that provide security to data by transforming it into
unreadable formats that can only be deciphered by
authorized users. A comparison of the two algorithms based

on their security and performance characteristics shows that
RSA is more secure than AES, while AES is faster than RSA.
However, the security of RSA depends on the length of the
key, while the security of AES depends on the strength of the
key and the number of rounds used in the encryption process.

Fig 11. Chart Showing the Encryption Compile Time for RSA & AES
(nanoseconds)

Fig12. Chart showing the decryption compile time for RSA and
AES (nanoseconds)

Figure 13 compares the proposed RSA and AES in terms

of the time required to compile encryption, whereas Figure
14 compares the time required to compile decryption. Based
on this data, AES appears to be a faster and more efficient
encryption algorithm than RSA, especially for large file
sizes. However, it's important to note that, RSA remains a
critical algorithm for securing communication, digital
signature, key exchange and data security which is the goal
of this work.

V. CONCLUSION
The paper has considered various encryption algorithms

that can be used to enhance big data security in the cloud
environment. However, our work leverage on the RSA
algorithms. The paper has explored the enhancement of big
data security challenges in cloud computing using the RSA
algorithm to improve the deployment and processing of the
variety, volume, veracity, velocity and value of the data
utilizing RSA encryptions. We have discussed challenges
that come with the 5 V’s storage and vulnerabilities that lead
to breaches and cyberattacks including the loss or theft of
sensitive information. The paper has discussed the security
of cloud computing for big data processing, and the variety
of encryption techniques including RSA, and AES to prevent
vulnerabilities during processing. We implement the RSA
algorithm in a cloud using the AWS cloud platform to
improve the performance and scalability of the RSA
algorithm for big data security by comparing the RSA
algorithm to other cryptographic algorithms in terms of their

ability to enhance big data security in the cloud. The paper
has recommended control mechanisms to improve security
in the cloud using the RSA algorithm to improve the Cloud
Security. Although the RSA algorithm offers encryption, a
thorough security strategy also incorporates other security

measures such as authentication, access control, and data
integrity mechanisms. Future research can examine how
these measures can be combined to offer a comprehensive
and reliable security framework for big data in the cloud.

REFERENCES

[1] Surbiryala, J. and Rong, C. (2019). Cloud Computing: History and
Overview. [online] IEEE Xplore.
doi:10.1109/CloudSummit47114.2019.00007.

[2] Muniswamaiah, M., Agerwala, T. and Tappert, C. (2019). Big Data in
Cloud Computing Review and Opportunities. International Journal of
Computer Science and Information Technology, 11(4), pp.43–57.
doi:10.5121/ijcsit.2019.11404.

[3] Stoycheva, Z. (2019) The contemporary challenge: 4V’s of Big Data
blog.datumize.com. [online]. Available from:
https://blog.datumize.com/the-contemporary-challenge-4vs-of-big-
data.

[4] Ajah, I. and Nweke, H. (2019). Big Data and Business Analytics:
Trends, Platforms, Success Factors and Applications. Big Data and
Cognitive Computing, [online] 3(2), p.32. doi:10.3390/bdcc3020032.

[5] Gandomi, A. and Haider, M. (2015). Beyond the Hype: Big Data
Concepts, Methods, and Analytics. International Journal of
Information Management, 35(2), pp.137–144.

[6] Koseleva, N. and Ropaite, G. (2017). Big Data in Building Energy
Efficiency: Understanding of Big Data and Main Challenges. Procedia
Engineering, 172, pp.544–549. Doi
https://doi.org/10.1016/j.proeng.2017.02.064.

[7] Cai, L. and Zhu, Y. (2015). The Challenges of Data Quality and Data
Quality Assessment in the Big Data Era. Data Science Journal, [online]
14(0), p.2. doi https://doi.org/10.5334/dsj-2015-002.

[8] Alvarez Mendoza, Y., Londoño Gomez, T.J. and Leguizamón Páez,
M.A. (2020). Risks and security solutions exist in the Internet of Things
(IoT) in relation to Big Data. INGENIERÍA Y COMPETITIVIDAD,
23(1), p.e9484. doi:10.25100/iyc.v23i1.9484.

[9] El-Seoud, S.A., El-Sofany, H.F., Abdelfattah, M.A.F. and Mohamed,
R. (2017). Big Data and Cloud Computing: Trends and
Challenges. International Journal of Interactive Mobile Technologies
(iJIM), 11(2), p.34. doi:10.3991/ijim.v11i2.6561.

[10] Basapur, S.B. (2021). A Hybrid Cryptographic Model Using AES and
RSA for Sensitive Data Privacy Preserving. Webology. [online]

Available at: https://www.semanticscholar.org/paper/A-Hybrid-
Cryptographic-Model-Using-AES-and-RSA-for-
Basapur/583392b2243a7bc0056785ec17e4afe30757d52a [Accessed
18 Dec. 2022].

[11] Abdalwahid, S.M., Yousif, R. and Kareem, S. (2019). ENHANCING
APPROACH USING HYBRID PAILLER AND RSA FOR
INFORMATION SECURITY IN BIGDATA. Applied Computer
Science. [online] Available at:
https://www.semanticscholar.org/paper/ENHANCING-APPROACH-
USING-HYBRID-PAILLER-AND-RSA-FOR-Abdalwahid
Yousif/c9c8e8d86083670b19090ceb9a12f7812db41b6e [Accessed 18
Dec. 2022].

[12] Basavarajegowda, R.M. and Sundaram, S.M. (2022). Enhanced CP-
ABE with RSA for Secure and Revocable Data Transmission of Big
Data in the Cloud. International Journal of Intelligent Engineering and
Systems, 15(2), pp.47–56. doi:10.22266/ijies2022.0430.05.

[13] Amalarethinam, I.G. and Leena, H.M. (2017). Enhanced RSA
Algorithm with Varying Key Sizes for Data Security in Cloud. 2017
World Congress on Computing and Communication Technologies
(WCCCT). Doi https://doi.org/10.1109/wccct.2016.50.

[14] Lenka, S.R. and Nayak, B. (2014). Enhancing Data Security in Cloud
Computing Using RSA Encryption and MD5
Algorithm. www.scinapse.io. [online] Available at:
https://www.scinapse.io/papers/2186938371

[15] M., Srivenkatesh, M. and Vanitha, K. (2015). Implementing
Multiprime RSA Algorithm to Enhance the Data Security in Federated
Cloud Computing. IJARCCE, 4(4), pp.647–650.
doi:10.17148/ijarcce.2015.44149.

[16] Yellamma, P., Narasimham, C. and Sreenivas, V. (2013). Data security
in the cloud using RSA. [online] IEEE Xplore.
doi:10.1109/ICCCNT.2013.6726471.

[17] Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M.L.
and Stransky, C. (2018). Comparing the Usability of Cryptographic
APIs. 2017 IEEE Symposium on Security and Privacy (SP).

https://blog.datumize.com/the-contemporary-challenge-4vs-of-big-data
https://blog.datumize.com/the-contemporary-challenge-4vs-of-big-data
https://www.semanticscholar.org/paper/ENHANCING-APPROACH-USING-HYBRID-PAILLER-AND-RSA-FOR-Abdalwahid
https://www.semanticscholar.org/paper/ENHANCING-APPROACH-USING-HYBRID-PAILLER-AND-RSA-FOR-Abdalwahid
https://www.scinapse.io/papers/2186938371

